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Abstract - In this paper we propose a coalition formation 
model for a cooperative multiagent system in which an agent 
forms sub-optimal coalitions in view of incomplete information 
about its noisy, dynamic, and uncertain world, and its need to 
respond to events within time constraints.   Our model has two 
stages: (1) when an agent detects an event in the world, it first 
compiles a list of coalition candidates that it thinks would be 
useful (coalition initialization), and (2) then negotiates with the 
candidates (coalition finalization).  A negotiation is an ex-
change of information and knowledge for constraint satisfaction 
until both parties agree on a deal or one opts out.  Each suc-
cessful negotiation adds a new member to the agent’s final 
coalition.  This paper talks about the steps we have designed to 
enhance the finalization stage. 

Keywords: Multagent systems, negotiation, coalition 
formation. 

1 Introduction 
 In this paper we describe a coalition formation 
model for agents with incomplete information and time 
constraints within a dynamic and uncertain world.  A 
coalition is a group of agents that collaborate to perform a 
coordinated set of tasks that may be a response to an event 
that has occurred in the environment.  A dynamic coali-
tion is one that is formed as a response to an event and 
dissolved when the event no longer exists or when the 
response is completed.  A coalition is necessary when an 
agent cannot respond to an event all by itself due to lack 
of information, knowledge, or functional capabilities.  
Ideally, the agent would prefer to form an optimal coali-
tion to maximize the yield of the system as a whole.  
However, such optimal rationalization requires the agent 
to have complete information about its world and its 
neighboring agents, and also about the uncertainty associ-
ated with all factors related to the multiagent infrastruc-
ture.  When that information is not readily available and 
the collection of that information is too costly, an agent 
cannot afford such optimality.  In the following, we elabo-
rate on some of the problem characteristics.   

(1)  Our model applies to an environment where each 
agent has incomplete information about its world.  
Incomplete information may be due to polling and 
updating costs, constrained resources, and decentralized 
information base.  

(2) An optimal rationalization for coalition formation 
may not be possible due to (a) noise and uncertainty in the 
environment, and (b) time constraints.  For example, the 
communication channels among the agents may be 
congested or faulty, messages may be noisy or lost, 
perceived events may be qualified inaccurately, and so on.   

(3) We assume all agents are peers—there is no 
hierarchy among the agents.  Each agent is able to sense 
its environment, revise its own perceptions, and form its 
own coalitions.  This allows the agents to be reactive to 
environmental changes, without having the directives 
passed from a higher-up agent while encouraging diversity 
in information stored at each agent.   

(4)  We propose using negotiations to refine a coalition.  
We see negotiation as an exchange of necessary 
information pertinent to individual constraints, 
perceptions, and commitments.  This exchange of 
information is performed only when the coalition-
initiating agent approaches potential coalition partners to 
request for help.  Thus, the initial coalition can be less 
than optimal and be computed hastily as the negotiation 
will refine or finalize the selection.   

(5) Our model expects coalition members to refuse to 
join in a coalition, especially in a resource-constrained 
environment and also plans for failed communication due 
to congestion, noise, or message loss.  Thus, the initial 
coalition may not survive after negotiations as the working 
coalition is finalized.  

 Briefly, our proposed model works as follows.  When 
an event is detected in a multiagent system, one of the 
agents initiates the coalition formation process in hope of 
organizing a group of cooperative agents to perform tasks 



in response to the event.  This initiating agent (also known 
as the “computing agent” [3])) shoulders the responsibility 
of designing the best coalition given the situated 
information to increase the chance of forming a working 
and useful coalition at the end of the process.  The model 
consists of two stages.  First, during the coalition 
initialization, the initiating agent extracts a ranked list of 
useful agents.  Then, the initiating agent approaches the 
potential coalition partners and requests for negotiations 
during a coalition finalization step.  Our negotiation is 
based on a case-based reflective argumentative model [7].  
This paper focuses on the different strategies during the 
initialization stage and the steps we have designed to 
enhance the finalization stage. 

