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ABSTRACT 

We present an intelligent system for satellite sea ice image analysis named ARKTOS (Advanced 

Reasoning using Knowledge for Typing Of Sea ice). ARKTOS performs fully automated analy-

sis of Synthetic Aperture Radar (SAR) sea ice images by mimicking the reasoning process of sea 

ice experts.  ARKTOS automatically segments a SAR image of sea ice, generates descriptors for 

the segments of the image, and then uses expert system rules to classify these sea ice features.  

ARKTOS also utilizes multisource data fusion to improve classification and performs belief 

handling using Dempster-Shafer. As a software package, ARKTOS comprises components in 

image processing, rule-based classification, multisource data fusion, and GUI-based knowledge 

engineering and modification.  As a research project over the past 10 years, ARKTOS has un-

dergone phases such as knowledge acquisition, prototyping, refinement, evaluation and deploy-

ment, and finally operationalization at the U.S. National Ice Center (NIC).   In this paper we fo-

cus on the methodology, evaluations, and classification results of ARKTOS.   

I.  INTRODUCTION 

Remote sensing of the polar regions has important applications in meteorology and in global 

climate studies.  For example, the thickness of sea ice influences the heat flux between the at-

mosphere and water surface; thus, the classification and temporal tracking of sea ice can be used 

as an indicator in global climate monitoring [1]. Increased concern regarding global climate 

change and the subsequent increase in the number of earth-orbiting satellites, has resulted in a 
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dramatic increase in the volume of satellite imagery available to scientists. Thus, automation in 

sea ice image classification is desired to assist sea ice experts in extracting geophysical informa-

tion from the increasing volume of images.  Such automation releases sea ice experts from the 

task of having to retrieve and disseminate different sources of data to classify images, allowing 

them to concentrate on more important decision making.   

There are many advantages to having a knowledge-based approach to sea ice image analysis.  

First, it mimics the reasoning process of sea ice experts and and thus allows easier evaluation and 

knowledge refinement by experts.  This close interaction also enables the software engineers and 

researchers to communicate with the experts using explicit knowledge.  Second, it is convenient 

for multi-source data fusion.  Derived information can be readily added to the system with mini-

mal programming impact and new rules can be plugged into the knowledge base easily.  Third, it 

is modular.  Different knowledge bases may be built for images of different regions, different 

seasons, and different applications. Fourth, because of its modularity, many of the research and 

development processes have been conducted in parallel or in overlapping phases.  A knowledge 

base that is stable can be promoted to be operational while another knowledge base may still be 

undergoing refinement.  This equips the system with the ability to evolve cost-effectively.  Fi-

nally, with knowledge explicitly represented and available for evaluation, this approach intro-

duces accountability and encourages knowledge transfer and exchange among experts.  Expert 

analysts may use the knowledge bases to train young analysts; experts may exchange their 

knowledge bases, using a similar language and subject particular rules to discussions and im-

provements; and users may understand why certain images are classified the way they are, and 

may know which rules are the reasons behind the classification and which experts wrote the 
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rules.  This accountability enhances the knowledge engineering culture within the sea ice com-

munity and makes sea-ice expertise better organized and better portable. 

There has been previous work in knowledge-based systems for remote sensing, such as aerial 

image understanding [2], land change detection [3], segmentation [4], and vegetation classifica-

tion [5, 6, 7].  However, most knowledge-based systems are pixel-based, while the approach 

taken by ARKTOS is feature-based.  Human experts do not analyze the images at the pixel level; 

instead, they look at regions and features and reason about them. 

ARKTOS is also the only system that classifies SAR sea ice data automatically in an opera-

tional environment, that is, in near real-time. Other SAR sea ice classifiers include the work by 

Fetterer who developed the Multi-Year Ice Mapping System (MIMS) at the University of Colo-

rado. MIMS was designed to quickly map old ice in uncalibrated SAR images using a local dy-

namic thresholding [8].  MIMS only identifies old ice in high latitudes.  The RADARSAT Geo-

physical Processor System (RGPS) classifies sea ice into local age and thickness distributions 

using ice motion and an empirical relation between accumulated freezing-degree days and ice 

thickness [9].  The RGPS requires occasional human intervention to identify tie points used in 

calculating ice motion, works only during the winter, is not near real-time, and cannot be used in 

an operational environment.  

In the following, we first give an overview of ARKTOS. In Section III we describe in detail 

the methodology of ARKTOS, including the various components.  In Section IV, we present the 

evaluation results.  Finally, in Section V we summarize ARKTOS and make recommendations 

for improving the performance of the system. 
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II.  OVERVIEW OF ARKTOS 

ARKTOS is a fully automated, intelligent classifier of sea ice in SAR images, which also in-

corporates and fuses ancillary data sources to support its classification conclusions.  Given an 

image, ARKTOS extracts objects or features and then computes a set of attributes for each fea-

ture.  Next, ARKTOS feeds the features with the corresponding attributes into a rule-based sys-

tem.  The rule-based system is supported by a Dempster-Shafer belief system [10].  Each rule has 

an antecedent, a consequent, and a weight.  The antecedent consists of attribute-value pairs de-

scribing a feature in the image.  The consequent is the resultant assertion that the feature belongs 

to a certain ice class (in the current version of ARKTOS the classes are open water, new ice, 

first-year ice, and multi-year ice).  The weight is the confidence in the assertion.  A feature may 

trigger the firing of multiple rules, asserting complimentary or conflicting ice classifications.  

The Dempster-Shafer belief system collects these weights as masses of evidence and combines 

them to compute the belief and plausibility of a feature belonging to a particular class.  

ARKTOS performs multisource data fusion [11,12] by integrating data of different formats 

and sources to help classify the features.  Since these data are of different resolutions and do-

mains, ARKTOS uses georeferenced conversions and attribute measurements to bring them to a 

common, usable form.   

ARKTOS is also a knowledge engineering tool [13,14].  It consists of a suite of graphical 

user interfaces (GUIs) that allows users to refine the system and review the performance of the 

software, verifying the classification rules.  Initially, we conducted knowledge acquisition from 

sea ice experts and then built a prototype quickly.  This stage involved interviewing sea ice 

experts, transcribing the sessions, identifying descriptors and rules, designing and implementing 

the knowledge, and delivering a modestly accurate classification prototype quickly.  A 
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refinement stage then involved evaluating the prototype, refining the knowledge base, modifying 

the design, and re-evaluating the improved system. Finally, ARKTOS transitioned to operations 

at the National Ice Center [15]. 

The ARKTOS software package operates on Windows NT and UNIX platforms, using 

NSIPS-processed (Naval Satellite Image Processing System, by the Naval Research Laboratory) 

[16] SAR images, and fusing other data such as climatology, and Special Senor Micro-

wave/Imager (SSM/I) ice concentration maps.  ARKTOS was written in the C programming lan-

guage except for the GUIs which were written in Java. 

III.   METHODOLOGY 

There are four main components in ARKTOS: image processing, rule-based classification, mul-

tisource data fusion, and a suite of JAVA-based GUIs that form the knowledge engineering and 

evaluation component5. 

A. Image Processing 

We have studied, designed, and implemented four stages of the image processing sequence in the 

course of researching and designing ARKTOS: pre-processing, segmentation, attribute meas-

urement, and fact generation.  As a feature-based classification system, the attribute set of each 

feature in ARKTOS is matched against a set of rules.  These rules are used to assert or refute 

evidence that a feature belongs to a particular ice class.  Therefore, it is important for us to con-

sider techniques at both the feature and global level.  At the global level, we have the pre-

processing and segmentation techniques applied to the entire image.  At the feature level, we 

have the attribute measurements and symbolic description stages applied to each feature found.   

 1) Pre-Processing: 

                                                 
5 In this paper we do not discuss the knowledge engineering process, which is described in detail in [14]. 
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The SAR images that ARKTOS handles come in various formats, processed by four different 

satellite reception stations: the Alaska SAR Facility (ASF), Tromsø, Norway, Gatineau, Canada, 

and West Freugh, Scotland.  In addition, there are images that have been pre-processed by the 

National Ice Center into NSIPS format.  ARKTOS converts these images into PGM format with 

256 gray levels [18].   

For a non-NSIPS-processed image, ARKTOS performs a 5×5 Gaussian sampling to reduce 

both the size of the image and noise.  The Gaussian sampling is a weighted intensity average 

within a window using weights of a 2-D Gaussian curve. 

The current version of ARKTOS uses several external information sources: SSM/I ice con-

centration GRIB files, landmasks, and two sets of ice climatology data, both extracted from the 

records of the NIC: one representing the probability of a region containing ice in a 19-year span 

and the other representing the median concentration of ice in that region during the same span 

[17]. ARKTOS converts all these data sets into PGM format for faster access at run-time.   

