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Abstract— This paper addresses the design and analysis of
an end-to-end, rate-based, feedback flow control algorithm
motivated by the Available Bit Rate (ABR) service in wide
area Asynchronous Transfer Mode (ATM) networks. Rec-
ognizing that the explicit feedback rate at time t will not
affect the ABR buffer until time ¢ + D for some D > 0, our
approach is to first predict the ABR buffer status at time
t + D, then base fuzzy-logic rate control decisions on these
predicted values, and finally tune the controller parameters
using gradient descent methods. Simulations show that this
predictive self-tuning fuzzy-logic (PSTF) control scheme is
efficient, stable, and outperforms other proposed ABR rate
controllers in a variety of network environments. With de-
lays corresponding to a U.S. coast-to-coast connection, the
PSTF controller can maintain high link utilization, avoid
buffer overflows, and provide fair allocation of resources.

1 Introduction

1.1 Problem statement

Communication networks that are based on statistical mul-
tiplexing must exercise control over the submitted traffic
in order to ensure adequate quality of service (QoS) for
all network users. When the traffic characteristics or the
QoS requirements or both differ from user to user, as ex-
pected in Asynchronous Transfer Mode (ATM) networks,
the problem becomes more challenging. A variety of traffic
controls can be imposed to address this problem, including
call admission control and various flow control mechanisms
for the admitted calls.

We consider a flow control problem motivated by ATM
networks, but applicable as well in a broader context. A
single-node ATM network formulation is shown in Figure 1.
Users (sources) are divided into those willing and able to
adjust their traffic patterns dynamically in response to net-
work feedback (controllable users), and those that are not
(uncontrollable users). At the network node, all control-
lable users share a single finite queue, and uncontrollable
users are multiplexed together (exactly how is not impor-
tant here). Controllable and uncontrollable users share a
single server, with service priority given to the uncontrol-
lable users. Due to fluctuations in the high-priority uncon-
trollable traffic, the queue for the controllable users expe-
riences a time-varying service rate. The problem is to de-
sign a traffic rate controller that will dynamically commu-
nicate allowed rates to the controllable users with the goal
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Figure 1: Single node network architecture

of maintaining high overall server utilization concurrently
with good QoS (low delay and loss) for the controllable
users. We apply a combination of self-tuning fuzzy-logic
control and minimum variance prediction to this problem.

In an ATM network context, the traffic is data in the
form of fixed-size packets known as cells. The shared server
is a fixed-rate, high speed communication link. Uncon-
trollable traffic corresponds to some mixture of Constant
Bit Rate (CBR) and Variable Bit Rate (VBR) traffic, con-
trollable traffic corresponds to Available Bit Rate (ABR)
traffic, the feedback rates provided by the controller cor-
respond to Explicit Rate (ER) indications from ATM net-
work elements, and the means of feedback communication
would be special Resource Management (RM) cells, all of
which are defined in detail in [1]. However, this paper does
not attempt to follow in detail the current ABR specifi-
cations, which include a variety of feedback signals and
procedures. We assume merely that the allowed rates are
communicated directly to the sources (this corresponds to
backward ER control of ABR sources), with a possible de-
lay comprising processing and propagation delays, and that
the sources immediately conform themselves (in ways de-
scribed later) to the allowed rates.

The multiple-node formulation is a generalization that
allows each node in a network to function as described
above. The generalization would require a means of com-
bining the multiple allowed rates for each source (one from
each node through which the source traffic passes) into a
single allowed rate, for example by choosing the smallest
nodal rate. Our focus in this paper is the controller design
and its performance in configurations with a single bottle-
neck node.



1.2 Review of previous research

The ABR service makes it possible for ATM networks to
meet the needs of increasing data applications which can
take the available bandwidth based on network feedback
and tolerate unpredicatable end-to-end delay. Consider-
able work has been done in this area during the last sev-
eral years [9, 11, 22, 16, 21, 23, 2, 13]. Many studies have
taken a rate-based approach, which was eventually adopted
as the ATM forum standard [1]. In [2], the authors pro-
posed a rate-based feedback congestion control approach
in a packet switching network. It focuses on the transient
behavior of the ABR queue length. An estimation and
prediction approach to congestion control in ATM net-
works is addressed in [28]. The analysis is based on the
assumption that the underlying traffic model is a Markov
process, which has been proven insufficiently accurate for
describing traffic behavior in ATM networks [18]. In re-
cent work described in [4, 11, 22] , the proposed conges-
tion control schemes have good steady state performance
and also can deal with large propagation delay, except that
they either consider only a specific type of traffic model,
e.g., Markov-modulated traffic, or greedy (persistent) ABR
sources. These assumptions may not be consistent with
real network situations. Some other binary feedback rate-
based congestion methods are proposed in [6, 21, 13, 15].
However, in these binary feedback schemes, the ABR traf-
fic must converge gradually to the available bandwidth,
whereas ER feedback allows the ABR traffic to immedi-
ately utilize available bandwidth. Most importantly, the
ER method is more compatible with some other control
functions, i.e., ABR UPC [6]. In [24], the author analyzes
queue evolution of both binary and ER algorithms, obtain-
ing results for maximum queue length and concluding that
ER control performs much better.

The problem remains how to design an efficient conges-
tion controller which can deal with poorly understood ABR
and VBR traffic models, large propagation delay and many
other uncertainties existing in ATM networks. Recently,
neural networks and fuzzy logic control have emerged as
viable techniques for dealing with complicated character-
istics and environmental changes that cannot be described
by an exact mathematical process [8, 26, 19, 5, 8. Al-
though a number of possible approaches could be taken to
this problem, here we propose a self-tuning predictive fuzzy
rate control scheme. The smallest round trip propagation
delay among all active ABR connections transversing the
specified switch is designated D, and both the feedback
rate and parameter adaptation for the fuzzy-logic controller
are based on the D-ahead predicted future network status,
thereby compensating for the effect of round trip delay.
This approach is appealing to us because of the intuitive
nature of its control (fuzzy logic), its explicit adaptability
(self-tuning), and its ability to compensate for the effect of
round-trip delay (prediction).

In our simulations we adopt actual movie trace data as
VBR traffic. This type of VBR traffic is extremely bursty
and no existing traffic models can adequately describe it

[18]. Furthermore, in some simulations, we use actual Eth-
ernet trace data from Bellcore as the ABR traffic. The Eth-
ernet trace data differs from commonly-used greedy ABR
sources in the sense that sometimes it has less traffic than
it is allowed to send.