 Before further discussions, here we outline some 
assumptions about our agents.  In general, our model 
assumes that agents have the following characteristics: 
autonomous, rational, communicative, honest, and 
cooperative.  There are in general three reasons why 
agents cooperate [6].  First, an agent cannot perform a 
specific task by itself.  Second, an agent can perform a 
specific task, but other agents are more efficient in 
performing the task.  Third, an agent can perform a 
specific task, but working on it collaboratively will 
increase the benefits from the task (or reduce the costs).  
We also assume that each agent exists in a neighborhood 
where it knows some basic properties of its neighbors 
(such as functional capabilities) and can communicate to 
them directly.  Each agent has a neighborhood and can 
communicate directly with all its neighbors, and each 
neighbor can communicate with the agent directly as well.  
It is from this neighborhood that an agent forms a 
coalition.  Readers are referred to [10] for a detailed 
discussion on various agent characteristics.   

2 Related Work 
 A definition from the rational coalition theory 
outlined in [1] states that a coalition game with 
transferable utility in normal characteristic form.  The 
value of a coalition is the total utility that the members of 
the coalition can achieve by coordinating and acting 
together.  However, in our problem domain, the agents do 
not have the information they need to compute accurately 
the value of a coalition but we have proposed general 
heuristics for estimating such values.  In our model, the 
value of a coalition is not independent of nonmembers’ 
actions as in some studies in characterstic function games 
[9].   

 Sandholm and Lesser [3] introduce a bounded 
rationality in which agents are guided by performance 
profiles and computation costs in their coalition formation 
process.  The authors’ bounded rationality model requires 
each agent to pay for computational resources that it uses 
for deliberation.  Our model is also affected by the current 
status of an agent, such as the availability of negotiation 

threads, and the environment, such as the availability of 
the communication channel.   

 Zlotkin and Rosenschein [11] describe a coalition 
driven by task-oriented utilities.  In a task-oriented domain 
(TOD), a coalition can coordinate by redistributing their 
tasks among themselves.  In our model, we address the 
problem from the viewpoint of an agent.  That is, an agent 
can be of two or more coalitions simultaneously as each 
agent is autonomous and capable of reacting to separate 
events.   

 Shehory et al. [6] relax some of the restrictive 
assumptions of theoretical coalition formation algorithms 
for a real-world system.  Their model assumes that the 
agents are group-rational and the agent population does 
not change during the coalition formation.  There are 
several differences between this model and ours.  First, the 
authors’ model assumes that all agents know about all of 
the tasks and the other agents.  In our model, an initiating 
agent knows only the agents in its neighborhood and 
knows about partially the updated status of a selective 
subset of the neighbors after negotiation.  Second, the 
details of intra-coalitional activity are not necessary for 
agents outside of the coalition in the authors’ model.  On 
the contrary, in our model, an agent can and does belong 
to multiple coalitions concurrently.   

 Tohmé and Sandholm [9] studies coalition formation 
among self-interested agents that cannot make 
sidepayments—reward each other with payments for 
agreement to join some coalition, making the evaluation of 
a coalition solely on its utility, and proposes a model that 
guarantees convergence or stability in its coalition 
solution.  However, in our model, there are external 
factors such as the dynamic events and noisy 
communication channels that may thwart the successful 
completion of a negotiation, rendering a negotiation 
outcome unpredictable.   

 Sen and Dutta [4] propose an order-based genetic 
algorithm (OBGA) as a stochastic search process to 
identify the optimal coalition structure.  A significant 
difference between the authors’ work and our model is the 
scope of coalition formation.  The authors’ algorithm is 
for searching for an optimal coalition structure, which 
consists of all the agents in the environment grouped into 
one or more coalitions.   

 Finally, note that our coalition formation activities 
differ from that presented in [2] which defines coalition 
formation as three interacting activities:  

(1) Coalition structure generation where agents within 
each coalition coordinate their activities but do not 
coordinate between coalitions.  This means partitioning 
the set of agents into exhaustive and disjoint coalitions 



and the partition is called a coalition structure.  In our 
model, an agent forms a coalition from its neighborhood.  
Some neighbors may be part of the coalition, may be part 
of other coalitions, or may be simply idle.  Coalitions in 
our model may also overlap. 

