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Certainly, all electrical engineers know of linear systems 
theory.  But, it is helpful to first review these concepts to 
make sure that we all understand what this theory is, why it 
works, and how it is useful. 
 
First, we must carefully define a linear-time invariant system. 
 
HO: THE LINEAR, TIME-INVARIANT SYSTEM 
 
Linear systems theory is useful for microwave engineers 
because most microwave devices and systems are linear (at 
least approximately). 
 
HO: LINEAR CIRCUIT ELEMENTS 
 
The most powerful tool for analyzing linear systems is its 
eigen function. 
 
HO: THE EIGEN FUNCTION OF LINEAR SYSTEMS 
 
Complex votages and currents at times cause much head 
scratching; let’s make sure we know what these complex 
values and functions physically mean. 
 
HO: A COMPLEX REPRESENTATION OF SINUSOIDAL FUNCTIONS 
 
Signals may not have the explicit form of an eigen function, 
but our linear systems theory allows us to (relatively) easily 
analyze this case as well. 
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HO: ANALYSIS OF CIRCUITS DRIVEN BY ARBITRARY FUNCTIONS 
 
If our linear system is a linear circuit, we can apply basic 
circuit analysis to determine all its eigen values! 
 
HO: THE EIGEN SPECTRUM OF LINEAR CIRCUITS 
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The Linear, Time-
Invariant System 

 
Most of the microwave devices and networks that we will 
study in this course are both linear and time invariant (or 
approximately so).   
 
Let’s make sure that we understand what these terms 
mean, as linear, time-invariant systems allow us to 
apply a large and helpful mathematical toolbox! 
 
LLLIIINNNEEEAAARRRIIITTTYYY      
 

Mathematicians often speak of operators, 
which is “mathspeak” for any mathematical 
operation that can be applied to a single 
element (e.g., value, variable, vector, matrix, or 
function).  

 
 
 
For example, a function ( )f x  describes an operation on 
variable x  (i.e., ( )f x  is operator on x ). E.G.: 
 

( ) ( ) ( )2 3 2f y y g t t y x x= − = =  
 

 

...operators, operators, operators!!
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Moreover, we find that functions can likewise be operated on!  
For example, integration and differentiation are likewise 
mathematical operations—operators that operate on 
functions.  E.G.,: 
 

( ) ( ) ( )d g tf y dy y x dx
dt

∞

−∞
∫ ∫  

 
A special and very important class of operators are 
linear operators.   

 
Linear operators are denoted as [ ]yL , where: 
 

* L  symbolically denotes the mathematical operation; 
 

* And y denotes the element (e.g., function, variable, 
vector) being operated on. 

 
A linear operator is any operator that satisfies the following 
two statements for any and all y : 
 
 

1.   [ ] [ ] [ ]1 2 1 2y y y y+ = +L L L  
 
2.  [ ]a y a y=⎡ ⎤⎣ ⎦L L ,  where a  is any constant. 
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From these two statements we can likewise conclude that a 
linear operator has the property: 
 
 

[ ] [ ]1 2 1 2a y b y a y b y+ = +⎡ ⎤⎣ ⎦L L L  
 

 
where both a and b are constants. 
 

Essentially, a linear operator has the property that 
any weighted sum of solutions is also a solution! 

 
For example, consider the function: 
 

[ ] ( ) 2t g t t= =L  
 

At 1t = : 
( ) ( )1 2 1 2g t = = =  

 
and at 2t = : 

( ) ( )2 2 2 4g t = = =  
 
Now at 1 2 3t = + =  we find: 
 

( ) ( )

( ) ( )

1 2 2 3
6
2 4

1 2

g

g g

+ =

=

= +

= +
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More generally, we find that: 
 

( ) ( )

( ) ( )

1 2 1 2

1 2

1 2

2
2 2

g t t t t
t t

g t g t

+ = +

= +

= +

 

and 
( )

( )

2
2

g at at
a t
a g t

=

=

=

 

 
Thus, we conclude that the function ( ) 2g t t=  is indeed a 
linear function! 
 
Now consider this function: 
 

( )y x m x b= +  
 

Q:  But that’s the equation of a line!  That 
must be a linear function, right? 
 
A:  I’m not sure—let’s find out! 
 
We find that: 

( ) ( )y a x m ax b
mx ba

= +

= +
 

 
but: 

( ) ( )a y x a m x b
a m ax b

= +

= +
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therefore:   

( ) ( )y a x a y x≠   !!! 
 

Likewise: 
( ) ( )1 2 1 2

1 2

y x x m x x b
m bm x x

+ = + +

= + +
 

but: 
( ) ( ) ( ) ( )1 2 1 2

1 2 2
y x y x m x b m x

m b
b

m x x
+ = + + +

= + +
 

 
therefore:   

( ) ( ) ( )1 2 1 2y x x y x y x+ ≠ +   !!! 
 

The equation of a line is not a linear function! 
 

Moreover, you can show that the functions: 
 

( ) ( )2 3f y y y x x= − =  
 

are likewise non-linear. 
 
Remember, linear operators need not be 
functions.  Consider the derivative 
operator, which operates on functions.   
 

( )d f x
dx

 

 

d
dx

( )f x  
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Note that: 
 

( ) ( ) ( ) ( )d d f x d g xf x g x
dx dx dx

+ = +⎡ ⎤⎣ ⎦  

 
and also: 
 

( ) ( )d d f xa f x a
dx dx

=⎡ ⎤⎣ ⎦  

 
We thus can conclude that the derivative operation is a linear 
operator on function ( )f x : 
 

( ) ( )d f x f x
dx

= ⎡ ⎤⎣ ⎦L  

 
You can likewise show that the integration operation is 
likewise a linear operator: 
 

( ) ( )f y dy f y⎡ ⎤= ⎣ ⎦∫ L  
 

But, you will find that operations such as: 
 

( ) ( )
2d g t y x dx

dt

∞

−∞
∫  

 
are not linear operators (i.e., they are non-linear operators). 
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We find that most mathematical operations are in fact non-
linear!  Linear operators are thus form a small subset of all 
possible mathematical operations. 
 
Q:  Yikes! If  linear operators are so rare, we are we wasting 
our time learning about them?? 
 
A:  Two reasons! 
 
Reason 1:  In electrical engineering, the behavior of most of 
our fundamental circuit elements are described by linear 
operators—linear operations are prevalent in circuit analysis! 
 
