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Quantifying the Temporal Characteristics of Network
Congestion Events for Multimedia Services

Victor S. Frost, Fellow, IEEE

Abstract—Effective quality-of-service (QoS) metrics must re-
late to end-user experience. For multimedia services these metrics
should focus on phenomena that are observable by the end user.
Once a congestion event occurs in the network it tends to persist,
resulting in long bursts of consecutive packet loss. Such an event
is observable to the network customer. There is a need to increase
our understanding of the temporal characteristics of congestion. It
has become increasingly apparent that the temporal characteris-
tics of congestion events have the dominant effect on user-perceived
QoS. A rigorous definition of the time between congestion events
is given here, as well as an associated prediction methodology. The
inter-congestion event time or the rate of congestion events per unit
time provides a network quality metric that is easily understand-
able to network users and is conveniently predicted and measured.
The contribution of this paper is the definition of a metric to char-
acterize congestion events and development of an analytic method-
ology to predict the expected number of congestion events per unit
time. The proposed methodology is evaluated for a variety of traffic
models.

Index Terms—Network congestion, prediction of quality-of-ser-
vice (QoS), QoS.

I. INTRODUCTION

CONGESTION is a state of sustained network overload,
where the demands for resources exceed the supply for

an extended period of time. Thus, a congestion event will cause
a significant number of packets to be lost consecutively. It has
been observed that long bursts of packet losses are present in
the Internet [15], [16], [22]. For example, measurements have
shown [15] that less than 1% of all bursts of lost packets con-
tain 50% of all losses. While quality-of-service (QoS) adap-
tive [17], [18] or network aware techniques [27], [28] can im-
prove overall performance in some cases, long sequences of
packet losses will cause a significant user-perceived impair-
ment, or as discussed in [33] a “performance incident”. For ex-
ample, when using the G723.1 recommendation for compressed
voice over packet networks [19], only slight static and clip-
ping result from one-to-four consecutive packet losses. How-
ever, longer bursts of lost packets will significantly degrade the
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quality of service (QoS) delivered to the user. Recent assess-
ment of voice transmission over the Internet backbone [35] has
demonstrated that voice quality is a function of time, which
experiences rare intervals of unacceptable performance. Short
bursts of lost packets are not significant while multiple consec-
utive losses typically cause noticeable impairments [20]. Loss
concealment techniques attempt to mask the impact of a small
number of losses and variations in delay. Further, developers
have done a good job of designing applications (by making them
adaptive or network aware) to mask short-lived performance
problems in the network. Thus, packet/cell loss probability as
a global measure of QoS does not necessarily provide a di-
rect indication of user-perceived QoS [8]. Metrics such as delay
and loss may have little direct meaning to end-users of rapidly
changing multimedia applications. That is, knowledge of the
specific coding and/or adaptive techniques is required to trans-
late delay and loss into the user-perceived performance [24]. A
congestion event as defined here will impact the user’s QoS in-
dependent of the specific coding mechanism or of attempts to
mask and/or adaptively compensate for its effect.

It is has recently become understood that the temporal packet
loss pattern has critical influence on user-perceived network
performance, i.e., the temporal characteristics of the conges-
tion episodes have the dominant effect on user-perceived QoS.
Recent work in the Internet Engineering Task Force (IETF) on
measurement-based temporal QoS metrics [21] reinforces the
increasing importance of packet loss patterns. Models for the
temporal dependence of packet loss have recently been derived
from measured packet traces [22], [23]. These studies assume
that a particular packet loss process models the transitions be-
tween different states: a no-loss state and a loss state, e.g., as
in a Gilbert model. Parameters of the loss process (usually rep-
resented as a Markov process of different order) are estimated
from measured packet traces. These models are used to charac-
terize the nature of bursts of lost packets [22], or, as in [23] the
length of good runs, i.e., congestion free intervals. In [21] two
metrics are proposed, “loss distance” and “loss period.” Taken
together, these characterized loss patterns seen by packet flows
on the Internet. Previous work [21]–[23] is based on packet
traces or knowledge of a packet loss models; such models are
also derived from measurements of the loss process. Theoret-
ical methodologies to transform network design parameters, i.e.,
traffic characteristics and loads, into predictions of the temporal
dependence of congestion events have not yet been reported. A
metric as defined here, is the time between congestion events
that is amenable to analysis. This metric enables the prediction
of phenomenon like the loss distance defined in [21]. The rate of
congestion events is easily understood by end-users and is inde-
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Fig. 1. Definition of Congestion Event withb = 5.

pendent of the specifics of the application, that is, it captures the
network performance that is observable by network customers.

