EECS-140/141 Introduction to Digital Logic Design Lecture 2: Combinational Logic Basics

I. INTRODUCTION

I.A Major Classes of Digital Logic Circuits

I.A.1 Combinational Logic

In this class, outputs are *combinations* of input values at any given time (the present).

Past inputs do not

I.A.2 Sequential Logic

I.B Switches, Variables, and Functions

I.B.1 Simple Switch Circuit

To begin with, think of a simple flashlight ckt, which represents the simplest binary ckt.

Position of switch *controls* whether light is off or on.

Switch Position

Light

Current

I.B.2 Variables and Function

In digital logic terms, switch position is known as an *input variable* and the light status (on/off) can be considered as an *output variable* or a *function* of the input variable(s).

Now assign symbols and numerical values to variables and function:

Switch (x) Light (y = I(x))

We have just defined the simplest logic function: the *identity* function.

It is not a very interesting function, but (as with all functions) it can be summarized by a Truth Table.

II. THREE FUNDAMENTAL LOGIC FUNCTIONS

II.A Logical AND Function

II.A.1 Word Example

If you are *enrolled* in this class (at the end of the semester) and get a *passing* grade, then you will get *credit* for the course.

Define variables and assign values:

II.A.2 Circuit Model

Note similarity to a *series* connection of switches:

II.A.3 Truth Table for Logical AND

е	р	$c = e \cdot p$
0	0	
0	1	
1	0	
1	1	

II.B Logical OR Function

II.B.1 Word Example

If you *drop* this class or *withdraw* or your payment *bounces*, you will be *disenrolled*.

II.B.2 Circuit Model (Parallel Switches)

II.B.3 Truth Table

d	w	b	s = d + w + b
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

II.C Logical NOT (or Complement or Inversion)

II.C.1 Word Example

Clearly, if you *are* enrolled, then you are *not* disenrolled.

II.C.2 Circuit Model

II.C.3 Truth Table (TT)

III. LOGIC NETWORKS AND EXPRESSIONS

III.A Three Fundamental Logic Gates

III.B Logic Networks

Network: Interconnection of Elements (Gates)

III.B.1 Example

Result: 4-input, 1-output logic network.

III.B.2 Analysis of Logic Networks

Brute-force method: Enumeration: Consider all possible input combinations, trace each through the network to get the output value. Summarize results in TT.

d	W	b	р	<i>c</i>
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

III.C Logic Expressions

For a given network (or TT), we can also write *a* corresponding logic expression.

III.C.1 Example: Read directly from network above

III.C.2 Expressions are NOT unique!!

From above truth table, note that c = 1 only when:

Equivalent way to say this:

Since they have the *same* TT, this expression is equivalent to our original expression:

Note that the 2nd expression results in a *different* (but equivalent) logic network:

So, logic networks are not unique, either! This highlights the importance of design.

III.D Some Questions

- 1. What other useful rules are there besides:
- 2. How can I find equivalent expression/networks for a given TT?
- 3. Of the many expression/networks for a given TT, which is the *simplest*? We will answer questions 1 and 2 in the next section; we will consider question 3 later.

IV. BOOLEAN ALGEBRA

IV.A Intro/Motivation

We need something to help us answer questions 1 and 2 above. Boolean Algebra is the mathematical tool that we need.

Algebra:

Boolean Algebra (George Boole: 1849!):

Boolean Algebra (BA) is *not* like "normal" (arithmetic) algebra, even though *some* properties/rules are similar.

Prof. Petr

Copyright 2017 David W. Petr

IV.B Axioms of Boolean Algebra

These are the "givens" or assumptions that are true by definition.

We list them in pairs:

1a)
1b)
2a)
2b)
3a)
3b)
4a)

4b)

Note that the "a" parts of 1-3 define the AND function.

Note that the "b" parts of 1-3 define the OR function.

Note that 4a and 4b define the NOT function.

These are the basic *operations* of the algebra.

IV.C Single Variable Theorems

Theorem:

- These deal with a single binary variable (x)
- Again list them in pairs
- Continue numbering (start with 5).
 - 5a)
 - 5b)
 - 6a)
 - 6b)

- 7a)
- 7b)
- 8a)
- 8b)
- 9)

So far, we can easily prove each by considering the 2 possible values for x (this is all of the possible values), and then applying the axioms. In general, when we consider all *combinations* of all input variables, this method is known as *perfect induction* or the TT method.

Question: which of 5-7 are true in "regular" algebra (where + means add and · means multiply)?

IV.D Some Simplifications for Complicated Expressions

IV.D.1 Precedence

This is the order in which operations are performed.

For BA, the precedence is:

- 1. parentheses
- 2. NOT
- 3. AND
- 4. OR

IV.D.2 Shorthand

As with arithmetic multiply, $a \cdot b$ can be shortened to ab IF there is no confusion.

Also:

So, the above can be written as:

but not as:

Important Note:

а	b	$\overline{a \cdot b}$	$\bar{a}\cdot \bar{b}$
0	0	1	
0	1	1	
1	0	1	
1	1	0	

IV.E Two and Three Variable Theorems (Properties)

These involve multiple variables.

10: Commutative

a) b)

11: Associative

a)

Proof by TT

x	у	<i>Z</i> .	$y \cdot z$	$x \cdot (y \cdot z)$	$x \cdot y$	$(x \cdot y) \cdot z$
0	0	0				
0	0	1				
0	1	0				
0	1	1				
1	0	0				
1	0	1				
1	1	0				
1	1	1				
b)						

You prove with TT as above.