Table 1 shows a brief summary of the different file formats. 

 2) Segmentation: 

We studied three main segmentation algorithms: (1) dynamic local thresholding, (2) unsu-

pervised clustering, and (3) watershed merging.  Dynamic local thresholding is not suitable be-

cause it segments an image into n classes based on their global appearance, instead of feature-

level homogeneity [19].  Unsupervised clustering is an aggressive pixel aggregation technique 

that is not suitable for feature extraction as it merges too many features into one single region 

[20].  Watershed merging was deemed the best segmentation technique for our purposes and was 

implemented in ARKTOS [21,22].  In geography, watersheds are regions of terrain that drain 

toward the same point.  This situation can be analogously applied to SAR sea ice images by 
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treating intensity as height.  First, the algorithm identifies the local intensity minima that define 

the bottoms of watersheds.  A minimum is defined as a pixel with all its eight neighbors having 

greater intensities than the pixel.  Then the algorithm computes the image gradient and partitions 

the input image into watersheds by marking the locations of intensity minima with unique region 

identifiers in an output image.  For each of the remaining pixels, the gradient information is used 

to follow the image down to some intensity minimum.  The corresponding pixel location in the 

output image is assigned the identifier of this minimum.  The watershed merging algorithm sub-

sequently merges each pair of neighboring watersheds based on their average intensities, sizes, 

and gradients. 

 Specifically, the watermerge algorithm works as follows.  After the initial watershed-based 

segmentation, the image is divided into a set of regions.  Each region is attributed with an aver-

age intensity and a size.  The boundary gradient between each pair of regions is also computed.  

In addition, there are three basic thresholds: a boundary gradient threshold, , which is set 

at 6.0, an average intensity threshold, , set at 12, and a size threshold, , set at 10.  

For each image, we adapt the boundary gradient threshold to 

gThresh

iThresh aThresh

( 255rangeThreshhThres gg ⋅ )=′ , where 

range is the dynamic range of the image.  Similarly, we adapt the average intensity threshold to 

( 255rangeThreshhThres ii ⋅=′ ) .  Next, the watermerge algorithm performs two layers of merging.   

 The first layer carries out 10 iterations of merging based on the boundary gradient between 

each pair of regions.  During iteration i, we merge a pair of regions if the boundary gradient be-

tween the two is less than ( ) 10ghThresi ′⋅  and the size of the smaller region is ( ) 10aThreshi ⋅ .  When 

the algorithm arrives the last iteration, it merges a pair of regions if the boundary gradient be-

tween the two is less than  and the size of the smaller region is .  The strategy here 

is to merge smaller regions with smaller gradient differences first, before moving to the next it-

ghThres ′ ahThres ′
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eration.  During the next iteration, newly merged regions will be considered for further merging.  

This strategy has been shown to perform well even with range effects in images [21].   

The second layer also carries out 10 iterations of merging, but based on the average intensity 

difference between each pair of regions.  During iteration i, we merge a pair of regions if average 

intensity difference between the two is less than ( ) 10ihThresi ′⋅  and the size of the smaller region 

is ( ) 10aThreshi ⋅ .   

 Note that in the first layer, the algorithm focuses on the strength of the boundary.  If the 

boundary is not strong enough, then the two regions are merged.  In the second layer, even if the 

boundary is strong enough, it is possible that from a global viewpoint the average intensity of the 

two regions is very similar.  If they have similar average intensity values, they are merged. 

 3) Feature Attribute Measurements: 

 The segmentation stage identifies intensity homogeneous regions in the image as features.  

For each feature we compute a set of attribute measurements that help us generate the facts that 

are needed by the classification rules.  The set of attributes used to define a feature were based 

on conversations with and knowledge acquisition from expert analysts of SAR sea ice imagery.  

They attempt to capture what the experts defined as the visual cues they use when classifying sea 

ice.  Some of these attributes are common sense (e.g. the area or average intensity of a feature), 

while others are domain-specific and have names assigned to them by the experts (e.g. "mottled-

ness" as a measure of texture variation of a feature).  Since ARKTOS needs to classify images 

quickly, some traditional image analysis measurements such as gray scale co-occurrence matri-

ces were not used since they are computationally expensive.  The complete set of the attributes 

we compute and their descriptions are listed in Table 2. 
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The first set of attributes we measure are intrinsic and include area, average intensity, stan-

dard deviation of the intensity values in the feature, and contrast (the ratio of the standard devia-

tion over the average intensity).   

 To measure boundary-related attributes, we first build the chain code of a feature.  The chain 

code has a starting point and a set of directions leading from that starting point and ending at the 

starting point.  It is an efficient way of storing boundary information and traversing a boundary.  

We then compute the length of the boundary (or perimeter) and the length of only the outer 

boundary where the perimeter length of internal holes of an object is not included.  We use these 

to compute perimeter porosity which is simply the ratio of the greater perimeter over the shorter 

one.  This attribute is used to specifically describe the degree of irregularity of sea ice features.  

A sea ice feature may also have different boundary types, such as curved, linear, or angular; 

these boundary types are sometimes good proxies of a feature's age.  

 The third type of attributes is texture-based.  These turned out to be very difficult to design 

and implement, as human experts are able to detect complex textures that computer algorithms 

fail to capture accurately. Currently, we have three different types of textural attributes: mottled-

ness, average roughness, and new roughness.  The objective of mottledness is to detect the inten-

sity differences within a feature: "mottled" features display high intensity differences.  Based on 

interviews with experts, "mottledness" is designed to tolerate less difference for bright features 

than for dark features in order to capture the experts' observation that a slight change at the bright 

end of the intensity spectrum is more significant than one at the dark end. The average roughness 

is more traditional, but far more time consuming texture measure, in that it uses overlapping 5x5 

windows to compute variances and then averages them over the feature.  New roughness was 

designed specifically by the experts for sea ice features, and integrates average roughness with 
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the standard deviation of the intensity of the feature.  The goal is to capture large scale textual 

variations, where locally (in a 5x5 window) there is homogeneity but globally there is texture 

variability.   

 To obtain geometric attributes we compute principal axes, the centroid, and the bounding 

rectangle of each feature.  Given these, we are able to determine the orientation of a feature, its 

maximum length and width, area porosity, elongation, roundness, thinness, irregularity, eccen-

tricity, and jaggedness.  Most of these attributes are specifically designed for sea ice features.  

For example, the area porosity of a feature is the ratio of the bounding rectangle over the actual 

area of the feature and approximates the “branchiness” of the feature.  A feature with branches 

has a high area porosity, and this corresponds to ice leads, a rather unique feature observed in sea 

ice images.  Also, a feature is eccentric if it has boundary pixels that are close to its centroid and 

boundary pixels that are far from its centroid.  A circle is not eccentric because all boundary pix-

els are equidistant from the centroid.  An N-pointed star is eccentric, however, because the 

boundary pixels at its points are farther away from the centroid than the pixels at the valley be-

tween points.  Irregularity is an innovative, complex attribute: a feature that has a high perimeter 

porosity (a lot of holes) and a high area porosity (a lot of branches) is highly irregular.  Note that 

our watershed-based segmentation technique may sometimes merge regions over-aggressively, 

resulting in a feature of irregular shape.  By describing these features with our irregularity meas-

urement, ARKTOS singles them out and classifies them using specific rules.  Thus, ARKTOS is 

able to compensate for segmentation overmerging. 

 4) Fact Generation: 

The feature attribute measurements (except those for curved, angular and linear boundaries) are 

continuous, real-valued numbers that cannot be used in their raw form for classification.  Human 
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analysts express their knowledge in a discrete way.  For example, a feature is of either "small," 

"medium," or "large" size, or it is either elongated or not.  Consequently, the feature attribute 

values had to be quantized and translated into a set of discrete values.  In addition, other, higher 

level facts (such as a feature being a "lead") are generated.  Thresholds were defined with the 

help of experts that divide continuous measurements into discrete fact values.  Table 3 shows all 

facts with their discrete values, the attribute values that lead to them, and the expert-defined 

threshold(s).  Some of the facts are relational, obtained by looking at the shared boundaries of the 

features: A encloses B; A is neighbor of B; A contains cracks; A is adjacent to land, etc.  Other 

attributes are obtained by comparing attributes of features with shared boundaries: A is darker 

than its neighbors; A is more mottled than its neighbors, etc.  These are important indicators in 

sea ice image analysis.  For example, if a feature is found to be brighter than its neighbors, then it 

is more likely to be a piece of multi-year ice.   

