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E.  Microwave Network Theory 
 
Note that a passive load is a one-port device—a device that 
can be characterized (at one frequency) by impedance ZL or 
load reflection coefficient ΓL . 
 
However, many microwave devices have multiple ports! 
 
Most common are two-port devices (e.g., amplifiers and 
filters), devices with both a gozenta and a gozouta. 
 
 
 
 
 
Note that a transmission line is also two-port device! 
 
Q: Are there any known ways to characterize a multi-port 
device? 
 
A:  Yes! Two methods are: 
 
 1.  The impedance matrix—a multi-port equivalent of ZL 
 
 2.  The scattering matrix—a multi-port equivalent of ΓL 
 
HO: The Impedance Matrix 
 

gozenta gozouta 
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Q:  You say that the impedance matrix characterizes a multi-
port device.  But is this characterization helpful?  Can we 
actually use it to solve real problems? 
 
A:  Example: Using the Impedance Matrix 
 
Q:  The impedance matrix relates the quantities ( )I z  and 
( )V z , is there an equivalent matrix that relates ( )V z+  and       
( )V z− ? 

 
A:  Yes! The scattering matrix relates the t.l. waves entering 
and exiting a multi-port device! 
 
HO: The Scattering Matrix 
 
Q:  Can the scattering matrix likewise be used to solve real 
problems? 
 
A:  Of course! 
 
Example: The Scattering Matrix 
 
Example: Scattering Parameters 
 
Q:  But, can the scattering matrix by itself tell us anything 
about the device it characterizes? 
 
A:  Yes! It can tell us if the device is matched, or lossless, or 
reciprocal. 
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HO: Matched, Lossless, Reciprocal 
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The Impedance Matrix 
 
Consider the 4-port microwave device shown below: 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note in this example, there are four identical transmission lines 
connected to the same “box”.  Inside this box there may be a 
very simple linear device/circuit, or it might contain a very large 
and complex linear microwave system. 
 

( )4 4I z  

( )2 2I z  

port 1 

( )1 1V z
+

−
 

( )4 4V z

+ −
 

( )2 2V z

+ −
 

port 3 

port 
4 

port 
2 

4-port 
microwave 

device 
Z0 Z0 

Z0 

Z0 
3 3Pz z=  

2 2Pz z=  

1 1Pz z=  

4 4Pz z=  

( )3 3V z
+

−
 

( )3 3I z  ( )1 1I z  
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 Either way, the “box” can be fully characterized by its 
impedance matrix! 
 
First, note that each transmission line has a specific location 
that effectively defines the input to the device  (i.e., z1P, z2P, 
z3P, z4P). These often arbitrary positions are known as the port 
locations, or port planes of the device. 
 
Thus, the voltage and current at port n is: 
 

( )n n nPV z z=                 ( )n n nPI z z=  
 

We can simplify this cumbersome notation by simply defining 
port n current and voltage as In and Vn : 
 

( )n n n nPV V z z= =                 ( )n n n nPI I z z= =  
 
For example, the current at port 3 would be ( )3 3 3 3PI I z z= = . 
 
Now, say there exists a non-zero current at port 1 (i.e., 1 0I ≠ ), 
while the current at all other ports are known to be zero (i.e., 

2 3 4 0I I I= = = ).   
 
Say we measure/determine the current at port 1 (i.e., 
determine 1I ),  and we then measure/determine the voltage at 
the port 2 plane (i.e., determine 2V ).   
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The complex ratio between 2 1 and V I  is know as the trans-
impedance parameter Z21: 
 

2
21

1

VZ
I

=  

 
Likewise, the trans-impedance parameters Z31 and Z41 are: 
 

3 4
31 41

1 1

         and           VVZ Z
I I

= =  

 
We of course could also define, say, trans-impedance parameter 
Z34 as the ratio between the complex values 4I  (the current 
into port 4) and 3V (the voltage at port 3), given that the 
current at all other ports (1, 2, and 3) are zero. 
 
Thus, more generally, the ratio of the current into port n  and 
the voltage at port m is: 
 
 

        (given that   0  for all )m
mn k

n

VZ I k n
I

= = ≠  
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A:  Place an open circuit at those ports! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Placing an open at a port (and it must be at the port!) enforces 
the condition that 0I = . 

