
EECS-140/141 Introduction to Digital Logic Design
Lecture 2: Combinational Logic Basics

I. INTRODUCTION

I.A Major Classes of Digital Logic Circuits

I.A.1 CombinationalLogic

In this class, outputs arecombinations of input values at any giv en time (the present).

Past inputs do not

I.A.2 SequentialLogic

I.B Switches, Variables, and Functions

I.B.1 SimpleSwitch Circuit

To begin with, think of a simple flashlight ckt, which represents thesimplest binary ckt.

Position of switchcontrols whether light is off or on.

Switch Position Light Current

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -2 - Intro to Digital Logic Design

I.B.2 Variables and Function

In digital logic terms, switch position is known as aninput variable and the light status (on/off) can
be considered as anoutput variable or a function of the input variable(s).

Now assign symbols and numerical values tovariables and function:

Switch (x) Light (y = I (x))

We hav ejust defined the simplest logic function: theidentity function.

It is not a very interesting function, but (as with all functions) it can be summarized by aTruth Table.

II. THREE FUNDAMENTAL LOGIC FUNCTIONS

II.A Logical AND Function

II.A.1 Word Example

If you areenrolled in this class (at the end of the semester) and get apassing grade, then you will
getcredit for the course.

Define variables and assign values:

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -3 - Intro to Digital Logic Design

II.A.2 Circuit Model

Note similarity to aseries connection of switches:

II.A.3 Truth Table for Logical AND

e p c = e ⋅ p
0 0
0 1
1 0
1 1

II.B Logical OR Function

II.B.1 Word Example

If you drop this class orwithdraw or your paymentbounces, you will bedisenrolled.

II.B.2 Circuit Model (Parallel Switches)

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -4 - Intro to Digital Logic Design

II.B.3 Truth Table

d w b s = d + w + b
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

II.C Logical NOT (or Complement or Inversion)

II.C.1 Word Example

Clearly, if you are enrolled, then you arenot disenrolled.

II.C.2 CircuitModel

II.C.3 Truth Table (TT)

III. LOGIC NETWORKS AND EXPRESSIONS

III.A Three Fundamental Logic Gates

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -5 - Intro to Digital Logic Design

III.B Logic Networks

Network: Interconnection of Elements (Gates)

III.B.1 Example

Result: 4-input, 1-output logic network.

III.B.2 Analysisof Logic Networks

Brute-force method: Enumeration: Consider all possible input combinations, trace each through the
network to get the output value. Summarizeresults in TT.

d w b p c
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

III.C Logic Expressions

For a giv en network (or TT), we can also writea corresponding logic expression.

III.C.1 Example:Read directly from network above

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -6 - Intro to Digital Logic Design

III.C.2 Expressionsare NOT unique!!

From above truth table, note thatc =1 only when:

Equivalent way to say this:

Since they hav ethesame TT, this expression is equivalent to our original expression:

Note that the 2nd expression results in adifferent (but equivalent) logic network:

So, logic networks are not unique, either! This highlights the importance ofdesign.

III.D Some Questions

1. Whatother useful rules are there besides:

2. How can I find equivalent expression/networks for a given TT?

3. Of the many expression/networks for a given TT, which is thesimplest?
We will answer questions 1 and 2 in the next section; we will consider question 3 later.

IV. BOOLEAN ALGEBRA

IV.A Intro/Motivation

We need something to help us answer questions 1 and 2 above. Boolean Algebra is the
mathematical tool that we need.

Algebra:

Boolean Algebra (George Boole: 1849!):

Boolean Algebra (BA) isnot like "normal" (arithmetic) algebra, even thoughsome properties/rules are
similar.

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -7 - Intro to Digital Logic Design

IV.B Axioms of Boolean Algebra

These are the "givens" or assumptions that are true by definition.

We list them in pairs:

1a)

1b)

2a)

2b)

3a)

3b)

4a)

4b)

Note that the "a" parts of 1-3 define the AND function.

Note that the "b" parts of 1-3 define the OR function.

Note that 4a and 4b define the NOT function.

These are the basicoperations of the algebra.

IV.C Single Variable Theorems

Theorem:

— These deal with a single binary variable (x)

— Again list them in pairs

— Continue numbering (start with 5).

5a)

5b)

6a)

6b)

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -8 - Intro to Digital Logic Design

7a)

7b)

8a)

8b)

9)

So far, we can easily prove each by considering the 2 possible values forx (this is all of the
possible values), and then applying the axioms.In general, when we consider allcombinations of
all input variables, this method is known asperfect induction or the TT method.

Question: whichof 5-7 are true in "regular" algebra (where + means add and⋅ means multiply)?

IV.D Some Simplifications for Complicated Expressions

IV.D.1 Precedence

This is the order in which operations are performed.

For BA, the precedence is:

1. parentheses

2. NOT

3. AND

4. OR

IV.D.2 Shorthand

As with arithmetic multiply,a ⋅ b can be shortened toab IF there is no confusion.

Also:

So, the above can be written as:

but not as:

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -9 - Intro to Digital Logic Design

Important Note:

a b a ⋅ b a ⋅ b
0 0 1
0 1 1
1 0 1
1 1 0

IV.E Two and Three Variable Theorems (Properties)

These involve multiple variables.

10: Commutative

a)

b)

11: Associative

a)

Proof by TT

x y z y ⋅ z x ⋅ (y ⋅ z) x ⋅ y (x ⋅ y) ⋅ z
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

b)

You prove with TT as above.

12: Distributive

a)

You prove with TT as above.

b)

You prove as Problem 2.1 on Assignment 2using algebraic manipulation. (We will do an
example with 13a).