Note that QoS mechanisms have not been widely employed,
both because of their complexity and their lack of relationship
to user-perceived performance. Therefore, it is currently diffi-
cult to justify investment in complex QoS technologies while
their value to the end customer is unknown. There have been
cases where commercial networks have been over-provisioned,
resulting in all users, independent of QoS requirement or pri-
ority, receiving the same service [33]. Based on these experi-
ences network customers are reluctant to pay extra for QoS.
Historically, the telephony network QoS metric, call blocking
probability, was not only easily understood but also provided
the foundation for network design. Since packet networks ex-
perience delay and packet loss in the presence of congestion
this metric is not suitable for networks like the Internet. The
rate of congestion events per unit time, as defined and analyzed
here, provides a direct and easily understandable measure of net-
work performance. A congestion event results in a long burst of
lost packets, and thus always produces a noticeable degradation.
The metric proposed here is constructed so that once a conges-
tion event has occurred there will be a noticeable impact on the
end-user application, thus the length of the congestion episode is
considered of secondary importance. It is anticipated that a con-
gestion event rate could become an important component in ser-
vice level agreements between Internet service providers (ISPs)
and carriers.

The contribution of his paper is the definition of a metric
to characterize congestion events and development of an ana-
lytic methodology to predict the expected number of congestion
events per unit time; the methodology is validated for several
traffic models. Specifically, the metric has been evaluated in the
context of “standard” traffic models, fixed (M/D/1), exponen-
tial (M/M/1) and hyperexponential (M/H(2)/1) services times,
and for hyperexponential interarrival times (H(2)/M/1). Both

a single node and a network of queues have been considered.
The next section provides the definition for a congestion event.
Section III presents a methodology to predict the time between
congestion events. The developed technique is then applied to a
single queue as well as to networks in Section IV. Conclusions
are discussed in Section V.

II. DEFINITION OF CONGESTIONEVENTS

Let be a random process representing, at time, the
number of packets in the output buffer of a router including any
packet in transmission. can be viewed as the system state.
Here, is the state process in a queueing context. Theth
congestion event is defined to occur at timeif is the first
time the process reaches the level (state)following the
end of the previous busy period containing a congestion event.
A congestion episode starts with a congestion event and ends at
the start of the next idle period. Thus, the length of a congestion
episode is defined as the length of a busy period given the system
state has been reached. Given this definition the process can
reenter the statemultiple times during one congestion episode.

Fig. 1 graphically illustrates successive congestion events for
a congestion level of 5 for a simple M/M/1 system.
Note that the system may reenter statemultiple times during
one congestion episode. Thus, the probability of a congestion
event is not the same as the stationary state probability. Also for
this metric the system must go idle between congestion events.
The proposed approach makes the following assumptions: 1) the
probability of reaching stateis small (rare event), 2) reaching
state would result in a large burst of lost packets, and 3) on
average, the length of the busy period containing a congestion
event, i.e., a congestion episode, is much less than the time be-
tween congestion events.

Two possible QoS metrics are suggested by the above discus-
sion: the rate of congestion events, and duration of the conges-
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tion episodes. Run probabilities, as defined in [13], provide an
alternate perspective on the duration of a congestion episode. In
the context of an M/M/ with many bursty sources, both the
rate of congestion events and their duration have been consid-
ered in [8]–[11]. However, once a congestion event has occurred
the damage has been done and the end-user perception of QoS
affected; the length of the congestion episode is then of sec-
ondary importance.

The rate of congestion events can be used as a QoS metric for
multimedia service in packet networks. This metric relates to
the quality of real time applications like voice and video where
congestion events, i.e., long bursts of lost packets, directly cause
distortion. For audio services these impairments are “clicks” and
“pops,” while video transmission impairments cause color dis-
tortion, edge jerkiness, screen artifacts or loss of synchroniza-
tion. While congestion events are not directly discussed, a re-
lated metric—transmission error free intervals—has been pro-
posed as part of a set of standards for multimedia communica-
tions in [5]. Error free intervals for audio and video are defined
in [5] as the time between noticeable transmission impairments,
and the performance expectation for error free intervals is on
the order of minutes. In the context of modern fiber based net-
works (where the principal source of impairments is network
congestion and not transmission errors), transmission error-free
intervals correspond to congestion free intervals defined here.

