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Abstract

This paper presents a genetic-algorithm driven, cognitiko decision engine that determines the
optimal radio transmission parameters for single and waiitier systems. Determining the appropriate
radio parameters given a dynamic wireless channel envieonrns the primary feature of cognitive
radios for wireless communication systems. Genetic dlgms (GA) are designed to select the optimal
transmission parameters by scoring a subset of parametdrsvalving them until the optimal value
is reached for a given goal. Although there have been imphktatiens of GA-based single carrier
cognitive radio engines, the performance of these algostihas not been thoroughly analyzed nor
have the fithess functions employed by the algorithms be@iored in detail. Multicarrier systems
are common in today’s communication environment, thus itivgntechniques that account for only
single carrier systems neglect the practical issues ofiphaltarriers. A set of accurate single carrier
and multicarrier fitness functions for our GA implementatihat completely control the evolution of
the algorithm have been derived. The performance analgsidts illustrate the trade-offs between the

convergence time of the GA and the size of the GA search space.
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. INTRODUCTION

Cognitive radio technology is receiving significant attentas an approach to alleviate the
apparent scarcity of available radio spectrum [1]-[4]. Aitge radios encompass all the
reconfigurable attributes of a conventional software-@efiradio (SDR) while possessing the
"intelligence” to automatically adapt operating parametbased on learning from previous
events and current inputs to the system. The momentum oanasesfforts, due in part to
the current spectrum scarcity problem, as well as a Depattok Defense initiative [1] to
develop a flexible software radio approach for war fighter camications, has yielded numerous
initiatives and programs by researchers in academia [5jradhgstry [6]. The resulting plethora
of cognitive radio solutions range from cognitive radio gmnents and radio network testbeds
[5] to complete radio systems [2].

Much current cognitive radio development is focused on jgliog dynamic spectrum access
solutions [3], [4], [7], where unlicensed transmission®m@be across licensed spectrum while
not interfering with incumbent users. With current regalgtrequirements based on assigning
fixed allocations of spectrum to the highest bidding opesatand with the demand for additional
transmission bandwidth increasing for both existing ansdl weeless applications, there exists an
apparent shortage of spectrum for expansion [4]. Neveasisekeveral measurement studies have
shown that spectrum usage is sparse in both time and fregu8hcThus, dynamic spectrum
access provides radios with the ability to detect the spetiusage and determine what to do
if the target frequency band is in use. The major technicalass how to reliably determine if
the target spectrum is occupied by an incumbent transmissi@nother unlicensed user [3],
[7], [9]-[11].

Research done at Virginia Tech has also developed a gengtisthm engine for cognitive
radios [12], [13]. Their simulation results validate thheir genetic algorithm implementation
does in fact change the transmission parameters to diffevettings, based upon a set of
objectives. The work presented in this paper goes beyortiddgmonstrating that the genetic
algorithm outputs a selection, but also provides the nuwakranalysis of the relationships
between the environmental parameters and the transmizaiameters. We provide the derivation
of the equations representing these relationships andhegse &s the fitness functions for the

genetic algorithm. As we will also show in the following sects, the methods used to place
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importance factors on the various radio objectives are different.

This paper focuses on the technical issues that exist onttgplauradios are simultaneously
communicating and channel problems become the source omoaoimation errors, i.e., after
spectrum assignments have been determined. Cognitivesratiiould not only be capable of
adapting to the frequency spectrum being used around italsotthe channel conditions that
could possibly prevent it from effectively communicating the available bandwidth. This
work focuses on the adaptation of radio parameters to theaitirey channel conditions for
both single carrier and multicarrier systems. The tradaldiine-grained adaptation of specific
parameters, e.g., equalizer coefficients [14], power &y&b], modulation schemes [16], are
common in today’s radio systems. Cognitive radios go beyihig with more comprehensive
techniques. In this context, autonomous radio parametgstation involves having an artificial
intelligence (Al) system decide on the values of the radicapeeters in order to create the
intended communications environment. Therefore, the Atesy constitutes the core controller
for a cognitive radio system, and the selection process oAlanan substantially affect the
performance of the system. Thus, it is important to undedcsthe available Al methods and
their suitability under various operating conditions.

