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Abstract

Realistic topology generators are essential to the understanding of
network design and survivability analysis. Two important issues that
are not sufficiently addressed by current topology generators are node-
positioning and cost considerations. We propose that the utility of the
existing models could be vastly improved by incorporating these two
features. In this paper we introduce a new network topology genera-
tor KU-LocGen, which enables node positioning in several well-known
random graph generation models. We conduct our studies based on
two backbone networks. We show that the proposed generator pro-
duces graphs that are representative of the real network as well as
realistic alternatives. Finally, we present a cost analysis methodology
and apply it to our topology generator.

Information and Telecommunication Technology Center
Department of Electrical Engineering and Computer Science
The University of Kansas

31 December 2008






Contents

1 Introduction 1
2 Related Work 2
3 Node Positioning 3
4 Random Link Generation Models 4
4.1 Pure Random . . . . .. ... ... ... ... 4
4.2 Locality . . ... ... 4
4.3 Waxman . . . . . . . . . .. 5

5 Network Costs 5
6 Modelled Networks 6
7 Results 7
7.1 Topology Representativeness . . . . . . . . . ... ... ... .. 7
7.1.1 Node degree distribution . . . . . ... ... ... ... 9

7.1.2 Shortest path length . . . .. ... ... ... ... .. 9

7.1.3 Linklengths . . . . . . . . . ... oL 10

7.2 Cost Analysis . . . . . . .. ... 10
7.3 Comparative Analysis and Model Shortcomings . . . . . . .. 13
7.3.1 Location constrained pure random . . . . . ... ... 14

7.3.2 Location constrained locality model . . . . . . . .. .. 16

7.3.3 Location constrained Waxman model . . . . . . . . .. 18

8 Conclusions and Future Work 22



i



KU-LocGen 1

1 Introduction

Realistic topology generators are crucial to numerous aspects of network-
ing research. In particular, there are three distinct applications of topology
generators [1, 2]: understanding the graphical properties of the network and
evaluating the performance of protocols and services over a given topology;
resilience and survivability analysis of the network to determine how well the
network will react to challenges; and finally, a tool for network architects,
providing alternate topologies that meet certain constraints during the design
and engineering phase.

The current emphasis of the topological studies primarily focus on the
first aspect: descriptive modeling of the graphical properties of a network.
There are large number of research efforts that characterize the topology
and growth of internetworks using random models like Waxman [3], degree
oriented models such as power-law [4] and BA model [5], as well as hier-
archy centric models such as Transit-Stub and Tiers [6, 7]. The properties
of interest include expansion, distortion, degree distribution, shortest-path
distribution amongst a host of others. Several tools such as BRITE [8] and
GT-ITM [6, 7] are currently available that can generate one or more different
types of network topology graphs.

To some extent, existing studies also address the resilience of a graph [1].
A large section of this area of research is focused on the availability of the
alternate paths between nodes and the commonly used challenge model is
uncorrelated link failures. However, in practice the challenges at the phys-
ical layer tend to be highly correlated to the geographic location. In order
to support extensive survivability analysis for location based challenges, it
is essential for topology models to consider realistic node positioning. Re-
silience studies would greatly benefit if established metrics and measures are
combined with simulation based studies using realistic topology models.

The emphasis of the topology generators, traditionally, has not been on
providing practical tools for network designers of commercial or research net-
works. The primary reason for this disconnect between the network topology
research and real network deployment is the lack of physical location and
cost constraints in the topology models, which are two of the most impor-
tant factors relevant to practical design and deployment. Therefore, design
and engineering of commercial networks commonly does not involve rigorous
topology analysis using widely researched topology generators.