 Most facts are self explanatory except, possibly, for one: "blob."  In some images features 

appear that are vast in size and basically featureless (often large areas of multi-year ice or open 

water); these are defined as "blobs."  If a feature is found to be a blob, then all its geometric and 

boundary-related attributes (such as roundness, elongation, irregularity, etc.) are neither com-

puted nor used in classifying the feature.  This important distinction is made since rules are de-

signed to describe individual ice floes rather than groups of ice types. 

 Figures 1 and 2 illustrate facts generated by ARKTOS in relationship to their spatial (inten-

sity and mottledness, in this case) and shape related (roundness, elongation, and irregularity) at-

tribute values.  Figures 1a-1c give examples of features of varying intensity, while Figures 1d-1f 

provide examples of features of varying mottledness.  It should be noted that Figure 4e repre-

sents a feature with a mottledness value just below the mottledness threshold of 15.00, which 
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separates features that ARKTOS considers smooth from features that ARKTOS considers mot-

tled.  Figures 2a-2c provide examples of features of varying ARKTOS roundness, with Figure 2a 

being the most round and Figure 2c the least round.  For this attribute, the smaller the value, the 

rounder the feature.  Features with roundness values below the threshold of 1.05 are considered 

to be round by ARKTOS, while those with values greater than 1.05 are not.  Figures 2d-2f illus-

trate how the attributes of elongation and irregularity are considered together to characterize a 

feature as a lead.  For a feature to be characterized as a lead, both its elongation value and its ir-

regularity value must be above preset thresholds.  The features in Figures 2d and 2e have values 

that are all above the thresholds and are thus considered by ARKTOS to be leads.  The feature in 

Figure 2f has an elongation value higher than the threshold but not irregularity, so it is not con-

sidered to be a lead by ARKTOS. 

B. Multisource Data Fusion 

In addition to the raw image data, ARKTOS incorporates ancillary data into its reasoning proc-

ess.  This multisource data fusion component is necessary as various data sources are often used 

by human experts to help them classify sea ice images.  Our fusion framework is attribute- and 

knowledge-based.  The information derived from various data sources is converted into attributes 

and facts linked to each feature.  Then, the knowledge on how to use these pieces of information 

is encoded in the rules of the rule-based classification module.  The fusion is performed at two 

levels.  At the attribute level, for each feature we find a combined list of attribute measurements 

computed from the imagery data and all other sources of data.  For each data source, ARKTOS 

has to perform appropriate geo-referencing and conversions.  At the knowledge level, we define 

how different sources of data should work with each other through weighted rules and a Demp-
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ster-Shafer belief system (Section III.C).  Currently, there are four different sources: ancillary 

data, SSM/I concentration maps, landmasks, and historical ice climatology data.  

Ancillary data comes with the raw SAR image as the header, trailer, or leader information 

and specifies the date and the coordinates of where the image was taken.  This data is integrated 

into the database through several facts6: summer=true, winter=true, west_of=xxxx, 

east_of=xxxx, and latitude<=xxxx, where xxxx is a coordinate value in degrees.  Each SAR im-

age processing facility generally has a different ancillary data format to accompany its images. 

Ancillary data is also used to establish inter-source information coordination and to select the 

corresponding ice chart and SSM/I concentration map, for example. 

We also keep track of the geographic location (latitude and longitude coordinates) of the four 

corners of the image, key information for our fusion.  Since we have attribute-level fusion, we 

need to tag each feature with its latitude-longitude location so ARKTOS can locate the corre-

sponding data point when moving from one data source to another.    

ARKTOS can analyze images using SSM/I sea ice concentration maps.  These gridded ice con-

centrations are generated with the CalVal algorithm [23] in GRIB format by the U.S. Navy’s 

Fleet Numerical Meteorology and Oceanography Center (FNMOC).  To improve the run-time 

performance of ARKTOS, we convert all such files into the PGM format in which each pixel 

represents the ice concentration value at that location, computable through a conversion algo-

rithm. For each feature, we convert its centroid (in image-based Cartesian coordinates) to lati-

tude-longitude coordinates and map these coordinates onto the Cartesian coordinates of the cor-

responding concentration GRIB map (by date).  Finally, we extract the concentration value, an 

integer between 0 and 100.   

                                                 
6 Table 3 shows all facts generated by ancillary data and that are used in the reasoning of ARKTOS. 
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On a coastal sea ice image, in order to prevent land pixels from being factored into the seg-

mentation and feature extraction process, we superimpose a land mask so that land pixels are dis-

tinctively designated.  The land masks currently in use were provided to us by the Naval Re-

search Laboratory, in NSIPS format, and are geocoded for easy mapping.  To fuse land masks 

into ARKTOS, we created an attribute called adjacent_to_land and encoded six expert rules that 

involve the attribute.  Any feature neighboring a land region will thus have its adjacent_to_land 

attribute set to true.  In this manner, we are able to maintain a consistent use of land masks in the 

fusion process.  This data has proven to be important in correctly identifying fast ice. 

The NIC ice climatology data set is a statistical computation describing extent and coverage 

of sea ice in specified areas of the Arctic and Antarctic Oceans.  The data was compiled from 19 

years of NIC Arctic and Antarctic sea ice analyses (covering most of the years 1972-1994), and 

is important for sea ice classification as experts can draw inferences from the expected ice condi-

tions in a region.   

The current version of ARKTOS requires two sets of ice climatology data.  The first set is the 

OCC, a map of the Arctic region for a particular month, where each pixel on the map represents 

the probability of that region containing ice in a 19-year span.  Thus, the pixel value is between 0 

and 19, with some other default values for land and null values. The second set is the MEDCT 

data, a map of the Arctic region for a particular month, where each pixel on the map represents 

the median concentration of ice in that region in a 19-year span.  Thus, the pixel value is between 

0 and 100, with some other default values for land and null values.   

For each feature, we convert its centroid (in Cartesian coordinates) to latitude-longitude co-

ordinates, map those coordinates onto the Cartesian coordinates of the corresponding climatol-

ogy map and extract the number of years of ice coverage value from the OCC files and the value 
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of total ice concentration from the MEDCT files.   Finally, ARKTOS converts the above two 

measurements into facts, using the thresholds shown in Table 4 for the symbol descriptors numyr 

and medct.    

C. Rule-Based Classification 

The rules of ARKTOS encode the knowledge extracted from expert analysts through a series of 

interviews and subsequently refined through testing and evaluation of prototype systems (the 

knowledge acquisition and refinements processes are detailed in [14]). 

 ARKTOS rules consist of a condition, a possible classification, and a weight.  The condi-

tion is expressed as a collection of attribute-value pairs, where all attributes and their possible 

values are described in Tables 3 and 4.  An example condition is: 

 (return=bright) AND (winter=true) AND (rounded=true) 

The resulting ice classification is one of four possible ice classes: open water, new ice, first-year 

ice, or multi-year ice.  The weight of a rule indicates the mass of evidence in a classification, 

given the feature description defined in the condition part.  A weight ranges between 0.1 and 1 

for positive belief in a classification, and between -1 and -0.1 for negative belief.  Weights of 1.0 

and -1.0 indicate absolute certainty that a feature belongs or does not belong to a class, respec-

tively.  Currently, we have about 100 rules in our rule base, specifically for analyzing SAR sea 

ice images in the Beaufort Sea area. 

 For each feature, the rule-based classification module matches the facts associated with that 

feature with every rule in the rule base.  If the conditions of a rule are matched, then the rule as-

serts a classification with a confidence value.  For each feature, there are many rules that may be 

matched and we may have rules supporting the feature as belonging to any number of classes.  

Hence, we need to combine these assertions in a consistent manner, and determine which class 
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(if any) is supported by the strongest evidence. To do so we use the Dempster-Shafer belief sys-

tem [24]. 

 Suppose that all of the ice classes that ARKTOS knows are of the frame of discernment or 

universe U.  Thus, the set of all propositions (of all possible classifications) is , the power 

set of U.  Let  be a function—a basic probability assignment.  Let an assertion in 

favor of a classification be .   Then, the basic probability assignment function satisfies the con-

ditions for a certainly false classification, 

( )UΡ

( ) [ ]1,0: →Ρ Um

Γ

( ) 0=∅m , and for a certainly true classification, 

.  The belief function, ( ) 1=Γ∑
⊆Γ U

m ( ) [ ]1,0: →Ρ UBel , is defined in terms of the basic probability as-

signment m: ( ) ( )∑
Γ⊆

=Γ
α

αmBel .  This tells us the degree of belief associated with the classification 

 as the probability mass associated with Γ Γ  and its subsets.  The plausibility of a classification 

is further defined as ( ) ( )Γ¬−=Γ BelPls 1 .  Hence a classification is always bound by [ ] in 

terms of the confidence in its perceived truthfulness.  To combine various pieces of evidence for 

building up beliefs in favor of various classifications, Dempster’s rule of combination is used.  