This paper presents a genetic algorithm (GA) driven cogmgngine implementation for single
carrier and multicarrier systems. Although there have biegplementations of single carrier
GA-based cognitive radio engines, the performance of tagwithms has not been thoroughly
analyzed nor have the fitness functions employed by theithigaes [2] been explored in detalil.
We derive a set of fithess functions that guide the searclcttbreof the GA to an optimal set
of transmission parameters given a set of goals and theatladie transmission parameters. We
then demonstrate the trade-off between the size of thelsemace and the convergence time

of the GA to the optimal parameter set.

II. COGNITIVE RADIO PARAMETERS

In developing a cognitive radio control system, severaltapnust be defined. The accuracy
of the decisions made by an Al method is based upon the qualdyquantity of inputs to the
system. A primary feature of cognitive radios is the abitityadapt to the surrounding environ-
ment. This feature defines a critical input to the system pagsentation of the environment. In

order for the system to make decisions about a certain quipeitcurrent wireless environment
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Fig. 1. Cognitive Radio lllustration

must be modeled internally. This model is created usingrenuientally-sensed data received
by the system using an external sensor.

Several devices exist to detect characteristics of thele@seenvironment. The DARPA XG
program has introduced hardware for sensing environmeautacteristics, including spectrum
usage [10]. This information is useful if the radio is trying maximize spectral efficiency.
Other sensors may detect important characteristics sydhesurrent noise floor, or determine
the bit-error-rate (BER) of the current running configusatiln the following sections, we will
propose a list of environmentally-sensed parameters thiatoer used to aid in the decision
making process of the cognitive controller.

Another important set of inputs to any Al method are the degisariables. In the cognitive
radio case, these variables represent the transmissiampters that can be controlled by the
system. Once the virtual channel environment is createdf afsdecision variables are applied
to the fitness function and an approximation of how well thegetma set of quality of service
(Qo0S) goals is returned based upon the virtual environmEm. end result is a quantification
of how well a sample set of transmission parameters achigeeset of QoS goals. The Al can
use this scalar approximation to evolve the system to amaptset of transmission parameters.
Fig. 1 depicts a cognitive radio and several example trassion parameters and environmentally
sensed parameters represented as the "knobs™ and tiafithe radio.

In addition to the environmental data used to model the es®channel and the transmission
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parameters, several objectives must also be determinegfittechow the system should operate.
The objectives of the system are the road map for determthiedate of the system. They allow

the controller to steer the system to a specific QoS state. fEsiearch defines three objectives
that represent common wireless radio goals. Section llA&rsothe selection process of these

three objectives.

A. Decision Variables

Cognitive radios become possible when the componentsmiiti@ radio permit the modifica-
tion of the control parameters. These control parametersetrby the cognitive component once
an optimal decision has been formulated using the Al tedgwlGenerating fithess functions
to be used by evolutionary algorithms requires defining aifipdist of decision parameters
that must be available to the system. These decision pagesnate equivalent to the control
parameters made available by the software radio companEméstermdecision variableswill
be used in this paper to refer to the list of parameters tratuaed to control the individual
radio components.

Defining a complete list of decision variables to generateregc fithess function usable by
all radios is not possible. Radios are developed indepédlydeach possessing a unique list of
parameters used to control them. A goal of this paper is toéefidecision variable list large
enough to guarantee that a majority of parameter sets famitiog radios will include the set
defined in this work.

The decision variables selected for this work are radio rpatars that would commonly
be adjusted on the order of several minutes to adapt to thenehanvironment. This work
intentionally does not focus on parameters that changeeartter of hours, such as transmission
formats (e.g. OFDM or CDMA), encryption (e.g. WEP or PGP)eoor control types (e.g. Turbo
or convolutional coding). Restricting our focus to paragngtthat may change on a sub-second
level, such as transmit power, does not provide enough flexiwhen controlling a radio system.
Thus, when defining our list, we make a compromise betweelhatige time scale, system-level
parameters and the small time scale, transmission-levahpaters. The three parameters used

as transmission parameters in this paper to generate asfitmestion is shown in Table .
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TABLE |