At a broader level, lack of realistic topologies implies that the perfor-
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2 KU-LocGen

mance of protocols and mechanisms, especially with respect to resilience,
evaluated using simulated topologies does not translate well to actual net-
work deployments. Our objective is to modify the existing topology genera-
tors by incorporating location and cost parameters in generation process. To
this end, we present a topology generator that uses node positioning to im-
prove the relative representativeness [9] of the network: KuLocGen. We use
this generator to investigate the representativeness of topologies generated
with random graph models. Given the established shortcomings of random
graph models [10, 7], we evaluate the impact of node positioning (with pre-
determined geographic locations) on their credibility. In addition, we show
how cost analysis can be used to derive the range of model parameters that
would yield economically feasible topologies. Thus, our contribution is the
use of location and cost constraints to derive realistic candidate topologies
for practical network design, performance and survivability analysis.

The rest of the paper is organized as follows: The related work is discussed
in section 2. Section 3 presents our approach to node positioning followed
by its application to random graph models in Section 4. Network costs are
discussed in Section 5. We evaluate the proposed models using node locations
from two currently deployed networks in Section 6. Finally, an analysis of the
generated topologies is presented in Section 7 followed by our conclusions.

2 Related Work

Several research efforts have addressed the aspect of realistic topology gen-
eration in the past. A recent comprehensive survey by Haddidi et al. [9] on
the measurement, inference, modeling, and generation of network topologies
highlights the lack of realistic models as a key issue. A majority of network
modeling studies are aimed at modeling the Internet as a whole or in parts.
Zegura et al. [7] studied the relationship between graph models and the real
internetwork in terms of topological properties, several of which will be used
in this paper. There exists a number of well-established measurement tech-
niques to discover the network topology [11]. The topology maps generated
using these techniques are also used in this paper.

A comparison of degree-based and structural network topology genera-
tors [1] based on expansion, distortion, and resilience showed that degree
based generators are better equipped to capture the hierarchical structure of
the Internet at a large scale. Alderson et al. [2] present an analysis of the
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KU-LocGen 3

physical connectivity of single ISP networks and concludes that connectivity
patterns of random generated models differs significantly from the inferred
router level connectivity.

The need to incorporate realistic design constraints on topology genera-
tion was recognized by Alderson et al. [12], in which they present a topol-
ogy generator based on descriptive model called HOT (Highly Optimized
Tolerance). Recently, Quointon et al. [13] has emphasized the need for in-
corporation of network design heuristics in the topology models. The 1Gen
tool [13] uses hueristics such as geographic location of the nodes instead of
the probabilistic methods to generate topologies. Other models considering
the geographic location of nodes include the one presented by Chen et al. [14]
which aims at finding the optimum location of optical switching nodes and
links to minimize the cost in an optical network. Habib [15] investigates the
redesigning of an existing network topology with the objective of preserving
network elements as well as the original topology, thereby reducing the cost
and time to re-engineer the network. To the best of our knowledge, there has
not yet been a study that investigates generation of small-scale (e.g. PoP
level) network topologies based on geographically fixed located nodes under
a cost limitation.

3 Node Positioning

We assert that there are two phases of topology generation: first the po-
sitioning of the nodes and second the generation of interconnecting links.
Most of the existing graph models, as discussed in Section 2, focus on the
latter. The physical location of nodes with respect to each other is com-
monly a random distribution, however in practice, network designers are
almost always constrained on node locations. For example, the node loca-
tion (point-of-presence) of any major ISP is guided by several economic and
policy decisions and plays a dominant role in the resulting network topol-
ogy. Therefore, we address this issue from a practical perspective. Instead
of a random node location, we propose a fixed position for every node in the
topology based on pre-determined locations. In case of a commercial network
such as an ISP, this information is often a given design constraint. Hence
our problem can be formulated as that of topology generation given a set of
PoP locations. In this paper, we consider several random graph models to
generate edges between a fixed set of nodes as discussed below.

ITTC-FY2009-TR-45050-01 w

The University of Kansas



4 KU-LocGen

Assigning positions to several hundreds or thousands of nodes is practical
assuming that their coordinates are available in parsable format. However,
the objective of our approach is to provide a practical tool that can be used
for backbone or nationwide tier-1 networks as opposed to generating the
complete Internet structure. Therefore, scalability is not considered to be a
major concern in the proposed approach. Moreover, several highly scalable
methods as discussed in Section 2 already exists that address generation of
scale-free and hierarchical networks.