2 Description of the predictive self-
tuning fuzzy rate controller

2.1 Overall control topology

Our approach to the design of a traffic rate controller that
will provide high server utilization and good QoS (loss and
delay) for the controllable traffic (which we will henceforth
refer to as ABR traffic) is based on the following observa-
tions. Due to the priority service for the uncontrollable
traffic (VBR and CBR), a non-zero ABR buffer length
implies full server utilization, thereby minimizing delay.
Losses occur only when the buffer overflows its capacity q..
Hence the controller goals can be satisfied if we maintain
the ABR buffer length ¢(¢) close to some non-zero desired
length ¢g4z. On the other hand, the large propagation de-
lays in the feedback path existing in Wide Area Networks
(WANSs) could degrade the controller performance greatly,
especially when the VBR traffic is highly unpredictable,
unless future knowledge of the network is available. This
motivates the design of a predictor to augment the traf-
fic regulator. Although it is impossible to make an exact
network status forecast, we still can make the prediction
based on some criterion of “goodness”, e.g., minimum vari-
ance, which is referred to as Minimum Variance Prediction
(MVP) [31].

So our overall ABR rate controller consists of two parts:
predictor and regulator, as shown in Figure 2. The system
to be controlled consists of the ABR source (or sources)
and the associated queue. The controller operates with a
fixed update/feedback interval T'. That is, all controller
variables are updated and the rate feedback signal is sent
once every T seconds. Thus time is discrete for the con-
troller with all time-related quantities taking on integer
values with a fundamental discrete time unit of T' seconds.
For each interval of T' seconds, the set of system measure-
ments used by the regulator is represented by the vector
X(t+ D), which is estimated by the predictor. Unless oth-
erwise noted, both ¢ and D are expressed in fundamental
controller time units of T' seconds (so that the numerical
value 1 in these units represents T' seconds). D is the min-
imum round trip propagation delay (controller to source
and back) among all active ABR sources. The regulator
takes these predicted values as its input and calculates the
per-source allowed feedback rate (in cells per T sec) for
the next time interval r(¢ + 1), which is sent to all ABR
sources associated with this queue. The function J, de-
scribed later, is the optimization criterion used by the reg-
ulator for tuning its parameters. The predictor takes the
system measurements and allowed feedback rate as inputs
and uses the MV prediction technique to estimate the fu-
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Figure 2: Controller topology in each ATM network node

ture system states.

In the development of the controller (sections 2.2 through
2.4), we assume that there is no lower bound on the allowed
feedback rates. In ATM terminology, we assume all ABR
sources have a minimum cell rate (MCR) of zero. In section
2.7, we show how the system can be modified easily to
achieve fair treatment of all sources even when the sources
have differing nonzero MCR values.

2.2 Self-tuning fuzzy logic rate regulator
2.2.1 Fuzzy control theory background

Traditional control engineering uses mathematical models
of a system and its inputs to design control actions and/or
to analyze their effectiveness. Fuzzy control denotes the
field within control engineering in which fuzzy set theory
and fuzzy inference are used to derive control laws. It is es-
pecially useful for situations in which either the system to
be controlled or its inputs cannot be adequately modeled
mathematically. For an ABR controller, there is consid-
erable uncertainty about both the input ABR traffic and
the time-varying ABR queue service rate, making fuzzy
techniques particularly attractive.

The concept of a fuzzy set is an extension of the concept
of a traditional, or crisp, set. For a crisp set B, an element
either belongs to B or does not. This relationship can also
be expressed as a mapping whose domain is some charac-
terization of possible elements of B and whose range is the
binary space {0,1}. This mapping is called the character-
istic function of the crisp set B. A fuzzy set, on the other
hand, is defined by a membership function whose range is
the closed interval [0,1]. Any value between 0 and 1 can
express the degree of membership of a particular element in
the fuzzy set. This concept of fuzzy sets makes it possible
to use fuzzy inference, in which the knowledge of an expert
in a field of application is expressed as a set of “IF-THEN”
rules, leading to algorithms describing what action should
be taken based on currently observed information, or in
our case, on predicted future information.

Fuzzy controllers are the applications of fuzzy sets and
fuzzy inference in control theory. Their operation is typi-
cally divided into the following three phases.

1. Fuzzification is a procedure to define fuzzy sets based
on system input measurements. That is, fuzzification
defines the membership mappings from the measured
values of each input to a set of linguistic values for
that input.
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Figure 3: Membership function for queue length ¢,

2. Inference is an interface that produces a new fuzzy set
from the result of the fuzzification (the linguistic val-
ues) using a set of rules. The result of the inference is
a fuzzy set that can be called the fuzzy control action.

3. Defuzzification is the procedure that produces a crisp
control output from the result of the inference.

2.2.2 Regulator input fuzzification

As mentioned earlier, the input vector of the regulator

X(t + D) comes from the predictor. This estimated in-
put vector consists of the following elements.

1. D-ahead normalized predicted queue length:
gn(t+ D) = q(t + D)/qc
2. D-ahead predicted queue length rate of change:
dg(t+ D)/dt = §(t+ D) — G(t+ D — 1)

3. Estimated normalized number of lost cells in D-ahead
interval: A
At + D) = I(t + D)/q.

where [(t + D) is the estimated number of lost cells.

The fuzzification of the measurement inputs can be de-
scribed as follows. Let X; be the set of all possible values
associated with the measurement of §,(t + D); X, with
dj(t + D)/dt; X5 with 7(t + D).

Let L(X;) be a set of linguistic values (words) charac-
terizing any measurement over X;. We define these as:

L(X;) = {Small (S), Big (B)};
L(X,) = {Negative (N), Positive (P)};
L(X3) = {Zero(Z), Nonzero (Nz)}.

We define G, () as the membership function associated
with word L and measurement value z. For the first two
measurements, we select complementary triangular shape
functions, shown in Figures 3 and 4, as in most industry
applications. For example, from Figure 3, if §,(t + D) is
slightly less than threshold T, Gs(§y) is close to 0 and
GB(Gn) is 1 — Gs(Gn)-

For the last measurement input 7(t + D), X3 is treated
as a crisp set instead of a fuzzy set, but it can be considered
as a degenerate fuzzy variable and defined as follows.
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1. If A(t + D) is zero, then Gz(7) = 1; Gn.(R) = 0;
2. If A(t + D) is not zero, then Gz (7) = 0; Gy, (1) = 1;

The justification for the use of a crisp set in this case is
that any cell losses (regardless of the number) represent a
serious situation that must be acted upon quickly. Viewed
another way, any cell losses are likely to come in bursts,
so the number of losses in the burst is of secondary impor-
tance; of primary importance is the detection of the burst
loss event itself.

