
Development of a Data Management Architecture for
the Support of Collaborative Computational Biology

Lance W. Feagan

Submitted to the Department of Electrical Engineering & Computer Science
and the Faculty of the Graduate School of the University of Kansas in partial

fulfillment of the requirements for the degree of Master of Science in Computer
Science.

Dr. Victor Frost

Dr. David Andrews

Dr. Terry Clark: Chairperson

Thesis Committee:

Defended: March 31st, 2008

The Thesis Committee for Lance Warren Feagan certifies that this is the approved
version of the following thesis:

Development of a Data Management Architecture for
the Support of Collaborative Computational Biology

Dr. Victor Frost

Dr. David Andrews

Dr. Terry Clark: Chairperson

Thesis Committee:

Approved: March 31st, 2008

Abstract
The collection, management, and dissemination of provenance is vital to all researchers
and is particularly important for bioinformaticians because of the exponential growth of
data available for analysis. While robust and featureful provenance management systems
exist in areas other than bioinformatics, none of the systems that support computational
bioinformatics are capable of managing all provenance areas. Lastly, few systems feature a
flexible security model that encourages collaboration while still ensuring that provenance
information is retained. The BCJ-DB addresses these problems through a user-exten-
sible type hierarchy, a data abstraction model that supports powerful data and meta-data
search while preserving computational performance, a security model that supports
fine-grained controls on data sharing, and an extension to the RDF 3-tuple that defines
relationships between the subject and object that are “essential” and will be enforced by
the security model to prevent loss of important provenance.

Table of Contents
Chapter I: Introduction� 1

Bioinformatics Challenges� 1
Why is Provenance Important?� 2

Chapter II: Related Work� 5
Introduction� 5
NoteCards� 6
Virtual Notebook Environment (ViNE)� 7
Scientific Annotation Middleware (SAM)� 8
Biological Collaborative Research Environment (BioCoRE)� 9
myGrid/Taverna� 12
Analysis� 12
Introduction to the BCJ-DB � 15
Paper Structure� 18

Chapter III: Type Hierarchy & Data Abstraction� 21
Introduction� 21
Entry Basics� 22
Entry Rules� 22
The Master Types� 23
Interacting with Entries� 24

Chapter IV: Storage Architecture� 29
Introduction� 29
Content Storage Type� 29
Entry Interaction� 30

Chapter V: Provenance� 35
Introduction� 35
Attribution Metadata� 36
Entry Relationships� 37
Entry Relationship Interaction� 39
Provenance Collection & Usage� 40
Remarks� 41

Chapter VI: Search� 42
Introduction� 42
“Helper” Metadata Fields� 43
Content Indexing� 44

Complex Join Queries� 45

Chapter VII: Security� 46
Introduction� 46
Users & Groups� 47
Entries, Groups, and Actions� 51
Create Access Control� 51
Read Access Control� 52
Entry Metadata & Commit� 53
Write Access Control� 54
Delete Access Control� 56
Strict vs. Relaxed Security� 56
Managing Access Permissions� 57
BFILE Security� 57
Security Views� 58
Concluding Remarks� 60

Chapter XIII: Analysis & Conclusion� 61
Analysis� 61
Conclusion� 62

Citations� 65

�

Chapter I: Introduction
Bioinformatics Challenges
The volume of information present in the bioinformatics field is increasing at an ex-
ponential rate. Consequently, researchers must be able to rapidly discover, assimilate,
utilize and organize information while maintaining vital provenance about the data being
used in their experiments, the analysis performed, and the results of those analyses. In a
more traditional biology setting, where a wet-lab is the primary experimentation facility,
researchers have not typically been forced to deal with daily data updates from a variety
of sources. In this environment, the traditional paper laboratory journal was sufficient.
Copying and pasting in the pages output from a mass spectrometer or a similar analysis
device was typically the most interaction necessary with any electronic device. In the
modern world of bioinformatics, however, traditional paper notebook methods fail to
provide the capabilities researchers need to manage their workflow. No longer can an
experimenter hope to print out and subsequently manage the volume of pages that would
be required to describe the work being done.

In the 2nd International Workshop on Data Integration in the Life Sciences, Shankar
Subramaniam, Professor of Bioengineering and Chemistry gave a keynote speech titled
“Challenges in Biological Data Integration in the Post-Genome Sequence Era” wherein
he stated “the standard paradigm in biology that deals with ‘hypothesis to experimentation
(low throughput data) to models’ is being gradually replaced by ‘data to hypothesis to models’
and ‘experimentation to more data and models’,” [Gupt06]. From this statement is is clear
why bioinformatics is fundamentally different from more traditional biology research.
Instead of beginning with hypothesis formation, bioinformatics researchers start with
large volumes of data to analyze in the hopes of arriving at some conclusion. As an inter-
esting corollary, high-energy physics has also changed in a similar way. The Large Hadron
Collider being built near Geneva, Switzerland will produce data at a rate of around 1
Terabyte per second at the front-end. Within this data lie patterns that physicists will try
to pry information out of [Rose06]. To address this paradigm shift Subramaniam suggests
“robust data repositories that allow interoperable navigation, query and analysis across
diverse data, a plug-and-play environment that will facilitate seamless interplay of tools
and data and versatile biologist-friendly user interfaces,” [Gupt06].

�

The concerns that need to be addressed in bioinformatics primarily relate to rigorous
provenance collection, tracking, and usage. Prior work developing provenance man-
agement systems (PMS) failed to provide a comprehensive, integrated solution. In the
second keynote of the DILS workshop, Peter Buneman listed key challenges in cu-
rated databases as being “annotation, provenance, archiving, publishing and security,”
[Gupt06]. To implement a system that will advance the efficency with which compu-
tational biologists work requires a PMS that integrates functionality providing rigorous
provenance maintenance, data archiving, publishing, data security, and collaboration
capabilities.

Why is Provenance Important?
Provenance plays a vital role in assisting humans in understanding the context work was
done in and the specifications used to derive results. As described by Jim Gray, prov-
enance should make it possible for:

“scientific data [to] remain available forever so that other scientists can reproduce
the results and do new science with the data…To understand the data, those later
users need the metadata: (1) how the instruments were designed and built; (2)
when, where, and how the data was gathered; and (3) a careful description of the
processing steps that led to the derived data products that are typically used for
scientific data analysis.” [Gray02]

In a traditional setting, this is accomplished through careful note taking in laboratory
notebooks. In an electronic setting, however, capturing the data related to the three
categories of metadata information and maintaining it in a readily accessible format with
proper correspondence to results can be challenging. This is because, as discussed by
Gupta, the standard paradigm of moving from a well-researched hypothesis to a care-
fully-constructed experiment to test the hypothesis to a model has been reversed. This re-
versal places data at the start of the process and follows with hypothesis and models that
then produce further experimentation resulting in yet more data and models. Thus, fun-
damentally, the paradigm has shifted from a low-throughput model where information
collected will often be related to the work at hand to one where many failed experimental
attempts may occur. In a high-throughput scenario, the task of careful note-taking suffers
from being useful in only a small percentage of the test cases. This diminished return
on time invested encourages bioinformatics researchers to abandon their old habits and
adopt new habits. These new habits rarely include careful recording of experimental steps

�

as the experiment proceeds. Rather, they encourage seeking out results of import first and
later establishing the procedure used to obtain those results.

In “A Survey of Data Provenance Techniques,” Yogesh L. Simmhan et al. provided the
provenance researcher with a carefully developed taxonomy that can be used to character-
ize the capabilities and focus of a provenance tracking system [Simm05a]. The diagram,
replicated below, uses square-corner boxes to represent an attribute that a provenance
system may contain and round-corner boxes to represent the possible values the attribute
may take on. Where the attribute may take on only one of the possible values, a circle
is used to denote that the values are an ‘OR’ type relationship. If no circle is present,
the attribute may take on zero or more of the possible values, including all of the values
(0...N). For instance, the subject of provenance may be either process or data oriented.
Provenance dissemination may be through a visual graph and/or a query and/or a service
API.

Figure 1: Provenance Taxonomy [Simm05b]

Of particular importance in the taxonomy are the five uses of provenance. Data qual-
ity provenance is used to evaluate the fitness of a data set for a particular application.
Typically lineage is used to estimate this property based on the source of the data and the
transformations that have been applied to the data. Audit trail provenance traces the pro-
cess used to produce data. This provides information about resource usage and may help
detect errors in data generation. Replication recipes provenance establishes the steps used

�

to derive a particular data set and should make it possible to reproduce results with the
original data or maintain the currency of data by running the same steps on new input
data. Attribution pedigree establishes the ownership of the source data used to generate
a set of results. Informational provenance is generic information used to aid in finding
data of interest. A common synonym for informational provenance is an annotation.
Informational provenance can be particularly useful in helping other researchers place
results in the proper context.

It should be noted that other researchers have developed slightly different perspectives
on the provenance problem based on their goals and the terminology they have used to
decompose the problem. For example, at the 2006 ACM SIGMOD Conference in the
paper, “Provenance Management in Curated Databases,” Peter Buneman described the
two types of provenance as workflow and data flow. Workflow provenance, also called
coarse-grained provenance, is information describing how derived data has been calculat-
ed from raw observations. Dataflow provenance, also known as fine-grained provenance,
describes how data has moved through one or more databases. These two definitions
suggest that to have fine-grained provenance in a set of curated databases implies a spe-
cific set of functionality related to managing provenance information between databases.
Nevertheless, taken in the larger context, Buneman clearly is describing a situation where
multiple databases that have data movement between them must be capable of differen-
tiating the data that has moved. In a single database system, perhaps one that focuses on
data warehousing and archiving, tracking the movement of data within the database is
essential and provides an equivalent description of granularity. Ultimately, however, the
taxonomy developed by Simmhan et al. provides a more detailed, and therefore satisfy-
ing, metric for the evaluation of provenance management systems.

�

Chapter II: Related Work
Introduction
In the early 90’s many computer researchers touted that the ‘paperless’ era had arrived.
The concept of removing the need for paper was to be applied to all areas of life from
the home to the workplace and from top to bottom in all businesses. Going ‘paperless’
promised to reduce wasted space, time, and money associated with creating, moving, and
managing vast amounts of paper that were then required to run a business. Similarly, in
the laboratory environment an electronic notebook was touted as being capable of replac-
ing the traditional paper notebook. The advantages were to include rapid searching and
easy collaboration between researchers.

In a 1995 interview, Raymond E. Dessy, emeritius professor of chemsitry at Virginia
Polytechnic Institute, mentions a couple of useful bits of information to be considered
when reading about related systems. With regards to the use of computers vs paper, he
said, “To me, technology is a small part of the problem - 75% is people and getting them
to change work habits, interact with other individuals in new ways, accept new technolo-
gies,” [Anon95]. The ability to gain acceptance among the large community of biolo-
gists and chemists has always been one of the stumbling blocks with electronic notebook
systems. Physicists, on the other hand, have been more apt to move to an electronic
medium. The primary differentiator between the two areas is the emphasis physics places
on computation. Although chemsistry often makes use of computers, the computations
performed are typically done to supplement laboratory experiments, not in lieu of them.
In pure biology, computation is almost entirely in the realm of statistics on field observa-
tions. Dessy goes on to discuss the potential gains from collaboration by stating:

“Now the beauty of this is that not only can you do that, but other people in
the laboratory can share those notebooks by taking results from more than one
worker and linking them because they’re related. Examining the results, they
might perhaps see things that neither original worker did and share those insights
with the original workers and other responsible individuals. [Anon95]

To this point, this all sounds great. However, he continues, “Here we start to get into
the problem that people are going to resist sharing notebooks like this because they view
them as private diaries,” [Anon95]. To summarize, sharing of notebooks of information
can be very powerful. Systems that only allow sharing an entire notebook, however, will
fundamentally fail at collaboration attempts because of an ill-defined security model
using objects that are too coarse-grained.

�

In the 2005 Nature article “Electronic Notebooks: A New Leaf”, many improvements in
the capabilities present in electronic laboratory notebooks are detailed, including: shar-
ing between researchers, archiving, encryption of data, and verifiability. However, these
systems typically lack the flexibility needed by academic researchers. Gwen Jacobs, head
of the open-source NeuroSysm electronic notebook project at Montana State University
says “Academic e-notebooks need to include user-friendly tools allowing researchers
to customize them without demanding computing skills… Any system must be flex-
ible enough to handle any type of data, and any experimental protocol,” [Butl05].
Unfortunately, the concepts of customization provided by most systems are simply al-
lowing users to make custom templates and user interface elements. Most systems cannot
support extending the available types and then using those types with new tools that are
added to the system.

Once the electronic notebook established its initial marque with projects such as
NoteCards in mid 80s, the 90s largely continued in the same tradition. Electronic jour-
nals are typically based upon familiar concepts such as pages where items can be placed.
More modern projects, such as Electronic Laboratory Notebook (ELN) and Virtual
Notebook Environment (ViNE), often continue to use this interface paradigm.

NoteCards
One of the earliest significant attempts at developing a comprehensive electronic note-
book system was done at the Xerox Palo Alto Research Center (PARC) with NoteCards
in 1987 [Hala87a]. The similarities between NoteCards and the subject of this paper, the
Bioinformatics Computational Journal Database (BCJ-DB), are striking and a thorough
discussion providing insight into the design strengths and weaknesses is important. In
the words of the Frank G. Halasz, one of the designers, NoteCards is “an extensible
environment designed to help people formulate, structure, compare, and manage ideas,”
[Hala87a]. To accomplish this task, a semantic network composed of two primary objects
and two supporting objects is created by the user. The two primary objects are:

1.	 Notecards, which “store an arbitrary amount of some editable ‘substance’,” and
2.	 Typed links, which are “binary connections between cards,” and are the edges

between nodes.

The first support object, a browser, is “a notecard that contains a structural diagram of a
network of notecards.” Lastly, a FileBox is a “specialized card that can be used to organize
or categorize large collections of notecards.”

�

NoteCards biggest strength was that it was developed using LISP on a Xerox worksta-
tion. This environment provided a multitude of features in libraries for manipulating the
graphics area and data structures with ease. Its biggest weakness was that it only ran on
the Xerox D workstation. This limited its ability to become widespread and the lifetime
of NoteCards was effectively limited to that of the popularity of the Xerox D. This was,
unfortunately, near the end of the era where LISP machines were in common use.

NoteCards used the concept of a semantic network that related notes. This network
presented an tree-like graphical browser and manipulation tool which was very advanced
and is rarely seen even today. Most provenance systems that feature display of a prov-
enance graph do not allow interaction with the graph to manipulate the provenance net-
work that connects the notes. This strength, however, was also a weakness. The user was
in fact forced to manage the proper creation and maintenance of the network. This was
tedious work and would prove unacceptable quickly for a biological researcher trying to
get practical work accomplished. The network itself was only meant to handle collections
of related ideas as the typed links. The browser assumed that links were related ideas. This
limits links to only being useful for managing ideas, not provenance tracking between
users of ideas/information.

The search capabilities within NoteCards were also limited. Specifically, only very local-
ized searching inside a NoteFile for a particular bit of text in the title or the body of a
text NoteCard was supported. Lastly, collaboration was greatly hindered by the NoteFile,
which could only be accessed by one user at a time. While NoteCards was a wonderful
system for managing ideas, it failed to be helpful while researchers were performing their
work.

Virtual Notebook Environment (ViNE)
Website: http://www.csi.uoregon.edu/nacse/vine/

This project sought to develop a “platform-independent, web-based interface designed
to support a range of scientific activities across distributed, heterogeneous computing
platforms,” [Skid98]. The design is based on the traditional paper notebook with exten-
sions to support collaboration through data sharing, security through authentication and
coarse-grained access control, and support for computational tool access and manage-
ment. Some of the more notable features of this project include the ease with which new

http://www.csi.uoregon.edu/nacse/vine/

�

computational tools can be integrated into the system, the visual experiment creation
tool, and the access to distributed computational resources that may not be available on
all machines participating in the ViNE environment.

Scientific Annotation Middleware (SAM)
Website: http://collaboratory.emsl.pnl.gov/docs/collab/sam/

The Scientific Annotation Middleware project, lead by Jim Myers and developed by the
team that did the DOE2000 electronic notebook project, has been one of the most suc-
cessful open-source electronic notebook projects. Development work began in 2001 at
Pacific Northwest National Laboratory. SAM was originally developed as a component
of the PNNL Electronic Laboratory Notebook (ELN) but has continued on with other
projects, such and the Collaboratory for Multi-scale Chemical Science (CMCS) at Sandia
National Laboratory (Website: http://cmcs.ca.sandia.gov). References to ELN are effec-
tively a synonym for SAM. SAM is designed to support a secure, collaborative, web-based
environment for unifying data and meta-data. Core capabilities are provided through
three sets of servies:

1.	 Metadata Management Services: base mechanisms for generating, federating, and
translating annotation and relationship data,

2.	 Semantic Services: support for advanced searching, relationship browsing, and
pattern recognition, and

3.	 Notebook Services: mechanisms related to records management — collections,
digital signatures and timestamps, pagination, annotation display mechanisms,
etc [Myer01a].

SAM attempts to:
“use emerging technologies to separate the initial capture and storage of data and
metadata from its subsequent presentation to others and to shift the focus from
up-front standardization to on-demand mapping of the original data and metada-
ta into schemas of interest. SAM’s key concept is the idea of a “schemaless” data
store tha can accept arbitrary input and dynamically registered translators that
map data and metadata into the formats and schema expected by applications
and underlying data repositories. [Myer03a]

SAM supports the extension of types that can be used. SAM is one of the few systems
that features automatic annotation via methods in the database that process incoming
data. This feature, however, requires the creation of database-resident code that can iden-
tify and process any new data type. [Myer01b]

http://biocore.ks.uiuc.edu/biocore/docs/controlpanel.html

�

SAM uses the concept of submitting an entry to publish data. An entry may be edited up
until the time it is submitted. After being submitted, the entry may no longer be altered.
An entry cannot be viewed by others until it is submitted. ELN uses a notebook object
(NOb) as the central data management concept. The data types stored within a notebook
include chapters, pages, notes, sub-notes, and other notebook objects. ELN supports
both internally stored data and unmanaged, externally stored data via URL reference.

Biological Collaborative Research Environment (BioCoRE)
Website: http://www.ks.uiuc.edu/Research/biocore/

Developed at the University of Illinois at Urbana-Champaign, BioCoRE supports a col-
laborative work environment for biomedical research and learning. BioCoRE’s primary
design was to connect three tools, also developed at UIUC, together into a coherent
whole. The other three tools are:

1.	 Visual Molecular Dynamics (VMD),
2.	 Not (just) Another Molecular Dynamics package (NAMD), and
3.	 MDTools.

VMD is an OpenGL application used to visualize molecular models and manipulate
them in real time. NAMD is the back-end that processes molecular dynamics simula-
tions and feeds VMD data to display. MDTools helps connect VMD on the front-end
with NAMD on the back using a collection of programs, scripts, and utilities that make
many visualization and simulation tasks easier to accomplish. In addition to linking
these components together, BioCoRE adds an overarching structure to organize work
using projects. This project structure provides services to users such as project reports,
forums/chats, and access to information from other members of the same projects. Lastly,
BioCoRE provides functionality for running parallel NAMD jobs and monitoring their
progress along with more basic capabilities for non-NAMD jobs.

Core Features
In 2003 BioCoRE surveyed its users. In this survey the ten key features that BioCoRE
provided were identified. This list is presented below along with a description of each of
the 10 areas.

1)	 BioFS—BioCoRE’s file system used to organize projects and share information
between users. Built on MySQL.

2)	 Message Board—A forum for collaboration between members of a project.

http://www.ks.uiuc.edu/Research/biocore/

10

3)	 Control Panel—A location for chatting (IRC) with other users. Logging allows
users to see messages sent before they logged in. [Link: http://biocore.ks.uiuc.
edu/biocore/docs/controlpanel.html]

4)	 Use with VMD—BioCoRE enables users to share views of molecules they have
created with VMD. [Link: http://biocore.ks.uiuc.edu/biocore/docs/pubsynch.
html]

5)	 Submit & Monitor NAMD jobs
6)	 Lab Book Use—Allows users to take notes and share the information they have

obtained. It features sharing bookmarks, images, etc. and is conceptually similar
to a blog. The Website Library also plays in here.

7)	 Website Link Library—Stores links to resources referenced in the lab book.
8)	 NAMD-CFG Use—Tools for easing creation of NAMD configuration files.
9)	 Java Molecular Viewer (JMV) Use—Enables viewing of molecular structures

stored in BioFS.
10)	Submit & Monitor non-NAMD jobs.

Strengths
BioCoRE is tightly integrated with the three key applications that run on it: JMV, VMD,
and NAMD. Everything is built around servicing those applications. By limiting the
scope, they are able to attain a very simple and intuitive interface for using those three
applications. Some of the other strengths are the collaborative mechanisms built into
it which interact in a coherent fashion with the project-oriented nature of BioCoRE.
WebDAV allows users to mount the BioFS file-system on their local machine. BioCoRE
has a number of paper prototypes of features to be added to their system. For instance,
the inclusion of a useful job management system to control when and where jobs run on
the collection of supercomputers and clusters available at UIUC.

Weaknesses
The most notable external weaknesses are the inability to take advantage of grid-comput-
ing, discover remote services (web services), and discover remote data sources and as well
as the inability to interact with these services as though they were local. Upon examining
the internals of BioCoRE, it becomes obvious that it is not a coherent system with clearly
defined metadata repositories and management facilities as is the case with myGrid.
Though at the surface BioCoRE appears to be one neatly kept collection of tools, below
the surface it seems to be connected together by a large collection of shell scripts and
small programs which keep things in order (MDTools).

Other weaknesses include:

http://biocore.ks.uiuc.edu/biocore/docs/controlpanel.html
http://biocore.ks.uiuc.edu/biocore/docs/controlpanel.html
http://biocore.ks.uiuc.edu/biocore/docs/pubsynch.html
http://biocore.ks.uiuc.edu/biocore/docs/pubsynch.html

11

1)	 No data provenance or other metadata management.
2)	 No concept of a workflow that others can view, import, or alter.
3)	 The collaborative features fail to support easy inclusion of results. For example,

the chat, forum, and library features are essentially stand-alone applications ap-
pended onto BioCoRE.

4)	 BioFS is really the only collaborative feature which is of note, and it is weak in
its implementation. It only allows users to share views of a molecule (essentially a
JPEG). It does not give the users viewing the shared data any access to modifica-
tions which may have been made to the stock molecular model, such as special
colorings, clippings, iso-surfaces, or other such features.

5)	 Though BioFS does support users getting data from a common repository, it does
so in a rather obtuse way—by using WebDAV.

6)	 The interface can become extremely cumbersome if a researcher is involved in 20
projects as the interface puts up tabs for all the projects the researcher is on. The
result is clutter with no mechanism in place to properly scope the view presented
by the interface.

Conclusions
BioCoRE, while an acceptable package for users who are only interested in NAMD and
VMD, is very weak in terms of its underlying infrastructure. From looking at BioCoRE,
what to do and what not to do with various collaboration tools, data sharing methods,
and user interfaces becomes obvious. Collaborative tools need to include chat, audio, and
video with a seamless integration to data sources, workflows, and results present in the
system. Data sharing methods need to emphasize a convenient way to give “packages” to
others that include not just a static image but that include everything that led up to that
result so that it can be recreated by others and explored by altering various attributes of
the original experiment. Lastly, the user interfaces in BioCoRE, despite the small set of
programs supported, feels somewhat disjointed. An environment where programs feel
connected in a seamless fashion needs to be implemented.

Finding Out More
BioCoRE Tutorial http://www.ks.uiuc.edu/Research/biocore/tour/tour_intro.html
Job Monitoring Prototype http://www.ks.uiuc.
edu/Research/biocore/eval/prototypes/job_monitor_prototype_3.pdf
Job Submission Tool http://www.ks.uiuc.edu/Research/biocore/eval/prototypes/jobsub-
prot/biocorejobsubprot.htm
Presentation Notebook http://www.ks.uiuc.edu/Research/biocore/eval/prototypes/
BioCoRE_Notebook_Prototype.pdf

http://www.ks.uiuc.edu/Research/biocore/tour/tour_intro.html
http://www.ks.uiuc.edu/Research/biocore/eval/prototypes/job_monitor_prototype_3.pdf
http://www.ks.uiuc.edu/Research/biocore/eval/prototypes/job_monitor_prototype_3.pdf
http://www.ks.uiuc.edu/Research/biocore/eval/prototypes/jobsubprot/biocorejobsubprot.htm
http://www.ks.uiuc.edu/Research/biocore/eval/prototypes/jobsubprot/biocorejobsubprot.htm
http://www.ks.uiuc.edu/Research/biocore/eval/prototypes/BioCoRE_Notebook_Prototype.pdf
http://www.ks.uiuc.edu/Research/biocore/eval/prototypes/BioCoRE_Notebook_Prototype.pdf

12

More information about VMD, NAMD, and MDTools can be found at their respective
websites:

•	 NAMD, http://www.ks.uiuc.edu/Research/namd/
•	 VMD, http://www.ks.uiuc.edu/Research/vmd/
•	 MDTools, http://www.ks.uiuc.edu/Development/MDTools/

myGrid/Taverna
Website: http://www.mygrid.org.uk/

myGrid is a middleware system supporting in silico biology experiments. These experi-
ments are modeled as workflows and are executed on a grid environment [Stev03].
myGrid has advanced support for resource discovery, workflow execution, and prov-
enance management in the semantically complex bioinformatics environment.
Provenance information about workflow enactment describing the services invoked,
parameters used for the various workflow components, timing information, output data,
and ontology descriptions is automatically logged when executed.

Analysis
Table 1 lists the key feature areas and compares eight systems on those metrics. The three
sets of tables each have two header rows. The top header indicates a general category.
The second row of the header indicates a specific attribute. The ‘Y’ and ‘N’ indicate if a
system does or does not have the attribute specified in the column heading.

The first set of columns evaluates the data abstraction capabilities of the various systems.
The ability to extend the type hierarchy to support new types of data is key to a develop-
ing field. The “Plug-In Architecture” column evaluates the ability to expand the system
through user-developed plug-ins. The “Content Storage” category evaluates how the
system stores content. Some systems support only unmanaged content, where the con-
tent is not secured by a server. With unmanaged content storage, the provenance man-
agement system typically has pointers to external storage locations. Because the content is
unmanaged, the system cannot prevent loss of information. In managed content storge,
however, the PMS stores the data in internal locations where control over the creation,
modification and deletion of content can be enforced. The potential drawback of man-

http://www.ks.uiuc.edu/Research/namd/
http://www.ks.uiuc.edu/Research/vmd/
http://www.ks.uiuc.edu/Development/MDTools/
http://www.mygrid.org.uk/

13

Data Abstraction Content Storage
Extensible Type

Hierarchy
Plug-In Architecture Unmanaged Managed

Sy
ste

m

NoteCards Y Y N Y
ViNE N N Y N
SAM Y Y Y Y
myGrid N N Y N
BioCoRE N N N Y
KEPLER Y Y Y Y
PASOA Y N Y N
BCJ Y Y N Y

Provenance
Attribution Audit Trail Data Quality* Informational Replication

Sy
ste

m

NoteCards Y N Y Y N
ViNE N N N Y Y
SAM Y N Y Y Y
myGrid N N N Y Y
BioCoRE Y N Y N N
KEPLER Y Y Y Y Y
PASOA Y Y Y Y Y
BCJ Y Y Y Y Y
* = Data quality for bioinformatics type data is often implied by attribution

Security Granularity Search
Fine Coarse Content Metadata Complex Joins

Sy
ste

m

NoteCards N Y Y Y N
SAM N Y N N N
myGrid N N Y Y N
BioCoRE N N N N N
KEPLER N Y N N N
PASOA N N N Y N
BCJ Y N Y Y Y

Table 1: Comparison of Related Work Systems

14

aged content storage is a large volume of information degrading performance. In the
second table, the support for storing the five types of provenance is evaluated.

Finally, the last set of columns evaluates the granularity of the security controls imple-
mented. In systems with no security controls, both the fine and coarse columns will
be marked with ‘N’. Many systems choose to take the paper notebook paradigm to its
extreme and implement access controls on a per-notebook level. This type of coarse-
grained access control limits the ability to selectively share information and may result in
a researcher revealing information accidentally for any number of reasons. For instance,
if a new user is added to a group that was granted access to a notebook, that user would
suddenly have access. Also, if a researcher placed new information in a notebook that
was shared with others but failed to remember all with whom it was shared, he could
potentially reveal information unwittingly simply through casual usage. In a fine-grained
security model, atomic objects that are very compact and typically only include one type
of information are the objects used by the security model. This allows great discretion
in the information shared with others. By enabling this fine level of control, a researcher
may feel more comfortable sharing with others because the reseracher is not forced to
share an entire journal simply to give another a workflow or data set to use.

Lastly, the search capabilities present in the system evaluate the types of searches that can
be accomplished. Powerful but quick search decreases the time necessary to complete a
task. Some systems only allow search over the content, while others only allow searches
over the metadata. The best systems allow searches over content, metadata, and joins
between all content and metadata to form complex queries that make possible a more
rich and friendly environment for the user of a system. As can be seen, the BCJ does
quite favorably against its competitors. The next section provides an introduction to the
BCJ-DB.

15

Introduction to the BCJ-DB
The research of similar systems’ strengths and weaknesses clearly showed a pattern where
one or two novel concepts were involved in a particular project but often times the work
suffered from not being complete enough for practical application to a variety of areas.
The related works review identified five key areas as being important to aiding biologists
in completing their work. The key areas are:

1.	 Type Hierarchy & Data Abstraction
2.	 Data Storage
3.	 Provenance Management
4.	 Data Security
5.	 Data & Provenance Search

In the following paragraphs these five areas and the features necessary to implement
them is discussed. The goal in this section is not to be extensive. Rather, it is to give an
overview of the high-level objectives of the project. The following chapters will discus in
detail the five key areas. If a concept seems vague in definition at this time, be assured
that clarification will be forthcoming.

The BCJ seeks to be flexible and extensible to the problems generally encountered during
computational tasks. To reach the BCJ project goals, an appropriate set of abstraction
techniques combined with a solid type hierarchy and a data driven architecture that
uses the type hierarchy to process the abstraction techniques was deemed appropriate.
Research into the methods used by traditional wet-lab biologists heavily influenced the
development of a data abstraction model that would support an electronic journal with
pages representing atomic units of information. The pages of a traditional paper note-
book would be represented as entries in a journal. An entry is an atomic building block
upon which nearly all information in the BCJ is stored. An entry has a singular piece of
type information associated with it. This makes processing of an entry simpler because
there are no nested types within the content of a single entry that must be processed. The
type hierarchy itself is in fact stored as a number of entries. An entry can only have one
writer, the creator of the entry. This eases the determination of attribution.

Just as the entry is the fundamental unit of information, the journal is the fundamental
organizational tool for collections of entries. An entry is a member of one and only one
journal. Journals may be used to represent a hierarchy with a parent pointer. In this sense
journals are similar to a folder. A key difference from the paper research model pertains to

16

who may place entries in a journal. Clearly it would be difficult to have multiple writers
in a single paper journal. In the BCJ, however, this possibility is very real and important
to the completion of collaborative work.

The type hierarchy should be designed to be extensible, flexible, and robust. Extensibility
should include the ability to add new types to the system. Both users and administra-
tors should be able to add new types. Flexibility builds upon extensibility by including
the notion that the type hierarchy may need to change. When these changes inevitably
take place, the changes should occur without negatively impacting the programs that
make use of the BCJ. Robustness should be present to ensure that actions that would
have fatal consequences to the stability of the system are prevented. The use of journals as
namespaces may help to isolate changes and aid robustness. Extensibility and flexibility
should not come at the cost of robustness, even though they are highly desired. By having
these three attributes, the type hierarchy forms the basis of a solid abstraction model and
thus encourages experimentation.

The data storage system needs to support a number of challenging requirements that are
somewhat contradictory. For starters, the system needs to support access from clients for
inputting data, creating workflows and experiments, annotating data, viewing results,
and other daily tasks. These accesses need to have a low-latency and a short time to pres-
ent the client with information. Opposing this is the need for the computational clus-
ter, which executing an experiment, to have low-latency, high-bandwidth access to read
input data, read experiment definitions, and write experiment output. To address these
challenges and others related to search (discussed shortly) a hybrid approach using three
content storage types was developed. The storage type is used to specify if the data is
stored within the database or external to the database and if the data is character-based or
binary. The goals of partitioning the storage hierarchy were to achieve better performance
with reduced database overhead.

Provenance, as discussed in the introduction, has become more onerous to maintain
because the value of careful documentation has been reduced as the number of experi-
mental iterations required to obtain meaningful results has increased proportionally with
increases in the volume of data to be analyzed. As Gupta discussed, the revised paradigm
for research places data first in the experimental process. This placement drives the rapid
increase in the number of iterations used in searching for results of significance. Clearly

17

the new paradigm places a heavy burden on the researcher. To counter this, systems that
document the process as it proceeds are needed. The BCJ provides four of the five prov-
enance uses discussed by Yogesh L. Simmhan et al. These four types are:

1.	 Audit Trail—complete traces of the execution can be stored,
2.	 Replication Recipes—the steps, parameters, and other transformations are re-

corded in experiments,
3.	 Attribution—authentication and database control over ownership metadata en-

sures proper pedigree can be established, and
4.	 Informational—annotations of varying types along with indexing of data.

The fifth type, data quality, is not part of the BCJ system or any of the other systems
designed to support scientific computational research. Although initially this shortcom-
ing might seem troubling, it should be noted that typical scientific researchers evaluate
the quality of the data they are using not by the simplistic heuristics used in systems
that attempt to evaluate data quality. Rather, researchers typically use the data source as
the most reliable metric of data quality. Using this methodology makes data attribution
equivalent to data quality, and as such any system that addressed attribution thoroughly
would also be able to assess data quality.

Data security is rarely addressed in any significant fashion. Of the systems that have a
data security model, the model typically only addresses a broad scope through which
to assert permissions. The scope is typically for an entire project or journal of informa-
tion. The entry concept utilized in the BCJ allows a fine-grained scope in which to assert
permissions. The actors in the model are users and groups. Users are a member of one
or more groups. For write access, only the user participates. The model states that write
access is only granted to the owner (creator) of an entry. For read access, both the user
and the group or groups a user is a member of participate. Every entry may have zero
or more groups associated with it. If the current user is the owner of the entry, access
is granted. If the user is not owner but the intersection between the groups attached to
the entry and the groups the current user is a member of is non-null, access is granted.
Although simple, because of its fine-grained nature this model is quite capable of allow-
ing useful collaboration while preventing leakage of data unnecessarily.

In addition to the standard data security model, two additional concepts make the
BCJ-DB much more unique. The first concept, commit, specifies if an entry has been
locked from further changes. Before an entry is committed, the owner is free to make

18

changes to the content. After an entry is committed, only metadata fields not affecting
provenance may be altered. This concept of committal is the first step in ensuring prov-
enance is maintained. The second unique concept is an extension of the typical Resource
Description Framework (RDF) 3-tuple of <subject, predicate, object>. This 3-tuple is
used in nearly all of the frameworks discussed. The weakness of this 3-tuple is that it does
not specify the importance of the subject or predicate to maintenance of provenance
information. All five types of provenance have the potential to be negatively impacted if
a subject or predicate is removed. By extending the 3-tuple by adding two fields describ-
ing if the subject has an essential dependency on the object or vice-a-versa, the BCJ-DB
can prevent the loss of important provenance. This capability encourages users to use
information provided by others in their research, even if not copied, because they can be
guaranteed that the information cannot be removed.

Lastly, with the vast increases in the information generated, data search capabilities,
typically an after-thought with other systems, are a primary concern in the BCJ-DB.
The BCJ-DB addresses three search areas: content search, metadata search, and complex
joins between content and metadata. Content search simply means indexing the content
stored in the database and allowing searches against it. Metadata search expands the field
by allowing searches for provenance related information or other categorizations the
entry may be associated with, such as content type or being committed.

Paper Structure
The five key areas of focus for the BCJ-DB system were decomposed into the following
system. While the nomenclature used in the diagram specified below may be unclear, it is
only intended at this point to provide a high-level overview of the connections between
the systems described in the next five chapters. However, a brief description of the dia-
gram is still in order. This diagram shows the interface to the BCJ-DB on the left and the
implementation features that provide the implementation of that interface in the middle.
The unidirectional arrows from left-to-right show this mapping. The bidirectional arrows
between items on the right show that there is an association between the items at the
ends. The chapter that describes the implementation of that portion of the interface
brackets the appropriate items on the right.