4 Random Link Generation Models

For the purpose of initial study, we choose three random graph generation
models. In each case we use exact node placement instead of a random
node distribution while using the original link generation algorithm from
the model. The shortcomings of random graph models such as inability to
capture all the statistical properties of large-scale graphs are well known.
Our objective is to evaluate the impact of node positioning on the generated
topologies and their statistical properties.

4.1 Pure Random

In this model, the link between a pair of nodes is generated based on a
independent probability P. This is the most simplistic model and only used
for reference purposes.

4.2 Locality

The locality model [7] is based on the euclidian distance between a given
pair of nodes. First, nodes are placed according to the given data. The
probability of a link between a node A and B is then specified as:

PAB:aifdAB<T
Pyp=pitdyp >

(1)

where 7 is a constant threshold and 0 < a < 1 and 0 < # < 1. The
distance based model uses two different probabilities for links shorter and
longer than a given threshold.
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KU-LocGen 5

4.3 Waxman

The Waxman model [3] was first introduced 1988 as a random topology gen-
erator in which the nodes are initially placed in plane using with a uniform
distribution. The edges between the nodes are added according to the prob-
ability that is dependent on the geographical distance between the nodes.
The probability of an edge between two nodes A, B is given as:

Pap = aeit (2)

where d is the distance between the nodes, L is the maximum distance
between any two pair of nodes, 0 < o« < 1 is a constant, and 0 < 3 < 1
represents the ratio of short distance to long distance links. An increase in
« increases the probability of link between a given pair of nodes, whereas an
increase in (3 increases the likelihood of longer links as compared to shorter
links. Existing implementations use a Poisson distribution for node place-
ment.

5 Network Costs

The cost analysis of the generated topologies provides valuable perspective
on a graph model. In practice, the capital available for network deployment
is limited. Therefore, it is essential that if not directly integrated in to the
model, the cost should be at least used to obtain a realistic set of model
parameters. In this paper we use a realistic cost function with arbitrary
units' to determine the range of model parameters that provide a feasible
solution. Given this range of “affordable” parameters, we can then analyze
which topologies optimize the performance. The cost a link between a pair
of nodes is defined as:

C=fetv.xd (3)

where f. is the fixed cost associated with deploying a link of any length,
ve is the variable cost expressed per unit distance, and d is the euclidian
distance between the nodes.

IFor simplicity, the smallest cost factor is assigned a unit value
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6 KU-LocGen

6 Modelled Networks

We choose two currently deployed networks to evaluate our topology models.
First, we choose the router-level map of Sprint network as shown in figure
1(a) generated by the Rocketfuel project [16]. Secondly, we consider the
PoP level graph from the European research network GEANT2 [17] shown
in figure 1(b).

501 651

601
45¢
551
40
50

350 45-

40

30r
35-

) 70 80 90 100 110 39

(a) Sprint (b) GEANT?2

Figure 1: Router-level topology mapped to geographic coordinates

A summary of these networks is give in Table 1. We use the geographic
locations from these two graphs to position the nodes in each of the models
discussed in Section 4. The results are discussed in the following section.

Table 1: Statistics of modelled network topologies

Network | Number of Nodes | Number of Links | Average Degree

Sprint 27 68 5.04
GEANT?2 34 51 3.06

IQJ ITTC-FY2009-TR-45050-01
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KU-LocGen 7

7 Results

We implemented all three models discussed in Section 4 in MATLAB?. In this
section, we present a set of topologies generated using the KU-LocGen and
evaluate their representativeness. For each model, we generated topologies
over the entire parameter («, ) range with a resolution of 0.01 and repeated
each point in the range 100 times. Thus the total number of runs was (100 x
100 x 100)= 1,000,000. In order to demonstrate the benefits of the proposed
approach, we do a comparison between the topologies generated with the
original Waxman model and the modified Waxman model in Section 7.1. A
more extensive comparison between all the three random models along with
the proposed modifications are given in Section 7.3.