The threshold values for the membership functions were
selected based on preliminary simulation-based sensitivity
studies. These studies involved a system similar to the
one described in the simulation comparison section 3.2 but
with much smaller ABR queue capacity (g. = 30 cells and
ga = 10 cells), and they confirmed the expected trade-offs
in threshold value selection. In these sensitivity studies,
for example, increasing threshold 7> between 0.2 and 1.0
increased link utilization (from 0.96 to above 0.995) and
mean buffer length (from 4.5 to 14 cells), but also increased
cell loss (zero cell loss through T» = 0.4, then increasing
to a cell loss rate of 0.0018 at 75 = 1.0). In this case,
we made the tradeoff by choosing the largest value that
resulted in no cell losses. Using similar procedures, we
chose the following values for the remainder of the work:
Tl = 02, T2 = 047 T3 = —01, T4 =0.1.

2.2.3 Inference, fuzzy rules and defuzzification

We have chosen a Sugeno type fuzzy regulator [20], in
which fuzzy sets are involved only in rule premises. Rule
consequences are crisp functions of the output variables
(usually linear functions). It is robust because few rules
are needed for control. It uses a weighted average of indi-
vidual rule outputs and thus there is no separate defuzzifi-
cation step. Mathematically speaking, it is easy to tune for
optimality, to develop learning algorithms, and to analyze
stability and controllability, all of which are desirable for
an ABR congestion controller.

Based on our defined measurement input variables and
their membership functions, the fuzzy system is described
by eight fuzzy IF-THEN rules, each of which locally repre-
sents a linear input-output relation for the regulator.

The eight fuzzy rules of our Sugeno regulator correspond
to the eight combinations of the linguistic values L(X;),

L(X,), and L(X3). The fuzzy rules have the following
form, where A;,, is the word value from L(X;) used in rule
m and F,, is the output function of rule m (for 1 < m < 8):

Rule m: IF §,(t + D) is A1, and dg(t + D)/dt is Az,
and At + D) is A, THEN ACT = F, (¢t + 1).

For example, substituting descriptions for the measure-
ment inputs, Rule 8 would state:

Rule 8: IF predicted buffer size is Big and predicted
buffer change rate is Positive and predicted cell loss is
Nonzero, THEN ACT = Fg(t +1).

The F,,’s are defined as:

Eot+1)=8-7(t) +an(t+1)

The an,(t + 1) are controller parameters (eight of them)
that are adapted as described later. The constant S has
positive value less than 1.0 to maintain controller stability,
as discussed below.

For rule 8 (above), the desired result is clear: the param-
eters of function Fg should act to decrease the allowed rate.
So ag should be negative and its absolute value should be
relatively large. The desired result in other cases is not
as obvious, but the self-tuning feature (described in sec-
tion 2.2.5) is used to adjust all a,,(t + 1) to near-optimal
values.

If all membership functions were crisp, then exactly one
rule would have its conditions satisfied at any given time
and the output (new allowed rate) would be the appropri-
ate F,. However, our fuzzy membership functions allow
each condition of each rule to be satisfied to some degree,
so the output is a weighted combination of the F;, values:

rt+1) = Yooy Fult + Dwn(t+1) W
= B-r(t)+ an:l A (t + Dw,y, (t+ 1)
where the weights are
wm(t+1) = Ga,,, (Gu(t+ D))
‘G A5, (d4(t + D) /dt) (2)
-G 4,,, (7(t + D))

and due to the complementary nature of the membership
functions G, the weights must sum to unity: Efnzl wp, (t+
1) = 1.0.

The role of the factor 8 is now clear: it represents a
simple pole in the above rate evolution formula (1). We
will also see in section 2.2.5 that the same (3 is a pole in
the recursive rate gradient calculations. Thus we require a
value of 3 strictly less than unity for controller stability.

2.2.4 ABR queue fill model in a multiple node
ATM network

We begin our analysis of the ABR queue evolution for a
multiple node configuration with a specific example shown
in Figure 5, in which we will focus our attention on the
control being applied by switch 3.

As introduced previously, D represents the minimum
round trip propagation delay (RTPD) among a set of ac-
tive ABR sources controlled by a particular switch. Due
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Figure 5: Multiple node ATM network topology

to topology, link distances, etc. we assume that the RTPD
K; from switch 3 to source ¢ and back to switch 3 is as
follows, with RTPD expressed in units of controller update
period T (one time unit equals T seconds): K; = D,
K2 = D+1,K3 = K4 = D+3,andK5 = D+6
Hence if switch 3 issues a feedback signal (¢ + 1) at time
t, it takes D time units for cells from source 1 regulated by
this new control to reach the ABR buffer inside switch 3,
D +1 time for cells from source 2, and so forth. C,(t+1) is
the total number of ABR cells served in the T-second inter-
val (t,t+1]. Parameter o;(¢+1) (one per source, unitless) is
used to describe the transmission demand for a non-greedy
ABR source ¢ which has a round trip propagation delay K;
and actual transmission rate (at the ABR queue) r4;(t+1):

Ozi(t + 1) = T’ai(t+ 1)/7’(t +1- Kz)

Further, let r4pr(t + 1) be the number of cells arriving at
the ABR buffer in switch 3 during interval (¢,t+1], i.e., the
aggregate arrival rate to the ABR queue in that interval
measured in cells per T sec. With these definitions and
keeping in mind the time units, the ABR queue evolution
will have the following form:

q(t+1) = q(t)+rapr(t+1) = Cy(t+1)

= qt) +[ra(t+1)+re(t+1)
+ra3(t+ 1) + raa(t + 1)
+ras(t+1)] — Co(t +1)

= qgt)+[aa(t+1)+as(t+1)z71 3)
tas(t+1)273 +ay(t+1)273 (
+as(t+1)27%-r(t—D+1)
—C,(t+1)

= qt)+B(z"'t+1)r(t—D+1)
—C,(t+1)

where B(z1,t) is a time-varying polynomial whose coeffi-
cients reflect network topology and traffic attributes. How-
ever, note from equation (3) that B(z~!,t) can be easily
calculated as follows.