Suppose we are given two assignments (two pieces of evidence),  and , and we want to 

combine them into a single piece of evidence.  Hence, we compute 

PlsBel,

1m 2m

[ ]( )
( ) ( )

( ) ( )∑

∑

∅=∩

Γ=∩

−
=Γ⊕

βα

βα

βα

βα

21

21

21 1 mm

mm
mm , 

where , and .    ∅≠Γ [ ]( ) 021 =∅⊕ mm

 For example, suppose that after matching the facts of a feature to our rule base we arrive at 

two assertions: old_ice with confidence 0.7 and open_water with confidence 0.2.  Hence, cor-

responds to the mass supporting the feature to be {old_ice} = 0.7 and to be any of Θ = 0.3, where 

Θ is the set of all ice classes; and  corresponds to the mass supporting the feature to be 

1m

2m
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{open_water} = 0.2 and to be any of Θ = 0.8.  Then we can compute their combination  using 

the rule of combination above, resulting in the classifications shown in Table 5.  Table 5 says 

that the evidence for the feature to be of the old_ice type is now 0.56; of the open_water type is 

now 0.06; and of one of the ice classes is now 0.24.   

3m

 In this manner, all new evidence is incorporated into the previously accumulated beliefs con-

sistently.  From , we can further compute the evidential interval, 3m [ ]PlsBel, , for each of the ice 

classes. 

 ARKTOS uses a modified Dempster-Shafer belief system to deal with the intricacies of sea 

ice classification.  The modifications of the theory are as follows: 

 (1) In ARKTOS the classification of a sea ice feature into a set such as {open_water, old_ice}, 

Θ, or {} is not useful.  Thus, the mass or evidence accumulated for such propositions is 

purged.  For example, in Table 5, after purging, the re-weighted evidence for {open_water} 

is 0.09 and that for {old_ice} is 0.85.  Note that the Dempster-Shafer belief system assigns 

beliefs to all possible combinations of classifications, such as {open_water, old_ice}.  That 

is, the system could indeed classify an object as open_water or old_ice with a degree of be-

lief.  However, we deem such a “hybrid” classification useless.  Thus, we use the above purg-

ing technique, removing such ambiguity from our final classification.  The purging process is 

simply removing the weights of these hybrid classifications, and re-normalizing the remain-

ing classifications so that they sum up to 1.0. 

(2) The original Dempster-Shafer belief theory does not include negative beliefs, something im-

portant in ARKTOS since sea ice experts express knowledge of both positive and negative 

classification (for example, if a particular feature exhibits certain attributes, then that feature 

cannot be of ice type ‘A’).  Moreover, whenever such a negative assertion is made, it carries 
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more weight than a corresponding positive assertion, as determined by sea ice experts.  We 

modified the Dempster-Shafer belief system to account for negative assertions exactly the 

same way as for positive ones, and to weigh negative assertions more heavily.  

(3) We compute the product of belief and plausibility for each ice class for each feature and use 

that to determine the most credible ice class.  If the product of the most credible ice class is 

below a certain threshold (0.25), then ARKTOS classifies the feature as “unknown”.   

(4) Some rules have absolute certainty (positive or negative), that is, they have a weight of 1.0 or 

-1.0.  When such rules are fired, we deal with the classification differently.  If a feature has 

competing classifications weighted with an absolute belief (1.0) or the same classification 

weighted with absolute belief (1.0) and absolute disbelief (-1.0) ARKTOS classifies the fea-

ture as “unknown.” 

Table 6 lists a few rules whose antecedents are based on the attribute-value pairs and the con-

sequents are ice type classifications.  To summarize, each rule has a weight value that indicates 

the contributing factor of the rule.  This weight value is input as evidence or mass into the 

Dempster-Shafer belief system.  The belief system combines the evidence (different weights) 

from different rules to obtain a belief measure for each ice class.  It also computes the plausibil-

ity measure—a likelihood indicator—for each ice class based on the belief measure.  Finally, 

ARKTOS multiplies the belief and plausibility measures to find the most credible ice class. 

IV. EVALUATION OF ARKTOS 

The evaluation of ARKTOS was performed using 54 RADARSAT images collected over the 

years 1998, 1999, and 2000.  The locations of these images ranged over the Beaufort, Bering, 

and Chukchi regions and the images were evenly distributed throughout the course of the year.  

None of the imagery was used previously in any of the ARKTOS fine-tuning efforts.  Climatol-

18 



ogy coincident with the imagery was retrieved from the NIC, and the Fleet Numerical and Mete-

orological Oceanographic Command (FNMOC) provided the necessary coincident ancillary 

SSM/I CAL/VAL ice concentration data [23].   

The ARKTOS ice classification results were then compared to the total and partial ice con-

centrations obtained from coincident NIC ice charts.  Using a combination of ARCINFO and 

NSIPS (Naval Satellite Image Processing System) tools, polygons representing areas of common 

partial and total ice concentrations were derived from the NIC ice charts and then overlain onto 

the ARKTOS ice classification product (Figure 3).  The ARKTOS ice classification product con-

sists of a five-value image with pixel values representing multi-year ice, first year ice, new ice, 

open water, and unknown/undecided.  Values obtained from a histogram of the ARKTOS ice 

classification product within an area defined by a polygon derived from the NIC ice chart were 

then used to calculate ARKTOS’ estimates of total and partial ice concentration inside that poly-

gon. 

 Approximately 100 NIC ice concentration charts were used as ‘truth’ for the comparison.  

These weekly ice concentration charts are produced by a team of experienced ice analysts from a 

combination of different sources of satellite imagery received at the NIC.  When available, in 

situ observations are also used.  Stringent classification criteria are used by the ice analysts in 

order to insure the accuracy and consistency of their product.  Although the ice charts are not 

ground truth per se, they represent the absolute best guess about the types and concentrations of 

ice that can be inferred from the data.  Note that by assuming the NIC ice charts as “truth”, our 

study uses absolute difference between ARKTOS’ classification and the ice charts as the classi-

fication error. 
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 Although the NIC ice charts are produced by ice experts, they are still the product of a human 

interpretation of the data, and as such, are not entirely free of uncertainty.  Total concentrations 

are generally represented by a range of values that can span up to 20%.  For example, an area in 

a NIC ice chart of multi-year pack ice may be represented as having 80% to 100% total ice con-

centration, with no indication within the area where the concentration is 80% and where it is 

100%.  This value range, which is not constant from ice chart polygon to ice chart polygon, can 

introduce error when compared to the exact total ice concentrations calculated from the ARK-

TOS classifications.  To minimize this error, NIC total ice concentration estimates used in the 

comparison were calculated from a sum of the partial ice concentrations in the polygons.  There 

may also be some variability introduced by the subjective nature of the NIC ice analyses them-

selves.  Although the Beaufort region is routinely analyzed at the NIC by one of their best ana-

lysts, interpretation of the input data may vary from analyst to analyst.  There will be variations 

among the analysts in the estimates of concentration boundaries and in the ice types within those 

boundaries.  These inter-analyst variations can be up to 10% for the estimate of total concentra-

tion and up to 20% for the estimate of partial concentration.  This variability can also increase 

based on differences in the level of expertise among the analysts. 

 Care was taken to ensure that error was not introduced into the analysis when using the ice 

charts for comparison.  Most of the imagery used in the evaluation went directly into the produc-

tion of the ice charts, thus rendering the evaluations a direct comparison of ARKTOS’ results to 

those of the ice analysts.  For cases where the analyzed imagery was not used as input to the ice 

chart, care was taken to make sure that whatever product was used (AVHRR, OLS, SSM/I) was 

generated on the same day as the RADARSAT imagery.  As a final check, the imagery was visu-

ally inspected to reaffirm that the ice chart concentrations and classifications were accurate at the 
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feature scale of the imagery.  In a few cases, visual inspection values did not mirror ice chart 

values.  In some of these cases, the mismatch was due to the dynamic nature of the ice pack (the 

effects of ice motion).  These cases were removed from the analysis.  Other cases were sent to 

the NIC for a more in-depth analysis at the image feature level.  Every effort was made to visu-

ally evaluate and validate the NIC ice concentration estimates at the image feature level prior to 

the comparison to the ARKTOS results. 

 ARKTOS estimates of ice type and ice concentration within areas of analysis derived from 

NIC ice chart polygons were then compared to the matching NIC values within those areas.  For 

every polygon analyzed, the difference between the total and partial NIC ice concentrations and 

the ARKTOS ice concentration estimates was calculated.  These differences were examined with 

respect to latitude, longitude, and data, and listed as either underestimating or overestimating of 

ice concentration by ARKTOS.  Statistics were then derived from all the pairs of values. 