7.1 Topology Representativeness

The representativeness of a topology is defined as the qualitative and quan-
titative measure of the similarity between a real network and the generated
topologies. In this section, we show a sample topology generated by the the
Waxman model for Sprint and GEANT2 network. Note that this is a typi-
cal topology from range of a over a million topologies generated. Statistical
properties of the graphs will be considered in the following sections.

50-
45-
40-
35-

301

n
a

(a) Sprint (b) GEANT?2

Figure 2: Topologies generated with modified Waxman model

2The topology generators and other code used in this paper is made publicly available
for download at [18]
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8 KU-LocGen

The topologies generated by the Waxman are most representative of the
real network as shown in Figures 2(a) and 2(b)3. While the visual plots of the
generated models show a fairly representative topology, it is well established
that qualitative analysis of topologies is far from accurate [7]. Hence, we
consider three metrics: node degree distribution, the shortest path length
distribution, and the link length distribution commonly used in the literature
for analysing the representativeness of topology generators.

In the following sections, we evaluate the modified Waxman model us-
ing the above mentioned metrics and compare it with the original Waxman
model as well as the real network. Since the generated topology can vary
significantly based on the model parameters («, 5 in case of Waxman), we
choose only those parameters that on average result in an average node degree
similar to that of the real network. We call this the feasible parameter set.
In other words, the number of edges in the real network and the simulated
network are within a small tolerance. We generate 100 runs at each point
within the feasible parameter set using a resolution of 0.01. The statistics

(mean p and standard deviation o) of a sample run are shown in Table 2 for
both Sprint and GEANT networks.

Table 2: Statistical distributions of modelled network topologies

Topology Degree | Shortest Paths | Link lengths

(/o) (/o) (10° km) (u/0)
Sprint real network 5.04/3.88 2.44/1.10 1.41/1.18
Sprint original Waxman 4.74/1.75 2.25/0.87 1.15/0.63
Sprint modified Waxman 5.04/2.36 2.,51/1.17 0.81/0.74
GEANT? real network | 3.00/1.74 3.47/1.55 0.74/0.62
GEANT?2 original Waxman | 3.06/1.48 3.03/1.19 1.63/0.84
GEANT?2 modified Waxman | 3.06/1.76 3.34/1.42 1.20/0.71

In the following sections, we discuss specific representativeness metrics
and compare their probability distributions. The plots are intended to give
an idea of the shape of the distribution curves for a sample run. The exact

3Given the only constraint of node location, the generated topologies may suffer from
key vulnerabilities such as cut vertices and nodes. Addition of further practical constrains
such as k-connectivity and path diversity [19] remains a part of our future work.
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KU-LocGen 9

difference between the models is shown quantitatively in Table 2.

7.1.1 Node degree distribution

The node degree distribution is defined as the probability that a randomly
selected node is of degree k [9]. The average node degree for the Sprint and
GEANT?2 network are plotted in Figure 3 for the real network, original Wax-
man, and modified Waxman. We see that modified Waxman reproduces the
degree distribution more faithfully as compared to random node distributed
Waxman model especially at the higher degrees. Table 2 shows that stan-
dard deviation of the modified Waxman model is much closer to the the real
network.

o
o
o
o

z " [=sprint 2 —GEANT?2)
g 3
e} Q
S S
g S~ S ] g ‘
[¢] 2 4 6 8 10 12 [¢] 2 6 10 12
node degree node degree
05 05
g > —Waxman :; > —Waxman
] §
Q Q
[ [
Q 0 T L Q 0 L L
0 2 6 8 10 12 0 2 4 6 10 12
node degree node degree
0.5 0.5
2 — Modified Waxman| 2 — Modified Waxman
5 3
© [
e} Q
o [<]
s 8
o . . . . . 0 . . ; _— .
0 2 4 6 8 10 12 0 2 4 6 8 10 12
node degree node degree
’
(a) Sprint (b) GEANT?2