B(z7%,t) = ragr(t)/r(t — D)

So we find that the following equation is adequate to
describe the general ABR queue behavior.

(1—27"Y¢(t+ D) = B(z"*,t + D)r(t) — Cu(t + D) (4)

Minimum variance prediction of ¢(t+D) will be discussed
in section 2.3, in which we also show how C,(t + D) can
be replaced using simple measurements.

2.2.5 Self-tuning based on gradient descent

We use the gradient descent method to adapt (tune) the
parameters of the fuzzy controller to near-optimal values.
The performance criterion at time ¢ is defined as:

J(t) = 0.5(q(t + D) — qa)® (5)
We then define the parameter adaptation as:

aJ(t)

In this expression, 7 is an adaptive gain, which must be
chosen small enough for stability.
By definition of J(t),

8J(t)
9a,(t)

9q(t + D)
9a;(t)

In equation 4, C,(t + D) is not a function of a;(t) (it de-
pends only on link capacity and the uncontrollable traffic)
and, to a first-order approximation, neither is B(z~!,¢ +
D), so

=(¢(t+ D) - qa)- (7)

-1 6q(t+ D) ~ 1 87’(15)
(1—2 )WNB(Z ,t—}—D)-aaj(t) (8)
From equation 1 for r(t), we have
9 1y—1
S = (=8 (o) ©

completing the adaptation calculations.

Since ¢(t+ D) is future information, we use its predicted
value G(t + D) here to approximate ¢(t + D). The predic-
tion process will be introduced in the next section. Future
prediction of B(z7!,t) is addressed in section 2.4.

2.3 Minimum variance prediction of ABR
queue fill

In this section, we will obtain the prediction for the D-
ahead queue fill §(t+ D). We focus on linear prediction for
simplicity of computation and adaptation. We begin with
our previous expression (equation 4) for queue fill evolu-
tion, obtaining an intuitive prediction function. We then
show that the same prediction function can be derived more
rigorously using the theory of minimum variance prediction
[31].

In the governing queue fill equation 4, we can treat C, (t+
D) as a noise with a nonzero mean C,, which is the average
ABR service rate expressed in cells per update interval T'.
The buffer equation can then be rewritten as:

git+D) = q(t+D-1)
+[B(z71,t + D)r(t) — C,]
+[Cy — Cy(t + D)]

(10)

The control signal is defined as u(t) = r(t)—C, /B(z 1, t+
D), and the term e(t+ D) = C, — C,(t+ D) can be treated



as noise with zero mean. Using these definitions, ¢(t + D)
can be expressed in terms of ¢(t), u(t), and e(t) as:

D—1 D—-1
q(t+D) = q(t)+ > _[B(z™", t+D—i)u(t—i)|+ Y _ e(t+D—
=0 =0

Since the mean of e(t) is zero, the summation of the
error terms Ei’;gl e(t + D — i) can be neglected. So the
prediction function becomes:

§(t+D) = +Z (z7 ' t+D—i)r(t—i)—C,] (11)

We note that if C, is the average service rate over the
entire connection time of the ABR traffic, the above error
term may not be neglected all the time, which could intro-
duce some prediction error. Although VBR traffic could
be very bursty and so also C,(t + D), its average rate may
remain rather constant during a relatively long period be-
fore some dramatic traffic pattern changes happen, which
can be verified in the video source traffic in Figure 7. So
calculating C, as a window-based average will result in
better buffer size estimation. When the window size ap-
proaches D, the noise term e(t) tends to be zero mean
white noise. Then the above prediction procedure becomes
a specific example of an ARMA model-based Minimum
Variance k-step prediction [31]. The ABR buffer equation
qit+ D) =q(t+D—1)+B(z',t+ D) -u(t) + e(t + D)
is a special case of the general ARMA model A(z~1)y(t) =
B(z7Y)u(t — D) + C(271)e(t), where A(z7!) =1 — 271,
C(z7') = 1. Following the procedures introduced in [31],
we obtain exactly the same prediction function as equa-
tion 11.

2.4 Controller simplification and summary

During the design process of the self-tuning regulator and
MYV predictor, we have assumed that we exactly know the
term B(z~!,t). Direct construction of B(z~1,t) would re-
quire knowledge of the number of active ABR VCs, the
round trip propagation delay for each VC, and the trans-
mission demand for each VC. Fortunately this is not nec-
essary since, as already shown, B(z7!,t) can be calcu-
lated as rapr(t)/r(t — D), where r4pg(t) is a measure-
ment of average arrival rate at the ABR queue in the in-
terval (t — 1,t). Note that if the set of ABR connections
is static over some interval, we would not expect B to
change significantly during that interval; in particular, if
all ABR sources are greedy (transmission demands «; are
all constant at 1.0), it will not change at all. Based on
this observation, we will assume that during the time in-
terval [t,t + D), the polynomial B remains essentially con-
stant. Thus we have B(z7!,t+ D)~ B(z"},t+ D — 1) »
B(z74t) = rapgr(t)/r(t — D). Of course, if ABR VCs
are added, removed, or significantly change their demand
in this interval, this prediction will suffer for a very short
time period until sufficient history has been built up for
accurate prediction.

The following summarizes the predictive self-tuning, fuzzy-
logic (PSTF) control algorithm at time ¢ + 1.

1. Predict D-ahead PSTF inputs.
From (11) with the approximations just discussed, the
predicted ABR queue size is:

Ggt+D) = qt)+ (@) +rit—-1)+

+r(t — D +1))2288) — DC,

(12)

By definition, the queue size change rate is:
dg(t+ D)/dt = §(t + D) — §(t + D — 1) (13)

Finally, lacking a good model upon which to base a
prediction of cell losses, we will assume they remain
approximately the same:

At + D) ~ i(t) (14)

2. Update the fuzzy regulator parameters a;(t), i=1...8,
through the following recursive formulas. From (9):
or(t) or(t—1)

a0 =P dae=1 T (15)

Then, adding a pole v to (8) that is very close to but
less than unity to avoid infinite memory and marginal
stability of the gradient evolution and recalling the
approximation above for B(z2~!,t + D):

dq(t+D) ., 08q(t+D-1)
8a; (0~ TV oa; D) or(t) (16)
+[rasr(t)/r(t — D)] 3a;(0)

From (7)
aJt) . dq(t + D)
94, (1) =(q(t+ D) —qa)- OB (17)
And finally from (6)
st +1) = 050~ 3 (18)

3. Calculate the feedback rate r(t + 1). First calculate
the weights from (2), then compute the new feedback
rate from (1), repeated below.

rt+1)=8-r(t)+ > am(t+ Dwn(t+1) (19)

m=1

2.5 Behavior for non-greedy sources

ABR algorithms are oftened evaluated with greedy sources
(sources that will take any bandwidth made available to
them), but a significant portion of real-world sources can
be expected to be non-greedy. This section briefly discusses
the PSTF algorithm’s behavior with such sources.