(2)  Solving the combinatorial optimization problem of 
each coalition whose objective is to maximize the utility 
of the coalition.  This means pooling the tasks and 
resources of the agents in the coalition, and solving their 
joint problem.  In our model, the initiating agent shoulders 
this approximation using imperfect information to 
increase the chance for a successful coalition. 

(3) Dividing the value of the generated solution among 
agents.  There is no such explicit value distribution in our 
model.  Our agents are altruistic and directed to help if 
possible to achieve global goals, and thus do not require 
additional motivation such as rewards or values.  
However, our agents do want to manage their own 
resources efficiently and this motivates negotiations and 
the task allocation among agents. 

 
3 Methodology 
 Our methodology has two stages: (1) when an agent 
detects an event in the world, it first compiles a list of 
coalition candidates that it thinks would be useful (coali-
tion initialization), and (2) then negotiates with the candi-
dates (coalition finalization).  A negotiation is an ex-
change of information and knowledge for constraint satis-
faction until both parties agree on a deal or one opts out.  
Each successful negotiation adds a new member to the 
agent’s final coalition.   

3.1 Coalition Initialization 

 We will briefly discuss this initialization stage here.  
Readers are referred to [8] for details.  The first stage of 
the utility-based multiagent coalition formation model is 
the determination of the set of the initial coalition 
candidates, denoted as ( )jiini ea ,Λ  for agent  and event 

.  We denote a candidate as 
ia

je kα .  In our model, the 

initiating agent  first generates the initial coalition 
candidates, 

ia
( )jiini ea ,Λ , to deal with an event .  je

( )jiini ea ,Λ  represents the neighbors that the agent thinks 

can be of help to respond to .  To find out whether 

these candidates are willing to help, the initiating agent 
needs to negotiate.  Due to resource constraints, our 
design first ranks the candidates on their potential utility 
values to the coalition so that the initiating agent can 
negotiate with the agents with the highest utility values 
first.  For a candidate 

je

( )jiinik ea ,Λ∈α , we base its 

potential utility, , on three sets of attributes: (1) 

the past relationship between the initiating agent and the 
candidate, 

ik aPU ,α

( )trel kapast i
,, α , where t is the point in time 

when the set of attribute-value pairs in the relationship is 
collected, (2) the current relationship between the 
initiating agent and the candidate, ( )trel kanow i

,, α , and (3) 

the ability of the candidate in handling the event, 
( )teability jkai

,,α .  All these sub-utility measures map 

into 10: Kℜ  and each is asymmetric such that 
( ) ( )tareltrel ipastkapast ki

,, ,, αα ≠ , where t denotes time. 

 Finally, the potential utility, , of a candidate 
ik aPU ,α

kα  is a weighted sum of ( )trel kapast i
,, α , ( )trel kanow i

,, α , 

and ( )teability jkai
,,α : 

( )

( ) ( ) ( )[ ]teabilitytreltrel

WPU

jkakanowkapast

eaa

iii

jiiniik

,,,, ,,

,,

ααα

α •= Λ

(1) 

where ( ) [ ]Teaabilityeanoweapastea jijijijiini
wwwW ,,,,,,, =Λ  

and 1=,,,,,, ++
jijiji eaabilityeanoweapast www

)

.   

3.2 Coalition Finalization 

 In our model, we use a real-time case-based logical 
negotiation protocol to dictate the rules of encounter or the 
negotiation strategies between two agents.  Interested 
readers are referred to [7] for a detailed presentation of the 
logical protocol.   In this paper, we focus on the steps that 
we have taken to enhance the finalization process : (1) 
awareness, and (2) relaxation and termination. 

Since our negotiation protocol is multi-step, it 
facilitates interactions between negotiation threads.  An 
initiating agent can invoke a host of concurrent 
negotiations, bounded by ( jiapproachcan ea ,_Λ .  While 

the negotiation threads are actively engaged in their 
respective negotiations, the initiating agent continues to 
monitor its world, examine its tasks, communicate with 
other agents, and watch the status of its negotiation 
threads.  Since each of these threads knows how to 
negotiate on its own, all it needs from time to time is for 
the parent agent to update the agent’s current beliefs and 
intentions that might interrupt the negotiation or change 
the negotiation issues.  The parent agent thus is able to 
infuse a high-level of awareness in the negotiation threads, 
relax the negotiation issues (less demanding or more 
conceding, for example), and abort negotiations with 
diminishing returns.  In the following subsections, our 
discussions focus on the indirect inter-thread activities that 
the agent provides for its negotiation threads. 