Figure 3: Node degree distributions

7.1.2 Shortest path length

The shortest path length distribution is defined as the distribution of the
probability of the two randomly selected nodes being at minimum distance
of k hops from each other [9]. We calculated this distribution for all feasible
values of o and (3, with 100 repeats per point. The distributions from one
specific set (o = 0.95, 8 = 0.20) are shown in Figure 4.

We observe that to some extent both the original Waxman and modified
Waxman generate similar hop counts. This is expected since hop count
depends primarily on the number of nodes and links which are equal by
design for both the models. However, the difference is evident towards the
tail of the distribution and this fact is captured in the statistics that show
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10 KU-LocGen

Zos T T T T T T zos
o 8
© ©
g /\\ E
& ‘ ‘ ‘ ‘ N ‘ ‘ ‘
0 1 2 3 4 5 6 7 8 0 1 3 4 5 7 8
Shortest Path Hop Count Shortest Path Hop Count
Zos T T T T T zosf T T
o Fel
© ©
2 N 8 /\
& 4 L™ & e ‘
0 1 2 3 4 5 7 8 0 1 2 3 4 5 6 7 8
Shortest Path Hop Count Shortest Path Hop Count
20.5F 205
5 5
© ©
g g
o
o , , n 0 L L T
0 1 3 4 5 7 8 0 1 3 4 5 6 7 8
Shortest Path Hop count Shortest Path Hop Count
(a) Sprint (b) GEANT?2

Figure 4: Shortest path length distributions

that the mean and standard deviation of the modified Waxman model is
closest to the real network.

7.1.3 Link lengths

We define the link length distribution as the probability that a random edge in
the network will be of length k such that m < k < n where n—m = ¢ is a fixed
length increment. Figure 5 shows that the modified Waxman model closely
duplicates the link length distribution of the original network. The statistics
show that over the entire range of the model parameters, modified Waxman
is particularly representative of the real network. Link length distribution
is of particular significance to economic feasibility as the overall cost of the
network is directly proportional to the sum of all the link lengths in the
deployed network.

7.2 Cost Analysis

In this section, we conduct a cost analysis of the topologies generated by
the proposed models. The objective is to derive a range of economically
feasible model parameters for a given value of total capital available. In
order to generate topologies that cover the entire model range, we increment
the parameters in steps of 0.01 and generate 100 runs for each set. For every
single topology generated, we calculate the total cost of the network using
Equation 7.2, which is repeated here:
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Figure 5: Link length distributions

C=fc+v.xd

In order to calculate cost, we need a relationship between the fixed costs f,.
and variable costs per unit distance v.. This relationship is dependent on a
number of market factors. For the purpose of analysis, we assume the fixed
costs to be defined by the following equation:

fC:JXUC (4)

where d is the average distance between all node pairs. In other words,
the fixed cost is assumed to be the average of variable costs of all the links.
While the actual relationship may vary depending upon the geographic lo-
cation of the network (urban vs. rural centers), this simplistic assumption
demonstrates the method without loss of generality. Figures 6 show the cost
function versus the model parameters for the locality and modified Waxman
model respectively.

The next step is to find the model parameters such that the total network
cost is within the maximum allowable cost given the economic constraints.
For example, the range of feasible parameters «, § using the modified Wax-
man model and cost constraint of 5 million units is plotted in Figure 7.

Given the «,( pairs feasible within the cost constraint, the network
designer can evaluate the relative merits of different generated topologies.
These include optimizing connectivity, capacity, and resilience.
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12 KU-LocGen
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KU-LocGen 13

7.3 Comparative Analysis and Model Shortcomings

In this section, we present a detailed comparison of topologies generated using
the proposed location constrained models with link probabilities generated
from pure random, locality, and Waxman models. We conduct a qualitative
analysis to evaluate the advantages as well as the shortcomings of the location
constraints on the above mentioned models. We will use the node locations
of two currently deployed networks for the purpose of our analysis. First we
look at the router-level map of the tier 1 service provider Sprint, followed by
a much sparser map of the GEANT2 research network.