If an ABR algorithm is designed with only greedy sources
in mind, it may interpret a discrepancy between available
ABR bandwidth and used bandwidth as an indication that



the allowed rates need to be increased. In such a case, the
ABR algorithm may give ever larger allowed rates to the
sources (limited perhaps only by link rate), with potentially
undesirable consequences. For example, in a single-source
scenario, suppose that the source is relatively inactive (non-
greedy) for some time with the allowed rate increasing far
beyond some measure of the available ABR bandwidth. If
the source then becomes active (greedy), the result could
be severe cell loss. This type of situation has, in fact, been
observed for other ABR algorithms, as described in section
3.5.

The PSTF algorithm, through its self-tuning procedure
described in section 2.2.5, effectively limits the allowed rate
r(t) to reasonable values for non-greedy sources. A general
analysis would be quite complicated, but we can illustrate
the mechanism by considering the simple, extreme case of a
single ABR source that is completely idle for an indefinite
period of time.

In such a case, it is clear that g, dg¢/dt, and r4pr would
all remain at zero, and all but two of the eight fuzzy con-
ditions would be “inactive” (have weight w,, zero). The
remaining two conditions would be “active”: small queue
fill and zero cell loss and queue change rate either positive
or negative. We will designate the weights corresponding
to these two active conditions as w4 and w_, each of which
will have value 0.5 (see Figure 4 and equation 2). Follow-
ing the algorithm summary in section 2.4, ¢ will be zero,

;az((tg) will saturate to zero for the inactive conditions and

to 0.5/(1 — B) for the active conditions, 8(%%‘?5 )
rate at 0 for all conditions (active and inactive) since rapgr
remains at zero, so g;j((tt)) will also saturate at 0. This in
turn will cause all of the a; values to saturate. Let ay
and a_ be the coefficients associated with the two active
weights wy and w_. We designate the limiting values of
ayt and a_ as a4 and a—, whose specific values will depend
on the history of the self-tuning process. Finally, it can be
seen that r(t) will saturate at a value of % So there
will certainly be an upper bound on the allowed rate given
to an idle ABR source. Although this simple analysis does
not yield the limiting value of 7(¢), the simulation results
in section 3.5 confirm that the allowed rates are held to

reasonable values for non-greedy sources.

will satu-

2.6 Update interval T’

Recall that T is the time interval between two consecutive
feedback signals. If T is too long, the feedback signal can-
not capture the burstiness of the VBR traffic, which can
result in overflow of the ABR queue or under-utilization of
link capacity. On the other hand, if 7" is too small, the net-
work must send feedback signals more frequently than nec-
essary, and the useful link throughput will decrease. The
following derives a conservative relationship between 7" and
the ABR buffer parameters.

Let C (in cells per T seconds) be the total server (link)

Cyvgr be the total maximum (peak rate) capacity allo-
cated to all VBR connections. Then the maximum capac-
ity available to ABR connectionsis C,,,,, = C—Ccgr and
the minimum capacity allocated to ABR trafficis C,,,;, =
C —CcBr—CvBr-

Recall that the ABR buffer equation is:

(1—2"Y¢(t+ D) = B(z7,t+ D) -r(t) — Co(t + D) (20)

In the worst situation, the ABR VCs may be allowed to
send traffic at the rate of maximum available bandwidth,
B(z 't + D) -r(t) = C,,.
but the actual service rate for ABR queue when this traffic
arrives is the minimum available bandwidth,
C,(t+D)=0C,,,,.
Assume that the buffer has already reached its desired
state, so the current buffer length is approximately gqg. In
the above scenario (worst case), in order to avoid overflow
of the ABR buffer, the following relationship should be
satisfied, where we express time and rates using seconds as
the time unit for this expression only.
ot +T D) =g+ (C

Amaz

- Camin) T <4qc
So T (in cell time slots) should be less than

gec — 4d
- Camin)/c

Trmaz = (C

Amaz
From the above equation, Ty, is larger than (g. — qq)
time slots, so a conservative policy would be to let T' =

qdc — 4d-

2.7 Achieving fairness with MCR # 0

According to the fairness definition given by the ATM Fo-
rum [1], no set of ABR connections should be arbitrarily
discriminated against and no set of connections should be
arbitrarily favored. In the previous sections, we have ex-
plicitly assumed that all the active ABR connections have
zero MCR, (Minimum Cell Rate), so the same feedback rate
is sent to all active VCs. However, if ABR connections have
different non-zero MCR requirements, we have to consider
other fairness criteria, one of which is called “MCR plus
equal share”, defined as follows for VC i:
ri(t) = MCR; + (R(t) - M)/N (21)
where 7;(t) is the feedback rate for VC i, MCR; is the
MCR for VC 4, R(t) is the total available bandwidth at
time ¢ which is decided by the controller inside the switch,
M is the sum of all MCR;, and N is the number of active
VCs traversing the switch in question. This definition is
problematic in that it appears to require that the controller

capacity allocated to the CBR/VBR/ABR aggregation, Ccprhave explicit knowledge of the number of ABR, VCs that it

be the total capacity required by all CBR connections, and

is controlling and the sum of their MCR values. However,



we can circumvent this problem simply by expressing the
“MCR plus equal share” fairness criterion as:

ri(t) = MCR; + r'(t) (22)
where r'(t) is now the per-VC, MCR-adjusted available
bandwidth as determined by the controller, to which each
source adds its own MCR. We now show that r'(t) can be
determined using a controller that is nearly identical to the
one that has just been described.