 
 

 

1I  

4 0I =  

3V
+

−
 

2 0I =  

1V
+

−
 

4V+ −  

3 0I =  

2V+ −  

4-port 
microwave 

device 
Z0 Z0 

Z0 

Z0 

 

Q:  But how do we ensure 
that all but one port 
current is zero ? 
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Now, we can thus equivalently state the definition of trans-
impedance as:  
 
 

        (given that all ports  are )m
mn

n

VZ k n
I

= ≠ open  

 
 
 
 
 
 
 
 
 
 
 
 
 
A:  OK, say that none of our ports are open-circuited, such 
that we have currents simultaneously on each of the four ports 
of our device.   

 
Since the device is linear, the voltage at any one port due to all 
the port currents is simply the coherent sum of the voltage at 
that port due to each of the currents! 
 
For example, the voltage at port 3 can be determined by: 
 

3 33 3 32 2 31 134 4V Z I Z I Z I Z I= + + +  
 

Q: As impossible as it sounds, 
this handout is even more 
boring and pointless than any 
of your previous efforts.  Why 
are we studying this? After all, 
what is the likelihood that a 
device will have an open circuit 
on all but one of its ports?!    
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More generally, the voltage at port m of an N-port device is: 
 
 

1

N

m mn n
n

V Z I
=

= ∑  

 
 
This expression can be written in matrix form as: 
 

=V IZ  
 
Where I is the vector: 
 

[ ]1 2 3
T

NI ,I ,I , ,I=I "  
 
and V  is the vector: 
 

1 2 3
T

NV ,V ,V , ,V⎡ ⎤= ⎣ ⎦V …  
 

And the matrix  Z  is called the impedance matrix: 
 

11 1

1

n

m mn

Z Z

Z Z

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Z
…

# % #
"

 

 
The impedance matrix is a N  by N  matrix that completely 
characterizes a linear, N -port device.  Effectively, the 
impedance matrix describes a multi-port device the way that LZ  
describes a single-port device (e.g., a load)! 
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But beware! The values of the impedance matrix for a 
particular device or network, just like LZ , are 
frequency dependent!  Thus, it may be more 
instructive to explicitly write: 

 

( )
( ) ( )

( ) ( )

11 1

1

n

m mn

Z Z

Z Z

ω ω
ω

ω ω

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Z
…

# % #
"
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Example: Using the 
Impedance Matrix 

 
Consider the following circuit: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Where the 3-port device is characterized by the impedance 
matrix: 
 

2 1 2
1 1 4
2 4 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

Z  

 
Let’s now determine all port voltages  1 2 3V ,V ,V  and all currents 

1 2 3I ,I ,I . 

1I  

3I  

2V
+

−
 1V

+

−
 

3V+ −  

2I  

Z  + 
- 

1 

16 

1 
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A:  We don’t need to know what’s inside that box!  We know 
its impedance matrix, and that completely characterizes the 
device (or, at least, characterizes it at one frequency). 
 
Thus, we have enough information to solve this problem.  From 
the impedance matrix we know: 
 

1 1 2 3

2 1 2 3

3 1 2 3

2 2

4

2 4

V I I I

V I I I

V I I I

= + +

= + +

= + +

 

 
 
 
 
 
 
 
A:  True!  The impedance matrix describes the device in the 
box, but it does not describe the devices attached to it.  We 
require more equations to describe them. 

 

Q: How can we do that—we 
don’t know what the device 
is made of!  What’s inside 
that box? 

 

Q: Wait! There are 
only 3 equations 
here, yet there are 
6 unknowns!? 
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1.  The source at port 1 is described by the equation: 
 

( )1 116 0 1V . I= −  
 

2.  The short circuit on port 2 means that: 
 

2 0V =  
 

3.  While the load on port 3 leads to: 
 
                                            ( )3 31V I= −    (note the minus sign!) 