The objective of this section is to get a qualitative measure of the rep-
resentativeness as well as resilience of graphs generated using the proposed
model. This allows us to evaluate the potential shortcomings of the proposed
approach and motivates future refinement to KU-LocGen that instruments
further constraints on the generated topologies.
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14 KU-LocGen

7.3.1 Location constrained pure random

Figure 8 shows three different topologies generated using the pure random
model with the location constraints similar to that of nodes in the Sprint
network shown in Figure 8(a). The resilience of graphs generated with pure
random model is relatively high because the link probabilities that are equal
independent of the distance. In order to generate graphs that match the node
degree of the actual topology, we use a link probability «, where o = 0.19.

It can be seen that the topologies generated can vary significantly between
runs. While the topology of Figure 8(b) shows a resilient graph that closely
approximates the real network, multiple runs yield graphs that lack resilience
(Figure 8(c)) or results in sub-optimal paths leading excessive delays and
bottlenecks in the network (Figure 8(d)).

50 501
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301

80 70 80 % 100 110 560 70 80 90 100 110
(a) Actual topology (b) Representative graph
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(c) Non-resilient graph (d) High-latency graph

Figure 8: Location constrained pure random graphs for Sprint Network
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KU-LocGen 15

The second set of graphs in Figure 9 show the topologies generated by
the pure random model when the locations are constrained based on the
GEANT? research network nodes of Figure 9(a). The link probability for
this network is calculated to be 0.09.

Again, we observe a significant variance in the the representativeness
of the graphs between multiple runs. Some of the graphs such as the one
in Figure 9(b) are fairly representative of the actual topology and possess
resilience characteristics, while others resulted in less than optimal graphs in
term of resilience and latency (Figures 9(c) and 9(d)).

Equal link probabilities correspond to many long distance links, thereby
reducing the probability of generating graphs with cut vertices and edges.
Further, the graph is often bi-connected. However, the cost of such a network
is very high.
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Figure 9: Location constrained pure random graphs for GEANT2 Network
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16 KU-LocGen

7.3.2 Location constrained locality model

In this section, we look at the differences in topologies generated using locality
model as shown in Figure 10. Recall that locality model uses two different
link probabilities based on a distance threshold. The value of this threshold
and the link probabilities is calculated such that the resulting plots have, on
average, the same node degree distribution as that of the original topology.
For the Sprint topology, the model parameters are a = 0.4, § = 0.1, and the
distance threshold is 1000 km.

We observe that the locality model can generate graphs (see Figure 10(b))
that are more representative of the actual topology as compared to the pure
random model. However, there are cases where the generated graph may lack
key resilience features (Figure 10(c)), or have sub-optimal link placement
(Figure 10(d)) resulting in unrealistic topologies.
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(a) Actual topology (b) Representative graph
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(c) Non-resilient graph (d) High-latency graph

Figure 10: Location constrained locality graphs for Sprint Network
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KU-LocGen 17

Figure 11 shows sample topologies based on the node locations of the
GEANT?2 network using the locality model. Here, we use a = 0.2, 5 = 0.07,
and a distance threshold is 1000 km. Given the low node degree of the
network, it is likely that the generated graphs may have a disconnected node.
Further, the network is subjected to partitions as well as the occurrence of
cut nodes and vertices.

We note that representativeness of the graphs when compared to the
actual topology is low for the locality model, particularly when the underlying
graph is sparse. For example, the graph shown in 11(c) is partitioned and
the failure of node located at (-3,40) can further partition the network.

When compared to pure random graphs, the locality model yields graphs
that are more representative of the actual topology, but are less resilient.
However the cost of the generated topology is significantly less due to the
reduced number of long distance links.
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Figure 11: Location constrained locality model for GEANT2 Network
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18 KU-LocGen

7.3.3 Location constrained Waxman model

We consider different topologies generated when using Waxman model to
calculate link probabilities while constraining the node locations to those of
the Sprint network. In order to maintain the average node degree similar to
that of actual topology, we use the following values for the model parameters:
a = 0.95, § = 0.18. The various graphs shown in Figure 12 indicate a wide
variance in the characteristics of the generated plots.

Figure 12(b) shows a sample graph that is fairly representative of the
original topology. The graph in Figure 12(c) is an example of a topology that
is generated with the same model parameters but has significantly different
characteristics in terms of resilience. There are several one-degree nodes and
the failure of a cut vertex at (75,41) would partition the network in to two.
Similarly, the delay characteristics of Figure 12(d) are suboptimal.

50 50
45
40r

35

30

550 70 80 % 100 110 B %0 70 80 9 100 110
(a) Actual topology (b) Representative graph

50r 50

45t 45t

40 401
35t

35-

30+ a0

60 70 80 920 100 110 60 70 80 920 100 110

(c¢) Non-resilient graph (d) High-latency graph

Figure 12: Location constrained Waxman - Sprint network (a = 0.95, 8 = 0.18)
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For a given an number of nodes and average degree, the Waxman model
equation (Eq. 2), yields a range of feasible values for the model parameters
a and (. In Figure 12, we used a particular set of values that results in
topologies which are representative of the actual Sprint network. In this
section, we use a different set of values: a = 0.55, § = 0.35 to generate
multiple graphs as shown in Figure 13.

Compared to the graphs generated using the previous set of model pa-
rameters (a = 0.95, f = 0.18), these graphs are in general more resilient.
This is due to the higher value of 3, which is the ratio of long to short links.
Since there are more long links, the network is likely to be bi-connected.
Further, cut vertices and links are avoided because of links spanning across
geographically distant nodes. However, we still see some topological differ-
ences between multiple runs.

50r 50
45t

40

35

30

60 70 80 % 100 110 > %0 70 80 9 100 110
(a) Actual topology (b) Representative graph

50r 501

451 451

40r 40r
35-

35r

30+ 301

560 70 80 90 700 70 >80 70 80 9% 100 110

(c) Non-resilient graph (d) High-latency graph

Figure 13: Location constrained Waxman - Sprint network (a = 0.55, 8 = 0.35)
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The topologies generated with the Waxman model when constrained with
location of nodes similar to that of GEANT2 network are shown in Figure 14.
Here the model parameters are: @ = 0.35, § = 0.3.

An example of a fairly representative graph is given in Figure 14(b). On
the other hand, Figure 14(c) shows a uncharacteristic graph generated with
the same model parameters. In this particular case, there are several zero
and one-degree nodes as well as cut edges. Figure 14(d) shows a case, in
which the link locations are such that the shortest distance paths between
geographically adjacent nodes is several long length hops away.

When compared to the pure random and locality models, the Waxman
model can produce the most representative graphs. Furthermore, the link
length and the shortest path distribution also matches with the actual topol-
ogy. However, like all the other models, graphs generated with Waxman for
sparse networks are less representative when compared to dense networks.

65 . 65
60 60
55 551
50F 50
451 45-
40t 401

35f a5l

65¢ . 650

60

55

501

451

401

(c) Non-resilient graph (d) High-latency graph

Figure 14: Location constrained Waxman model for GEANT2 Network
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It was observed that all three models can fail to produce realistic topolo-
gies on a run-by-run basis. We attribute this to the lack of additional pa-
rameters and constraints such as the realization of a minimum spanning tree,
bi-connectedness, and path-diversity in the topological models. The repre-
sentativeness metrics for the topologies based on Sprint and GEANT?2 node
locations discussed in this section are given in Table 3 and Table 4 respec-
tively.