Reason 2: To our great relief, the two characteristics of 
linear operators allow us to perform these mathematical 
operations with relative ease! 
 
Q: How is performing a linear operation easier than 
performing a non-linear one?? 
 
A:  The “secret” lies is the result:  
 

[ ] [ ]1 2 1 2a y b y a y b y+ = +⎡ ⎤⎣ ⎦L L L  
 

Note here that the linear operation performed on a relatively 
complex element 1 2a y b y+  can be determined immediately 
from the result of operating on the “simple” elements 1y  and 

2y . 
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To see how this might work, let’s consider some arbitrary 
function of time ( )v t , a function that exists over some finite 
amount of time T  (i.e., ( ) 0 for 0 and v t t t T= < > ). 
 
Say we wish to perform some linear operation on this 
function: 

( ) ??v t =⎡ ⎤⎣ ⎦L  
 

Depending on the difficulty of the 
operation L , and/or the complexity of the 
function ( )v t , directly performing this 
operation could be very painful (i.e., 
approaching impossible). 

 
Instead, we find that we can often expand a very complex and 
stressful function in the following way: 
 

( ) ( ) ( ) ( ) ( )0 0 1 1 2 2 n n
n

v t a t a t a t a tψ ψ ψ ψ
∞

=−∞

= + + + = ∑  

 
where the values na  are constants (i.e., 
coefficients), and the functions ( )n tψ  are known 
as basis functions. 
 
For example, we could choose the basis functions: 
 

( ) for 0n
n t t nψ = ≥  

 
Resulting in a polynomial of variable t:   
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( ) 2 3
0 1 2 3

0

n
n

n
v t a a t a t a t a t

∞

=

= + + + + = ∑  

 
This signal expansion is of course know as the Taylor Series 
expansion.  However, there are many other useful expansions 
(i.e., many other useful basis ( )n tψ ). 
 

* The key thing is that the basis functions ( )n tψ  are 
independent of the function ( )v t .  That is to say, the 
basis functions are selected by the engineer (i.e., you) 
doing the analysis.  

 
* The set of selected basis functions form what’s known as 

a basis. With this basis we can analyze the function 
( )v t . 

 
* The result of this analysis provides the coefficients na  

of the signal expansion.  Thus, the coefficients are 
directly dependent on the form of function ( )v t  (as well 
as the basis used for the analysis).  As a result, the set 
of coefficients { }1 2 3, , ,a a a  completely describe the 
function ( )v t ! 

 
Q:  I don’t see why this “expansion” of function of ( )v t  is 
helpful, it just looks like a lot more work to me. 
 
A:  Consider what happens when we wish to perform a linear 
operation on this function: 
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( ) ( ) ( )nn n n
n n

v a tt a t ψψ
∞ ∞

=−∞ =−∞

⎡ ⎤= =⎡ ⎤⎣ ⎦ ⎢ ⎥⎣
⎡ ⎤⎣ ⎦

⎦
∑ ∑L L L  

 
Look what happened! Instead of performing the linear 
operation on the arbitrary and difficult function ( )v t , we can 
apply the operation to each of the individual basis functions 

( )n tψ .  
 
Q:  And that’s supposed to be easier?? 
 
A:   It depends on the linear operation and on the basis 
functions ( )n tψ .  Hopefully, the operation ( )[ ]n tψL  is simple 
and straightforward.  Ideally, the solution to ( )[ ]n tψL  is 
already known! 
 
Q:  Oh yeah, like I’m going to get so lucky.  
I’m sure in all my circuit analysis problems 
evaluating ( )[ ]n tψL  will be long, frustrating, 
and painful. 
 
A: Remember, you get to choose the basis over which the 
function ( )v t  is analyzed.  A smart engineer will choose a 
basis for which the operations ( )[ ]n tψL  are simple and 
straightforward! 
 
Q:  But I’m still confused.  How do I choose what basis ( )n tψ  
to use, and how do I analyze the function ( )v t  to determine 
the coefficients na ?? 
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A:  Perhaps an example would help. 
 
Among the most popular basis is this one: 
 

2

0

0 0,

nj t
T

n

e t T

t t T

π

ψ

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎧
≤ ≤⎪

⎪= ⎨
⎪ ≤ ≥⎪⎩

 

and: 

( ) ( ) ( )
2

0 0

1 1 nT T j t
T

n na v t t dt v t e dt
T T

π

ψ
⎛ ⎞− ⎜ ⎟∗ ⎝ ⎠= =∫ ∫  

 
So therefore: 
 

( )
2

for 0
nj t

T
n

n
v t a e t T

π⎛ ⎞∞ ⎜ ⎟
⎝ ⎠

=−∞

= ≤ ≤∑  

 
The astute among you will recognize this signal 
expansion as the Fourier Series! 
 
Q:  Yes, just why is Fourier analysis so 
prevalent?  

 
A:  The answer reveals itself when we apply a linear operator 
to the signal expansion: 
 

( )
2 2n nj t j t
T T

n n
n n

v t a e a e
π π⎛ ⎞ ⎛ ⎞∞ ∞− −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

=−∞ =−∞

⎡ ⎤ ⎡ ⎤
= =⎡ ⎤ ⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
∑ ∑L L L  
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Note then that we must simply evaluate: 
 

2 nj t
Te
π⎛ ⎞− ⎜ ⎟

⎝ ⎠
⎡ ⎤
⎢ ⎥
⎢ ⎥⎣ ⎦
L  

for all n. 
 
We will find that performing almost any 
linear operation L  on basis functions of 
this type to be exceeding simple (more on 
this later)! 
 
 
TTTIIIMMMEEE   IIINNNVVVAAARRRIIIAAANNNCCCEEE   
 
Q:  That’s right!  You said that most of the microwave devices 
that we will study are (approximately) linear, time-invariant 
devices.  What does time invariance mean? 
 
A:  From the standpoint of a linear operator, it means that 
that the operation is independent of time—the result does 
not depend on when the operation is applied.  I.E., if: 
 

( ) ( )x t y t=⎡ ⎤⎣ ⎦L  
then: 
 

( ) ( )x t y tτ τ− = −⎡ ⎤⎣ ⎦L  
 
where τ  is a delay of any value.  
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The devices and networks that you are 
about to study in EECS 723 are in fact 
fixed and unchanging with respect to time 
(or at least approximately so).   
 