Throughout the previous development in sections 2.2
through 2.6, r;(¢) never appeared explicitly because we had
r;(t) = r(t), which must now be replaced with the feedback
rate assignment in equation 22. Following an identical de-
velopment with this substitution and assuming that each
VC transmits with rate at least equal to its MCR, we see
that equation 4 becomes

(1—zYq(t+D) = B(z ', t+D)r'(t)+ M—C,(t+D) (23)

where M is again the sum of the MCRs of the ABR VCs
being controlled. We recognize B(z71,t + D)r'(t) + M as
rapr(t + D) and note that all other expressions are valid
with the simple substitution of 7/(t) for 7(¢). Thus the only
change required from the previous controller algorithm is
the expression for B(z71,t) in terms of 7apgr(t), which
should now become B(z7!,t) = %. However, this
expression still has the drawback that the controller must
know the value of M. Noting that M is often likely to
be small compared to r4pr and that the adaptive mech-
anisms in the controller should be able to deal with small
errors, we approximate B as B(z71,t) ~ :f‘(ffgg, just as
in the zero-MCR case. Hence the modified algorithm is
identical to the one summarized in section 2.4 with r(t)
universally replaced by 7'(¢) and the individual feedback
rate assignments being r;(t) = MCR; +7'(t). As the simu-
lation results in the next section show, this approximation
still yields excellent performance.

3 Performance evaluation via sim-
ulation

The tradeoffs between mathematical analysis and simula-
tion are well known [7]. However, since it has been shown
that both video and LAN measured data traffic cannot be
accurately modeled with existing traffic models [18], we
believe that simulation is necessary for predicting the op-
erational performance of an ABR rate controller.

3.1 Simulation methodology

Our simulation topology is shown in Figure 6. The simula-
tions assume an ATM environment, so that the basic unit
of time is a cell slot, the time required to transmit a single
53-byte ATM cell on the transmission link. Simulation is
carried out using the BONeS software package [25].

The uncontrollable traffic (see Figure 1) is modeled as
a mixture of Variable Bit Rate (VBR) and Constant Bit

CBR Source :l:l:l:D\ Switch
; Weighted
| Video Trace data 1 HAALSSegmentorI\ Round To Link
- - :DID_) Robin | ¢ 3
|Video Trace datalOH AALS5 Segmentor Server &
Controller

| ABR Source 1 |—| 05* RTPD 1 I\
ABR Source N |—| 05* RTPD N |/

r(t) + MCRy

05* RTPD N

- r(t) + MCR
0.5* RTPD 1 ® L

Figure 6: Single bottleneck node, multiple sources simula-
tion topology

Rate (CBR) traffic. We drive the VBR source with multi-
plexing of actual trace data from the Star Wars movie [3].
The luminance of this video signal (monochrome video)
is coded using a simplified, DCT-based, variable bit rate
coding scheme that does not include differential or mo-
tion compensated coding. This type of coding can be ex-
pected to produce traffic quite similar in nature to what a
JPEG video coder would produce [29]. The resulting num-
ber of bits per video “slice” is recorded every 1.39 ms (24
frames/s, 30 slices/frame). These “slices” are segmented
into ATM cells for the simulation, so that each VBR source
produces a burst of cells every 1.39 ms. For the simula-
tions, we aggregated ten non-overlapping 20-second seg-
ments from the Star Wars video trace. The peak rate of
this aggregated VBR source is 84.0 Mb/s (including ATM
cell overhead) and its average rate is 62.5 Mb/s. The CBR
source represents aggregated CBR traffic with an aggregate
rate of 46.7 Mb/s and a constant cell emission interval. So
that these sources occasionally consume the major part of
the transmission link bandwidth, the link rate of the server
is set to 140 Mb/s, making one cell slot approximately 3
1S

The bursty nature of the video source is evident from
Figure 7, which shows rate (averaged over 6600 cell slots)
as a function of time for the 20 second segment chosen
for the simulations. The large and rapid rate fluctuations,
on both short and long time scales, provide a challenging
input for the rate controller.

Except where noted below, each ABR source is a bursty
source derived from a 2-state discrete-time Markov model
that transitions once per cell slot. In the ON state, the
source emits a cell and transitions to the OFF state with
probability p;. In the OFF state, the source does not emit
a cell and transitions to the ON state with probability pa.
For such a source, the mean rate (normalized to the link

rate) is B2, the mean burst length (geometrically dis-

tributed) is X and the mean silence length (also geomet-
P1

rically distributed) is L. Thus, setting the average rate

P,
to the rate allowed by the controller still leaves one degree
of freedom for determining the mean burst or silence in-
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Figure 7: Video source traffic used in the simulations

terval. In the simulations, we choose ps = 0.5 whenever
the normalized mean rate exceeds 0.5 (which limits p; to
0 < p1 <£0.5), and p; = 0.5 otherwise (limiting ps to
0 <p2 <0.5).

The multiplexing and priority service are modeled using
a weighted round robin (WRR) service mechanism [14, 30],
in which each source (aggregate VBR, aggregate CBR, ag-
gregate ABR) feeds its own first-in-first-out (FIFO) queue.
The WRR parameters are adjusted to guarantee sufficient
service rate (bandwidth) for the CBR and VBR queues,
with only a token amount of bandwidth guaranteed to the
ABR queue. The WRR mechanism automatically allows
any bandwidth that is not used by the VBR source to be
used by the ABR source. Other parameters of the system
are ABR buffer capacity (g.) of 5000 cells, desired buffer
size (gq) of 1500 cells, rate update pole (8) of 0.5, queue
partial derivative update pole () of 0.9998, adaptive gain
(n) of 0.015, and an update interval (T") of 2000 cell slots
(0.57 * (gc — qa)), which is about 6 ms. This same update
interval was used for all of the controllers in the compar-
ison section 3.2. We chose a higher queue capacity than
T + g4 = 3500 as determined in section 2.6 so that we
can observe the largest queue fill with different control al-
gorithms. Actually in the following simulations, after a
very short initial period, the queue fill never exceeds 3500
cells under the PSTF control algorithm, which matches our
analysis in section 2.6. On the other hand, larger queue
capacity can avoid the severe cell loss caused by inefficient
initial control situations in some cases, especially when the
round trip propagation delay is large.

3.2 Comparison with other controllers in
a single source, single bottleneck node
model

We first investigate a simple configuration involving a sin-
gle bottleneck node and a single on-off ABR source as de-
scribed above whose mean rate is always exactly matched
to the feedback rate (we call this a greedy ABR source).
For this greedy source, the controller’s demand «a(t) =
rq(t)/r(t — D) is always close to 1.