 
Now we have 6 equations and 6 unknowns! Combining equations, 
we find: 
 

1 1 1 2 3

1 2 3

16 2 2
16 3 2

V I I I I
I I I

= − = + +

∴ = + +
 

 
2 1 2 3

1 2 3

0 4
0 4

V I I I
I I I

= = + +

∴ = + +
 

 
3 3 1 2 3

1 2 3

2 4
0 2 4 2

V I I I I
I I I

= − = + +

∴ = + +
 

 
Solving, we find (I’ll let you do the algebraic details!): 
 

1 7 0I .=             2 3 0I .= −           3 1 0I .= −  
 

1 9 0V .=                2 0 0V .=              3 1 0V .=  



 

09/04/07 The Scattering Matrix 622 1/11 

Jim Stiles The Univ. of Kansas Dept. of EECS 

The Scattering Matrix 
 
At “low” frequencies, we can completely characterize a linear 
device or network using an impedance matrix, which relates the 
currents and voltages at each device terminal to the currents 
and voltages at all other terminals. 
 
 
 

But, at microwave frequencies, it 
is difficult to measure total 
currents and voltages!  

 
 
 

*  Instead, we can measure the magnitude and phase of 
each of the two transmission line waves ( ) and ( )V z V z+ − . 
 
*  In other words, we can determine the relationship 
between the incident and reflected wave at each device 
terminal to the incident and reflected waves at all other 
terminals. 

 
These relationships are completely represented by the 
scattering matrix.  It completely describes the behavior of a 
linear, multi-port device at a given frequency ω , and a given line 
impedance Z0. 
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Consider now the 4-port microwave device shown below: 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that we have now characterized transmission line activity 
in terms of incident and “reflected” waves.  Note the negative 
going “reflected” waves can be viewed as the waves exiting the 
multi-port network or device. 
 

 Viewing transmission line activity this way, we can fully  
characterize a multi-port device by its scattering parameters! 
 
 

( )1 1V z+  

( )4 4V z+  

( )3 3V z+  

( )2 2V z+  

port 1 

( )1 1V z−  

( )4 4V z−  

( )3 3V z−  

( )2 2V z−  

port 3 

port 
4 

port 
2 

4-port 
microwave 

device 
Z0 Z0 

Z0 

Z0 

3 3Pz z=  

2 2Pz z=  

1 1Pz z=  

4 4Pz z=  
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Say there exists an incident wave on port 1 (i.e., ( )1 1 0V z+ ≠ ), 
while the incident waves on all other ports are known to be zero 
(i.e., ( ) ( ) ( )2 2 3 3 4 4 0V z V z V z+ + += = = ).   
 

 
Say we measure/determine the 
voltage of the wave flowing into  
port 1, at the port 1 plane (i.e., 
determine ( )1 1 1PV z z+ = ).   

 
 
Say we then measure/determine 
the voltage of the wave flowing 
out of port 2, at the port 2 
plane (i.e., determine 

( )2 2 2PV z z− = ).   
 
The complex ratio between 1 1 1 2 2 2( ) and ( )P PV z z V z z+ −= =  is know 
as the scattering parameter S21: 
 

( )
2

2 1

1

022 2 2 02
21

1 1 1 01 01

( )
( )

P
P P

P

j z
j z zP

j z
P

V eV z z VS e
V z z V e V

β
β

β

+−− −
+ +

−+ + +

=
= = =

=
 

 
Likewise, the scattering parameters S31 and S41 are: 
 
 

3 3 3 4 4 4
31 41

1 1 1 1 1 1

( )( )           and            
( ) ( )

P P

P P

V z zV z zS S
V z z V z z

−−

+ +

==
= =

= =
 

 
 

( )1 1V z+  port 1 

Z0 

1 1P
z z=  

( )1 1 1 pV z z+

+

=

−

 

( )2 2V z−  port 2 

Z0 

2 2P
z z=  

( )2 2 2pV z z−

+

=

−
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We of course could also define, say, scattering parameter S34 
as the ratio between the complex values 4 4 4( )PV z z+ =  (the wave 
into port 4) and 3 3 3( )PV z z− =  (the wave out of port 3), given 
that the input to all other ports (1,2, and 3) are zero. 
 