As a result, the mathematical operations 
that describe most (but not all!)  of our 
circuit devices are both linear and time-
invariant operators.  We therefore refer 
to these devices and networks as linear, 
time-invariant systems. 
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Linear Circuit Elements 
 
Most microwave devices can be described or modeled in terms 
of the three standard circuit elements:  
 

1.  RESISTANCE (R) 
 
2.  INDUCTANCE (L) 
 
3.  CAPACITANCE (C) 

 
For the purposes of circuit analysis, each of these three 
elements are defined in terms of the mathematical  
relationship between the difference in electric potential ( )v t  
between the two terminals of the device (i.e., the voltage 
across the device), and the current ( )i t flowing through the 
device. 
 
We find that for these three circuit elements, the 
relationship between ( )v t  and ( )i t  can be expressed as a 
linear operator! 
 
 

( ) ( ) ( )

( ) ( ) ( )

R R
R R

R
R R R

v tv t i t
R

i t v t R i t

= =⎡ ⎤⎣ ⎦

= =⎡ ⎤⎣ ⎦

Y

Z

L

L

 

 

( )Ri t  

( )Rv t

+

−

R 
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( ) ( ) ( )

( ) ( ) ( )1

C C
C C

t
C

C C C

d v tv t i t C
d t

i t v t i t dt
C −∞

= =⎡ ⎤⎣ ⎦

′ ′= =⎡ ⎤⎣ ⎦ ∫

Y

Z

L

L

 

 
 
 
 

( ) ( ) ( )

( ) ( ) ( )

1 t
L

L L L

L L
L L

v t i t v t dt
L

d i ti t v t L
d t

−∞

′ ′= =⎡ ⎤⎣ ⎦

= =⎡ ⎤⎣ ⎦

∫Y

Z

L

L

 

 
 
Since the circuit behavior of these devices can be expressed 
with linear operators, these devices are referred to as linear 
circuit elements. 

 
Q:  Well, that’s simple enough, but what about an element 
formed from a composite of these fundamental elements?   
 
For example, for example, how are ( )v t  and ( )i t  related in 
the circuit below?? 
 
 
 

( )Ci t

( )Cv t

+

−

C 

L 

( )Li t  

( )Lv t

+

−
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( ) ( ) ???i t v t= =⎡ ⎤⎣ ⎦ZL  
 
 
 
 
A:  It turns out that any circuit constructed entirely with 
linear circuit elements is likewise a linear system (i.e., a linear 
circuit). 
 
As a result, we know that that there must be some linear 
operator that relates ( )v t  and ( )i t in your example! 
 

( ) ( )i t v t=⎡ ⎤⎣ ⎦ZL  
  
The circuit above provides a good example of a single-port  
(a.k.a. one-port) network. 
 
We can of course construct networks with two or more ports; 
an example of a two-port network is shown below: 
 
 
 
 
 
 
 

L 

( )i t

( )v t

+

−

R

C

L

( )1i t  

( )1v t

+

−

 R

C

( )2v t

+

−

 

( )2i t
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Since this circuit is linear, the relationship between all 
voltages and currents can likewise be expressed as linear 
operators, e.g.: 

( ) ( )

( ) ( )

( ) ( )

21 1 2

21 1 2

22 2 2

v t v t

i t v t

i t v t

=⎡ ⎤⎣ ⎦

=⎡ ⎤⎣ ⎦

=⎡ ⎤⎣ ⎦

Z

Z

L

L

L

 

 
 Q: Yikes! What would these linear operators for this circuit 
be?  How can we determine them? 
 
A:  It turns out that linear operators for all linear circuits 
can all be expressed in precisely the same form!  For example, 
the linear operators of a single-port network are: 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

t

t

v t i t g t t i t dt

i t v t g t t v t dt

−∞

−∞

′ ′ ′= = −⎡ ⎤⎣ ⎦

′ ′ ′= = −⎡ ⎤⎣ ⎦

∫

∫

Z Z

Y Y

L

L

 

 
In other words, the linear operator of linear circuits can 
always be expressed as a convolution integral—a 
convolution with a circuit impulse function ( )g t . 
 
Q:  But just what is this “circuit impulse response”?? 
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A: An impulse response is simply the response of one circuit 
function (i.e., ( )i t  or ( )v t )  due to a specific stimulus by 
another.  
 

That specific stimulus is the impulse function ( )tδ . 
 
The impulse function can be defined as: 
 

( )
0

1
tsin

t lim tτ

π
τδ

πτ
τ

→

⎛ ⎞
⎜ ⎟
⎝ ⎠=

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Such that is has the following two properties: 
 

1.    ( ) 0 for 0t tδ = ≠  
 

2.  ( ) 1 0t dt .δ
∞

−∞

=∫  

 
The impulse responses of the one-port example are 
therefore defined as: 
 

( ) ( ) ( ) ( )i t tg t v t
δ=Z  

and: 
 

( ) ( ) ( ) ( )v t tg t i t
δ=Y  
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Meaning simply that ( )g tZ  is equal to the 
voltage function ( )v t  when the circuit is 
“thumped” with a impulse current (i.e., 
( ) ( )i t tδ= ), and ( )g tY  is equal to the 

current ( )ti  when the circuit is “thumped” 
with a impulse voltage (i.e., ( ) ( )t tv δ= ). 

 
Similarly, the relationship between the input and the output 
of a two-port network can be expressed as: 
 

( ) ( ) ( ) ( )2 21 1 1

t

v t v t g t t v t dt
−∞

′ ′ ′= = −⎡ ⎤⎣ ⎦ ∫L  

where: 
 

( ) ( ) ( ) ( )1
2 v t tg t v t

δ=
 

 
Note that the circuit impulse response must be causal 
(nothing can occur at the output until something occurs at the 
input), so that: 
 

( ) 0    for    0g t t= <  
 

Q:  Yikes! I recall evaluating convolution integrals to be 
messy, difficult and stressful. Surely there is an easier way 
to describe linear circuits!?! 
 
A: Nope! The convolution integral is all there is.  However, 
we can use our linear systems theory toolbox to greatly 
simplify the evaluation of a convolution integral! 
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The Eigen Function of 
Linear,Time-Invariant 

Systems 
 
Recall that that we can express (expand) a time-limited signal 
with a weighted summation of basis functions: 
 

( ) ( )n n
n

v t a tψ= ∑  

 
where ( ) 0v t =  for 0t <  and t T> . 
 