Control Minimum | Buffer | Buffer | Mean
Algorithm link mean SD delay
utilization | (cells) | (cells) | (ms)
PSTF 1.00 1469 180.4 21.0
RRM 1.00 1867 | 665.0 | 26.3
ERICA 0.94 674 366.7 9.3

Table 1: Performance comparison: single ABR source with
RTPD =0

We compare the performance of three different controllers:
the predictive self-tuning fuzzy-logic (PSTF) controller de-
scribed in section 2 of this paper, the relative rate marking
(RRM) algorithm [1], and the ERICA algorithm [1]. The
RRM algorithm is suggested by the ATM Forum as a po-
tential single bit scheme; its parameters are high queue
threshold ¢n, = 2000 cells and low queue threshold ¢; =
1000 cells. The ERICA algorithm periodically measures
the ABR input rate and attempts to direct this rate to-
wards a target rate. The target utilization of ERICA is set
to 1. Both RRM and ERICA algorithms conform to the
same source behavior as described in ATM Forum [1] with
parameters AIF = 20000, RDF = 15/16. We assume that
the single ABR source has a round trip propagation delay
denoted as RTPD.

3.2.1 Single ABR source with RTPD =0

When RTPD = 0, the proposed predictor in the PSTF
controller will not be invoked. As shown in Table 1, we
found all of the controllers were able to provide very high
link utilization (after the first update interval) under these
near-ideal conditions. We note the near-perfect utilization
for the RRM algorithm and the PSTF algorithm. All three
controllers have no cell loss during the entire simulation.
Table 1 also lists the mean value and the standard deviation
(SD) of the ABR buffer size and the average ABR trans-
mission delay for each control algorithm. Figure 8 shows
that our PSTF controller maintains the tightest control
over the buffer fill, followed by RRM. The control target of
the ERICA algorithm is utilization instead of ABR buffer
size, but its utilization is still not as high as PSTF and
RRM.

Figure 8 also helps explain the low ABR delay for ER-
ICA, since it tends to produce smaller buffer lengths and
lower link utilization than the other two controllers. Of
course, the delay for the PSTF algorithm could be reduced
by choosing a smaller target buffer fill, with a possible re-
duction in link utilization (due to the buffer occasionally
becoming empty). We conclude that the self-tuning fuzzy
controller outperforms the other two controllers in this sim-
ple scenario.

3.2.2 Single ABR source with D = 10T

With RTPD > 0, the PSTF predictor will begin to func-
tion. RTPD in these simulations is around 60 ms, close to
the U.S. coast-to-coast round trip propagation delay. Fig-
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ure 9 shows the plots of ABR buffer fill with time for the
three controllers. We observe that the buffer size oscillates
between 0 and 5000 under both RRM and ERICA control,
while the PSTF algorithm shows much more stable behav-
ior. There are 996430 cells losses for the RRM algorithm
and 342516 cell losses for the ERICA algorithm, while in
PSTF control there are only 136 blocked ABR cells, all of
which happened at the beginning of the simulation. Fig-
ure 9 shows that at the beginning of the simulation, there
are not enough past measurements to be fed into the pre-
dictor and hence the predictor does not estimate the fu-
ture buffer length very precisely at this point. However
the buffer size quickly converges around the desired point
after a very short initial period. If we were to choose a
smaller Initial Cell Rate (ICR) and more conservative ini-
tial PSTF parameters, initial cell losses can be avoided.
See [10] for a discussion of initial fuzzy controller parame-
ter value selection.

We conclude that the large RTPD causes both RRM and
ERICA to fail and that the predictive feature is a valuable
addition to the self-tuning fuzzy-logic controller, allowing
it to substantially out-perform both RRM and ERICA.
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Figure 10: Comparison of PSTF and NPSTF controls:
mean and standard deviation of ABR buffer length

3.3 Comparison between predictive and non-

predictive self-tuning fuzzy rate con-
trol

Absolute round trip propagation delay in any closed-loop
control system determines how quickly the system reacts
to the control signals. It becomes more and more difficult
to achieve tight control as the round trip delay increases.
In classical control theory, a predictor will help to solve
this large round trip propagation delay problem. Here we
show the performance difference between predictive and
non-predictive self-tuning fuzzy (NPSTF) rate control as
RTPD increases. Figure 10 shows how RT PD affects the
mean value and standard deviation of ABR buffer size for
both predictive and non-predictive scenarios. For both pre-
dictive and non-predictive STF algorithms the mean buffer
length is always within 3 percent of the desired value of
1500 cells (note the scale on the figure). However, with
the same RTPD, the standard deviation of ABR buffer
size is much smaller for the controller with the predictor,
indicating much tighter control over buffer fill.

3.4 Control of multiple ABR sources

We continue to improve the realism of the simulations in
this section by considering the effects of multiple control-
lable (ABR) sources. It is always desirable to study an
algorithm’s performance in the simplest topology possible,
at least for initial evaluation, so we continue to use a sin-
gle bottleneck node topology. We use 4 independent on-off
ABR sources, each of which has a different RTPD and
a distinct Minimum Cell Rate (MCR) requirement. Each
source receives the feedback rate calculated by the switch
and updates its transmission cell rate to be the sum of the
feedback rate and its MCR, as in equation 22. We sim-
ulate nonzero minimum RTPD of the active ABR VCs,
since in practical systems the ABR VC (or VCs) which has
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the minimum RT PD does not necessary reside in the same
place as the controller.

3.4.1 Multiple ABR sources with RTPD,,;, >0

In this simulation, the RT PD for the 4 active ABR VCs is
4T, 5T, 6T, 7T respectively and the corresponding MCR
is 500 cells/s, 2000 cells/s, 3500 cells/s and 5000 cells/s (a
1500 cell/sec increment for each VC). The predictor esti-
mates the 4T ahead buffer size and the controller takes this
predicted buffer information as its fuzzy input.

Figure 11 shows that the predictive self-tuning fuzzy con-
troller is able to keep the ABR queue size under tight con-
trol. The average queue size is 1790 cells and the standard
deviation is 335 cells. The VC throughput plot is shown in
Figure 12. As expected, each VC throughput converges to
the proper value according to the “MCR plus equal share”
fairness criterion. There is no cell loss in this simulation.
The prediction alleviates the consequences of large RT PD
which otherwise might cause significant problems.

After 10 update intervals, the total link utilization re-
mains above 99.9%. For relatively short simulations such
as these (20 seconds of controller time), the initial transient
behavior clearly depends on initial parameter values, the
selection of which is discussed in [10].