 A few trends were observed in the values of the differences that were calculated.  One of the 

most noticeable trends was the large number of over estimations of total ice concentration by 

ARKTOS (and paired under estimations of open water) at 5% and 10%.  These values may re-

flect uncertainty in the ice concentration values in the ice charts rather than real error in ARK-

TOS.  The majority of these errors are associated with regions of multi-year pack ice in the NIC 

ice charts.  These areas are usually represented by a total ice concentration of 90% to 100%, with 

partial concentrations of 80% multi-year ice, 10% first -year ice, and a trace of new ice. Efforts 

were made to minimize error introduced by a range of total concentration values by comparing 

ARKTOS total ice concentration values to the sum of the NIC ice chart partial values.  But there 

was still a question of how to represent the ‘traces’ of new ice.  A trace can represent values from 

0% to 9%, making the sum of the partials equal to anywhere from 90% to 99%.  When the RA-
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DARSAT images paired with these NIC values are examined, the areas that make up the conse-

quent 0% to 9% of open water are not readily discernable by the ice analysts.  They rely more 

heavily on clues from AVHRR and OLS data, or from meteorology and season to estimate this 

open water.  As the ARKTOS classification is driven by the RADARSAT image, it cannot com-

pensate for what is not present in the image, and calls the entire region 100% ice, introducing a 

5% to 10% over estimation of ice throughout. 

There appear to be some seasonal trends in the errors.  One is in the classification of new ice.  

With the exception of a few values on day 200 (mid-July), most of the large errors in estimation 

of new ice appear to occur between day 260 (mid-September) and day 350 (mid-December) and 

seem to be somewhat paired with errors in the estimation of first year ice.  When the imagery is 

analyzed, these errors appear to come from areas classified by the NIC as young ice in the central 

Beaufort.  For the purposes of this comparison, young ice was collected together with much 

thinner ice types into a new ice class, although it can be nearly as thick as FY ice.  It is interest-

ing to see that these errors are present mostly in the fall and early winter.  It may be a result of 

the fact that polygons which cover areas that are considered to be young ice switch to first year 

ice (in the NIC ice charts) each fall, when ice thickness increases as temperatures drop.  The 

other trend observed is a slight increase in the size of the errors for the total ice concentration and 

the multi-year and first year partial ice concentrations during the summer.  Low image contrast 

and intermittent backscatter inversion (where water pixels appear brighter and ice pixels appear 

darker in the image, due to the wind-roughened water surface during the summer) play a large 

role in classification error during the summer.  

 With respect to latitude, there are no significant trends in the differences for the total ice con-

centration or the partial concentration of open water, other than the over estimation of ice (and 
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under estimation of water) described previously.  MY and FY partial ice concentration differ-

ences display a spread of overestimations and underestimations for both ice types beyond 70 de-

grees, although there appears to be slightly more over estimations of FY ice (and coincident un-

der estimations of MY ice) between 70 and 75 degrees.  Below 70 degrees ARKTOS appears to 

be under estimating FY ice and over estimating MY ice, although the differences are not com-

pletely correlated.  The only area of the analysis with latitudes less than 70 degrees was the Ber-

ing Sea, so these values may represent some confusion by ARKTOS among MY, FY, and open 

water in the marginal ice zone.  The largest errors in the estimation of new ice occur between 

about 68 degrees and 75 degrees.  Examination of these areas indicates that they are from poly-

gons located in the central Beaufort, and they are correlated with large errors in the FY ice esti-

mates, so this set of results is similarly indicative of young ice /FY ice confusion. 

 There appear to be no significant trends in the differences between ARKTOS and NIC con-

centration for MY and FY ice with respect to longitude, but total ice concentration, open water 

(which is paired with total concentration), and new ice values show larger errors at specific lon-

gitudes.  In the case of the total ice concentration values and the open water values, errors are on 

the order of 5% to 10% for longitudes between -120 degrees and -160 degrees, and range fairly 

widely between -160 degrees and -180 degrees.  These trends are mostly due to the types of ice 

features at the different locations.  The central Beaufort lies between -120 and -160 degrees, and 

this area tends to be filled with the standard MY/FY ice pack described above, with the errors as 

described above.  Between -160 degrees and -180 degrees, the Beaufort is merging with the 

Chukchi and Bering Seas.  These areas are very dynamic, and as such, have a wider range of 

mixtures of open water and ice.  The cluster of ARKTOS under-estimations of new ice between -
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140 degrees and -160 degrees is caused primarily by confusion on ARKTOS’ part between 

young ice and first year ice. 

 Table 7 presents the mean and median absolute differences between the total and partial ice 

concentration estimates derived by ARKTOS for each polygon and those derived from the NIC 

ice charts.  Figure 4 shows distributions of these absolute differences.  Although the mean abso-

lute differences are somewhat large, the median values and histograms show that most errors for 

total concentration (and hence, also open water) are on the order of 5% to 10%. Those for the 

partial ice concentrations (MY, FY, NI) are on the order of 5% to 20%.  These values coincide 

with the expected variability in the ice charts of 10% for total ice concentration and 20% for par-

tial ice concentration, and on par with results from other classification algorithms [25]. 

 These measurements provide a sense of ARKTOS error for a random set of comparisons, but 

they are somewhat biased towards the more complex images in the data set.   Complex images, 

having a wider range of combinations of different ice types and concentrations, contribute more 

polygons per image to the mean and median estimates, but their area does not necessarily repre-

sent a large spatial portion of the Beaufort.  In order to provide a more spatially based examina-

tion, an analysis of ARKTOS accuracy on a per image basis was also performed, with polygon 

size being taken into account.  The results of this analysis are presented in Table 8.  When the 

results from each image are allowed to contribute equally to the error estimates, the mean abso-

lute error for the total ice concentration is 8.4%, while that for the partial ice types ranges from 

4.3% to 23.5%.  Median values are 5.5% for the total ice concentration and 4.3% to 17.7% for 

the partial ice types.  

 Results taken over the course of this evaluation indicate that the inclusion of SSM/I ice con-

centration data is necessary for the optimal operation of ARKTOS.  SSM/I data should be made 
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available to ARKTOS whenever possible.  SSM/I data aids ARKTOS in the delineation of open 

water and ice, and assists in the identification of ice along the ice edge.  When operated without 

the inclusion of SSM/I input ARKTOS’ accuracy varies greatly.  For images consisting of 100% 

total ice concentration throughout, the results of operating ARKTOS without SSM/I input are 

almost identical to those results obtained when SSM/I input is included.  Results obtained over 

areas of open water or along the ice edge can be correct when SSM/I data is omitted, but are usu-

ally flawed.  Differences in the source of the SSM/I ice concentrations will also cause differences 

in the results obtained from ARKTOS.  Currently, threshold values for the SSM/I ice concentra-

tion feature attribute (SSMICON) are geared towards the range of values obtained from the 

FNMOC CAL/VAL ice concentration algorithm.  If other sources of SSM/I ice concentration 

values are used, the threshold file should be modified accordingly before operation.  

 Figures 5-9 represent results typical of ARKTOS performance. Figure 5 presents the results 

for an image of the MY/FY ice pack in the central Beaufort taken on 20FEB00.  ARKTOS per-

forms an excellent job of separating first year ice areas from multi-year ice areas, and of classify-

ing them correctly.  Within the multi-year ice pack, it can identify and segment out some indi-

vidual floes, but also aggregates some floes into larger features that no longer obey the standard 

set of rules the ice analysts have developed for multi-year ice floes.  Even with the change in 

scale and appearance brought about by this aggregate segmentation, ARKTOS is able to classify 

the multi-year pack ice correctly.  Figures 6 and 7 present ARKTOS results for winter 

(20FEB00, Figure 6) and summer (09AUG98, Figure 7) images of ice pack.  In the winter image, 

the multi-year ice pack is broken down into four main features roughly based on image intensity.  

In the summer image, low image contrast causes ARKTOS to segment the image into basically 
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one large feature.  In both cases, ARKTOS correctly classifies the multi-year pack and the sur-

rounding first year ice areas.  

 Figure 8 provides an example of ARKTOS performance in the marginal ice zone (MIZ).  The 

image is from 07AUG98 in the western Beaufort.  Most of the image is correctly segmented, ex-

cept for a small area of ice surrounded by open water in the eastern half of the image.  ARKTOS 

classifies all but the very western edge of the image correctly.  It calls this area first year ice, 

while the NIC ice charts indicate that it is really an area of low concentration multi-year ice.  

This error illustrates an interesting conundrum within the operational capability of ARKTOS.  

ARKTOS does an excellent job of separating this area of low ice concentration from adjacent 

areas of high ice concentration and open water, but does not have the capability of labeling it as a 

low ice concentration area.  No matter what ARKTOS calls this area, it will be at 100% concen-

tration.  Segmentation parameters can be tweaked so that ARKTOS can pick out the individual 

floes within this area in order to achieve an overall lower ice concentration, but such tweaking 

would cause major segmentation errors elsewhere. 