12: Distributive

a)

You prove with TT as above.

b)

You prove as Problem 2.1 on Assignment 2 *using algebraic manipulation*. (We will do an example with 13a).

13: Absorption

a)

Prove with algebraic manipulation.

Can start with left-hand side (LHS) and manipulate to get RHS or vice versa.

Here, start with LHS:

Use a similar process to prove 12b on Assignment 2. You *may* use 13a as a step. Here are the first few steps:

b)

14: Combining

a)

b)

You will prove in Problem 2.2 of Assignment 2: you must use algebraic manipulation!!

15: DeMorgan's Theorem

a) Proof via TT (Figure 2.11 in text). b) You prove via TT. 16: (no name) a) b) 17: Consensus a)

Proof is Problem 2.3 of Assignment 2.

b)

IV.F Venn Diagrams

IV.F.1 Introduction

Venn diagrams are a graphical means of representing sets.

The "universe" is represented by a box. For BA, the universe is the set $\{0,1\}$.

A subset of the universe is represented by a labeled closed contour (e.g. a circle). Inside the contour, the labeled value=1; outside, the value=0.

Shading: the expression being represented has value=1. No shading means the expression being represented has value=0.

- 12 -

Examples:

IV.F.2 BA Proofs

Similar to perfect induction, we can use Venn diagrams to prove identities.

Example: DeMorgan (15a)

You try this method to prove 15b.

V. SYNTHESIS WITH AND/OR/NOT

V.A Preliminaries

V.A.1 Synthesis

Process of finding a logic network implementation of a given function, as specified by a TT (or logic expression).

V.A.2 Terminology

At the risk of confusing BA with arithmetic algebra, we will refer to "sums" and "products":

"sum" =

"product" =

We will use these terms, even though $logical + and \cdot are quite different from arithmetic + and \cdot$.

V.A.3 Cost

We will use a simple measure of the "cost" or complexity of a logic circuit:

except inverting input variables with NOT gates is "free" (zero cost).

V.B Sum of Products Synthesis

V.B.1 Intro

This is one of the easiest synthesis methods: Find all input *product* (AND) combinations that produce a 1 output, then OR (sum) them all together.

V.B.2 Example

Consider the following 2-input TT:

a	b	f
0	0	1
0	1	0
1	0	1
1	1	1

Here, *one* condition that forces f = 1 is if a = 0 and b = 0.

Equivalently, if $\bar{a} = 1$ and $\bar{b} = 1$.

Equivalently, if $\bar{a} \cdot \bar{b} = 1$.

Another condition is a = 1 and b = 0 or $a \cdot \overline{b} = 1$.

Final condition is $a \cdot b = 1$.

Now OR them together:

Implement this expression directly as a logic network in Sum of Products (SoP) form:

V.B.3 Minterms

Note that each product term in f above contains *every* input variable exactly once, in either "native" or inverted form. Such a product term is called a *minterm*.

Note also that each minterm corresponds to a *row* of the TT, which we can number in counting order (starting with 0).

As shorthand, we say $\bar{a} \cdot \bar{b}$ is m_0 , $\bar{a} \cdot b$ is m_1 , etc. Using this shorthand, an equivalent expression for the function f in the previous example is:

Note that minterm *number* is *very* dependent on the *order* of the input variables, so we can *emphasize* that by writing:

V.B.4 Canonical SoP Form

A SoP logic network/expression in which *every* product term is a minterm is called the *canonical* SoP form (CSoP form).

V.B.4.a Expression for Cost of Canonical SoP Form

Let *i* be the number of inputs for a function f and let *m* be the number of f = 1 minterms in the CSoP form for f. (Note that *m* is also the number of 1's in the output column of the TT).

Then the CSoP implementation will have:

Gates:

and

Inputs:

for a total "cost" of:

V.B.5 Simpler SoP Implementations

Look again at the example TT:

а	b	f
0	0	1
0	1	0
1	0	1
1	1	1

Note that f = 1 whenever a = 1 or a = 0 and b = 0.

So, *f* =

Could also note that f = 1 whenever b = 0 or a = 1 and b = 1.

But the simplest implementation is:

Note: could do the simplifications with BA:

Systematic method for simplification will come later.

V.C Product of Sums Form

V.C.1 Background

If there is a SoP synthesis, is there also a Product of Sums (PoS) synthesis? Yes!

Consider \overline{f} of the previous example:

а	b	f
0	0	1
0	1	0
1	0	1
1	1	1

V.C.2 Maxterms

For every minterm, there is a corresponding Maxterm:

$$M_k = \overline{m_k}$$

Above:

Note: maxterms are *i*-term sums (*i* is number of inputs)

V.C.3 Example

x	у	z
0	0	0
0	1	1
1	0	1
1	1	0

V.D Design Examples

V.D.1 3-way Light Control

Read/study section 2.8.1 in text.

V.D.2 Multiplexer (Mux)

We often want to *select* one of several *data* inputs to "pass through" to a single output. Such a device is a Multiplexer (or Mux).

Simplest case:

S	x_1	x_0	y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

CSoP:

Compact TT:

Common logic symbol for mux:

V.D.3 AND/OR Circuit

It might be useful to have a ckt that can function as either an AND gate or an OR gate for 2 data inputs under control of a third *select* input *s*:

S	x_1	x_2	y
0	0	0	
0	0	1	
0	1	0	
0	1	1	
1	0	0	
1	0	1	
1	1	0	
1	1	1	

CSoP for AND/OR ckt:

CPoS:

Both have cost: