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Abstract

This paper presents a genetic-algorithm driven, cognitiveradio decision engine that determines the

optimal radio transmission parameters for single and multicarrier systems. Determining the appropriate

radio parameters given a dynamic wireless channel environment is the primary feature of cognitive

radios for wireless communication systems. Genetic algorithms (GA) are designed to select the optimal

transmission parameters by scoring a subset of parameters and evolving them until the optimal value

is reached for a given goal. Although there have been implementations of GA-based single carrier

cognitive radio engines, the performance of these algorithms has not been thoroughly analyzed nor

have the fitness functions employed by the algorithms been explored in detail. Multicarrier systems

are common in today’s communication environment, thus cognitive techniques that account for only

single carrier systems neglect the practical issues of multiple carriers. A set of accurate single carrier

and multicarrier fitness functions for our GA implementation that completely control the evolution of

the algorithm have been derived. The performance analysis results illustrate the trade-offs between the

convergence time of the GA and the size of the GA search space.
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I. INTRODUCTION

Cognitive radio technology is receiving significant attention as an approach to alleviate the

apparent scarcity of available radio spectrum [1]–[4]. Cognitive radios encompass all the

reconfigurable attributes of a conventional software-defined radio (SDR) while possessing the

”intelligence” to automatically adapt operating parameters based on learning from previous

events and current inputs to the system. The momentum of research efforts, due in part to

the current spectrum scarcity problem, as well as a Department of Defense initiative [1] to

develop a flexible software radio approach for war fighter communications, has yielded numerous

initiatives and programs by researchers in academia [5] andindustry [6]. The resulting plethora

of cognitive radio solutions range from cognitive radio components and radio network testbeds

[5] to complete radio systems [2].

Much current cognitive radio development is focused on providing dynamic spectrum access

solutions [3], [4], [7], where unlicensed transmissions operate across licensed spectrum while

not interfering with incumbent users. With current regulatory requirements based on assigning

fixed allocations of spectrum to the highest bidding operators, and with the demand for additional

transmission bandwidth increasing for both existing and new wireless applications, there exists an

apparent shortage of spectrum for expansion [4]. Nevertheless, several measurement studies have

shown that spectrum usage is sparse in both time and frequency [8]. Thus, dynamic spectrum

access provides radios with the ability to detect the spectrum usage and determine what to do

if the target frequency band is in use. The major technical issue is how to reliably determine if

the target spectrum is occupied by an incumbent transmission or another unlicensed user [3],

[7], [9]–[11].

Research done at Virginia Tech has also developed a genetic algorithm engine for cognitive

radios [12], [13]. Their simulation results validate that their genetic algorithm implementation

does in fact change the transmission parameters to different settings, based upon a set of

objectives. The work presented in this paper goes beyond just demonstrating that the genetic

algorithm outputs a selection, but also provides the numerical analysis of the relationships

between the environmental parameters and the transmissionparameters. We provide the derivation

of the equations representing these relationships and use them as the fitness functions for the

genetic algorithm. As we will also show in the following sections, the methods used to place
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importance factors on the various radio objectives are alsodifferent.

This paper focuses on the technical issues that exist once multiple radios are simultaneously

communicating and channel problems become the source of communication errors, i.e., after

spectrum assignments have been determined. Cognitive radios should not only be capable of

adapting to the frequency spectrum being used around it, butalso the channel conditions that

could possibly prevent it from effectively communicating in the available bandwidth. This

work focuses on the adaptation of radio parameters to the prevailing channel conditions for

both single carrier and multicarrier systems. The traditional fine-grained adaptation of specific

parameters, e.g., equalizer coefficients [14], power levels [15], modulation schemes [16], are

common in today’s radio systems. Cognitive radios go beyondthis with more comprehensive

techniques. In this context, autonomous radio parameter adaptation involves having an artificial

intelligence (AI) system decide on the values of the radio parameters in order to create the

intended communications environment. Therefore, the AI system constitutes the core controller

for a cognitive radio system, and the selection process of anAI can substantially affect the

performance of the system. Thus, it is important to understand the available AI methods and

their suitability under various operating conditions.

This paper presents a genetic algorithm (GA) driven cognitive engine implementation for single

carrier and multicarrier systems. Although there have beenimplementations of single carrier

GA-based cognitive radio engines, the performance of thesealgorithms has not been thoroughly

analyzed nor have the fitness functions employed by the algorithms [2] been explored in detail.

We derive a set of fitness functions that guide the search direction of the GA to an optimal set

of transmission parameters given a set of goals and the controllable transmission parameters. We

then demonstrate the trade-off between the size of the search space and the convergence time

of the GA to the optimal parameter set.

II. COGNITIVE RADIO PARAMETERS

In developing a cognitive radio control system, several inputs must be defined. The accuracy

of the decisions made by an AI method is based upon the qualityand quantity of inputs to the

system. A primary feature of cognitive radios is the abilityto adapt to the surrounding environ-

ment. This feature defines a critical input to the system - a representation of the environment. In

order for the system to make decisions about a certain output, the current wireless environment
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Fig. 1. Cognitive Radio Illustration

must be modeled internally. This model is created using environmentally-sensed data received

by the system using an external sensor.

Several devices exist to detect characteristics of the wireless environment. The DARPA XG

program has introduced hardware for sensing environment characteristics, including spectrum

usage [10]. This information is useful if the radio is tryingto maximize spectral efficiency.

Other sensors may detect important characteristics such as, the current noise floor, or determine

the bit-error-rate (BER) of the current running configuration. In the following sections, we will

propose a list of environmentally-sensed parameters that will be used to aid in the decision

making process of the cognitive controller.

Another important set of inputs to any AI method are the decision variables. In the cognitive

radio case, these variables represent the transmission parameters that can be controlled by the

system. Once the virtual channel environment is created, a set of decision variables are applied

to the fitness function and an approximation of how well they meet a set of quality of service

(QoS) goals is returned based upon the virtual environment.The end result is a quantification

of how well a sample set of transmission parameters achievesthe set of QoS goals. The AI can

use this scalar approximation to evolve the system to an optimal set of transmission parameters.

Fig. 1 depicts a cognitive radio and several example transmission parameters and environmentally

sensed parameters represented as the ”‘knobs”’ and ”‘dials”’ of the radio.

In addition to the environmental data used to model the wireless channel and the transmission
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parameters, several objectives must also be determined to define how the system should operate.

The objectives of the system are the road map for determiningthe fate of the system. They allow

the controller to steer the system to a specific QoS state. This research defines three objectives

that represent common wireless radio goals. Section II-C covers the selection process of these

three objectives.

A. Decision Variables

Cognitive radios become possible when the components within the radio permit the modifica-

tion of the control parameters. These control parameters are set by the cognitive component once

an optimal decision has been formulated using the AI technology. Generating fitness functions

to be used by evolutionary algorithms requires defining a specific list of decision parameters

that must be available to the system. These decision parameters are equivalent to the control

parameters made available by the software radio components. The termdecision variableswill

be used in this paper to refer to the list of parameters that are used to control the individual

radio components.

Defining a complete list of decision variables to generate a generic fitness function usable by

all radios is not possible. Radios are developed independently, each possessing a unique list of

parameters used to control them. A goal of this paper is to define a decision variable list large

enough to guarantee that a majority of parameter sets for cognitive radios will include the set

defined in this work.

The decision variables selected for this work are radio parameters that would commonly

be adjusted on the order of several minutes to adapt to the channel environment. This work

intentionally does not focus on parameters that change on the order of hours, such as transmission

formats (e.g. OFDM or CDMA), encryption (e.g. WEP or PGP), orerror control types (e.g. Turbo

or convolutional coding). Restricting our focus to parameters that may change on a sub-second

level, such as transmit power, does not provide enough flexibility when controlling a radio system.

Thus, when defining our list, we make a compromise between thelarge time scale, system-level

parameters and the small time scale, transmission-level parameters. The three parameters used

as transmission parameters in this paper to generate a fitness function is shown in Table I.
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TABLE I

TRANSMISSIONPARAMETER L IST

Parameter Name Symbol Description

Transmit Power P Raw transmission power

Modulation Type MT Type of modulation

Modulation Index M Total number of symbols in a constel-

lation

B. Environment Parameters

Environmental variables inform the system of the surrounding environment characteristics.

These characteristics include: internal information acquired using sensors within the cognitive

radio, and external information from local cognitive radios within the same network. Both types

of information can be used to aide the cognitive controller in making decisions. These variables

are primarily used as inputs to the fitness function. The complete list of environmental parameters

used in this paper as inputs to the fitness function is shown inTable II.

TABLE II

ENVIRONMENTALLY SENSEDPARAMETER L IST

Parameter Name Symbol Description

Bit-Error-Rate BER Percentage of bits that have errors rel-

ative to the total number of transmitted

bits.

Signal-to-Noise Ratio SNR Ratio of the signal power to the noise

power.

Noise Power N Magnitude in decibels of the noise

power.

The BER parameter represents the current operating BER of a specific modulation type. This

value depends on several channel characteristics, including the noise level and transmit power.

The SNR represents the ratio of the signal power to the noise power in decibels. The noise

power parameter informs the system of the approximate powerof the noise in decibels.
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C. Fitness Objectives

In a wireless communications environment, there are several desirable objectives that the radio

system may want to achieve. This works defines three objectives for the fitness function in order

to lead the system to an optimal state. The three objectives are given below in Table III.

TABLE III

COGNITIVE RADIO OBJECTIVES

Objective Name Description

Minimize Bit-Error-Rate Improve the overall BER of the trans-

mission environment.

Maximize Throughput Increase the overall data throughput

transmitted by the radio.

Minimize Power Consumption Decrease the amount of power con-

sumed by the system.

Minimizing the BER is an extremely common communications goal. This objective represents

minimizing the amount of errors relation to the amount of bits being sent. In general this objective

represents improving the communications quality of the radio. Maximizing the throughput deals

with the data throughput rate of the system. Emphasizing this objective, the overall system

throughput should be increased. The power consumption objective is, as expected, used to direct

the system to a state of minimal power utilization. This objective introduces interesting trade-

offs between several other objectives. A trade-off analysis between minimizing BER, maximizing

throughput, and minimizing power consumption is discussedin Section V.

Using the objectives in Table III as sole inputs to the fitnessfunctions will not suffice. It is

ambiguous to have the system minimize power consumption while also minimizing BER. Thus,

the objectives must also contain a quantifiable rank representing the importance of each. This

will allow the fitness function to characterize the trade-offs between each objective by ranking

the objectives in order of importance. Several approaches exists for determining the preference

information of a set of objectives [17]. This research uses aweighted, aggregate sum approach

where each objective receives a weight representing its importance. This method is detailed in

Section IV.
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III. GENETIC ALGORITHM OVERVIEW

Genetic algorithms are a class of artificial reasoning whereby the search is performed in a

manner similar to genetic evolution. In general, solutionsto a problem set are represented by

binary strings. These strings then are allowed to act in a manner similar to genetic growth; strings

which are considered ’good’ split and recombine with other good strings to form new solutions,

while ’poorer’ strings are allowed to ’die’ out of the solution set. This decision is made by the

fitness function which inputs the parameters and outputs a score based on the specific goals of the

radio. Strings undergo a process called mutation, i.e., a random flipping of bits, to help prevent

local minimization from occurring. Genetic algorithms aretypically used as a method of problem

optimization [8], [18], [19]. However, given its random nature, fast computation time, and ability

to spontaneously generate unique solutions, genetic algorithms are an appealing candidate for

cognitive radios. Input and output parameters can easily bemapped to a binary form and the size

of the genetic population is customizable to space available within any given configuration [19].

Genetic algorithms are used mainly when the search space is too large to be simply brute

force search to determine the optimal parameter set. In thispaper we choose to use only two

parameters, modulation type and transmit power. An actual communications system would have

more output parameters than modulation and transmit power,and these parameters alone do not

create a sufficiently large population to perform evaluations of the genetic algorithm without

other mechanisms. To solve this problem we simply increase the resolution of the parameters.

Increasing the resolution of the parameters provides the GAwith more combinations and thus a

larger search space. The effects of the search space size on the GA convergence size is discussed

in detail in Section V.

A. Other AI Methods

Several other potential artificial intelligence (AI) methods can be implemented in a cognitive

radio engine. Before we discuss the implementation of the GAand the fitness functions, a

brief technical overview of several traditional cognitivemethods is presented. Although these

cognitive methods have been employed in numerous applications, the following overview will

investigate them within a cognitive radio framework. The approaches covered briefly include:

rule-based systems [20], [21], cased-based reasoning [22], fuzzy logic [23], [24], and neural

network [25]. Rule-based systems are derivatives of knowledge-based systems, where instead of

September 30, 2006 DRAFT



WILEY WIRELESS COMMUNICATIONS AND MOBILE COMPUTING 9

representing knowledge as declarative logical statements, knowledge is manipulated by a simple

”if-then-else” implementation. While easy to implement, rule-based systems suffer from poor

adaptability: situations encountered that are not within the rule set can cause severe degradation

in answer quality [20], [21]. One means of dealing with this drawback in rule-based systems

is to incorporate fuzzy logic. Fuzzy logic systems allow decisions to be made using parameters

that are not exact and may be noisy [23], [24]. However, the main advantage to fuzzy systems is

merely this mapping of input values to discrete internal values. An alternative technique to rules

is neural networks [25], which tries to solve large, complexproblems by analyzing information

in a manner similar to neurons of the human brain. Neural networks have the advantage of not

needing a large database of storage when implemented. However, the inability to track why a

specific decision is made by a neural network system is an unattractive attribute. Case-based

reasoning systems (CBR) are widely used for systems with a large amount of space to store a

history of cases [22]. CBR systems match the current situation with similar previous cases in

order to use similar outputs. The major concern with CBR systems is the space requirement

needed to provide an optimal case database size. Determining if the final case selected actually

performed well will require a feedback loop from the receiver to score how well the parameter

set in fact performed.

IV. M ULTIPLE OBJECTIVE FITNESS FUNCTIONS

A. Overview

In general, a multi-objective fitness function problem can be presented as trying to determine

the correct mapping of a set ofm parameters to a set ofn objectives. This can be seen

algebraically as:

~y = 〈f1(~x), f2(~x), f3(~x), . . . fm(~x)〉 (1)

subject to

~x = 〈x1, x2, x3, . . . xn〉 ∈ X

~y = 〈y1, y2, y3, . . . ym〉 ∈ Y

wherex is the set of decision variables andX is the parameter space, andy is the set of

objectives withY as the objective space. In practical problems, such as the problem investigated
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Fig. 2. Search Direction Example

in this paper, the objectives under consideration might conflict with each other. For example,

minimizing power and minimizing BER simultaneously creates a conflict due to the single

parameter, transmit power, affecting each objective in a different way. Determining the optimal

set of decision variables for a single objective, e.g. minimize power, often results in a non-optimal

set with respect to other objectives, e.g. minimize BER and maximize throughput. The optimal

set for multiple objective functions lie on what is known as the Pareto optimal front. This front

represents the set of solutions that cannot be improved uponin any dimension. The solutions on

the Pareto front are optimal and co-exist due to the trade-offs between the multiple objectives. A

graphical example of a Pareto front, using a simple cognitive radio parameter scenario is shown

in Fig. 2.

The x-axis in the figure represents the score of the single objective fitness function for

minimizing BER in the case of several modulation types, while the y-axis is the score for

the single objective fitness function for minimize power. The parameterx represents the decision

variable vectors used as inputs to the fitness functions. In this simple case, transmit power and
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modulation were used as decision variables. For each curve,as the fitness score for minimize

power decreases, the score for the minimize BER objective increases. This trade-off represents

the core of the multiple objective optimization problem. The QPSK curve represents the Pareto

front, because no parameter set on that curve can be improvedupon to gain a better objective

score in respect to both objectives. The other modulation curves represent the dominated solutions

to the bi-objective optimization problem.

B. Preference Information

In practice, the fitness function must be able to guide the system to one optimal parameter set.

A cognitive radio must perform an action based on a single setof parameters, which should be

selected from the Pareto front according to some preferenceinformation. Preference information

is used to rank the objectives in order to help the fitness function guide the evolutionary algorithm

to one optimal solution.

In addition to needing preference information for each objective, the scalarization of the

objective vector is also necessary. Evolutionary algorithms need scalar fitness functions that

provide a single scalar value for the given parameter set. Inmany optimization problems, when

no global criteria for the parameters exist, objectives areoften combined, or aggregated, into a

scalar function. This aggregation optimization method hasthe advantage of providing a single

scalar solution for the fitness function. As a result, this requires no extra interaction with the

evolutionary algorithm to determine the optimality of a given parameter set.

There have been several approaches to the optimization of aggregated functions. A simple

weighted sum approach is presented in [26]. The weighted sumapproach attempts to minimize

the sum of the positively normalized, weighted, single objective scores. In [27], target vector

optimization was developed. Target vector optimization requires a vector of goal values. The

optimization is driven toward the shortest distance between any candidate solution and the goal

vector. Goal attainment was also studied by Wilson and MacLeod in [28]. The importance

weighting methods used by the researchers at Virginia Tech place a numerical value on each

objective representing how much importance the system should place on each objective. Their

weights range from between 0 and 255, with 0 being no importance and 255 being the most

important.

This research proposes to use the simple weighted sum approach. The weighted sum approach
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method suits the cognitive radio scenario well since it provides a convenient process for applying

weights to the objectives. Changing the objective direction of the fitness function requires only

a simple change of the weighting vector. This enables a simple interface for a higher level

controller to modify the primary objective of the radio. Theinterface could be used by a human

to change the weights manually or by an automated controllerthat monitors the internal radio

state and adjusts the weights to change the objective state of the radio. For example, a radio in

default mode may be operating so as to ensure the best throughput possible while not caring

much about minimizing power. However, assuming this is a battery powered radio, the system

may sense low power in the battery and modify the objective weights to emphasize minimizing

power.

We define a multiple objective fitness function of the parameter set solutionx by the following

weighted sum ofN objectives:

f(x) =

m
∑

i=1

wifi(~x) (2)

with w1,. . . ,wn satisfy the following constraints:

W = [w1, w2, . . . wn]

wi ≥ 0 for i = 1, 2, . . . , n

w1 + w2 + . . . + wn = 1 (3)

When the weighting for each objective is constant, the search direction of the evolutionary

algorithm is fixed. This is the intended property when tryingto find a single optimal solution

for a given environment. However, changing the objective weighting means the fitness function

will immediately start steering the evolutionary algorithm to a new solution. For example, take

the case in which a radio is operating in a maximize throughput mode. In this mode, the fitness

function will give higher scores to parameter sets providing a high throughput, e.g. large signal

constellation size. Suppose that the radio then detects lowbattery power. At this instance, it

changes the objective weighting to reflect an emphasis on minimizing power. Once the weights

change, the fitness function will instantly start giving higher scores to parameter sets which

provide for lower power transmission, e.g. lower transmit power. This is the primary attribute

that allows the objective weighting to dictate the goal state of the radio. It also allows for a
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dynamic system to instantly switch operating goals by simply modifying the objective weighting

vector.

Fig. 2 gives a graphical representation of the previous example. The search directionwa[.]

corresponds to a minimized power weight vector in the 2-D objective space. The search direction

wb[.] corresponds to a minimized BER weight vector in the 2-D objective space. As the objective

space increases, so does the dimension of search space for a solution.

V. PARAMETER TRADE-OFF ANALYSIS

A. Single Objective Goals

The weighted sum approach allows us to develop a single objective function for each objective

and combine them to create a multiple objective function. Todevelop the single objective

functions, we must determine the dependence relationship between each objective and the set of

parameters defined in Section II-A. The complete table of relationships is displayed in Table IV.

TABLE IV

OBJECTIVE AND PARAMETER RELATIONSHIPS

Objective Name Related Parameters

Minimize Bit-Error-Rate P ,N ,MT ,M

Maximize Throughput P ,MT ,M

Minimize Power Consumption P

This method differs from the methods of other cognitive radio work because we restrict our

weights to sum to 1. This normalization makes the weighting of the objective more intuitive

for both a human and the cognitive system. When using a normalized system, there is no

ambiguity about how much importance is given to an objective. Non-normalized systems can

cause confusion when placing importance because there is noreference when determining the

objective importance. For example, if we are using a non-normalized system with values between

0 and 255, and we place a value of 255 on all objectives. There is no way for the system to

understand how this is different if we place values of 128 on all objectives. In both cases the

objectives are weighted equally. Using a normalized systemremoves this ambiguity.

The weighting constraints imposed on the individual weights, each single fitness function

score, must be normalized to the same range. Otherwise, if fitness function A outputs scores
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from ranges [0,1] and fitness function B outputs scores from [0,x] wherex > 1, then the global

fitness function would show a bias to function B due to the larger output range. The outputs of

the functions developed in this research are all normalizedto the range [0,1].

For each single objective function, the inputs for the function must be the parameters corre-

sponding to the objectives in Table IV. Deriving the relationships between each objective and

its parameters is the ultimate objective of this research, and will require analysis of the closed

form solutions of each parameters and the potential range ofvalues.

The trade-off analysis has been done using a set of objectives and parameters presented

earlier. Using this analysis, we created several single objective functions for both single carrier

and multicarrier cognitive systems. For a single carrier system, the functions using the previously

defined parameters are:

fmin ber = 1 − P

Pmax

(4)

fmin power = 1 − log
10

(0.5)

log
10

(Pbe)
(5)

fmax throughput =
log

2
(M)

log
2
(Mmax)

(6)

whereP is the transmit power of the single carrier,Pmax is the maximum available transmit

power,M is the modulation index,Mmax is the maximum modulation index, andPbe represents

the probability of a bit error or BER for a given modulation scheme and a given channel type.

In this investigation, we assume the possible modulation types include QAM, PSK, and FSK.

To apply this work to practical systems, we must determine the BER for each modulation.

The following equations describe the BER of QAM, PSK, and FSK, using a gray-coded bit

assignment and assuming an AWGN channel model.

For a BPSK signal constellation, the BER is defined as [29]:

Pbe = Q

(

√

P

N

)

(7)

Whereas for M-ary PSK the BER is given as [29]:

Pbe =
2

log
2
(M)

Q

(

√

2 ∗ log
2
(M) ∗ P

N
∗ sin

π

M

)

(8)
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For M-ary QAM, the BER is defined as [29]:

Pbe =
4

log
2
(M)

(1 − 1√
M

)Q

(

√

3 ∗ log
2
(M)

M − 1

P

N

)

(9)

For a multicarrier system withN subcarriers, the objective functions are defined as:

fmc min ber = 1 − Pi

N ∗ Pmax

(10)

fmc min power = 1 − log
10

(0.5)

log
10

(Pbe)
(11)

fmc max throughput =
log

2
(M)

log
2
(Mmax)

(12)

wherePi is the transmit power on subcarrieri, N is the number of carriers,̄Pbe is the average

BER overN channels, andPmax is the maximum possible transmit power for a single subcarrier.

B. Multiple Objective Goals

The weighted sum approach allows us to combine the single objective functions into one

single multiple objective function. Eq. (2) shows that eachobjective is multiplied by a weight

wi and summed together to give a single scalar value for approximating the value of a parameter

set. For the single objective equations, we form the multiple objective functions for both single

and multiple carriers below:

Single Carrier:

fsingle = w1 ∗ (fmin ber) + w2 ∗ (fmin power) + w3 ∗ (fmax throughput) (13)

Multicarrier:

fmulti = w1 ∗ (fmc min ber) + w2 ∗ (fmc min power) + w3 ∗ (fmc max throughput) (14)

The weight vectorW determines the search direction for the evolutionary algorithm and must

conform to the constraints given in Eq. (3). We have defined several example weight vectors

representing common scenarios in which a cognitive radio may be placed. Each weight vector

shown in Table V emphasizes different objectives causing anevolutionary algorithm using this

fitness function to evolve toward solutions pertaining to the specific objective.