 Figure 9 presents a complex example of the ARKTOS algorithm at work.  The raw RADAR-

SAT image, taken on 31OCT99, is of the eastern Beaufort during freeze-up.  ARKTOS accu-

rately delineates darker open water areas from darker new ice areas, and brighter new ice areas 

from multi-year ice.  In addition, it picks out individual features within the new ice.  ARKTOS 

correctly classifies both brighter and darker open water areas, which it has segmented into sepa-

rate features, as open water.  It also correctly classifies an area of darker multi-year ice in the 

northwest corner of the image as multi-year ice.  Both the ARKTOS result and the NIC ice chart 

display an ice pack made up of predominantly new ice on the ice edge and in the south, merging 

into a mixture of new ice and multi-year ice towards the northwest.  Although the ARKTOS 
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classification does not match the NIC ice charts exactly pixel for pixel everywhere, it is a fairly 

accurate representation of the ice and water present overall. 

 
V. DISCUSSION 

We have presented the ARKTOS intelligent system for satellite sea ice image analysis.  ARK-

TOS is a fully automated system that classifies sea ice images by mimicking the reasoning proc-

ess of sea ice experts.  The approach is a feature-based, rule-based classification system sup-

ported by multisource data fusion.  ARKTOS underwent a rigorous evaluation process against 

actual operational sea ice charts generated and maintained by the U.S. National Ice Center and 

achieved good results in high-Arctic areas, even when compared to human expert classification.  

ARKTOS has a flexible and extensible design due to the modularity of the knowledge bases and 

the suite of GUI-based software for effective evaluation and refinement.  The NIC has also op-

erationalized ARKTOS and the NIC analysts use the ARKTOS output as one of the information 

sources they study to develop their standard operational map product. 

 The major contribution of ARKTOS is that it proves that it is possible to develop a fully 

automated, accurate intelligent classifier of natural scenes that starts from the original data 

sources and, without any human intervention, produces a final classification product in near real 

time.  ARKTOS is also the first fully automated, near real time, operational sea-ice classifier, 

and it has been shown to achieve very good classification results compared to these of human 

experts, with mean absolute difference for the total ice concentration 8.4%, and that for the par-

tial ice types ranging from 4.3% to 23.5%.   Finally, the methodologies we have employed, the 

lessons we have learned during our research, and the innovative approaches to image processing, 

data manipulation, and knowledge engineering during the past 10 years of developing, prototyp-
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ing, refining, and testing ARKTOS provide a detailed and successful roadmap for building other 

intelligent geophysical classification systems. 

 There are several possible modifications to ARKTOS that may further improve its perform-

ance: (1) image correction during the pre-processing stage to compensate for nadir ambiguities 

and near range brightness due to R**4 fall-off, (2) adaptive segmentation using spatial and tem-

poral information, (3) consideration of a previous week's ice analysis to account for the persis-

tence and continuity of the ice, (4) modification of ARKTOS for use on ENVISAT/ RADAR-

SAT-2 polarimetric data since HV polarization data should improve ARKTOS' ability to dis-

criminate between ice and open water, (5) consideration of AVHRR and OLS data as part of the 

ancillary data input for ARKTOS since this data is often used by ice analysts to delineate be-

tween ice and open water, (6) consideration of weather and other environmental parameters since 

these factors are often taken into account by ice analysts to help delineate new ice from first year 

ice, (7) further development of shape and texture attributes, and (8) refinement of ARKTOS' 

knowledge bases and expansion to cover the entire Arctic region. 
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Figure 1: Examples of spatial attribute values.  Features with intensity values of (a) 162, (b) 84, (c) 36, where (a) is 

considered by ARKTOS to be bright, (b) grey, and ( c) dark.  Features with mottledness values of (d) 10.67, (e) 
14.68, ( f) 34.39, where (d) and (e) are considered by ARKTOS to be smooth and (f) mottled.  Images are from 

07NOV99, 29MAR98, and 08DEC00 (images © CSA 1998, 1999, 2000) 

 
Figure 2:  Examples of shape attribute values.  Features with roundness values of (a) 0.37, (b) 1.06, (c) 1.78, where 
(a) is considered by ARKTOS to be round, and (b) and (c) are not.  Features with elongation and irregularity values 

of (d) 4.36 and 4.09, (e) 10.12 and 3.62, ( f) 1.53 and 2.68, where (d) and (e) are considered by ARKTOS to be 
leads, and (f) is not.  Images are from 05MAR00, 09MAR00, and 12MAR00 (images © CSA 2000).
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Figure 3: Polygons derived from (a) NIC ice charts, (b) same polygons overlain on the source RADARSAT image, 

and (c) ARKTOS classification result. (image 3.c. © CSA 2000) 
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Figure 4: Distributions of ice concentration differences (absolute value) for (a) total ice concentration, 

(b) multi-year ice, (c) first year ice, (d) new ice, and (e) open water. 
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Figure 5: Typical ARKTOS results for a mixture of multi-year and first year ice.  (a) RADARSAT image from 

20FEB00, (b) ARKTOS segmentation, and (c) ARKTOS classification product.  Note the accuracy of the segmenta-
tion (image 5.a. © CSA 2000). 
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Figure 6: Typical ARKTOS results for multi-year ice pack in winter.  (a) RADARSAT image from 20FEB00,  

(b) ARKTOS segmentation, and (c) ARKTOS classification product (image 6.a. © CSA 2000). 

36 



 
Figure 7: Typical ARKTOS results for multi-year ice pack in summer.  (a) RADARSAT image from 09AUG00,  

(b) ARKTOS segmentation, and (c) ARKTOS classification product (image 7.a. © CSA 2000). 
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Figure 8: Typical ARKTOS results for the ice edge in summer.  (a) RADARSAT image from 08AUG98,  

(b) ARKTOS segmentation, and (c) ARKTOS classification product (image 8.a. © CSA 1998). 
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Figure 9: ARKTOS capturing regions of new ice and pockets of multi-year ice within the new ice. 

(a) RADARSAT image from 31OCT99, (b) ARKTOS segmentation, and (c) ARKTOS classification product.  Note: 
the black areas in (c) within the sea ice map are land (image 9.a. © CSA 1999). 
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File Format Description 
PGM Portable GrayMap (PGM) is a standard bitmap based format consisting of a 4 lines header, 

and data stored in the unsigned char type, providing a maximum of 256 gray scale levels or 
8-bit data per pixel. 

GRIB Data files in GRIdded Binary (GRIB) format with .GRB extension, an international stan-
dard. 

NSIPS Naval Satellite Image Processing System, a system that generates a customized data file 
format. 

Table 1  File formats and brief descriptions. 
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Measurement Description 
Area Measures the number of pixels within a feature. 
Average_intensity Measures the average intensity of all pixels within a feature. 
Standard_deviation Measures the standard deviation of the intensity values of all pixels within a feature. 
Contrast Measures the contrast of all pixels within a feature. 

contrast =
standard_deviation
average_intensity

 Suppose we are given two images with the same standard_deviation.  If one of the images 
is bright, with a high average_intensity, and the other is dark, with a low aver-
age_intensity, then the darker image has a higher contrast value.  In a sense, we expect a 
brighter image to have a larger standard deviation in order to have a high contrast.   

Perimeter Measures the number of boundary pixels of a feature. 
Outer_perimeter Measures the number of boundary pixels when traversing the outer boundary of a feature.  

This number may be larger or smaller than perimeter.  When a feature contains holes, pe-
rimeter is greater than outer_perimeter.  When a feature has one-pixel-thick structures, 
outer_perimeter is greater than perimeter. 

Perimeter_porosity This measurement allows us to determine if a feature has many holes and 1-pixel-thick 
structures. 

( )
( )perimeterperimeterouter

perimeterperimeterouterporosityperimeter
,_min
,_max_ =  

Centroid Stores the pixel coordinates yx µµ ,  of the center of mass of a feature. 

Mottledness The objective of this measurement is to detect the intensity differences in a feature.  If we 
detect high intensity differences, then we say the feature is mottled.  Also, we tolerate less 
difference for bright features than we do for dark features to capture the observation that a 
slight change at the bright end of the intensity spectrum is more significant than one at the 
dark end.   
(1) Obtain the maximum difference between two horizontal, neighboring pixels of the 
feature, . horizontalmax
(2) Obtain the maximum difference between two vertical, neighboring pixels of the fea-
ture, . verticalmax
(3) Compute 

( )
255

maxmax tensityaverage_insmottlednes horizontalvertical •+= . 