Thus, more generally, the ratio of the wave incident on port n to 
the wave emerging from port m is: 
 
 

( )( )         (given that   0  for all )
( )

m m mP
mn k k

n n nP

V z zS V z k n
V z z

−
+

+

=
= = ≠

=
 

 
 
 
Note that frequently the port positions are assigned a zero 
value (e.g., 1 20, 0P Pz z= = ).  This of course simplifies the 
scattering parameter calculation: 
 

0
0 0

0
00

( 0)       
( 0)

j
mm m m

mn j
n n nn

V eV z VS
V z VV e

β

β

+−− −

−+ ++

=
= = =

=
 

 
We will generally assume that the port 
locations are defined as 0nPz = , and thus use 
the above notation.  But remember where this 
expression came from! 

 
 
 

  
 

 

Microwave
    lobe 
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A:  Terminate all other ports with a matched load! 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )1 1V z+  

( )3 3 0V z+ =  

( )3 3 0V z+ =  

( )2 2 0V z+ =  

( )1 1V z−  

( )4 4V z−  

( )3 3V z−  

( )2 2V z−  

4-port 
microwave 

device 
Z0 Z0 

Z0 

Z0 

4 0LΓ =  

3 0LΓ =  

2 0LΓ =  

Q:  But how do we ensure 
that only one incident wave 
is non-zero ? 
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Note that if the ports are terminated in a matched load (i.e., 
0LZ Z= ), then 0nLΓ =  and therefore: 

 
   ( ) 0n nV z+ =  

 
In other words, terminating a port ensures 
that there will be no signal incident on 
that port!  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A: Actually, both statements are correct! You must be careful 
to understand the physical definitions of the plus and minus 
directions—in other words, the propagation directions of waves 
( )n nV z+   and  ( )n nV z− !  

 

 

 
Q: Just between you and me, I think you’ve messed this up!  In all 
previous handouts you said that if  0LΓ = , the wave in the minus 
direction would be zero: 
 

( ) 0    if    0LV z− = Γ =  
 
but just now you said that the wave in the positive direction would 
be zero:  

( ) 0    if    0LV z+ = Γ =  
 
Of course, there is no way that both statements can be correct!  
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( ) 0     if    0LV z− = Γ =  

For example, we originally analyzed this case: 
 
 
 
 
 
 
 
  
 
In this original case, the wave incident on the load is ( )V z+  
(plus direction), while the reflected wave is ( )V z−  (minus 
direction).  
 
Contrast this with the case we are now considering: 
 
 
 
 
 
 
 
 
 
For this current case, the situation is reversed.  The wave 
incident on the load is now denoted as ( )n nV z−  (coming out of 
port n), while the wave reflected off the load is now denoted as 
( )n nV z+  (going into port n ). 

 
As a result, ( ) 0n nV z+ =  when 0nLΓ = ! 

LΓ  

( )V z−  

( )V z+  

Z0 

nLΓ  

( )n nV z+  

( )n nV z−  

Z0 

port n 

N-port 
Microwave 
Network 
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Perhaps we could more generally state that for some load LΓ : 
 
 

( ) ( )reflected incident
L L LV z z V z z= = Γ =  

 
 
 
 
 
 
 
 
 
 
 
Now, back to our discussion of S-parameters. We found that if 

0nPz =  for all ports n, the scattering parameters could be 
directly written in terms of wave amplitudes 0nV +  and 0mV − . 
 

( )0

0

      (when  0  for all )m
mn k k

n

VS V z k n
V

−
+

+= = ≠  

 
 

Which we can now equivalently state as: 
 
 

0

0

(when all ports, except port , are terminated in )      m
mn

n
n

VS
V

−

+= matched loads  

 
 

For each case, you must be able to 
correctly identify the mathematical 
statement describing the wave incident on, 
and reflected from, some passive load.  
 
Like most equations in engineering, the 
variable names can change, but the physics 
described by the mathematics will not!  
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We can use the scattering matrix to determine the 
solution for a more general circuit—one where the ports 
are not terminated in matched loads! 
 
 
 
 
 
 
A: Since the device is linear, we can apply superposition.  
The output at any port due to all the incident waves is 
simply the coherent sum of the output at that port due 
to each wave! 
 