TRANSMISSIONPARAMETER LIST

Parameter Name Symbol Description

Transmit Power P Raw transmission power

Modulation Type  MT Type of modulation

Modulation Index M Total number of symbols in a constél-
lation

B. Environment Parameters

Environmental variables inform the system of the surrongdenvironment characteristics.
These characteristics include: internal information @@gliusing sensors within the cognitive
radio, and external information from local cognitive raglwithin the same network. Both types
of information can be used to aide the cognitive controllemiaking decisions. These variables
are primarily used as inputs to the fitness function. The detapist of environmental parameters

used in this paper as inputs to the fitness function is showrabie II.

TABLE Il

ENVIRONMENTALLY SENSEDPARAMETER LIST

Parameter Name Symbol  Description

Bit-Error-Rate BER Percentage of bits that have errors rel-

ative to the total number of transmitted

bits.

Signal-to-Noise Ratio SNR Ratio of the signal power to thésad
power.

Noise Power N Magnitude in decibels of the noise
power.

The BER parameter represents the current operating BER pécfie modulation type. This
value depends on several channel characteristics, imgutiie noise level and transmit power.
The SNR represents the ratio of the signal power to the naiseepin decibels. The noise

power parameter informs the system of the approximate potfvdre noise in decibels.
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C. Fitness Objectives

In a wireless communications environment, there are skglesirable objectives that the radio
system may want to achieve. This works defines three obgscfor the fitness function in order

to lead the system to an optimal state. The three objectreegigen below in Table IlI.

TABLE 11l

COGNITIVE RADIO OBJECTIVES

Objective Name Description

Minimize Bit-Error-Rate Improve the overall BER of the tean

mission environment.

Maximize Throughput Increase the overall data throughput

transmitted by the radio.

Minimize Power Consumption Decrease the amount of power ¢on

sumed by the system.

Minimizing the BER is an extremely common communicationalg®his objective represents
minimizing the amount of errors relation to the amount of bi¢ing sent. In general this objective
represents improving the communications quality of thearaelaximizing the throughput deals
with the data throughput rate of the system. Emphasizing thijective, the overall system
throughput should be increased. The power consumptiorcingds, as expected, used to direct
the system to a state of minimal power utilization. This ehbje introduces interesting trade-
offs between several other objectives. A trade-off analpsiween minimizing BER, maximizing
throughput, and minimizing power consumption is discussefection V.

Using the objectives in Table IIl as sole inputs to the fitnfesections will not suffice. It is
ambiguous to have the system minimize power consumptiofevafso minimizing BER. Thus,
the objectives must also contain a quantifiable rank repteggthe importance of each. This
will allow the fitness function to characterize the tradésdietween each objective by ranking
the objectives in order of importance. Several approackisssefor determining the preference
information of a set of objectives [17]. This research usegeahted, aggregate sum approach
where each objective receives a weight representing it®fitapce. This method is detailed in
Section V.

September 30, 2006 DRAFT



WILEY WIRELESS COMMUNICATIONS AND MOBILE COMPUTING 8

[1l. GENETIC ALGORITHM OVERVIEW

Genetic algorithms are a class of artificial reasoning wherthe search is performed in a
manner similar to genetic evolution. In general, solutitmsa problem set are represented by
binary strings. These strings then are allowed to act in an@asimilar to genetic growth; strings
which are considered 'good’ split and recombine with otheod)strings to form new solutions,
while 'poorer’ strings are allowed to 'die’ out of the soloi set. This decision is made by the
fitness function which inputs the parameters and outputsi@ $ased on the specific goals of the
radio. Strings undergo a process called mutation, i.e.ndaa flipping of bits, to help prevent
local minimization from occurring. Genetic algorithms &ypically used as a method of problem
optimization [8], [18], [19]. However, given its random na¢, fast computation time, and ability
to spontaneously generate unique solutions, geneticitligts are an appealing candidate for
cognitive radios. Input and output parameters can easitydgped to a binary form and the size
of the genetic population is customizable to space avalalithin any given configuration [19].
Genetic algorithms are used mainly when the search spaceoisatge to be simply brute
force search to determine the optimal parameter set. Inpduieer we choose to use only two
parameters, modulation type and transmit power. An actoi@neunications system would have
more output parameters than modulation and transmit pamerthese parameters alone do not
create a sufficiently large population to perform evaluaiof the genetic algorithm without
other mechanisms. To solve this problem we simply increbser¢solution of the parameters.
Increasing the resolution of the parameters provides then@A more combinations and thus a
larger search space. The effects of the search space sihe @At convergence size is discussed

in detail in Section V.