The value 255 is used as a normalization factor.   
Average_roughness This is a new approach to measuring the texture of a feature by obtaining a mean of vari-

ances of local regions of a feature.   
(1) Divide the feature into overlapping 5x5 areas. 
(2) Compute the variance of each area. 
(3) Sum all the variances. 
(4) Divide the sum with the feature’s area. 

New_roughness This is yet another new approach to measure the texture of a feature by combining a fea-
ture's global and local variances .  This measure is computed as 

ughnessaverage_ro
_stan_

2deviationdardroughnessnew =  

Suppose a feature has a low average_roughness but a high standard_deviation.  That 
means locally, the feature is uniform; but globally, the feature has a larger intensity range 
and wider intensity distribution.  This implies two possible conditions: (1) the feature has 
a significant shift in intensity values from one part of the feature to another part, or (2) the 
feature is patchy (for example, a checkerboard pattern). 
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Orientation This is used to gauge how a feature aligns in the image and is useful for computing the 
feature’s bounding rectangle, as will be discussed later.  

  
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

−
= −

2,00,2

1,11 2
tan

2
1

µµ
µ

norientatio  

where  
( )∑ −=

yall
yy 2

2,0 µµ , ( )∑ −=
xall

xx 2
0,2 µµ , and ( )( )∑ ∑ −−=

xall yall
yx yx µµµ 1,1  . 

max_length and 
max_width 

The approach is to compute the bounding rectangle of a feature, and use the two principal 
axes to find the maximum length and width of the feature.   
(1) For each pixel yx, , compute its  

  ( ) ( )norientatioynorientatiox sincos +=α  
  ( ) ( )norientatioynorientatiox cossin +−=β  

(2)  Identify the maximum α  as maxα ; identify the maximum β  as   maxβ ; identify the 

minimum α  as minα ; identify the minimum β  as minβ . 
(3) Compute the distances of the principal axes: 
  minmax ααα −=d , and minmax βββ −=d . 
(4) Compute 

( )βα ddmax_length ,max= , and . max_width= max dα,dβ( )
Area_porosity This measurement allows us to determine if a feature is branchy. 

area
lengthmaxwidthmaxporosityarea ___ •

=  

Elongation Measures how elongated a feature is.   

widthmax
lengthmaxelongation

_
_

=  

Roundness Measures how circular a feature is.  First, for each boundary pixel, p , we compute its 

distance from the centroid yx µµ , : 

( ) ( ) ( )22,, ypxpyx yxpD µµµµ −+−= . 

Then we compute the standard deviation of all such distances and equal roundness to the 
standard deviation: 

( )[ ]yxpDdevstdroundness µµ ,,_= . 

Thinness Measures how thin a feature is.  We have designed a quick and easy way to approximate 
elongation without having to consider the orientation of a feature.  The underlying concept 
of this approach is to estimate the average thickness of a structure. 
(1) Scan the image horizontally, collect the length at each row of the contiguous segment 
of the feature, and average all lengths.  Call the average horizontall . 
(2) Scan the image vertically, collect the length at each column of the contiguous segment 
of the feature, and average all lengths.  Call the average verticall . 
(3) Compute thinness as : 

( )verticalhorizontal llthinness ,min= . 
Irregularity Measures how irregular a feature is:  

porosityperimeterporosityareatyirregulari __ •= . 
Eccentricity Measures how eccentric a feature is.  A feature is eccentric if it has boundary pixels that 

are very close to its centroid and boundary pixels that are very far from its centroid.  A 
circle is not eccentric because all boundary pixels are equidistant from the centroid.  An 
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N-pointed star is eccentric, however, because the boundary pixels at its points are farther 
away from the centroid than the pixels at the valley between points.  This attribute is used 
to complement irregularity.   First, for each boundary pixel, p , we compute its distance 

from the centroid yx µµ , :  

( ) ( ) ( )22,, ypxpyx yxpD µµµµ −+−= . 

Then, we identify the maximum distance, , and the minimum distance, . Fi-

nally, 
maxd mind

minmax ddtyeccentrici = . 
Jaggedness Measures how jagged the boundary of a feature is.  As we traverse the boundary, we take 

the absolute difference between the previous direction that brought us to the current pixel 
and the current direction that brings us to the next pixel.  In a 3×3 8-connected neighbor-
hood, the maximum change in directions is 4; the minimum is 0.  As we move along the 
boundary, we add the magnitude of each directional difference to a counter.   Jaggedness 
is defined to be the average of all such direction changes, i.e., the value of the counter 
divided by outer_perimeter. 

Neighbor_intensity Measures the average intensity of the neighbors weighted by the number of shared bound-
ary pixels.   
(1) Follow the boundary of a feature 

(2) For each boundary pixel encountered 
(3) Look at is right-hand (outer) neighboring pixel 
(4) Identify the feature number of that pixel 
(5) Retrieve the average_intensity associated with the feature 

number 
(6) Add the value to a counter 

(7) Divide the counter with outer_perimeter. 
So, suppose a feature has two neighbors.  One is extremely dark, the other extremely 
bright.  However, the dark neighbor shares boundary pixels with 90% of the feature’s 
boundary while the bright neighbor shares only 10%.  Then, as a result, neighbor_intensity 
will record a low value.  If we treated the two neighbors equally (50% - 50%), then 
neighbor_intensity would record a medium value, which would be undesirable. 

Neighbor_mottledness This is very similar to neighbor_intensity, but looks at the mottledness instead of intensity 
values of the neighboring features. 

Curved_boundary Boundary-based measurements are expensive, as we have to traverse along the boundary 
of the feature.  Thus, we have created three approximation measurements.  
Curved_boundary is one of them.  This detects whether a feature has a curved (or 
rounded) boundary.  We first obtain five successive, equally long segments along the 
boundary and compute the tangent of each segment.  If (1) all angles are monotonically 
increasing, and (2) the angle change between each pair of successive segments is smaller 
than a threshold, , and (3) the total angle change is greater than a threshold, 

, then we say that the feature has a curved boundary, i.e., curved_boundary = 1.  If 
the current group of five segments does not amount to a curved boundary; we discard the 
first segment, include the next segment along the boundary into the group, and repeat the 
above process.  If after traversing the boundary twice we find no curved boundary, then 
we set curved_boundary = 0. The first condition is to discard boundary segments that 
move inward and outward, with respect to the centroid of the feature.  The second condi-
tion is to ensure smooth angle transition since it does not allow sharp jump in the bound-
ary.  The final condition is to ensure a significant curvature. 

0,curvedT

1,curvedT

    The slope of each segment is computed by taking the slope between the two ends of the 
segment:   

startend

startend
i xx

yy
slope

−
−

=  
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where startstart yx ,  and endend yx ,  are the start- and end-point of the segment i .   
Linear_boundary This is another boundary-related measurement  anddetects whether a feature has a linear 

boundary.  We divide the boundary into several segments with length proportional to the 
size of the boundary, or outer_perimeter.  For each segment, we count the number of im-
age border pixels. If this number is greater than 30% of the length of the segment, we do 
not perform linear regression on this segment and it is discarded and we proceed to the 
next segment.  If, however, the segment contains image border pixels less than 30% of its 
length, then we perform a linear regression on the segment.  First we compute the centroid 
of the segment (similar to the centroid of the feature), yx ss , .  Then we calculate the 

moments: 
( )∑ −=

yall
yyy sys 2 , ( )∑ −=

xall
xxx sxs 2 , and ( )( )∑ ∑ −−=

xall yall
yxxy sysxµ  . 

We compute the coefficient of determination, η , as 

yyxx

xy

ss

s
=η . 

If  is greater than a threshold, , then we have found a linear segments, i.e., lin-
ear_boundary = 1.  Otherwise, we proceed until we run out of segments.  If we do not find 
such a segment, then the feature has linear_boundary = 0. 

η linearT

Angular_boundary This is the third boundary-related measurement and it detects whether a feature has an 
angular boundary.  The underlying design is very similar to that for linear_boundary.  In-
stead of looking for one linear segment, we are looking for two consecutive linear seg-
ments.  After we locate the first linear segment, we continue to extend that segment as 
long as it stays linear by checking at every move along that segment the coefficient η .  At 
the end of that first linear segment, η  will be small (no longer linear).  Then we immedi-
ately look at the next segment.  If this segment is found to be linear, then we have found 
two successive linear segments, and angular_boundary = 1.  If the segment is not linear, 
then we discard the first linear segments and continue the search.  If we run out of seg-
ments and no two successive linear segments are found, angular_boundary  = 0. 