For example, the output wave at port 3 can be 
determined by (assuming 0nPz = ): 
 

03 33 03 32 02 31 0134 04V S V S V S V S V− + + + += + + +  
 
More generally, the output at port m of an N-port device 
is: 
 

( )0 0
1

0
N

m mn n nP
n

V S V z− +

=

= =∑  

 
 
This expression can be written in matrix form as: 
 

− +=V VS  
 
 

 

Q:  I’m not understanding the importance 
scattering parameters.  How are they 
useful to us microwave engineers? 
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Where −V is the vector: 
 

01 02 03 0
T

NV ,V ,V , ,V− − − − −⎡ ⎤= ⎣ ⎦V …  
 
 
and +V  is the vector: 
 

01 02 03 0
T

NV ,V ,V , ,V+ + + + +⎡ ⎤= ⎣ ⎦V …  
 

 
Therefore S  is the scattering matrix: 
 

11 1

1

n

m mn

S S

S S

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S
…

# % #
"

 

 
 
The scattering matrix is a N  by N  matrix that completely 
characterizes a linear, N-port device.  Effectively, the 
scattering matrix describes a multi-port device the way that LΓ  
describes a single-port device (e.g., a load)! 
 
 

But beware! The values of the scattering matrix for a 
particular device or network, just like LΓ , are 
frequency dependent!  Thus, it may be more 
instructive to explicitly write: 

 
 



 

09/04/07 The Scattering Matrix 622 11/11 

Jim Stiles The Univ. of Kansas Dept. of EECS 

( )
( ) ( )

( ) ( )

11 1

1

n

m mn

S S

S S

ω ω
ω

ω ω

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S
…

# % #
"

 

 
Also realize that—also just like ΓL—the scattering matrix 
is dependent on both the device/network and the Z0 
value of the transmission lines connected to it. 
 
Thus, a device connected to transmission lines with 

0 50Z = Ω  will have a completely different scattering 
matrix than that same device connected to transmission 
lines with 0 100Z = Ω !!! 
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Example: The  
Scattering Matrix 

 
Say we have a 3-port network that is completely characterized 
at some frequency ω  by the scattering matrix: 
 

0.0 0.2 0.5
0.5 0.0 0.2
0.5 0.5 0.0

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

S  

 
A matched load is attached to port 2, while a short circuit has 
been placed at port 3: 
 
 
 
 
 
 

 

1 (z)V +  

3 (z)V +  

2 (z)V +  

port 1 

1 (z)V −  

3 (z)V −  

2 (z)V −  

port 3 

port 
2 

3-port 
microwave 

device 
Z0 Z0 

Z0 

3 0Pz =  

2 0Pz =  

1 0Pz =  

0Z Z=  

0Z =  
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a)  Find the reflection coefficient at port 1, i.e.: 
 

01
1

01

V
V

−

+Γ  

 
b)  Find the transmission coefficient from port 1 to port 2, i.e.,  
 

02
21

01

VT
V

−

+  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
NO!!!  The above statement is not correct! 
 

Remember, 01 01 11V V S− + =  only if ports 2 and 3 are 
terminated in matched loads!  In this problem port 3 
is terminated with a short circuit. 

 

I am amused by the trivial 
problems that you apparently 
find so difficult.  I know that: 
 

01
1 11

01

0.0V S
V

−

+Γ = = =  

and 
 

02
21 21

01

0.5VT S
V

−

+= = =  
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Therefore: 
01

1 11
01

V S
V

−

+Γ = ≠  

and similarly: 
 

02
21 21

01

VT S
V

−

+= ≠  

 
To determine the values 21T  and 1Γ , we must start with the 
three equations provided by the scattering matrix: 
 

01 02 03

02 01 03

03 01 02

0 2 0 5

0 5 0 2

0 5 0 5

V . V . V

V . V . V

V . V . V

− + +

− + +

− + +

= +

= +

= +

 

 
and the two equations provided by the attached loads: 
 

2 02

3 03 03

0 0

1

L

L

V

V V

+

+ −

Γ = =

Γ = − = −

⇒

⇒

 

 
 
 
 
 
 

 
  

You’ve made a terrible mistake! 
Fortunately, I was here to 
correct it for you—since 0LΓ = , 
the constant 02V −  (not 02V + ) is 
equal to zero. 
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NO!! Remember, the signal 2 ( )V z−  is incident on the matched 
load, and 2 ( )V z+  is the reflected wave from the load (i.e., 2 ( )V z+  
is incident on port 2).  Therefore, 02 0V + =  is correct! 
 