Given the above discussion, we approximate the time be-
tween congestion events, i.e., intercongestion time, as a first hit-
ting time. Here we define the first hitting time,, as the time it
takes the system to go from an idle state to the levelfor the
first time. First hitting times are discussed in [2], [4].

III. PREDICTING THETIME BETWEENCONGESTIONEVENTS

Let be the stationary state probability that . This
probability is assumed to be small. From the law of rare events
[1] we can assume that the process representing successive ex-
cursions of above is Poisson with rate , that is, since the
probability of a congestion event is small, the number of con-
gestion events in an interval will approximately follow a
Poisson distribution. Define the first hitting time,, as the time
it takes the system to go from an idle state to the levelfor the
first time. Let be the sojourn time of above the level
in general. From the Poisson assumption for the successive ex-
cursions of above we can write

The average first hitting time is then

and from the Poisson Clumping Heuristic [2] we can write

The stationary state probability is known for many cases [1],
[4], [29], [30]. The sojourn time above the levelis given for
an M/M/1 system in [2].

Then using the approach from [2] the average first hitting time
for a M/M/1 system with packet arrival rate and packet
service rate is

Also, as shown in [2], the above approximation captures the
dominant terms in the exact expression for the first hitting time
of an M/M/1 system. The Poisson Clumping Heuristic [2] has
been applied in a networking context in [3], [8]–[11] primarily
dealing with M/M/ system models to capture the aggregation
of identical bursty sources in a fluid flow model. In [11] the
Poisson Clumping Heuristic for the M/M/ system is rigor-
ously justified. However, the sojourn time above the levelis
not generally known.

Here, we combine the Poisson Clumping Heuristic with a
simple approximation for the sojourn time above the level
in order to determine the average first hitting for general ser-
vice time distributions with finite variance. The approximation
is based on the observation that the sojourn time of above
the level is proportional to the average waiting time in the as-
sociated M/G/1 queue. Thus, we weight sojourn time above the
level for the M/M/1 system to approximate it for the more gen-
eral case. Weighting by a descriptor of a “comparable” Poisson
process is related to the Poisson Traffic Comparison that was
defined and used in [12]. For general service time distribution,
the sojourn time above the levelbecomes

where

sojourn time of above the level in general;

sojourn time of above the level for the

M/M/1 system;

waiting time for general case;

waiting time the M/M/1 system.

It is well known that [4] where
is the service time and is its squared

coefficient of variation.
Note that can be used as a secondary QoS metric. By

combining the above approximation with the Poisson Clumping
Heuristic we can write the average time between congestion
events as

(1)

This new approximation can be used to predict the average
time between congestion events for general message length dis-
tributions with finite variance. Note estimates for using

, that is, the mean recurrence time [34] based on the re-
ciprocal of the stationary state probability, will be in error rel-
ative to this approximation. However the mean recurrence time
does provides an alternate approach to predicting the time be-
tween congestion events. Our results show that the recurrence
time approximation overestimates the rate of congestion events
and would lead to conservative designs with over-provisioned
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links as the subsequent experiments demonstrate. The nature
of the loss process induced by congestion events also plays a
critical role in the performance of TCP; not only the average
time between losses but its second order statistics govern TCP
throughput [25]. Thus, increasing the understanding of the tem-
poral characteristics of congestion events improves the ability
to predict TCP performance.

While (1) is for a single queue, the approach proposed here
can be directly extended to a network. Thus, a key attribute of
the proposed approach is that it can be applied to predict the
rate of congestion events for an end-to-end flow, i.e., a flow that
traverses several routers. At each router,, along a route of
routers, the process representing successive congestion events
is Poisson with rate . Congestion events at each router are
assumed to be independent (which is true when there is suffi-
cient mixing of different traffic flows at each router). Thus, the
aggregate congestion event process observed by the customer
is the result of merging independent Poisson processes, which
produces a Poisson process model for congestion events on the
end-to-end path. Given these assumptions each router along the
path contributes congestion events/sec to the total observed
by the customer. An end-to-end flow that transverses a set of
successive routers will experience congestion events at a aggre-
gate rate

Given the nature of the traffic at the output port of each router,
the total rate of congestion events can be predicted for
end-to-end flows and used in network design.