Say now that we convolve this signal with some system impulse 
function ( )g t : 

( ) ( ) ( )

( ) ( )

( ) ( )

t

t

n n
n

t

n n
n

v t g t t v t dt

g t t a t dt

a g t t t dt

ψ

ψ

−∞

−∞

−∞

′ ′ ′= −⎡ ⎤⎣ ⎦

′ ′ ′= −

′ ′ ′= −

∫

∑∫

∑ ∫

L

 

 
Look what happened!  
 
Instead of convolving the general function ( )v t , we now find 
that we must simply convolve with the set of basis functions 

( )n tψ . 
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Q:  Huh? You say we must “simply” convolve the set of basis 
functions ( )n tψ .  Why would this be any simpler?   
 
A:  Remember, you get to choose the basis ( )n tψ .  If you’re 
smart, you’ll choose a set that makes the convolution integral 
“simple” to perform! 
 
Q: But don’t I first need to know the explicit form of ( )g t  
before I intelligently choose ( )n tψ ?? 
 
A: Not necessarily! 
 
The key here is that the convolution integral: 
 

( ) ( ) ( )
t

n nt g t t t dtψ ψ
−∞

′ ′ ′= −⎡ ⎤⎣ ⎦ ∫L  

 
is a linear, time-invariant operator.  Because of this, there 
exists one basis with an astonishing property! 
 
These special basis functions are: 
 

( )
0

2where
0 0

nj t

n n

e for t T
t n

Tfor t ,t T

ω

πψ ω
⎧ ≤ ≤
⎪ ⎛ ⎞= =⎨ ⎜ ⎟

⎝ ⎠⎪ < >⎩

 

 
Now, inserting this function (get ready, here comes the 
astonishing part!) into the convolution integral: 
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( )n n

t
j t j te g t t e dtω ω ′

−∞

′ ′⎡ ⎤ = −⎣ ⎦ ∫L  

 
and using the substitution u t t ′= − , we get: 

 

( ) ( ) ( )

( )
( )

( ) ( )

( )

0

0

n n

n n

n n

t t t
j t j t u

t

j t j u

j t j u

g t t e dt g u e du

e g u e du

e g u e du

ω ω

ω ω

ω ω

−
−

−∞ − −∞

−

+∞

∞
−

′ ′− = −

= −

=

∫ ∫

∫

∫

 

 
      See! Doesn’t that astonish! 

 
 
 

 
 
 
 
 
A: Note that the integration in this result is not a 
convolution—the integral is simply a value that depends on n 
(but not time t): 

( ) ( )
0

nj t
nG g t e dtωω

∞
−∫  

 
As a result, convolution with this “special” set of basis 
functions can always be expressed as: 

Q:  I’m astonished only by how lame you are. 
How is this result any more “astonishing” than 
any of the other supposedly “useful” things 
you’ve been telling us? 
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( ) ( )n n n

t
j t j t j t

ng t t e dt e G eω ω ωω′

−∞

′ ′ ⎡ ⎤− = =⎣ ⎦∫ L  

 
The remarkable thing about this result is that the linear 
operation on function ( ) [ ]n nt exp j tψ ω=  results in precisely the 
same function of time t (save the complex multiplier ( )nG ω )! 
I.E.: 

( ) ( ) ( )nn nGt tωψ ψ=⎡ ⎤⎣ ⎦L  
 

Convolution with ( ) [ ]n nt exp j tψ ω=  is accomplished by 
simply multiplying the function by the complex 
number ( )nG ω ! 

 
Note this is true regardless of the impulse response ( )g t  
(the function ( )g t  affects the value of ( )nG ω  only)! 
 
Q:  Big deal! Aren’t there lots of other functions that would 
satisfy the equation above equation? 
 
A:  Nope. The only function where this is true is: 
 

( ) nj t
n t e ωψ =  

 
This function is thus very special.  We call this function the 
eigen function of linear, time-invariant systems. 
 
Q:  Are you sure that there are no other eigen functions?? 
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A:  Well, sort of. 
 
Recall from Euler’s equation that: 
 

n
n n

j t cos t j sin te ω ω ω= +  
 
It can be shown that the sinusoidal functions ncos tω  and 

nsin tω  are likewise eigen functions of linear, time-invariant 
systems. 
 

The real and imaginary components of eigen function 
[ ]nexp j tω  are also eigen functions. 

 
Q:  What about the set of values ( )nG ω  ?? Do they have any  
significance or importance?? 
 
A: Absolutely!  
 
Recall the values ( )nG ω  (one for each n) depend on the impulse 
response of the system (e.g., circuit) only: 
 

( ) ( )
0

nj t
nG g t e dtωω

∞
−∫  

 
Thus, the set of values ( )nG ω  completely characterizes a 
linear time-invariant circuit over time 0 t T≤ ≤ .   
 

We call the values ( )nG ω  the eigen values of the 
linear, time-invariant circuit. 
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Q: OK Poindexter, all eigen stuff this 
might be interesting if you’re a 
mathematician, but is it at all useful 
to us electrical engineers? 
 
A: It is unfathomably useful to us 
electrical engineers! 

 
Say a linear, time-invariant circuit is excited (only) by a 
sinusoidal source (e.g., ( ) coss ov t tω= ).  Since the source 
function is the eigen function of the circuit, we will find that 
at every point in the circuit, both the current and voltage will 
have the same functional form.  
 

That is, every current and voltage in the circuit will 
likewise be a perfect sinusoid with frequency oω !!  
 

Of course, the magnitude of the sinusoidal 
oscillation will be different at different 
points within the circuit, as will the relative 
phase. But we know that every current and 
voltage in the circuit can be precisely 
expressed as a function of this form: 
 

( )cos oA tω ϕ+  
 

Q:  Isn’t this pretty obvious? 
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A:  Why should it be?  Say our source function was instead a 
square wave, or triangle wave, or a sawtooth wave.  We would 
find that (generally speaking) nowhere in the circuit would we 
find another current or voltage that was a perfect square 
wave (etc.)! 

In fact, we would find that not 
only are the current and voltage 
functions within the circuit 
different than the source 
function (e.g. a sawtooth) they 
are (generally speaking) all 
different from each other. 