Awareness 

Since the environment is dynamic, an ongoing negotiation 
may become useless.  For example, if the negotiation is 
part of a response to an event  and  becomes false, 

then the negotiation has to be terminated.  Since a 
negotiation thread handles the negotiation semi-
autonomously, it must be aware of such a situation, and 
the parent agent has to provide such awareness.  This 
coalition awareness has several benefits.  First, it allows 
an agent to free up its negotiation threads, communication 
channels, and communication bandwidth for other 
negotiation tasks.  Second, it allows an agent to 
immediately abandon failing coalition, re-assess its 
environments, and start another coalition formation.  
Third, by terminating useless negotiations, an agent is 
able to base its reasoning on updated, more correct status 
profile. 

je je

 A negotiation thread conducts its negotiation 
following a logical real-time protocol that spells out what 
it should do in each negotiation step, and a negotiation 
strategy that dictates how the thread should negotiate—
how much time it has, how conceding it should be, what 
kind of arguments it has, which arguments it should send 
first, and so on [7].  It also needs to know the context of 
the negotiation—the request, the amount of resource to 
give up, the counterpart agent, and so on.  When 
activated, a negotiation thread downloads the negotiation 
context and strategy from the parent agent.  Then, if the 
thread does not hear from the parent agent, it knows how 
to negotiate on its own and report back to the parent agent 
only when the negotiation is completed.   

 The parent agent, on the other hand, carries out its 
normal tasks such as monitoring the world, actuating its 
sensors, and so on.  It holds a shared data object with each 
negotiation thread.  When the event changes or the current 
status of the coalition changes, the agent evaluates the 
current status of each negotiation thread and makes a 
decision as to whether to relax, to terminate, or refine the 
negotiation.  This decision together with its pertinent 
information is stored at that data object.  We call this 
shared data object the awareness link, or  for the 

ziaAL β,

zβ  negotiation thread of agent , where  has X 

negotiation threads, 
ia

ziaAL β,

{ X }βββ ,,, 21 L .  Both the agent and 
the negotiation thread can store and access data on this 
awareness link.  With this design, the parent agent 
shoulders the task of feeding its negotiation threads 
additional instructions.  There are several reasons why we 
adopt this awareness link design in our model.  First, the 
environment is dynamic and real-time critical.  It does not 
make sense for each negotiation thread to setup its own 
sensors, monitors, and even decision makers to determine 
the current status of the agent and changes its negotiation 
behavior accordingly, since it would have to sieve through 

unrelated information and data and that would be time 
consuming.  Second, it is natural for the agent to disperse 
the information to all its negotiation threads.  A 
negotiation thread does not know the status of a coalition 
(e.g., whether the coalition is failing or succeeding); only 
the agent knows that.  With that knowledge, an agent can 
decide whether to scale back on some of its negotiations, 
or make other modifications.  This way, the chain of 
command is direct and less confusing, and certainly less 
computationally intensive.  Third, with each negotiation 
thread having its own dedicated awareness link, the 
information or data passed through the parent agent and 
that particular thread does not interfere with the other 
threads.  This way, each negotiation thread can 
concentrate on the instructions specifically directed to it 
from the parent agent.   

 In our model, the parent agent checks the 
negotiation status of its negotiation threads within a 
framework of tasks.  It checks its messages, its sensors for 
events, tasks, and the negotiations, and then repeats.  This 
lifecycle varies in its duration, as the environment is 
dynamic and uncertain.  For the negotiation thread, we 
propose a gradated scheme based on the percentage of 
time elapsed.  For example, a thread checks and updates 
its status (1) less frequently in the beginning, (2) more 
frequently towards the end, (3) less frequently when it is 
progressing according to plan, and (4) more frequently 
when it is failing.  This is because we assume that the 
event status is still relatively constant in the beginning of 
the negotiation and only changes after a certain time 
period has passed.  We also assume that when a 
negotiation is progressing well and succeeding, that 
negotiation thread should carry on and complete the 
negotiation unless some significant event occurs and calls 
it off.  In this manner, the agent does not lose the utility of 
such a negotiation and learns to be efficient.  We also 
assume that when a negotiation is not doing well, after 
reporting it to the parent agent, the negotiation thread can 
expect further instructions from the parent agent, hence 
the increase in its access of the awareness link. 