A. Other Al Methods

Several other potential artificial intelligence (Al) metisocan be implemented in a cognitive
radio engine. Before we discuss the implementation of the @4 the fithess functions, a
brief technical overview of several traditional cognitiseethods is presented. Although these
cognitive methods have been employed in numerous applitgtihe following overview will
investigate them within a cognitive radio framework. Themaches covered briefly include:
rule-based systems [20], [21], cased-based reasoning @223y logic [23], [24], and neural

network [25]. Rule-based systems are derivatives of kndgdebased systems, where instead of
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representing knowledge as declarative logical statemintsvledge is manipulated by a simple
"if-then-else” implementation. While easy to implementjerbased systems suffer from poor
adaptability: situations encountered that are not withmule set can cause severe degradation
in answer quality [20], [21]. One means of dealing with thrawlback in rule-based systems
is to incorporate fuzzy logic. Fuzzy logic systems allowidemns to be made using parameters
that are not exact and may be noisy [23], [24]. However, thenradvantage to fuzzy systems is
merely this mapping of input values to discrete internaligal An alternative technique to rules
is neural networks [25], which tries to solve large, compbeablems by analyzing information
in a manner similar to neurons of the human brain. Neural okdsvhave the advantage of not
needing a large database of storage when implemented. ldowtbe inability to track why a
specific decision is made by a neural network system is anraotve attribute. Case-based
reasoning systems (CBR) are widely used for systems withigee lamount of space to store a
history of cases [22]. CBR systems match the current sdnatiith similar previous cases in
order to use similar outputs. The major concern with CBR&wst is the space requirement
needed to provide an optimal case database size. Detegnfrtime final case selected actually
performed well will require a feedback loop from the receitee score how well the parameter

set in fact performed.

IV. MULTIPLE OBJECTIVE FITNESS FUNCTIONS
A. Overview

In general, a multi-objective fithess function problem canplbesented as trying to determine
the correct mapping of a set ofi parameters to a set of objectives. This can be seen

algebraically as:

g = {f1(@), f2(2), f5(Z), ... fm(T)) (1)
subject to
7= (11,29, 73,...2,) € X
J=Ay, 92,93 - Ym) €Y

where z is the set of decision variables and is the parameter space, apds the set of

objectives withY” as the objective space. In practical problems, such as ti#gm investigated
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Fig. 2. Search Direction Example

in this paper, the objectives under consideration mightflmbrwith each other. For example,
minimizing power and minimizing BER simultaneously creae conflict due to the single
parameter, transmit power, affecting each objective infi@réint way. Determining the optimal
set of decision variables for a single objective, e.g. min@power, often results in a non-optimal
set with respect to other objectives, e.g. minimize BER amaimize throughput. The optimal
set for multiple objective functions lie on what is known &g Pareto optimal front. This front
represents the set of solutions that cannot be improved impany dimension. The solutions on
the Pareto front are optimal and co-exist due to the tratikebaftween the multiple objectives. A
graphical example of a Pareto front, using a simple cognitadio parameter scenario is shown
in Fig. 2.

The x-axis in the figure represents the score of the singlectibg fitness function for
minimizing BER in the case of several modulation types, whle y-axis is the score for
the single objective fitness function for minimize powereTgarametex represents the decision

variable vectors used as inputs to the fitness functionshitnsimple case, transmit power and
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modulation were used as decision variables. For each cas/éhe fitness score for minimize
power decreases, the score for the minimize BER objectiveases. This trade-off represents
the core of the multiple objective optimization problem.eTQPSK curve represents the Pareto
front, because no parameter set on that curve can be imprup@a to gain a better objective
score in respect to both objectives. The other modulatiovesurepresent the dominated solutions

to the bi-objective optimization problem.

B. Preference Information

In practice, the fitness function must be able to guide theeay$o one optimal parameter set.
A cognitive radio must perform an action based on a singlegparameters, which should be
selected from the Pareto front according to some preferrficenation. Preference information
is used to rank the objectives in order to help the fitnesstiomguide the evolutionary algorithm
to one optimal solution.

In addition to needing preference information for each cibje, the scalarization of the
objective vector is also necessary. Evolutionary algorghneed scalar fitness functions that
provide a single scalar value for the given parameter sendny optimization problems, when
no global criteria for the parameters exist, objectivesadten combined, or aggregated, into a
scalar function. This aggregation optimization method thesadvantage of providing a single
scalar solution for the fitness function. As a result, thiguiees no extra interaction with the
evolutionary algorithm to determine the optimality of a givparameter set.

There have been several approaches to the optimizationgregated functions. A simple
weighted sum approach is presented in [26]. The weighted agymmoach attempts to minimize
the sum of the positively normalized, weighted, single otiye scores. In [27], target vector
optimization was developed. Target vector optimizatiogurees a vector of goal values. The
optimization is driven toward the shortest distance behna®y candidate solution and the goal
vector. Goal attainment was also studied by Wilson and MadLm [28]. The importance
weighting methods used by the researchers at Virginia Téatepa numerical value on each
objective representing how much importance the systemlghmace on each objective. Their
weights range from between 0 and 255, with 0 being no impoetaand 255 being the most
important.

This research proposes to use the simple weighted sum apiblae weighted sum approach
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method suits the cognitive radio scenario well since it fes a convenient process for applying
weights to the objectives. Changing the objective directd the fitness function requires only
a simple change of the weighting vector. This enables a sinmkrface for a higher level
controller to modify the primary objective of the radio. Timerface could be used by a human
to change the weights manually or by an automated contrtiiegr monitors the internal radio
state and adjusts the weights to change the objective stdlbe oadio. For example, a radio in
default mode may be operating so as to ensure the best thpougbssible while not caring
much about minimizing power. However, assuming this is debpatpowered radio, the system
may sense low power in the battery and modify the objectivighte to emphasize minimizing
power.
We define a multiple objective fithess function of the paransét solution: by the following

weighted sum ofV objectives:
fla) = wifi(7) 2
=1

with wy,... w, satisfy the following constraints:

W:[wl,wg,...wn]
w; >0 for i=1,2,....,n
wy +we+ ... +w, =1 3)

When the weighting for each objective is constant, the $edmection of the evolutionary
algorithm is fixed. This is the intended property when tryiogfind a single optimal solution
for a given environment. However, changing the objectivegiveng means the fitness function
will immediately start steering the evolutionary algonittio a new solution. For example, take
the case in which a radio is operating in a maximize throughmde. In this mode, the fitness
function will give higher scores to parameter sets proygdanhigh throughput, e.g. large signal
constellation size. Suppose that the radio then detectsbkttery power. At this instance, it
changes the objective weighting to reflect an emphasis ommzimg power. Once the weights
change, the fitness function will instantly start giving lnég scores to parameter sets which
provide for lower power transmission, e.g. lower transnuitvpr. This is the primary attribute

that allows the objective weighting to dictate the goalestat the radio. It also allows for a
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dynamic system to instantly switch operating goals by synmpbdifying the objective weighting
vector.

Fig. 2 gives a graphical representation of the previous @k@nThe search direction®|.]
corresponds to a minimized power weight vector in the 2-[edlbje space. The search direction
w”[.] corresponds to a minimized BER weight vector in the 2-D dbjespace. As the objective

space increases, so does the dimension of search spaceditiars

V. PARAMETER TRADE-OFF ANALYSIS
A. Single Objective Goals
The weighted sum approach allows us to develop a single ilgdanction for each objective
and combine them to create a multiple objective function.dBvelop the single objective

functions, we must determine the dependence relationgtipden each objective and the set of
parameters defined in Section II-A. The complete table @fti@hships is displayed in Table V.