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -10 - Intro to Digital Logic Design

13: Absorption

a)

Prove with algebraic manipulation.

Can start with left-hand side (LHS) and manipulate to get RHS or vice versa.

Here, start with LHS:

Use a similar process to prove 12b on Assignment 2.You may use 13a as a step.

Here are the first few steps:

b)

14: Combining

a)

b)

You will prove in Problem 2.2 of Assignment 2: youmust use algebraic manipulation!!

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -11 - Intro to Digital Logic Design

15: DeMorgan’s Theorem

a)

Proof via TT (Figure 2.11 in text).

b)

You prove via TT.

16: (no name)

a)

b)

17: Consensus

a)

Proof is Problem 2.3 of Assignment 2.

b)

IV.F Venn Diagrams

IV.F.1 Introduction

Venn diagrams are a graphical means of representing sets.

The "universe" is represented by a box.For BA, the universe is the set {0,1}.

A subset of the universe is represented by a labeled closed contour (e.g. a circle). Inside the contour, the
labeled value=1; outside, the value=0.

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -12 - Intro to Digital Logic Design

Shading: the expression being represented has value=1. No shading means the expression being
represented has value=0.

Examples:

IV.F.2 BA Proofs

Similar to perfect induction, we can use Venn diagrams to prove identities.

Example: DeMorgan (15a)

You try this method to prove 15b.

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -13 - Intro to Digital Logic Design

V. SYNTHESIS WITH AND/OR/NOT

V.A Preliminaries

V.A.1 Synthesis

Process of finding a logic network implementation of a given function, as specified by a TT (or
logic expression).

V.A.2 Terminology

At the risk of confusing BA with arithmetic algebra, we will refer to "sums" and "products":

"sum" =

"product" =

We will use these terms, even thoughlogical + and ⋅ are quite different from arithmetic + and⋅.

V.A.3 Cost

We will use a simple measure of the "cost" or complexity of a logic circuit:

except inverting input variables with NOT gates is "free" (zero cost).

V.B Sum of Products Synthesis

V.B.1 Intro

This is one of the easiest synthesis methods: Find all inputproduct (AND) combinations that
produce a 1 output, then OR (sum) them all together.

V.B.2 Example

Consider the following 2-input TT:

a b f
0 0 1
0 1 0
1 0 1
1 1 1

Here,one condition that forcesf = 1 is if a = 0 and b = 0.

Equivalently, if a = 1 and b = 1.

Equivalently, if a ⋅ b =1.

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -14 - Intro to Digital Logic Design

Another condition isa = 1 and b = 0 or a ⋅ b =1.

Final condition isa ⋅ b =1.

Now OR them together:

Implement this expression directly as a logic network in Sum of Products (SoP) form:

V.B.3 Minterms

Note that each product term inf above contains every input variable exactly once, in either
"native" or inv erted form. Such a product term is called aminterm.

Note also that each minterm corresponds to arow of the TT, which we can number in counting order
(starting with 0).

As shorthand, we saya ⋅ b is m0, a ⋅ b is m1, etc. Usingthis shorthand, an equivalent expression for the
function f in the previous example is:

Note that mintermnumber is very dependent on theorder of the input variables, so we canemphasize
that by writing:

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -15 - Intro to Digital Logic Design

V.B.4 CanonicalSoP Form

A SoP logic network/expression in whichevery product term is a minterm is called thecanonical
SoP form (CSoP form).

V.B.4.a Expression for Cost of Canonical SoP Form

Let i be the number of inputs for a functionf and letm be the number off = 1 minterms in the
CSoP form forf . (Note thatm is also the number of 1’s in the output column of the TT).

Then the CSoP implementation will have:

Gates:

and

Inputs:

for a total "cost" of:

V.B.5 SimplerSoP Implementations

Look again at the example TT:

a b f
0 0 1
0 1 0
1 0 1
1 1 1

Note thatf = 1 whenever a = 1 or a = 0 and b = 0.

So, f =

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -16 - Intro to Digital Logic Design

Could also note thatf = 1 whenever b = 0 or a = 1 and b = 1.

But the simplest implementation is:

Note: could do the simplifications with BA:

Systematic method for simplification will come later.

V.C Product of Sums Form

V.C.1 Background

If there is a SoP synthesis, is there also a Product of Sums (PoS) synthesis?Yes!

Considerf of the previous example:

a b f
0 0 1
0 1 0
1 0 1
1 1 1

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -17 - Intro to Digital Logic Design

V.C.2 Maxterms

For every minterm, there is a corresponding Maxterm:

Mk = mk

Above:

Note: maxterms arei-term sums (i is number of inputs)

V.C.3 Example

x y z
0 0 0
0 1 1
1 0 1
1 1 0

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -18 - Intro to Digital Logic Design

V.D Design Examples

V.D.1 3-way Light Control

Read/study section 2.8.1 in text.

V.D.2 Multiplexer (Mux)

We often want toselect one of several data inputs to "pass through" to a single output.Such a
device is a Multiplexer (or Mux).

Simplest case:

s x1 x0 y
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

CSoP:

Compact TT:

Common logic symbol for mux:

Prof. Petr Copyright 2017 David W. Petr Lecture2

EECS-140/141 -19 - Intro to Digital Logic Design

V.D.3 AND/ORCircuit

It might be useful to have a ckt that can function as either an AND gate or an OR gate for 2 data
inputs under control of a thirdselect input s:

s x1 x2 y
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

CSoP for AND/OR ckt:

CPoS:

Both have cost:

Prof. Petr Copyright 2017 David W. Petr Lecture2