Relaxation and Termination 

 Each agent is responsible for the coordination 
among its negotiation threads as the negotiation threads 
do not talk to each other directly.  The agent monitors the 
status of the negotiations and makes decisions.  Two of 
the decisions it can make are relaxation and termination.  
From the initiating agent standpoint, this relaxation results 
in a smaller demand; from the responding agent 
standpoint, this relaxation results in a more yielding 
stance.  Since this paper’s focus is in coalition formation, 
we will discuss relaxation and termination from the 
viewpoint of an initiating agent.   



 Suppose in a 1-to-1 task allocation problem, we 
have ( ) τFea jiapproached >Λ , .  That is, the number of 

candidates that the agent  approaches is greater than 
the number of tasks required to respond to the event .  

At time t,  activates all its negotiation threads, each 

with a partial-assignment 

ia
je

ia

ρραρ f,= .  At time ∆+t , 

some changes have been detected such that  is now 
.  If , then the agent needs to (1) immediately 

terminate all negotiation threads with 

τF

τF ′ ττ FF ⊄′

ρραρ f,=  

where , and (2) label this change as a new event 

and proceed from there accordingly.  If , then the 
agent needs to relax the negotiations.  In a many-to-1 task 
allocation problem, suppose that the negotiation thread in 
question has 

τρ Ff ′∉

ττ FF ⊂′

{ }
21

,, ρρραρ ff= .  Then, the agent can 

compute ( )tfbenefit
ia ,,

1ρρα  and ( )tfbenefit
ia ,,

2ρρα  

(assuming disjoint tasks).  It then can decide to drop 
or  from its original demand or keep both.  The 

algorithm becomes: 
1ρf

2ρf

Algorithm Many-to-1 Relaxation and Termination: (1) 
for all ongoing negotiations with ρραρ f,=  where 

 and  do: (1.1) compute ρρ ff
s
∈ τρ Ff

s
′∉

( )tfbenefit
sia ,, ρρα  for all  and ρρ ff

s
∈ τρ Ff

s
′∉ , (1.2) 

check the current status of the negotiation and denote this 
as ( )tfprogress

x
,, ρρβ α  for negotiation thread xβ , (1.3) 

compute the expected utility of continuing with this 
negotiation for all  and :  ρρ ff

s
∈ τρ Ff

s
′∉

( )
( ) ( )

2

,,,,

,,

,, tfbenefittfprogressPU

tfEU

sixis

sx

aaf ρρρρβα

ρρβ

αα

α

ρρ
⋅+

=

(2) 
and (1.4) if ( )tfEU

sx
,, ρρβ α  is greater than what the 

agent can afford to spend in resources, then the agent 
retains  in the negotiation; otherwise, it drops  
from the negotiation.  The expected utility is basically the 
potential utility of the coalition member to the original 
event response plus the utility of continuing with the 
negotiation.  The latter utility says that if the negotiation 
is progressing well and the eventual outcome will benefit 
the environment, then the agent should not discard the 
ongoing effort. 

s
f ρ s

f ρ

 The relaxation and termination behavior is both 
rational and altruistic.  An agent should not be conducting 
negotiations that use its resources when those negotiations 

have become useless.  Neither should an agent impose or 
transfer that cost to its responding agent by insisting on 
useless negotiations.  Without this relaxation and 
termination capability, the initiating agent would have to 
be more careful in its initialization since it has less room 
for errors.  That would mean for the initiating agent to 
collect more information in its rationalization which 
would in turn decrease the autonomy and robustness of the 
multiagent system.  So, the coupling of the initialization 
and relaxation/termination is very important in our utility-
based, dynamic coalition formation model.   

 Finally, at the end of all negotiations, we have the 
final coalition ( )jifinal ea ,Λ  and 

( ) ( ) ( )jiinijiapproachedjifinal eaeaea ,,, Λ⊆Λ⊆Λ . 