TABLE IV

OBJECTIVE AND PARAMETER RELATIONSHIPS

Objective Name Related Parameters
Minimize Bit-Error-Rate P,N,MT,M
Maximize Throughput P.MT,M

Minimize Power Consumption P

This method differs from the methods of other cognitive cadiork because we restrict our
weights to sum to 1. This normalization makes the weightihghe objective more intuitive
for both a human and the cognitive system. When using a narethlsystem, there is no
ambiguity about how much importance is given to an objectiven-normalized systems can
cause confusion when placing importance because there iisfa@nce when determining the
objective importance. For example, if we are using a nomratized system with values between
0 and 255, and we place a value of 255 on all objectives. Tleermiway for the system to
understand how this is different if we place values of 128 brolgjectives. In both cases the
objectives are weighted equally. Using a normalized sys&moves this ambiguity.

The weighting constraints imposed on the individual wesglgach single fitness function

score, must be normalized to the same range. Otherwisendsstfunction A outputs scores
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from ranges [0,1] and fitness function B outputs scores frop wherex > 1, then the global
fitness function would show a bias to function B due to thedargutput range. The outputs of
the functions developed in this research are all normalizethe range [0,1].

For each single objective function, the inputs for the fiorctimust be the parameters corre-
sponding to the objectives in Table IV. Deriving the relaships between each objective and
its parameters is the ultimate objective of this researold, will require analysis of the closed
form solutions of each parameters and the potential rangalogs.

The trade-off analysis has been done using a set of objscawmel parameters presented
earlier. Using this analysis, we created several singleativie functions for both single carrier
and multicarrier cognitive systems. For a single carrietey, the functions using the previously

defined parameters are:

P
fmin_ber =1- Pmaq; (4)
0g,,(0.5)
min_power — L T T 5 ~\ 5
Fminp 109, (Fre) ©)
_log,(M)
fmax_throughput — m (6)

where P is the transmit power of the single carrie?,,,, is the maximum available transmit
power, M is the modulation index}/,,.. is the maximum modulation index, aé, represents

the probability of a bit error or BER for a given modulatiorheme and a given channel type.
In this investigation, we assume the possible modulatigegyinclude QAM, PSK, and FSK.
To apply this work to practical systems, we must determiree BER for each modulation.

The following equations describe the BER of QAM, PSK, and F8King a gray-coded bit

assignment and assuming an AWGN channel model.

For a BPSK signal constellation, the BER is defined as [29]:

P =Q ( %) )

Whereas for M-ary PSK the BER is given as [29]:

2 P 7
Py = WQ <\/2 x 109, (M) * v SInM) (8)
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For M-ary QAM, the BER is defined as [29]:

4 1 3xlog,(M) P
P, = 1— _ 9
For a multicarrier system witlv' subcarriers, the objective functions are defined as:
P;
_ N P 1
fmc_mzn_ber N * Pmax ( O)
log,,(0.5
fmc-min_power = 1= %—) (11)
l0g,(Fhe)
log, (M)
= — 12
fmc_max_throughput |092(Mmax) ( )

where P; is the transmit power on subcarrigrN is the number of carriers), is the average

BER overN channels, and,,,. is the maximum possible transmit power for a single subearri

B. Multiple Objective Goals

The weighted sum approach allows us to combine the singlecbbg functions into one
single multiple objective function. Eqg. (2) shows that eatljective is multiplied by a weight
w; and summed together to give a single scalar value for appatikig the value of a parameter
set. For the single objective equations, we form the mutgidjective functions for both single
and multiple carriers below:

Single Carrier:

fsingle = W * (fmin_ber) + Wa * (fmin.power) + ws * (fmam-throughput) (13)

Multicarrier:

fmulti = wy * (fmc_min_ber) + Wa * (fmc_min_power) + ws * (fmc_max_throughput) (14)

The weight vectoi? determines the search direction for the evolutionary dligwor and must
conform to the constraints given in Eq. (3). We have definecgrsé example weight vectors
representing common scenarios in which a cognitive radig beaplaced. Each weight vector
shown in Table V emphasizes different objectives causing\wautionary algorithm using this
fithess function to evolve toward solutions pertaining te fpecific objective.

