Solutions to Network Performance Homework EECS 663

C= 64kb/s 1. I = 128 bytes = 1024 bits $T_h = \frac{102Y}{6410^3} = 16ms$ R= 1% N=24=# output Fromtuble $R = 15.3 = \lambda T_n$ λ = 15.3/ .016 = 956 pucket lec M=128 = Input Lines X: = 956/128 = 7.4 puckets Liec 2. M=24); = 10 pucket free λT = 24.10 = 240 packetisee 2= 100 kg tap = 800 b.7s C= 56 k k/s Th= 500/50,000 = 14ms B= 2000 · A = 240.0,014 = 3,4 ≥ N=5 from hubb

3.
$$P_{B} = 1/0$$
 $M = 120$ phonos
 $P_{B} = 1/0$ $M = 120$ c bonos
 $A = .05 \cdot 120 c 6 Salange
 $A = .05 \cdot 120 c 6 Salange
 $A = .05 \cdot 120 c 6 Salange
 $A = .05$
 $T = .05$
 $N = .05$
 $N = .05$
 $N = .05$
 $A = .000$ $A = .0000$ $A = .000$ $A = .0000$ $A = .00000$ $A = .0000$ $A = .0000$ $A = .0000$ $A = .00000$ $A = .000$$$$

.

5. Do.g. Stude much

$$P_{8} \leq 2x/8^{4}$$

ECT3 $\leq 512ms$
given
 $\lambda = 10 product/sec$
 $L = 1024bhs / product$
 $512 \cdot \frac{1}{p-\lambda} = ECTJ$
 $1.95 = p - \lambda \rightarrow p = 11.95$
 $\rightarrow C = 12,236b/s$
now now $p = \frac{10}{11.95} = .84$
 $P_{0} = \frac{11-p}{p} \frac{p^{N}}{p} \rightarrow N = 41$ so
 $M|M|1|/N = p^{N+1}$ builden size 40
 $M|M|1|/N = p^{N+1}$ builden size 40
 $C = 12000 \text{ b.} +3$
 $\lambda := 1000 \text{ product Soc}$
 $C = 150 \text{ Mb/s}$
 $\lambda_{T} = 50,000 \text{ product Soc}$
 $C = (2x/8^{3} \text{ b.} \text{ fs} / \text{product Soc}$
 $\Gamma = 2000 \text{ product Soc}$
 $C = 1.900 \text{ product Soc}$
 $\Gamma = (2x/8^{3} \text{ b.} \text{ fs} / \text{product Soc}$
 $\Gamma = .667$
 $E(N3 = \frac{1-p}{1-p} = 2$
 $E(T3 = E(N)/p = 40ps$