Using these example weight vectors and a genetic algorithm engine, we have generated genetic

algorithm convergence results, along with the statistics representing the average final decision

output by the GA. These results are presented in Section VII.
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TABLE V

EXAMPLE WEIGHTING SCENARIOS

Scenario Weight Vector [w1,w2,w3]

Low Power Mode (minimize power) [ 0.80, 0.05, 0.15 ]

Emergency Mode (minimize BER) [ 0.15, 0.80, 0.05 ]

Multimedia Mode (maximize throughput) [ 0.05, 0.15, 0.80 ]

VI. COGNITIVE RADIO ALGORITHM SIMULATION ENVIRONMENT

A. Simulation Framework

To implement the genetic algorithm, a cognitive simulationframework was developed. Using

this framework, we can implement the GA in a software-definedradio architecture that provides

an interactive environment and allows the cognitive controller to simulate controlling actual

radio components. The framework used to create the cognitive radio architecture was based

on the OSSIE cognitive radio architecture developed at Virginia Tech [30], [31]. The OSSIE

architecture is a C++ implementation of the Software Communications Architecture (SCA) [1].

The SCA is an open architecture developed by the Joint Tactical Radio System (JTRS), which

provides a common architecture for software radio developers to use, allowing them to build

radios that are interoperable and modular across multiple radio domains. This modularity feature

allows us to develop a cognitive component simply plug it into the existing OSSIE framework

as needed. The SCA is currently being developed by a wide range of industry participants, and

has a large academic research base. It is widely assumed thatan SCA implementation would

correctly simulate the architecture of a common cognitive radio.

B. Genetic Algorithm Module

The GA consists of multiple classes that define the algorithmand its components. It cre-

ates a randomly generated solution population consisting of 100 individuals. Each member of

the population is a class instance, which contains a solution set of output parameter values

represented as a chromosome. Evolution occurs by splittingand combining chromosomes to

form new generations. The fitness functions described earlier are used to drive the selection of

chromosomes for combining. During each generation cycle, every string is filtered to prevent
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non-possible solutions from entering the solution set. Thegenetic algorithm parameters used are

from the DeJong settings [32], which are the defacto settings for common GAs. The probability

for the crossover process to occur between two strings is 60%. Additionally, all strings are given

the .1% chance to mutate, which randomly flips a bit in the string emulating a spontaneous

mutation. The population size of each generation is 50. The newest generations of chromosomes

are stored in the radio for future processing.

VII. SIMULATION RESULTS

We simulated a multicarrier system with 64 subcarriers. Each subcarrier was assigned a random

attenuation value,N , to simulate a dynamic channel. Hence, the SNR varied for each channel,

inducing a need for the adaptation for each individual channel.

For this paper we only consider three different QAM constellations and BPSK as the modula-

tion types of the system. If we were to consider more modulation types, only the BER equation

used to determine the minimize BER fitness function would need to change to account for other

modulations. These restrictions are in place to keep the implementation simple without taking

away from the value of the simulations. This is because the addition of other modulation types

would only slightly increase the parameter space, while complicating the GA program with

conditional statements in the fitness function. The simulations used BPSK, and three modulation

indexes corresponding to the three square QAM index values (e.g. 16-QAM, 128-QAM, 1024-

QAM).

The transmit power ranged from 0.1 mW to 2.56 mW using increments of 0.0256 mW. This

maximum power value was selected since it is close to the specified maximum transmit power

level of 2.5 mW for a 1 MHz bandwidth, allowed in the lower UNIIband (5.15 GHz - 5.25

GHz). The extra range was allowed to make the processing in the genetic algorithm simpler.

With 100 possible values for the transmit power and 5 possible modulation indexes, this gives

500 possible values for each subcarrier. In the case of a 64 subcarrier system this gives a total

search space of 32,000.

The first simulation was targeted to determine the convergence time of the GA using the

fitness functions, along with the fitness converged to. The scenarios defined in Table V were

used for the vector of weights to create three different search directions for the cognitive radio.

Fig. 3 shows the convergence attributes of the GA when using the Low Power Modescenario.
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Fig. 3. Low Power ModeConvergence

Similarly, Fig. 4 shows the convergence attributes of the GAwhen using theEmergencyscenario

and Fig. 5 shows the convergence attributes of the GA when using theMultimediascenario. For

each simulation run, the average fitness is the average fitness of all 64 subcarriers which make

up a chromosome. The figures shows these averaged fitness values over 10 simulation runs to

ensure we get a time invariant average.