Table 3: Statistical distributions of graphs based on Sprint node constraints

Topology Degree Shortest Paths | Link lengths
(/o) (/o) (10° km) (p/o)
Actual topology | 5.04/3.88 |  2.44/1.10 |  1.41/1.18
Modified Random Model
Representative graph 5.04/1.53 2.11/0.71 2.02/1.35
Non-resilient graph 4.66/2.35 2.08/0.69 1.87/1.07
High-Latency graph 5.04/2.17 2.15/0.76 2.00/1.26
Modified Locality Model
Representative graph 5.40/2.29 2.07/0.71 1.45/1.29
Non-resilient graph 4.07/2.40 2.37/0.86 1.42/1.29
High-Latency graph 4.44/1.84 2.28/0.80 1.44/1.32
Modified Wazman Model (o = 0.95, = 0.18)
Representative graph 5.48/1.60 2.20/0.85 0.86/0.87
Non-resilient graph 5.04/2.53 2.90/1.52 0.65/0.55
High-Latency graph 5.41/2.92 2.42/1.06 0.70/0.63
Modified Wazman Model (o = 0.55, 5 = 0.35)
Representative graph 5.33/2.32 2.34/1.03 0.95/0.65
Non-resilient graph 4.59/2.18 2.26/0.83 1.17/1.33
High-Latency graph 4.96/2.08 2.46/1.04 0.90/0.72
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Table 4: Statistical distributions of graphs based on GEANT?2 node constraints

Topology Degree Shortest Paths | Link lengths
(/o) (/o) (10° km) (u/o)
Actual topology | 3.00/1.74 |  3.46/1.54 | 0.741/0.615
Modified Random Model
Representative graph 3.23/1.34 2.91/1.02 1.59/0.84
Non-resilient graph 2.70/1.40 3.46/1.38 1.55/0.917
High-Latency graph 3.23/1.68 3.412/1.527 1.40/0.82
Modified Locality Model
Representative graph 3.0/1.28 3.25/1.29 1.31/0.87
Non-resilient graph 3.23/1.72 2.87/1.12 1.07/0.83
High-Latency graph 3.23/1.85 3.15/1.34 1.24/0.96
Modified Wazman Model (o = 0.35, 5 =0.30)
Representative graph 3.41/1.87 2.95/1.16 1.21/0.788
Non-resilient graph 2.88/1.70 3.33/1.50 1.16/0.59
High-Latency graph 2.88/1.66 2.84/1.10 1.14/0.69

8 Conclusions and Future Work

It has been argued in the past that realistic topology generation is an im-
portant step both for network research as well as practical design of real
networks. Prevailing methods focus primarily on improving the structural
representativeness of the network and to some extent the on path survivabil-
ity to link failures. We argue that comprehensive resilience analysis requires
tighter integration of geographic constraints in to the graph models. Pre-
determined node positioning along with cost considerations will enable the
use of topology generators in the network design phase of real network.

We showed that given a set of node locations, the location and cost con-
strained models in KU-LocGen not only produce realistic topologies, but also
provide a significant improvement over the random graph models in terms of
the representativeness of the topology. While to some extent it is intuitive
that using node positions of the real network is bound to produce realistic

KU

ITTC-FY2009-TR-45050-01

The University of Kansas



KU-LocGen 23

topologies, a contribution of our work is to demonstrate this improvement in
quantitative terms for random graph models and provide a usable topology
generator for research purposes.

A logical extension of the cost analysis in this paper is cost limited topol-
ogy generation, in which cost constraints are implicit in graph models as op-
posed to its use after generation. Given that random graph models are overly
simplistic for certain types of networks, our future work includes applying
the proposed ideas to other graph models. Future work also involves addi-
tion of further constraints that follow the practical network design process
such as forcing minimum link degree, k-connectedness, and path diversity.
The results in this report show that incorporating location and cost con-
straints in graph models can improve the credibility of generated topologies
and deserves further research.
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