 
We find then that a linear circuit will (generally 
speaking) distort any source function—unless that 
function is the eigen function (i.e., an sinusoidal 
function). 
 

Thus, using an eigen function as circuit source greatly 
simplifies our linear circuit analysis problem.  All we need to 
accomplish this is to determine the magnitude A and relative 
phase ϕ  of the resulting (and otherwise identical) sinusoidal 
function! 
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A Complex Representation 
of Sinusoidal Functions 

 
Q:  So, you say (for example) if a linear two-port circuit is 
driven by a sinusoidal source with arbitrary frequency oω , 
then the output will be identically sinusoidal, only with a 
different magnitude and relative phase. 
 
 
 
 
 
 
 
 
 
How do we determine the unknown magnitude 2mV  and phase 2ϕ  
of this output? 
 
A:  Say the input and output are related by the impulse 
response ( )g t : 

( ) ( ) ( ) ( )2 1 1

t

v t v t g t t v t dt
−∞

′ ′ ′= = −⎡ ⎤⎣ ⎦ ∫� �L  

 
We now know that if the input were instead: 
 

( ) 0
1

j tv t e ω=  

L( ) ( )1 1 1cosm ov t V tω ϕ

+

= +

−

 R

C 

( ) ( )2 22 cos omv t tV ω ϕ

+

= +

−
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then: 
( ) ( )0 0

2 0
j t j tv t e G eω ωω⎡ ⎤= =⎣ ⎦� �L  

where: 

( ) ( ) 0
0

0

j tG g t e dtωω
∞

−∫  

 
Thus, we simply multiply the input ( ) 0

1
j tv t e ω=  by the complex 

eigen value ( )0G ω  to determine the complex output ( )2v t : 
 

( ) ( ) 0
2 0

j tv t G e ωω=� �  
 

Q:  You professors drive me crazy with all this 
math involving complex (i.e., real and imaginary) 
voltage functions.    In the lab I can only generate 
and measure real-valued voltages and real-valued   
voltage functions. Voltage is a real-valued, 
physical parameter! 

 
A:  You are quite correct. 
 
Voltage is a real-valued parameter, expressing electric 
potential (in Joules) per unit charge (in Coulombs).  
 
Q:  So, all your complex formulations and complex eigen 
values and complex eigen functions may all be sound 
mathematical abstractions, but aren’t they worthless to us 
electrical engineers who work in the “real” world (pun 
intended)? 
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A:  Absolutely not!  Complex analysis actually simplifies our 
analysis of real-valued voltages and currents in linear circuits 
(but only for linear circuits!). 
 
The key relationship comes from Euler’s Identity: 
 

cos sinj te t j tω ω ω= +  
 
Meaning: 

{ }Re cosj te tω ω=  
 

Now, consider a complex value C.  We of course can write this 
complex number in terms of it real and imaginary parts: 
 

{ } { }Re and ImC a j b a C b C= + ∴ = =  
 

But, we can also write it in terms of its magnitude C  and 
phase ϕ ! 
 

jC C e ϕ=  
 
where: 
 

2 2

1tan

C C C a b

b aϕ

∗

−

= = +

⎡ ⎤= ⎣ ⎦

 

 
Thus, the complex function 0j tC e ω is:  
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( ) ( )

0 0

0

0 0cos sin

j t j t

j t

jC e e
e

C e
C
C t j C t

ω ω

ω ϕ

ϕ

ω ϕ ω ϕ

+

=

=

= + + +

 

 
Therefore we find: 
 

( ) { }0
0cos Re j tC eC t ωω ϕ+ =  

 
Now, consider again the  real-valued voltage function: 
 

( ) ( )1 1 1cosmv t V tω ϕ= +  
 

This function is of course sinusoidal with a magnitude 1mV  and 
phase 1ϕ .  Using what we have learned above, we can likewise 
express this real function as: 
 

( ) ( )
{ }

1 1 1

1

cos

Re
m

j t

v t V t
V e ω

ω ϕ= +

=
 

 
where 1V   is the complex number: 
 

1
1 1

j
mV V e ϕ=  

 
Q:  I see!  A real-valued sinusoid has a magnitude and phase, 
just like complex number.  A single complex number (V ) can 
be used to specify both of the fundamental (real-valued) 
parameters of our sinusoid ( ,mV ϕ ).   
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What I don’t see is how this helps us in our circuit analysis. 
After all: 

( ) ( ) ( )2 1
oj t

ov t G V e ωω=� �  
 

which means: 
( ) ( ) { }2 1

oj t
ov t G Re V e ωω� �≠  

 
What then is the real-valued output ( )2v t  of our two-port 
network when the input ( )1v t is the real-valued sinusoid: 
 

  
( ) ( )

{ }
1 1 1

1

cos

Re o

m o
j t

v t V t
V e ω

ω ϕ= +

=
  ??? 

 
A:  Let’s go back to our original convolution integral: 
 

( ) ( ) ( )2 1

t

v t g t t v t dt
−∞

′ ′ ′= −∫� �  

If: 
( ) ( )

{ }
1 1 1

1

cos

Re o

m o
j t

v t V t
V e ω

ω ϕ= +

=
 

then: 

( ) ( ) { }2 1
o

t
j tv t g t t Re V e dtω ′

−∞

′ ′= −∫� �  

 
Now, since the impulse function ( )g t  is real-valued (this is 
really important!) it can be shown that: 
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( ) ( ) { }

( )

2 1

1

o

o

t
j t

t
j t

v t g t t Re V e dt

Re g t t V e dt

ω

ω

′

−∞

′

−∞

′ ′= −

⎧ ⎫
′ ′= −⎨ ⎬

⎩ ⎭

∫

∫

� �

 

 
Now, applying what we have previously learned; 
 

( ) ( )

( )

( ){ }

2 1

1

1 0

o

o

o

t
j t

t
j t

j t

v t Re g t t V e dt

Re V g t t e dt

Re V G e

ω

ω

ωω

′

−∞

′

−∞

⎧ ⎫
′ ′= −⎨ ⎬

⎩ ⎭
⎧ ⎫

′ ′= −⎨ ⎬
⎩ ⎭

=

∫

∫

�

 

 
Thus, we finally can conclude the real-valued output ( )2v t  due 
to the real-valued input: 
 

( ) ( )
{ }

1 1 1

1

cos

Re o

m o
j t

v t V t
V e ω

ω ϕ= +

=
 

is: 
 

( ) { }
( )

2 2

2 2

oj t

m o

v t Re V e
V cos t

ω

ω ϕ

=

= +

�
 

where: 
 
( )2 1oV G Vω=  
 

The really important result here is the last one! 
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The magnitude and phase of the output sinusoid (expressed as 
complex value 2V ) is related to the magnitude and phase of the 
input sinusoid (expressed as complex value 1V ) by the system 
eigen value ( )oG ω : 

( )2

1
o

V G
V

ω=  

 
Therefore we find that really often in electrical engineering, 
we: 
 

1. Use sinusoidal (i.e., eigen function) sources. 
 
2.  Express the voltages and currents created by these 
sources as complex values (i.e., not as real functions of 
time)! 