Likewise, because of the short circuit at port 3 ( 1LΓ = − ): 
 

3 3 03

3 3 03

( 0) 1
( 0)

V z V
V z V

+ +

− −

=
= = −

=
 

 
and therefore: 
 

03 03V V+ −= −  
 
We can divide all of these equations by 01V + , resulting in: 
 

01 02 03
1

01 01 01

02 03
21

01 01

03 02

01 01

02

01

03 03

01 01

0 2 0 5

0 5 0 2

0 5 0 5

0

V V V. .
V V V

V VT . .
V V

V V. .
V V

V
V

V V
V V

− + +

+ + +

− +

+ +

− +

+ +

+

+

+ −

+ +

= +

= = +

= +

=

= −

Γ =
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Look what we have—5  equations and 5 unknowns!  Inserting 
equations 4 and 5 into equations 1 through 3, we get: 
 

01 03
1

01 01

02 03
21

01 01

03

01

0 5

0 5 0 2

0 5

V V.
V V

V VT . .
V V

V .
V

− +

+ +

− +

+ +

−

+

= −

= = −

=

Γ =

 

 
Solving, we find: 
 

( )

( )

1

21

0 5 0 5 0 25

0 5 0 2 0 5 0 4

. . .

T . . . .

= − = −

= − =

Γ
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Example: Scattering 
Parameters 

 
Consider a two-port device with a scattering matrix (at some 
specific frequency 0ω ): 
 

( )0

0 1 0 7
0 7 0 2
. j .

j . .ω ω
⎡ ⎤

= = ⎢ ⎥−⎣ ⎦
S  

 
and 0 50Z = Ω . 

 
Say that the transmission line connected to port 2 of this 
device is terminated in a matched load, and that the wave 
incident on port 1 is: 
 

( ) 1
1 1 2 j zV z j e β−+ = −  

 
where 1 2 0P Pz z= = . 
 
Determine: 
 
 1.  the port voltages ( )1 1 1PV z z=  and ( )2 2 2PV z z= . 
  
 2.  the port currents ( )1 1 1PI z z=  and ( )2 2 2PI z z= . 
 

3.  the net power flowing into port 1  
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1.  Since the incident wave on port 1 is: 
 

( ) 1
1 1 2 j zV z j e β−+ = −  

 
we can conclude (since 1 0Pz = ): 
 

( )
( )

1
1 1 1

0

2

2
2

Pj z
P

j

V z z j e
j e
j

β

β

−+

−

= = −

= −

= −

 

 
and since port 2 is matched (and only because its matched!), 
we find: 
 

( ) ( )
( )

1 1 1 11 1 1 1

0 1 2
0 2

P PV z z S V z z
. j
j .

− += = =

= −

= −

 

The voltage at port 1 is thus: 
 

( ) ( ) ( )1 1 1 1 1 1 1 1 1

2

2 0 0 2
2 2

2 2

P P P

j

V z z V z z V z z
j . j .
j .

. e π

+ −

−

= = = + =

= − −

= −

=

 

 
Likewise, since port 2 is matched: 
 

( )2 2 2 0PV z z+ = =  
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And also:  
 

( ) ( )
( )

2 2 2 21 1 1 1

0 7 2
1 4

P PV z z S V z z
j . j
.

− += = =

= −

=

 

Therefore: 
 

( ) ( ) ( )2 2 2 2 2 2 2 2 2

0

0 1 4
1 4
1 4

P P P

j

V z z V z z V z z
.

.

. e

+ −

−

= = = + =

= +

=

=

 

  
2.  The port currents can be easily determined from the 
results of the previous section.   
 

( ) ( ) ( )
( ) ( )

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

0 0

2

2 0 0 2
50 50
1 8
50
0 036

0 036

P P P

P P

j

I z z I z z I z z
V z z V z z

Z Z
. .j j

.j

j .