IV. PERFORMANCEEVALUATION

To validate the above approximation a set of experiments
was conducted using the commercial simulation package EX-
TEND [26]. Four different types of traffic are considered: three
different service time distributions, fixed-M/D/1 ,
exponential-M/M/1 , and hyperexponential-M/H(2)/1

and hyperexponential distributed interarrival
times-H(2)/M/1. For the hyperexponential distributed service
time . For the hyperexponential-2 arrival process, the
interarrvial time has a mean of with probability and
mean of with probability where . (See
[4], [30] for a discussion of the hyperexponential distribution.)
Internet traffic has been observed to have significant variability
(burstiness) over several time scales [7]. While such variation is
often attributed to long-range dependent traffic, several recent
studies show both empirically [6] and theoretically [7] that the
hyperexponential distribution may also capture the source of
the observed variation. The stationary state probability,, for
these cases can be found in [1], [4], [29], [30]. In each case the
average service time was normalized to unity and the arrival
rate varied to change the load.

For the single queue case, the following figures show a com-
parison between the number of congestion events per million-
service times measured using simulation and the number pre-
dicted using the proposed approximation. The approximation

(a)

(b)

(c)

Fig. 2 (a) M/M/1 queue: load 0.55. (b) M/M/1 queue: load 0.60. (c) M/M/1
queue: load 0.65.

accurately predicts the number of congestion events for the ex-
ponential and both hypexponential cases, but is not as accu-
rate for the deterministic case. In all cases the predictions based
on approximation developed here are closer to the observations
than the simple approach based mean recurrence time,. As
expected, predictions based on mean recurrence over-estimates
the rate of congestion events.

Fig. 2(a)–(c) compares the predictions made based on the
proposed approximation to observations from simulation for an
M/M/1 system. The results for the M/H(2)/1 system are given
in Figs. 3(a)–(c) and 4(a)–(c) present the performance of the
approximation for the M/D/1 system. The performance of the
H(2)/M/1 systems is given in Fig. 5(a)–(c). For the fixed ser-
vice time case the proposed methodology does not predict the
number of congestion events as closely as in the other cases.
However, it is still a better predictor than the mean recurrence
time. Also, as expected, the number of congestion events de-
creases as the square coefficient of variation decreases and there
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(a)

(b)

(c)

Fig. 3. (a)M/H(2)/1 load 0.55. (b) M/H(2)/1 load 0.60. (c) M/H(2)/1 load 0.65.

is a log-linear relationship between the number of congestion
events and the threshold level.

To evaluate the potential of the proposed approximation in a
network environment a simple network of two queues was con-
sidered in which the second queue randomly accepts one half of
the traffic that is output from the first queue as well as indepen-
dent traffic. Note this simple system captures important char-
acteristics of realistic edge/core networks. The traffic into the
second queue includes realistic queueing dynamics of the edge
node. The second queue is served at the same rate as the first
queue as shown in Fig. 6. Fig. 7(a) demonstrates that the pro-
posed approximation provides accurate predictions for tandem
M/M/1 systems as expected, while Fig. 7(b) and (c) indicates
that the approximation can be used with other message length
and interarrival time distributions, in this case the hyperexpo-
nential. Again, the proposed approach is not as accurate for the
M/D/1 case as shown in Fig. 7(d).

The more complex networks shown in Fig. 8 were also
studied, in these networks the traffic flows through multiple
queues, as would be the case in edge/core topologies. Results
for only the M/H(2) are presented in Fig. 9. For the target flow

(a)

(b)

(c)

Fig. 4. (a) M/D/1 load 0.60. (b) M/D/1 load 0.65. (c) M/D/1 load 0.70.

the load on each node is the same for all three topologies thus
the rate of congestion events also remains unchanged. There is
some difference between the simulation results and proposed
approximation for the tandem network model. However, the
prediction of the rate of congestion events is indistinguishable
(the lines in Fig. 9 overlap) from the simulation results for the
more complex systems.