Table 2  Feature attribute measurements computed by ARKTOS and their descriptions. 
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Fact Possible Dis-

crete Values 
Feature Measurements that are Quantized Thresholds Used 

return black, dark, 
gray, bright 

Based on the measurement average_intensity. 
If 0,_ returnTintensityaverage < , then re-

turn=black. 
If  1,0, _ returnreturn TintensityaverageT <≤ , then re-

turn=dark. 
If  2,1, _ returnreturn TintensityaverageT <≤ , then re-

turn=grey. 
If  intensityaverageTreturn _2, ≤ , then re-

turn=bright. 

500, =returnT , 
751, =returnT , 
1002, =returnT  

size small, me-
dium, large 

Based on the measurement area.  There are three thresholds 
related to this attribute; however, only two are used to 
d�iscretized and another one is used to qualify blobs (dis-
cussed later). 
If  0,sizeTarea < , then size=small. 

If  1,0, sizesize TareaT <≤ , then size=medium. 

If  areaTarea ≤1, , then size=large. 

2000, =sizeT , 
16000, =sizeT , 
250000, =sizeT  

mottled or 
smooth 

mottled=true, 
smooth=true 

Based on the measurement mottledness.  
If  then mottled=true; else 
smooth=true. 

mottledTsmottlednes >

Instead of mottled=false, we use smooth=true because the latter 
is more intuitive. 

Observed val-
ues between 5.0 
and 60.0. 

0.31=mottledT  

blob true, false Based on the measurements area, irregularity, and eccentricity.  
We use three thresholds, related to area, irregularity, and eccen-
tricity: 
If   and  (  or 

) then blob=true; else 
blob=false.

2,sizeTarea > irregularTtyirregulari >

eccentricTtyeccentrici >

 

2,sizeT , , 

 
irregularT

eccentricT

round true, false Based on the measurement roundness.   
If roundTroundness <  then round=true; else 
round=false. 

A perfect circle 
has a measure-
ment of 0. 

05.1=roundT  
elongated true, false Based on the measurement elongation. 

If then elongated=true; 

else elongated=false.
elongatedTelongation >

 

Observes values 
between 1 and 4.  

3.1=elongatedT  
irregular true, false This denotes whether a feature has an irregular shape.  In addi-

tion to irregularity, we also use eccentricity to help define this 
attribute. 
If  (  or ) 

then  irregular=true; else irregu-
lar=false.

 

irregularTtyirregulari > eccentricTtyeccentrici >

Observed values 
between 1.0 and 
25.0.  

10.3=irregularT  
Observed values 
between 2.0 and 
20.0.  

50.4=eccentricT  
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thin true, false Based on the measurement thinness.  
If thinTthinness <  then thin=true; else 
thin=false. 

Observed values 
between 5.0 and 
30.0.  

 0.11=thinT
jagged true, false This denotes whether the boundary of a feature is jagged.  It is 

based on the measurement jaggedness. 
If  then jagged=true; else 

jagged=false.
jaggedTjaggedness >

 

Ranges between 
0 and 4.  

74.0=jaggedT  

lead true, false This indicates whether a feature is a lead.  To be a lead, a fea-
ture must be elongated and irregular.  Thus, this attribute is 
based on the measurements elongation and irregularity.  Two 
thresholds discussed previously will be used here. 
If  and  

then lead=true; else lead=false.
elongatedTelongation> irregularTtyirregulari >

 

10.3=irregularT , 
3.1=elongatedT  

enclose true, false, 
darker, 
brighter 

This denotes whether a feature encloses at least one other fea-
ture.  It also denotes when a feature encloses something darker 
in average intensity.  This is based on all neighbors of the fea-
ture of interest.   
If the feature encloses nothing, then en-

close=false. 
If the feature encloses something, then 

enclose=true. 

If the feature encloses something, , and  ef
( ) ( )efintensityaveragefeatureintensityaverage __ •> λ  

then enclose=darker. 

If the feature encloses something, , and  ef
( ) ( )efintensityaveragefeatureintensityaverage __ <•λ  

then enclose=brighter. 
The factor λ  is empirically set at 1.2. 

 

contain_cracks true, false This denotes whether a feature encloses a crack.  A crack is 
defined as a feature that is elongated and thin.  So, the thresh-
olds discussed above for attribute elongated and thin will be 
utilized again. 
If the feature encloses something, , and ef

( ) elongatede Tfelongation >  and    

( ) thine Tfthinness <  then contain_cracks=true; 
else contain_cracks=false. 

3.1=elongatedT , 
 0.11=thinT

smoother true, false This denotes whether a feature is smoother than its surround-
ings.  It is based on the measurement mottledness.   
If mottledness of the feature is less than 
the average mottledness of all its 
neighbor then smoother=true; else 
smoother=false. 

 

brighter true, false Based on the measurement average_intensity.   
If average_intensity of the feature is 
greater than λ  times the average aver-
age_intensity of all its neighbors then 
brighter=true; else brighter=false. 
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smoother2 true, false Based on the measurement mottledness and 
neighbor_mottledness. 
If mottledness of the feature is less than 
neighbor mottledness of the feature  then 
smoother=true; else smoother = false. 
The difference between smoother and smother2 is that 
smoother treats each neighbor equally while smoother2 weighs 
each neighbor by the shared boundary between each neighbor 
and the feature. 

 

brighter2 true, false Based on the measurement average_intensity and 
neighbor_intensity.  
If  average_intensity of the feature is 
greater than λ  times neighbor_ intensity 
of  the feature then brighter= true; else 
brighter=false. 
The difference between brighter and brighter2 is that brighter 
treats each neighbor equally while brighter2 weighs each 
neighbor by the shared boundary between each neighbor and 
the feature.  The factor λ  is the same one as in attribute en-
close. 

 

Table 3  Facts extracted from the feature measurements from the SAR image 
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Fact Possible Discrete Values Description 
adj_to_land true, false Depends on whether a feature touches land or 

not 
ssmicon low, med, high These thresholds help qualify the attribute ssmicon, 

a value derived from the SSM/I sea ice concentra-
tion maps.  Currently, these thresholds are set at 15.0 
and 50.0, respectively.   

0.150, =ssmiconT , 0.501, =ssmiconT  
numyr none, some, most, 

not_available 
These thresholds help qualify the attribute 
numyr, a value derived from the climatology 
data ice coverage map.  50, =numyrT ,  

151, =numyrT  
medct low, med, high, 

not_available 
These thresholds help qualify the attribute 
medct, a value derived from the climatology 
data ice coverage map.  200, =medctT , 

751, =medctT  
month jan, feb, mar, apr, may, jun, 

jul, aug, sep, oct, nov, dec  
 

season  
condition 

summer, winter,  
freeze_up, , 
melt_out  

Date thresholds provided by the experts 

latitude <=72.00,  >=72.00, 
<=73.00,  >=73.00,  
<=74.00,  >=74.00,  
<=75.00,  >=75.00 

 

Table 4  Facts extracted from the ancillary data sources 
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 {old_ice} 0.7 Θ  0.3 
{open_water}       0.2 {} 0.14 {open_water} 0.06 
Θ                          0.8 {old_ice} 0.56 Θ  0.24 

Table 5  Combination of two mass values using Dempster’s rule of combination. 

 

 
Rules 
rule=4;If lead and return is dark then open_water;winter true,lead true,return dark;open_water;0.4 
rule=6;If it is June and feature is very dark (black) then open_water;winter true,jun true,return 
black;open_water;0.7 
rule=28;If the boundary is linear then first_year_ice;winter true,linear_boundary true;first_year_ice;0.5 
rule=41;If the ice touches the land then it is land fast_ice;winter true,adj_coast true;fast_ice;0.6 
rule=81;if it is small, dark, and darker than it could be FY;winter true,size small,return dark,brighter 
false;first_year_ice;0.8 
rule=87;if not blob but irregular, thin, dark, darker than, and smoother than, then FY;winter true,blob 
false,irregular true,return dark,thin true,brighter false,smoother true;first_year_ice;0.7 
rule=95;if the SSM/I concentration is low, then the feature is open water;winter true,ssmicon 
low;open_water;1.0 

Table 6  Some sea ice classification rules in ARKTOS. 

 
 

 Mean Absolute Difference Median Absolute Difference 
Total Ice 14.01% 9.96% 
Multi-Year Ice 24.67% 13.53% 
First Year Ice 28.75% 19.64% 
New Ice 10.47% 0% 
Open water 14.52% 10% 

Table 7  Mean and median absolute differences in ice concentration for all polygons between ARKTOS and NIC ice 
chart classification. 

 
 
 

 Mean Absolute Difference Median Absolute Difference 
Total Ice 8.37% 5.54% 
Multi-Year Ice 22.81% 17.67% 
First Year Ice 23.54% 15.08% 
New Ice 4.31% 4.33% 
Open water 8.55% 5.54% 

Table 8  Mean and median absolute differences in ice concentration for all images between ARKTOS and NIC ice 
chart classification. 
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