4 Implementation and Results 
 The driving application for our system is multisen-
sor target tracking, a distributed resource allocation and a 
constraint satisfaction problem [7].  The objective is to 
track as many targets as possible and as accurately as 
possible using a network of sensors.  Each sensor has a set 
of consumable resources, such as beam-seconds (the 
amount of time a sensor is active), battery power, and 
communication channels, which each sensor desires to 
utilize efficiently.  Each sensor is at a fixed physical loca-
tion and, as a target passes through its coverage area, it 
has to collaborate with neighboring sensors to triangulate 
their measurements to obtain an accurate estimate of the 
position and velocity of the target.   

 Here we report on some preliminary experiment 
results for the behavior analysis of our multiagent system, 
specifically for multisensor target tracking.  We consider 
here an exemplary run that we used to adjust our system 
parameters.  In this run, the total number of attempts to 
form a coalition was 150.  The total number of coalitions 
successfully formed (after coalition finalization) was 30, 
or 20%.  The total number of coalitions confirmed by all 
coalition members was 26, or 86.7% of all successfully 
formed coalitions.  Finally, the total number of coalitions 
executed on time was 18, or 61.5% out of all successfully 
confirmed coalitions.   

First, the percentage of successfully formed coalitions 
was only 20.0%.  Out of the 120 failed attempts, 86 
(71.7%) of them were caused by one of the coalition 
members outright refusing to negotiate, 17 (14.2%) were 
caused by the communication channels being jammed, and 
17 (14.2%) were caused by busy negotiation threads.  
When an initiating agent initiates a negotiation request to a 
candidate and that candidate immediately refuses to 
entertain the negotiation, it can be due to (1) the 
responding agent does not have idle negotiation threads, 
or (2) the responding agent cannot project the requested 



task into its job queue.  Thus, we expect this failure rate to 
decrease once we increase the number of negotiation 
threads allocated per agent.  When an agent fails to send a 
message to another agent, or fails to receive an expected 
message, we label this as a communication “channel-
jammed” problem.  When an initiating agent fails to 
approach at least two candidates, it immediately aborts the 
other negotiation process that it has invoked for the same 
coalition.  This causes the coalition to fail. 

Second, the probability of a successfully formed 
coalition getting confirmed completely was 86.7%.  For 
each coalition successfully formed, three confirmations 
were required.  Out of 30 coalitions, 4 coalitions were 
confirmed only by two of the members.  The causes were 
(1) the acknowledgment message sent out by the initiating 
agent was never received by the responding agent 
expecting a confirmation, and (2) the agreed task had been 
removed from the job queue before the confirmation 
arrived.  The first cause happened since communication 
channels could be jammed.  The second cause happened 
because of a contention for a slot in the job queue by two 
tasks.  For example, suppose agent A receives a request 
from agent B to track a target starting at 8:00 a.m.  Agent 
A responds to the request and starts a negotiation.  Then 
later on, agent A receives a request from agent C to track a 
target starting also at 8:00 a.m., but using a different 
sensing sector (each sensor has three).  Agent A checks its 
job queue and sees that it is free at that time and thus 
agrees to negotiate.  Note that a task is inserted into the 
job queue only after the agent agrees to perform it.  Now, 
suppose that both negotiations are successful.  The 
negotiation between A and B ends first and then that 
between A and C.  When the first negotiation ends, agent 
A adds the task requested by B to the job queue.  
Immediately after, when the second negotiation also ends 
successfully, agent A adds the second task, requested by C 
to the job queue, and this causes the second task to replace 
the first task.  This is a problem with over-commitment. 

Our preliminary results were promising as the agents 
are able to form coalitions using the outlined model and 
methodology.  However, the results showed that there are 
timing and task scheduling issues that are currently being 
addressed. 

5 Conclusions 
In this paper, we have introduced several steps that we 
have designed to enhance a utility-based multiagent coali-
tion formation model.  The model uses awareness links 
and flexible relaxation and termination schemes to deal 
with the dynamism in a coalition formation process due to 
incomplete information and time constraints.  The pre-
liminary results were insightful and promising. 
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