Using these example weight vectors and a genetic algoritigine, we have generated genetic
algorithm convergence results, along with the statisteg@esenting the average final decision

output by the GA. These results are presented in Section VII.
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TABLE V

EXAMPLE WEIGHTING SCENARIOS

Scenario Weight Vector [w1,w2,ws]
Low Power Mode (minimize power) [ 0.80, 0.05, 0.15]
Emergency Mode (minimize BER) [ 0.15, 0.80, 0.05 ]
Multimedia Mode (maximize throughput) [ 0.05, 0.15, 0.80 ]

VI. COGNITIVE RADIO ALGORITHM SIMULATION ENVIRONMENT
A. Simulation Framework

To implement the genetic algorithm, a cognitive simulatiammework was developed. Using
this framework, we can implement the GA in a software-defiregtio architecture that provides
an interactive environment and allows the cognitive cdlgrao simulate controlling actual
radio components. The framework used to create the cognitidio architecture was based
on the OSSIE cognitive radio architecture developed atiMiagTech [30], [31]. The OSSIE
architecture is a C++ implementation of the Software Comigations Architecture (SCA) [1].
The SCA is an open architecture developed by the Joint BddRadio System (JTRS), which
provides a common architecture for software radio devekpe use, allowing them to build
radios that are interoperable and modular across mul@g®rdomains. This modularity feature
allows us to develop a cognitive component simply plug ibittte existing OSSIE framework
as needed. The SCA is currently being developed by a wideerahghdustry participants, and
has a large academic research base. It is widely assumedrnth&@CA implementation would

correctly simulate the architecture of a common cognitaia.

B. Genetic Algorithm Module

The GA consists of multiple classes that define the algorind its components. It cre-
ates a randomly generated solution population consistint06 individuals. Each member of
the population is a class instance, which contains a soluget of output parameter values
represented as a chromosome. Evolution occurs by splity combining chromosomes to
form new generations. The fitness functions describedegaalie used to drive the selection of

chromosomes for combining. During each generation cyaleryestring is filtered to prevent
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non-possible solutions from entering the solution set. §éreetic algorithm parameters used are
from the DeJong settings [32], which are the defacto settfogcommon GAs. The probability
for the crossover process to occur between two strings is @@ititionally, all strings are given
the .1% chance to mutate, which randomly flips a bit in thengtemulating a spontaneous
mutation. The population size of each generation is 50. Hwveest generations of chromosomes

are stored in the radio for future processing.

VIlI. SIMULATION RESULTS

We simulated a multicarrier system with 64 subcarriers hEsabcarrier was assigned a random
attenuation value), to simulate a dynamic channel. Hence, the SNR varied fan ehannel,
inducing a need for the adaptation for each individual clednn

For this paper we only consider three different QAM conatedhs and BPSK as the modula-
tion types of the system. If we were to consider more modutatypes, only the BER equation
used to determine the minimize BER fitness function woulddrteechange to account for other
modulations. These restrictions are in place to keep thdemgntation simple without taking
away from the value of the simulations. This is because thitiad of other modulation types
would only slightly increase the parameter space, while glaating the GA program with
conditional statements in the fitness function. The sinmtagtused BPSK, and three modulation
indexes corresponding to the three square QAM index valees 16-QAM, 128-QAM, 1024-
QAM).

The transmit power ranged from 0.1 mW to 2.56 mW using incrégsmef 0.0256 mW. This
maximum power value was selected since it is close to theifgggenaximum transmit power
level of 2.5 mW for a 1 MHz bandwidth, allowed in the lower UNdand (5.15 GHz - 5.25
GHz). The extra range was allowed to make the processingergémetic algorithm simpler.
With 100 possible values for the transmit power and 5 possitbdulation indexes, this gives
500 possible values for each subcarrier. In the case of a lodastier system this gives a total
search space of 32,000.

The first simulation was targeted to determine the convegdme of the GA using the
fithess functions, along with the fitness converged to. Tlemagos defined in Table V were
used for the vector of weights to create three differentaedirections for the cognitive radio.