Each subcarrier has a random channel attenuation,N , using this value and the vector weights,

the GA has optimized the transmission parameters so that theaverage chromosome, has a fitness

value of 0.930 in the case of theLow Power Mode, after 1000 generations. Table VI shows the

average fitness for each scenario after 1000 generations.

The convergence figures and tables validate the genetic algorithm implementation by demon-

strating that the algorithm converges. However, a more important result is the transmission

parameter values to which they converge. Fig. 6 shows a set ofattributes corresponding to a

snapshot of a final output at generation 1000 of a simulation run, for the low power mode

scenario. The random channel attenuation is shown, along with the final values of throughput

and power for each of the 64 subcarriers. The bottom window inFig. 6 shows that all transmit
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Fig. 4. Emergency ModeConvergence
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Fig. 5. Multimedia ModeConvergence
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TABLE VI

CONVERGED FITNESS AFTER1000GENERATIONS

Scenario Converged Fitness

Low Power Mode (minimize power) 0.930

Emergency Mode (minimize BER) 0.800

Multimedia Mode (maximize throughput) 0.938

powers on the subcarriers are below 0.1 mW. The average transmit power in this specific case

is 0.0217 mW per subcarrier while the average modulation index is at 9.72. The low average

power indicates the primary goal of the scenario, minimize power, was achieved. The other

goals did not have quite an impact on the optimal parameter set, although because there is not

much trade-off between power and throughput (e.g. modulation index), the small weight on the

maximize throughput goal still allowed the system to provide for a high system throughput.

Fig. 7 and Fig. 8 also shows similar information for both theemergency modeand the

multimedia mode. Theemergency modescenario figure shows that the final decision provided a

low modulation index over all the subcarriers with an average of 2.5 per subcarrier. The transmit

power was at approximately 40% of maximum power. This configuration yeilds a low BER

due to the low modulation index, while keeping small balanceon the minimize power objective

with a weighting of 0.15. The middle window in themultimedia modescenario validates that

the maximum throughput is the primary objective for this scenario. All subcarriers are set to a

maximum modulation index of 10 providing for the maximum possible throughput.

VIII. C ONCLUSION

This paper introduced an implementation of a multicarrier cognitive radio that uses a genetic

algorithm as the decision method. An important part of the genetic algorithm is the fitness

function that directs the evolution of the GA parameter setsto the optimal set. We have introduced

several fitness functions that are used to score how well a parameter set consisting of modulation

index and transmit power match the given objectives. Fitness functions for multicarrier systems

were presented and it was shown that the single carrier fitness functions could be easily derived

using the multicarrier equations. Whereas the single carrier fitness functions were simple, the

multicarrier systems present a much larger problem. Each subcarrier must be optimized to adapt
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Fig. 6. Sample final decision forlow power modefor channel attenuation (top), throughput (middle), and transmit power

(bottom)

to the dynamic wireless environment. These functions provide a powerful and straightforward

method for scoring sets of parameters given the goals and their weights. Using a weighted sum

approach enables a higher level control component to easilymodify the search direction of the

GA by adjusting the weight vector values.

The simulation results illustrated the GA implementation by showing the convergence statistics

of the GA when using the multicarrier fitness functions. A 64 subcarrier system was then

simulated using three separate scenarios. The results of these simulations proved that the fitness

functions steer the evolution of the GA in the correct direction to optimize the given objectives

for each scenario. Each scenario consisted of a primary goalwith an 80% weighting and two

secondary goals with much smaller weighting. The parameterand objective trade-off were

illustrated by the final decision values for the sample set. In all three cases the final decision

provided a parameter set that put more emphasis on the primary objective while still balancing

between the two secondary objectives.

The multicarrier fitness functions presented in this paper enable an interface for changing
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Fig. 7. Sample final decision foremergency modefor channel attenuation (top), throughput (middle), and transmit power

(bottom)

the dynamic search direction of the GA. This, in turn, provides a simple way to control the

intended operation of the cognitive controller. Extensivetrade-off analysis needs to be done to

relate the plethora of different cross-layer parameters that can be used by a cognitive component

to determine the optimal transmission parameters.
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