To illustrate the application of the proposed methodology
consider a network architecture that has two distinct hierarchical
layers—an edge and a core. The core is the backbone of the net-
work and consists of high-speed elements. The edge portion of
the network provides access to the core network and serves to
aggregate traffic into the network core. Suppose a multimedia
end-to-end flow passes through an edge router, two core routers
and then another edge router to arrive at the destination. As-
sume the edge and core routers are connected by 10 Mb/s and
100 Mb/s links respectively (note these rates could either be set
by physical or logical limitations). Congestion occurs when the
demands for network resources exceed capacity for an extended
period of time, (in seconds). That is, the offered load exceeds
capacity by some amount, (b/s), such that the output queue
grows approximately linearly as long as the congestion persists.
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(a)

(b)

(c)

Fig. 5. (a) H(2)/M/1 load 0.55. (b) H(2)/M/1 load 0.60. (c) H(2)/M/1 load 0.65.

Fig. 6. Tandem network model.

Given the link rate, , and , the queue threshold level,,
can be calculated. Assume the edge and core routers use a
of 10% of the link capacity and a of 250 ms and 100 ms re-
spectively. Also assume an average packet length of 1 KB. Thus
congestion occurs in the core router if the link has an offered
load of 110 Mb/s for 100 ms yielding (note other com-
binations of , and will also result in a ). In [5] a

(a)

(b)

(c)

(d)

Fig. 7. (a) Tandem M/M/1 load 0.65. (b) Tandem M/H(2)/1 load 0.55. (c)
Tandem H(2)/M/1 load 0.60 (d) Tandem M/D/1 load 0.65.

requirement of an error free interval for audio and video multi-
media desktop conferencing teleservices is given as 30 min, thus
the quality of service criteria will be an average congestion free
interval of 30 min. Further suppose that it is required to have
fewer congestion events in the core of the network compared
to the edge. In this scenario assume that 80% of the congestion
events are allocated to the edge while the remaining 20% to the
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(a)

(b)

Fig. 8 (a) Network topology 1. (b) Network topology 2.

Fig. 9. Networks with M/H(2) Traffic-load 0.55.

core routers. Assuming an M/H(2)/1 model, the average conges-
tion free interval perceived by the end user will be greater than
30 min if the load on the edge and core routers is less than 0.59
and 0.71 respectively.

V. CONCLUSION

It has been recognized that the temporal nature of network
congestion significantly impacts user-perceived and TCP per-
formance. The acknowledgment of the importance of loss pat-
terns has recently led to the initial definition of new metrics in
the IETF. The proposals in the IETF and other previous research
have focused on measurement-based approaches and not tech-
niques to predict the loss patterns given the nature of the traffic.
Such prediction methodologies are needed for Internet design
and engineering.

The contribution of this effort is a new QoS metric based
on the number of congestion events per unit time as well as a
methodology for its prediction. The premise of this work is that
the first hitting time can be used as the theoretical basis to char-

acterize the rate of congestion events in a network context. A
rigorously defined first hitting time performance metric is well
matched to Internet design and performance analysis problems.
Network customers can easily understand the resulting metric.

For network design, the total rate of congestion events for an
end-to-end flow can be allocated to different network elements,
that is, a congestion event budget can be distributed to various
segments of the system. For example, more of the congestion
events can be allocated to the edge of the network while the
core is provisioned for minimum congestion. Alternately, each
hop along a route can be designed to limit the rate of congestion
events, and then the number of hops along the path can bound
the end-to-end congestion rate. Thus, routing can be used to
directly control the QoS.

The results presented here suggest several areas for future re-
search. Additional research is required to improve its accuracy
for deterministic service times. Many traffic models have been
studied and applied to network analysis [31], [32], only lim-
ited set of these have been considered here, thus there is need
to generalize the methodology to allow for a wider variety of
traffic sources. For example, the suitability of the approxima-
tion for traffic models containing significant correlation should
be considered, e.g., TES models developed in [14]. The approx-
imation for predicting the time between congestion events pre-
sented here can only be applied to traffic with finite variance.
Other approaches are needed to apply congestion event analysis
to self-similar traffic.

Network events as defined here maybe caused by factors other
than the user traffic, for example routing changes may cause
outage periods in the order of tens of seconds several times a day
[35]. A complete characterization of temporal characterization
of network events should also consider these other factors.
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