 
For example, we might say “ 3 2.0V = ”, meaning: 
 

( ) { }0 0
3 32.0 2.0 Re 2.0 2.0cosoj j j t

oV e v t e e tω ω= = ⇒ = =  
 

 

L( ) ( )1 1 1cosm ov t V tω ϕ

+

= +

−

 R

C 

( ) ( ){ }2 1Re oj t
ov t G V e ωω

+

=

−
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Or “ 3.0LI = − ”, meaning: 
 

( ) { } ( )2.0 3.0 Re 3.0 3.0cosoj j j t
L L oI e i t e e tπ π ω ω π= − = ⇒ = = +

 
Or “ sV j= ”, meaning: 
 

( ) ( ) ( ){ } ( )2 21.0 Re 1.0 1.0cos 2
o

j j j t
s s oV j e v t e e t

π π ω πω= = ⇒ = = +

 
* Remember, if a linear circuit is excited by a sinusoid (e.g., 

eigen function 0exp j tω⎡ ⎤⎣ ⎦), then the only unknowns are 
the magnitude and phase of the sinusoidal currents and 
voltages associated with each element of the circuit.   

 
* These unknowns are completely described by complex 

values, as complex values likewise have a magnitude and 
phase. 

 
* We can always “recover” the real-valued voltage or 

current function by multiplying the complex value by 
0exp j tω⎡ ⎤⎣ ⎦ and then taking the real part, but typically we 

don’t—after all, no new or unknown information is 
revealed by this operation! 

 
 
 

 
 
  

L1V

+

−

 R

C 

( )2 1oV G Vω

+

=

−
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Analysis of Circuits Driven 
by Arbitrary Functions 

 
Q:  What happens if a linear circuit is excited by some 
function that is not an “eigen function”?  Isn’t limiting our 
analysis to sinusoids too restrictive? 
 
A:   Not as restrictive as you might think. 
 
Because sinusoidal functions are the eigen-functions of linear, 
time-invariant systems, they have become fundamental to 
much of our electrical engineering infrastructure—particularly 
with regard to communications. 
 
For example, every radio and TV station is assigned its very 
own eigen function (i.e., its own frequency ω )!  
 
 It is very important that we use eigen functions for 
electromagnetic communication, otherwise the received signal 
might look very different from the one that was transmitted! 
 
 
 
 
 
 
 

 

( ) nj t
n t e ωψ ≠
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With sinusoidal functions (being eigen functions and all), we 
know that receive function will have precisely the same form 
as the one transmitted (albeit quite a bit smaller). 
 

Thus, our assumption that a linear circuit is excited 
by a sinusoidal function is often a very accurate and 
practical one! 

 
Q: Still, we often find a circuit that is not driven by a 
sinusoidal source.  How would we analyze this circuit? 
 
A: Recall the property of linear operators: 
 

[ ] [ ]1 2 1 2a y b y a y b y+ = +⎡ ⎤⎣ ⎦L L L  
 
We now know that we can expand the function: 
 

( ) ( ) ( ) ( ) ( )0 0 1 1 2 2 n n
n

v t a t a t a t a tψ ψ ψ ψ
∞

=−∞

= + + + = ∑  

 
and we found that: 
 

( ) ( ) ( )nn n n
n n

v a tt a t ψψ
∞ ∞

=−∞ =−∞

⎡ ⎤= =⎡ ⎤⎣ ⎦ ⎢ ⎥⎣
⎡ ⎤⎣ ⎦

⎦
∑ ∑L L L  

 
Finally, we found that any linear operation ( )[ ]n tψL  is greatly 
simplified if we choose as our basis function the eigen 
function of linear systems: 
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( )
0

2where
0 0

nj t

n n

e for t T
t n

Tfor t ,t T

ω

πψ ω
⎧ ≤ ≤
⎪ ⎛ ⎞= =⎨ ⎜ ⎟

⎝ ⎠⎪ < >⎩

 

 
so that: 

( ) ( ) nj t
n nt G e ωψ ω=⎡ ⎤⎣ ⎦L  

 
 
Thus, for the example: 
 
 
 
 
 
 
 
 
 
We follow these analysis steps: 
 
1.  Expand the input function ( )1v t  using the basis functions 
( ) [ ]n nt exp j tψ ω= : 

 

( ) 0 1 2
1 01 11 21 1

nj t j t j t j t
n

n
v t V e V e V e V eω ω ω ω

∞

=−∞

= + + + = ∑  

 
where: 

( )1 1
0

1 n

T
j t

nV v t e dt
T

ω−= ∫  

L( )1v t

+

−

 R

C 

( )2v t

+

−
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2. Evaluate the eigen values of the linear system: 
 

( ) ( )
0

nj t
nG g t e dtωω

∞
−= ∫  

 
3.  Perform the linear operaton (the convolution integral) 
that relates ( )2v t  to ( )1v t : 
 

( ) ( )

( )

2 1

1

1

1

n

n

n

j t
n

n

j t
n

n

j t
n n

n

v t v t

V e

V e

V G e

ω

ω

ωω

∞

=−∞

∞

=−∞

∞

=−∞

= ⎡ ⎤⎣ ⎦
⎡ ⎤

= ⎢ ⎥⎣ ⎦

⎡ ⎤= ⎣ ⎦

=

∑

∑

∑

L

L

L
 

 
Summarizing:            

( )2 2
nj t

n
n

v t V e ω
∞

=−∞

= ∑  

 
where:               

( )2 1n n nV G Vω=  
 
and: 
 

( )1 1
0

1 n

T
j t

nV v t e dt
T

ω−= ∫           ( ) ( )
0

nj t
nG g t e dtωω

∞
−= ∫  
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As stated earlier, the signal expansion used here is the 
Fourier Series. 
 