. e π

+ −

+ −

−

= = = − =

= =
= −

= − +

= −

= −

=

 

 
and: 
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( ) ( ) ( )
( ) ( )

2 2 2 2 2 2 2 2 2

2 2 2 2 2 2

0 0

0 1 4
50 50
0 028

0 028

P P P

P P

j

I z z I z z I z z
V z z V z z

Z Z
.

.
. e π

+ −

+ −

+

= = = − =

= =
= −

= −

= −

=

 

 
3.  The net power flowing into port 1 is: 
 

( ) ( )
( )

1 1 1
2 2

01 01

0 0
2 2

2 2

2 0 2
2 50

0 0396

P P P

V V
Z Z

.

. Watts

+ −

+ −

∆ = −

= −

−
=

=

 

 



 

09/04/07 Matched reciprocal lossless 622 1/9 

Jim Stiles The Univ. of Kansas Dept. of EECS 

Matched, Lossless, 
Reciprocal Devices 

 
A microwave device can be lossless or reciprocal.  In addition, 
we can likewise classify it as being matched.   
 
Let’s examine each of these three characteristics, and how 
they relate to the scattering matrix. 

 
 

Matched 
 
A matched device is another way of saying that the input 
impedance at each port is equal to Z0 when all other ports are 
terminated in matched loads.  For this condition, the reflection 
coefficient of each port is zero—no signal will be come out of a 
port if a signal is incident on that port (but only that port!). 
 
In other words, we want: 
 

0    for all m mm mV S V m− += =  
 

a result that occurs when: 
 
 

= 0    for all  if matchedmmS m  
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We find therefore that a matched device will exhibit a 
scattering matrix where all diagonal elements are zero. 
 
Therefore: 

0 0.1 0.2
0.1 0 0.3
0.2 0.3 0

j

j
S

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
is an example of a scattering matrix for a matched, three port 
device. 
 
 
Lossless 
 
For a lossless device, all of the power that delivered to each 
device port must eventually find its way out! 
 
In other words, power is not absorbed by the network—no  
power to be converted to heat! 
 
Recall the power incident on some port m is related to the 
amplitude of the incident wave ( 0mV + ) as: 
 

2
0

02
m

m
V

P Z

+
+ =  

 
While power of the wave exiting the port is: 
 

2
0

02
m

m
V

P Z

−
− =  
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Thus, the power delivered to (absorbed by) that port is the 
difference of the two: 

2 2
00

0 02 2
mm

m m m
V V

P P P Z Z

+ −
+ −∆ = − = −  

 
Thus, the total power incident on an N-port device is: 
 

2
0

01 1

1
2

N N

m m
m m

P P VZ
+ + +

= =
= =∑ ∑  

 
Note that:  

( )2
0

1

N
H

m
m

V V V+ + +

=
=∑  

 
where operator H  indicates the conjugate transpose (i.e., 
Hermetian transpose) operation, so that ( )HV V+ +  is the inner 
product (i.e., dot product, or scalar product) of complex vector 
V+  with itself.  

 
Thus, we can write the total power incident on the device as: 
 

( )2
0

0 01

1
2 2

HN

m
m

P VZ Z
V V+ +

+ +

=
= =∑  

 
Similarly, we can express the total power of the waves exiting 
our M-port network to be: 

( )2
0

0 01

1
2 2

HN

m
m

P VZ Z
V V− −

− −

=
= =∑  
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Now, recalling that the incident and exiting wave amplitudes are 
related by the scattering matrix of the device: 
 

− +=V VS  
 
Thus we find: 

( ) ( )
0 02 2

H H H
P Z Z

V V V VS S− − + +
− = =  

 
Now, the total power delivered to the network is: 
 

1

M

m
P P P P+ −

=
∆ = ∆ = −∑  

Or explicitly:  

( ) ( )

( ) ( )
0 0

0

2 2
1

2

H H H

H H

P P P

Z Z

Z

V V V V

V V

S S

I S S

+ −

+ + + +

+ +

∆ = −

= −

= −

 

 
where I  is the identity matrix. 
 
Q:  Is there actually some point to this long, rambling, complex 
presentation? 
 