Fig. 3 shows the convergence attributes of the GA when usiagdw Power Modescenario.
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Similarly, Fig. 4 shows the convergence attributes of thev@?en using th&amergencyscenario
and Fig. 5 shows the convergence attributes of the GA whergukeMultimediascenario. For
each simulation run, the average fitness is the averageditfesll 64 subcarriers which make
up a chromosome. The figures shows these averaged fithess watar 10 simulation runs to
ensure we get a time invariant average.

Each subcarrier has a random channel attenuatomsing this value and the vector weights,
the GA has optimized the transmission parameters so thavirage chromosome, has a fitness
value of 0.930 in the case of thew Power Modgeafter 1000 generations. Table VI shows the
average fitness for each scenario after 1000 generations.

The convergence figures and tables validate the geneticithigoimplementation by demon-
strating that the algorithm converges. However, a more napb result is the transmission
parameter values to which they converge. Fig. 6 shows a sattidbutes corresponding to a
snapshot of a final output at generation 1000 of a simulation for the low power mode
scenario. The random channel attenuation is shown, alotig thve final values of throughput

and power for each of the 64 subcarriers. The bottom windofign 6 shows that all transmit
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TABLE VI

CONVERGED FITNESS AFTERLOOOGENERATIONS

Scenario Converged Fitness
Low Power Mode (minimize power) 0.930
Emergency Mode (minimize BER) 0.800
Multimedia Mode (maximize throughput) 0.938

powers on the subcarriers are below 0.1 mW. The averagemrapswer in this specific case
is 0.0217 mW per subcarrier while the average modulatioexnd at 9.72. The low average
power indicates the primary goal of the scenario, minimipgvgr, was achieved. The other
goals did not have quite an impact on the optimal parameterakbough because there is not
much trade-off between power and throughput (e.g. modulatidex), the small weight on the
maximize throughput goal still allowed the system to previdr a high system throughput.
Fig. 7 and Fig. 8 also shows similar information for both themergency modand the
multimedia modeThe emergency modscenario figure shows that the final decision provided a
low modulation index over all the subcarriers with an averaf2.5 per subcarrier. The transmit
power was at approximately 40% of maximum power. This coméigon yeilds a low BER
due to the low modulation index, while keeping small balaonghe minimize power objective
with a weighting of 0.15. The middle window in thaultimedia modescenario validates that
the maximum throughput is the primary objective for thisreo®. All subcarriers are set to a

maximum modulation index of 10 providing for the maximum gibge throughput.

VIII. CONCLUSION

This paper introduced an implementation of a multicarregrative radio that uses a genetic
algorithm as the decision method. An important part of theegie algorithm is the fitness
function that directs the evolution of the GA parameter sethe optimal set. We have introduced
several fitness functions that are used to score how wellanpzeter set consisting of modulation
index and transmit power match the given objectives. Fgrieactions for multicarrier systems
were presented and it was shown that the single carrier $ithegtions could be easily derived
using the multicarrier equations. Whereas the single enafiiness functions were simple, the

multicarrier systems present a much larger problem. Eabbastier must be optimized to adapt
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to the dynamic wireless environment. These functions piea powerful and straightforward
method for scoring sets of parameters given the goals anmdwilegghts. Using a weighted sum
approach enables a higher level control component to eamilyify the search direction of the
GA by adjusting the weight vector values.

The simulation results illustrated the GA implementatigrshowing the convergence statistics
of the GA when using the multicarrier fitness functions. A Gsbarrier system was then
simulated using three separate scenarios. The resultesé imulations proved that the fithess
functions steer the evolution of the GA in the correct dim@tto optimize the given objectives
for each scenario. Each scenario consisted of a primary \italan 80% weighting and two
secondary goals with much smaller weighting. The paramatet objective trade-off were
illustrated by the final decision values for the sample setall three cases the final decision
provided a parameter set that put more emphasis on the priofgective while still balancing
between the two secondary objectives.

The multicarrier fitness functions presented in this papebée an interface for changing
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the dynamic search direction of the GA. This, in turn, pregica simple way to control the
intended operation of the cognitive controller. Extenginagle-off analysis needs to be done to
relate the plethora of different cross-layer parameteas ¢an be used by a cognitive component

to determine the optimal transmission parameters.
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