Say that the timewidth T of the signal ( )1v t  becomes infinite.  
In this case we find our analysis becomes: 
 

( ) ( )2 2
1

2
j tv t V e dωω ω

π

+∞

−∞

= ∫  

 
where:               

( ) ( ) ( )2 1V G Vω ω ω=  
 
and: 
 

( ) ( )1 1
j tV v t e dtωω

+∞
−

−∞

= ∫           ( ) ( ) j tG g t e dtωω
+∞

−

−∞

= ∫  

 
The signal expansion in this case is the Fourier Transform. 
 
We find that as T → ∞  the number of discrete system eigen 
values ( )nG ω  become so numerous that they form a 
continuum— ( )G ω  is a continuous function of frequencyω . 

L( ) 11
nj t

n
n

V ev t ω
∞

=−∞

+

=

−

∑  R

C 

( ) ( )2 1 1
nj t

n n
n

v t G V e ωω
∞

=−∞

+

=

−

∑
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We thus call the function ( )G ω  the eigen spectrum or 
frequency response of the circuit. 
 
Q: You claim that all this fancy mathematics (e.g., eigen 
functions and eigen values) make analysis of linear systems 
and circuits much easier, yet to apply these techniques, we 
must determine the eigen values or eigen spectrum: 
 

( ) ( )
0

nj t
nG g t e dtωω

∞
−= ∫         ( ) ( ) j tG g t e dtωω

+∞
−

−∞

= ∫  

 
Neither of these operations look at all easy.  And in addition 
to performing the integration, we must somehow determine 
the impulse function ( )g t  of the linear system as well ! 
 
Just how are we supposed to do that? 
 
A: An insightful question!  Determining the impulse response 
( )g t and then the frequency response ( )G ω  does appear to be 

exceedingly difficult—and for many linear systems it indeed 
is! 
 
However, much to our great relief, we can determine 
the eigen spectrum ( )G ω  of linear circuits without 
having to perform a difficult integration.  In fact, we 
don’t even need to know the impulse response ( )g t ! 
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The Eigen Spectrum 
of Linear Circuits 

 
Recall the linear operators that define a capacitor: 
 
 

( ) ( ) ( )

( ) ( ) ( )1

C C
C C

t
C

C C C

d v tv t i t C
d t

i t v t i t dt
C −∞

= =⎡ ⎤⎣ ⎦

′ ′= =⎡ ⎤⎣ ⎦ ∫

Y

Z

L

L

 

 
We now know that the eigen function of these linear, time-
invariant operators—like all linear, time-invariant 
operartors—is [ ]exp j tω . 
 
The question now is, what is the eigen spectrum of each of 
these operators?  It is this spectrum that defines the 
physical behavior of a given capacitor! 
 
For ( ) [ ]expCv t j tω= , we find: 
 

( ) ( )

( )

C
C C

j t

j t

i t v t
d eC

d t
j C e

ω

ωω

= ⎡ ⎤⎣ ⎦

=

=

YL
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Just as we expected, the eigen function [ ]exp j tω  “survives” 
the linear operation unscathed—the current function ( )i t  has 
precisely the same form as the voltage function 
( ) [ ]expv t j tω= . 

 
The only difference between the current and voltage is the 
multiplication of the eigen spectrum, denoted as ( )CG ωY . 
 

( ) ( ) ( )j t j tC Ci t v t e G eω ωω⎡ ⎤= = =⎣ ⎦Y YL  
 

Since we just determined that for this case: 
 

( ) ( ) j ti t j C e ωω=  
 

it is evident that the eigen spectrum of the linear operation: 
 

( ) ( ) ( )C d v ti t v t C
d t

= =⎡ ⎤⎣ ⎦YL  

is: 
( ) 2jCG j C C e π
ω ω ω= =Y   !!! 

 
So for example, if:  
 

( ) ( )
( ){ }

cos

Re o

m o

j j t
m

v t V t

V e eϕ ω

ω ϕ= +

=
 

 
we will find that: 
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( ) ( ) ( )

( ) ( )
( )( )

2

2

o o

o

o

j j t j j tC C
m o m

j j j t
m

j j t
m

V e e G V e e

C e V e e

C V e e

ϕ ω ϕ ω

π ϕ ω

π ϕ ω

ω

ω

ω +

⎡ ⎤ =⎣ ⎦

=

=

Y YL

 

Therefore: 

( ) ( ){ }
( )
( )

2Re

cos

sin
2

o
j j t

mC

m o

m o

t

V t

V t

i C V e e

C

C

πϕ ω

ω ϕ

ω ϕ

ω

πω

ω

+
=

= + +

+= −

 

 
Hopefully, this example again emphasizes that these real-
valued sinusoidal functions can be completely expressed in 
terms of complex values.  For example, the complex value: 
 

j
mCV V e ϕ=  
 

means that the magnitude of the sinusoidal voltage is mCV V= , 
and its relative phase is CV ϕ∠ = .   
 
The complex value: 
 

( )

( )2

C
C C

j
C

I G V

C e Vπ

ω

ω

=

=

Y

 

 
likewise means that the magnitude of the sinusoidal current 
is: 
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( )

( )

C
C C

C
C

m

I G V

G V
C V

ω

ω

ω

=

=

=

Y

Y  

 
And the relative phase of the sinusoidal current is: 
 

( )

2

C
C CI G Vω

π ϕ

∠ = ∠ + ∠

= +

Y
 

 
We can thus summarize the behavior of a capacitor with the 
simple complex equation: 
 
 
 

( )

( )2

C C

j
C

I j C V

C e Vπ

ω

ω

=

=
 

 
 
 
Now let’s return to the second of the two linear operators 
that describe a capacitor: 

 

( ) ( ) ( )1 t
C

C C Cv t i t i t dt
C −∞

′ ′= =⎡ ⎤⎣ ⎦ ∫ZL  

 
Now, if the capacitor current is the eigen function 
( ) [ ]expC t j ti ω= , we find: 

( )C CI j C Vω=  

CV

+

−

C 
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1

1

t
j t j tC

j t

e e dt
C

e
j C

ω ω

ω

ω

′

−∞

′⎡ ⎤ =⎣ ⎦

⎛ ⎞
= ⎜ ⎟
⎝ ⎠

∫ZL

 

 
where we assume ( ) 0i t = −∞ = . 
 