3.4.2 Effect of RTPD spread on performance
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Figure 13: ABR buffer statistics vs. maximum RTPD

with minimum RTPD = 24 msec

of RTPD values among the controlled sources. We use a
single bottleneck node simulation with two ABR sources,
each with zero MCR. The RT PD of one source is held at
4T (approximately 24 msec), and the RTPD of the other
source is varied from 47T to 10T (approximately 60 ms). In
Figure 13, we plot the mean and standard deviation of the
ABR buffer fill as a function of the larger RT PD value. As
expected, the control is best when both sources have the
same RTPD. However, the degradation in performance
when the RT PDs are different is certainly tolerable, espe-
cially considering that there are no cell losses for any of the
RTPD spread values. We also see the encouraging result
that the performance does not continue to degrade with
increasing RTPD spread. We conclude that the PSTF
controller’s performance is robust with respect to RT PD
spread.

We also use this set of simulations to illustrate the adap-
tation of the fuzzy controller parameters. Figure 14 shows
the adaptation of parameters a;, asz, as, and a; for the
simulation with minimum RTPD of 24 ms and maximum
RTPD of 60 ms. The other four parameters correspond to
rules for which cell loss is non-zero, which is never true, so
these parameters do not actively adapt (see section 2.4).
We see that all four parameters in Figure 14 follow similar
trajectories, but the magnitudes of the changes are dif-
ferent. This is consistent with the updating equations in
section 2.4, in which the partial derivatives of r and ¢ must
all be non-negative (since all weights w; are non-negative),
and so the sign of the increment for each a; will be the
same for a given update interval. Comparing this figure
with Figure 7, we also note that the general parameter
trajectory is roughly the mirror image of the VBR traffic
rate trajectory. For example, when the VBR rate decreases

Since the PSTF algorithm only requires the minimum RTPD (more bandwidth for ABR traffic), the controller parame-

among the controlled ABR sources, we investigate in this

ters a; all increase, which tends to force the feedback rate

section the controller’s performance as we increase the spread r to increase, as it should.
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3.5 Results using Ethernet trace data for
ABR traffic

Our final simulation combines actual video trace data for
the VBR source with actual Ethernet trace data for the
ABR source [17]. The Ethernet data is given as a sequence
of packet size and packet interval time pairs. As with the
video “slices”, the Ethernet packets are segmented into
ATM cells.

We assume that the Ethernet source has RTPD = 60
ms. As shown in Figure 15, this Ethernet trace data repre-
sents a highly variable source with mean rate 40827 cells/s
and peak rate 312524 cells/s. Also shown in Figure 15 is
the available ABR bandwidth C, (t) for all of the simulation
experiments with an average value of 73000 cells/s, much
larger than the mean Ethernet source rate. Comparing the
two plots in this figure, the Ethernet source is a non-greedy
source most of the time, but does frequently become greedy.
To simulate the pent-up demand that would accumulate
while throttling the ABR source during its greedy inter-
vals, we place an infinite FIFO buffer between the source
and the ABR buffer as shown in Figure 16. The output
rate of the infinite FIFO is adjusted to match the allowed
rate.

In section 2.5, we discussed the behavior of ABR algo-
rithms with non-greedy sources, stressing that the allowed
rate should be bounded to a reasonable value (ideally, close
to the available ABR bandwidth) rather than increasing to
the line rate. Figure 17 shows the feedback rate with time
under control of the three different algorithms. We see that
the feedback rate from PSTF is very well bounded, even
though the ABR queue fill is small most of the time. In
contrast, both the RRM and ERICA algorithms frequently
allow the feedback rate to saturate at the line rate of ap-
proximately 330,000 cells/s. Comparing Figure 17 with
Figure 15, we observe that the feedback rate from PSTF
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is not only bounded, but it is typically slightly larger than
available bandwidth, behavior which is nearly ideal.

The importance of this behavior is highlighted dramati-
cally in the cell loss performance for the three algorithms.
The maximum ABR queue fill for PSTF is 2500 cells, so
there are no cell losses. In contrast, the feedback rate from
RRM stays at link capacity most of the time, resulting
in extensive cell losses when the Ethernet source suddenly
becomes greedy (about 35352 cells in all). The ERICA
algorithm exhibits very similar behavior to the RRM algo-
rithm, although slightly better: there are 23343 cell losses
under ERICA control. The PSTF algorithm also exhibits
a slight edge in delay performance. The mean Ethernet
cell transmission delay is 35 ms, 39.3 ms and 39.5 ms for
PSTF, RRM and ERICA respectively.

4 Conclusions and Future Work

We have shown that fuzzy-logic principles can be effectively
applied to the control of traffic sources in a network, a con-
ventional gradient technique can be used to tune the fuzzy
controller’s parameters, and Minimum Variance prediction
can augment the self-tuning fuzzy logic to handle large
round trip propagation delays existing in WANs. The re-
sulting predictive self-tuning fuzzy-logic (PSTF) controller
outperforms ATM Forum suggested RRM and ERICA al-
gorithms. The PSTF controller has been shown to be ef-
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ferent controllers

fective at maintaining high server utilization simultaneous
with high service quality (low delay and cell loss) for the
controllable (ABR) traffic under a variety of conditions.

There are several potentially fruitful areas for future
work. The focus of one direction would be on generaliz-
ing the control from the single-node environment of this
paper to a network environment with multiple points of
potential congestion. This would involve the coordination
of multiple controllers along the lines suggested in section
1.1. Performance and robustness comparisons between our
algorithm and other existing ones in a multiple node topol-
ogy could be made.

Implementation complexity is of great concern to switch
vendors. They would like to see an efficient ABR conges-
tion controller with as little knowledge as possible of the
network status and traffic attributes. We have shown in
this paper that the proposed PSTF algorithm only needs
the knowledge of current and past measurements of ABR
queue fill, lost ABR cells, available ABR bandwidth, and
the minimum RTPD among all active ABR VCs. All the
measurements are either already defined as standard inputs
to the controllers by ATM Forum or are easily monitored
by the switch, with the exception of the minimum RTPD.
The estimation of the minimum RTPD will be of great
importance in the real-time implementation and must be
investigated along with other implementation details.

It would also be desirable to combine our proposed min-
imum variance prediction with some of the ATM Forum
suggested ABR flow control algorithms. We would like to
see if the MV predictor helps those ATM Forum suggested
methods to improve the network performance with long
round trip propagation delays.
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