A: Absolutely!  If our M-port device is lossless then the total 
power exiting the device must always be equal to the total 
power incident on it.  
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If network is  then   . P P lossless, + −=  
 

Or stated another way, the total power delivered to the device 
(i.e., the power absorbed by the device) must always be zero if 
the device is lossless! 
 

If network is  then  0P lossless, ∆ =  
 

Thus, we can conclude from our math that for a lossless device: 
 

( ) ( )
0

1 0      for all 2
H HP Z V V VI S S+ + +∆ = − =  

 
This is true only if: 
 

0H HI S S S S� I− = ⇒ =  
 

Thus, we can conclude that the scattering matrix of a lossless 
device has the characteristic: 
 

If a network is , then       Hlossless S S� I=  
 
Q: Huh? What exactly is this supposed to tell us? 
 
A:  A matrix that satisfies  HS S� I=  is a special kind of 
matrix known as a unitary matrix. 
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If a network is , then its scattering matrix   is .lossless unitaryS
 
 
Q:  How do I recognize a unitary matrix if I see one? 
 
A:  The columns of a unitary matrix form an orthonormal set! 
 

12

22

33

4

13

23

33

43

14

22

11

21

31

41

3

2

3

44

S
S
S

S S
S
S

S

S

S

S
S

S

S

S
S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

=S  

 
 
 
 
In other words, each column of the scattering matrix will have 
a magnitude equal to one: 
 

2

1
1 for all 

N

m
mn nS

=

=∑  

 
while the inner product (i.e., dot product) of dissimilar columns 
must be zero. 
 

1 2
1

1 2 0 for all nj j jni i i N Ni

N

n
jS S S SS S S S i j∗ ∗

=

∗ ∗= + + + = ≠∑  

 
In other words, dissimilar columns are orthogonal. 
 

matrix 
columns 
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Consider, for example, a lossless three-port device.  Say a 
signal is incident on port 1, and that all other ports are 
terminated.  The power incident on port 1 is therefore: 
 

2
01

1
02

V
P Z

+
+ =  

 
while the power exiting the device at each port is: 
 

2 2
0 1 01 2

1 1
0 02 2

m m
m m

V S V
P S PZ Z

− −
− += = =  

 
The total power exiting the device is therefore: 
 

( )

1 2 3
2 2 2

11 21 311 1 1
2 2 2

11 21 31 1

P P P P
S P S P S P
S S S P

− − − −

+ + +

+

= + +

= + +

= + +

 

 
Since this device is lossless, then the incident power (only on 
port 1) is equal to exiting power (i.e, 1P P− += ).  This is true only 
if:  

2 2
1 3

2
1 21 1 1S S S+ + =  

 
Of course, this will likewise be true if the incident wave is 
placed on any of the other ports of this lossless device: 

 
2 2 2

2 2 2
13 23 3

2 2

3

1 22 3 1
1S S S

S S S+ + =

+ + =
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We can state in general then that: 
 

3 2

1
1 for all mn

m
S n

=

=∑  

 
In other words, the columns of the scattering matrix must have 
unit magnitude (a requirement of all unitary matrices).  It is 
apparent that this must be true for energy to be conserved. 
 
An example of a (unitary) scattering matrix for a lossless 
device is: 
 
 
 
 
 
 
 
  
Reciprocal 
 
 
Recall reciprocity results when we build a passive (i.e., 
unpowered) device with simple materials.  
 
For a reciprocal network, we find that the elements of the 
scattering matrix are related as: 
 

mn nmS S=  
 
 

1 3
2 2

31
2 2
3 1

2 2
3 12 2

0 0
0 0
0 0

0 0

j
j

j
j

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

S  
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For example, a reciprocal device will have 21 12S S=  or 
32 23S S= .  We can write reciprocity in matrix form as: 

 
 

if reciprocalTS S=  
 

 
where T  indicates (non-conjugate) transpose. 
 
An example of a scattering matrix describing a reciprocal, but 
lossy and non-matched device is: 
 
 
 

0.10 0.20 0.050.40
0.40 0 0.100.20
0.20 0.10 0.30 0.120

0.05 0.12 00.10

j
jj

j j
j

−−⎡ ⎤
⎢ ⎥−⎢ ⎥=
⎢ ⎥− − −
⎢ ⎥−⎣ ⎦

S  