Thus, we can conclude that: 
 

( ) 1j t j t j tC Ce G e e
j C

ω ω ωω
ω

⎛ ⎞
⎡ ⎤ = = ⎜ ⎟⎣ ⎦

⎝ ⎠
Z ZL  

 
Hopefully, it is evident that the eigen spectrum of this linear 
operator is:  
 

( ) ( )3
21 1 jC jG e

j C C C
π

ω
ω ω ω

−
= = =Z  

 
And so:   

1
C CV I

j Cω
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

  

 
Q:  Wait a second! Isn’t this essentially the same result as 
the one derived for operator C

YL ?? 
 
A:  It’s precisely the same!  For both operators we find: 
 

1C

C

V
I j Cω

=  
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This should not be surprising, as both operators C
YL  and C

ZL  
relate the current through and voltage across the same 
device (a capacitor). 

 
The ratio of complex voltage to complex current is of course 
referred to as the complex device impedance Z. 
 

VZ
I

 

 
An impedance can be determined for any linear, time-invariant 
one-port network—but only for linear, time-invariant one-port 
networks! 
 
Generally speaking, impedance is a function of frequency.  In 
fact, the impedance of a one-port network is simply the eigen 
spectrum ( )G ωZ  of the linear operator ZL : 
 
 

V Z I=                                               
( ) ( )

( )

i t v t

Z G ω

=⎡ ⎤⎣ ⎦

=

Z

Z

L

 

 
 
 
Note that impedance is a complex value that provides us with 
two things: 
 

I

V

+

−

Z
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1.  The ratio of the magnitudes of the sinusoidal voltage and 
current: 

VZ
I

=  

 
2.  The difference in phase between the sinusoidal voltage 
and current: 

Z V I∠ = ∠ − ∠  
 
Q:  What about the linear operator: 
 

( ) ( )v t i t=⎡ ⎤⎣ ⎦YL   ?? 
 

A:  Hopefully it is now evident to you that: 
 

( )
( )
1 1G

G Z
ω

ω
= =Y

Z

 

 
The inverse of impedance is admittance Y: 
 

1 IY
Z V

=  

 
Now, returning to the other two linear circuit elements, we 
find (and you can verify) that for resistors: 
 

( ) ( ) ( )

( ) ( ) ( )

1R R
R R

R R
R R

v t i t G R

i t v t G R

ω

ω

= ⇒ =⎡ ⎤⎣ ⎦

= ⇒ =⎡ ⎤⎣ ⎦

Y Y

Z Z

L

L
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and for inductors: 
 

( ) ( ) ( )

( ) ( ) ( )

1L L
L L

L L
L L

v t i t G
j L

i t v t G j L

ω
ω

ω ω

= ⇒ =⎡ ⎤⎣ ⎦

= ⇒ =⎡ ⎤⎣ ⎦

Y Y

Z Z

L

L

 

 
meaning: 
 

01 j
R

R
Z R R e

Y
= = =         and       ( )21 j

L
L

Z j L L e
Y

π
ω ω= = =  

 
Now, note that the relationship  

 
VZ
I

=  

 
forms a complex “Ohm’s Law” with regard to complex 
currents and voltages.   
 
Additionally, ICBST (It Can Be Shown That) Kirchoff’s Laws 
are likewise valid for complex currents and voltages: 
 

0 0n n
n n

I V= =∑ ∑  

 
where of course the summation represents complex addition. 
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As a result, the impedance (i.e., the eigen spectrum) of any 
one-port device can be determined by simply applying a basic 
knowledge of linear circuit analysis! 
 
Returning to the example: 
 
 
 
 

VZ
I

=  

 
 
 
And thus using out basic circuits knowledge, we find: 
 

1
j CR LCZ Z Z Z R j Lω ω= + = +  

 
Thus, the eigen spectrum of the linear operator: 
 

( ) ( )i t v t=⎡ ⎤⎣ ⎦ZL  
 
For this one-port network is: 
 

( ) 1
j CG R j Lωω ω= +Z  
 

Look what we did! We were able to determine ( )G ωZ  without 
explicitly determining impulse response ( )g tZ , or having to 
perform any integrations! 
 

L

I

V

+

−

R 

C
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Now, if we actually need to determine the voltage function 
( )v t  created by some arbitrary current function ( )i t , we 

integrate: 
 

( ) ( ) ( )

( ) ( )1

1
2
1

2

j t

j t
j C

v t G I e d

R j L I e d

ω

ω
ω

ω ω ω
π

ω ω ω
π

+∞

−∞

+∞

−∞

=

= +

∫

∫

Z

 

 
where: 

( ) ( ) j tI i t e dtωω
+∞

−

−∞

= ∫  

 
Otherwise, if our current function is time-harmonic (i.e., 
sinusoidal with frequency ω ), we can simply relate complex 
current I  and complex voltage V  with the equation: 
 

( )1
j C

V Z I
R j L Iω ω

=

= +
 

 
Similarly, for our two-port example: 
 
 
 
 
 
 

 
 

L
1V

+

−

 R

C

2V

+

−
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we can likewise determine from basic circuit theory the eigen 
spectrum of linear operator: 
 

( ) ( )21 1 2v t v t=⎡ ⎤⎣ ⎦L  
is: 

 

( )21 1
L R

L RC

j L RZ ZG
Z Z Z j L R

j C

ω
ω

ω
ω

= =
+ +

 

 
so that: 

( )2 21 1V G Vω=  
 

or more generally: 
 

( ) ( ) ( )2 21 1
1

2
j tv t G V e dωω ω ω

π

+∞

−∞

= ∫  

where: 

( ) ( )1 1
j tV v t e dtωω

+∞
−

−∞

= ∫  

 
Finally, a few important definitions involving impedance and 
admittance: 
 

{ }

{ }

Re Resistance  

Im Reactance  

Z R

Z X
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{ }

{ }

Re Admittance  G

Im Susceptance  B

Y

Y
 

 
Therefore: 
 

Z R jX Y G jB= + = +  
 

But be careful!   
 
Although: 
 

1 1Y G jB
R jX Z

= + = =
+

 

 
keep in mind that: 
 

1 1andG B
R X

≠ ≠  

 
 
 
 
 
 
 
 
 
 
 