19

ENTRY

CJ.CONTENT_BLOB

CJ.CONTENT_CLOB

CJ.CONTENT_BFILE

CJ.ENTRY

permissions

LINK CJ.LINK

content

CJ.ENTRY_GROUPS

metadata

USERS

CJ.GROUPSGROUPS

CJ.USERS

CJ.USERS_GROUPS

Chapter 5

Chapter 3

Chapter 4

Chapter 7

Figure 2: Chapter Overview

20

EN
TR

Y
+
E
n
t
r
y
I
d
:

T
Y
P
E
S
.
E
N
T
R
Y
I
D

=

P
K

+
U
s
e
r
I
d
:

T
Y
P
E
S
.
E
N
T
R
Y
I
D

+
S
y
s
t
e
m
G
e
n
e
r
a
t
e
d
:

T
Y
P
E
S
.
B
O
O
L

+
C
o
n
t
e
n
t
T
y
p
e
I
d
:

T
Y
P
E
S
.
E
N
T
R
Y
I
D

+
C
r
e
a
t
e
D
a
t
e
:

T
I
M
E
S
T
A
M
P
(
6
)

W
I
T
H

T
I
M
E

Z
O
N
E

+
M
o
d
i
f
y
D
a
t
e
:

T
I
M
E
S
T
A
M
P
(
6
)

W
I
T
H

T
I
M
E

Z
O
N
E

+
C
o
m
m
i
t
D
a
t
e
:

T
I
M
E
S
T
A
M
P
(
6
)

W
I
T
H

T
I
M
E

Z
O
N
E

+
C
o
m
m
i
t
t
e
d
:

T
Y
P
E
S
.
B
O
O
L

+
T
i
t
l
e
:

V
A
R
C
H
A
R
(
2
5
6
)

+
J
o
u
r
n
a
l
I
d
:

T
Y
P
E
S
.
E
N
T
R
Y
I
D

+
C
o
n
t
e
n
t
L
a
s
t
A
c
c
e
s
s
D
a
t
e
:

T
I
M
E
S
T
A
M
P
(
6
)

W
I
T
H

T
I
M
E

Z
O
N
E

+
R
a
t
i
n
g
:

N
U
M
B
E
R
(
1
)

+
D
e
p
r
e
c
a
t
e
d
:

T
Y
P
E
S
.
B
O
O
L

+
H
i
d
d
e
n
:

T
Y
P
E
S
.
B
O
O
L

+
c
r
e
a
t
e
E
n
t
r
y
(
j
o
u
r
n
a
l
I
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,
c
o
n
t
e
n
t
T
y
p
e
I
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,

s
y
s
t
e
m
G
e
n
e
r
a
t
e
d
:
T
Y
P
E
S
.
B
O
O
L
,
t
i
t
l
e
:
T
Y
P
E
S
.
E
N
T
R
Y
N
A
M
E
)
:

T
Y
P
E
S
.
E
N
T
R
Y
M
E
T
A

+
c
r
e
a
t
e
J
o
u
r
n
a
l
E
n
t
r
y
(
c
o
n
t
e
n
t
T
y
p
e
I
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,

s
y
s
t
e
m
G
e
n
e
r
a
t
e
d
:
T
Y
P
E
S
.
B
O
O
L
,

t
i
t
l
e
:
T
Y
P
E
S
.
E
N
T
R
Y
N
A
M
E
)
:

T
Y
P
E
S
.
E
N
T
R
Y
M
E
T
A

+
r
e
a
d
E
n
t
r
y
C
o
n
t
e
n
t
(
e
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
)
:

T
Y
P
E
S
.
E
N
T
R
Y
D
A
T
A

+
r
e
a
d
E
n
t
r
y
M
e
t
a
(
e
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
)
:

T
Y
P
E
S
.
E
N
T
R
Y
M
E
T
A

+
w
r
i
t
e
E
n
t
r
y
M
e
t
a
(
e
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
)
:

T
Y
P
E
S
.
E
N
T
R
Y
M
E
T
A

+
w
r
i
t
e
E
n
t
r
y
C
o
n
t
e
n
t
(
e
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,
i
n
D
a
t
a
:
T
Y
P
E
S
.
E
N
T
R
Y
D
A
T
A
)

+
d
e
l
e
t
e
E
n
t
r
y
(
e
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
)

C
O

N
TE

N
T

+
E
n
t
r
y
I
d
:

T
Y
P
E
S
.
E
N
T
R
Y
I
D

=

F
K

E
N
T
R
Y
(
E
n
t
r
y
I
d
)

C
A
S
C
A
D
E

O
N

D
E
L
E
T
E

+
S
t
o
r
a
g
e
T
y
p
e
:

N
U
M
B
E
R
(
1
)

C
O

N
TE

N
T_

C
LO

B
+
E
n
t
r
y
I
d
:

T
Y
P
E
S
.
E
N
T
R
Y
I
D

=

F
K

C
O
N
T
E
N
T
(
E
n
t
r
y
I
d
)

C
A
S
C
A
D
E

O
N

D
E
L
E
T
E

+
S
e
a
r
c
h
a
b
l
e
:

T
Y
P
E
S
.
B
O
O
L

+
D
a
t
a
:

C
L
O
B

C
O

N
TE

N
T_

B
LO

B
+
E
n
t
r
y
I
d
:

T
Y
P
E
S
.
E
N
T
R
Y
I
D

=

F
K

C
O
N
T
E
N
T
(
E
n
t
r
y
I
d
)

C
A
S
C
A
D
E

O
N

D
E
L
E
T
E

+
S
e
a
r
c
h
a
b
l
e
:

T
Y
P
E
S
.
B
O
O
L

+
D
a
t
a
:

B
L
O
B

C
O

N
TE

N
T_

B
FI

LE
+
E
n
t
r
y
I
d
:

T
Y
P
E
S
.
E
N
T
R
Y
I
D

=

F
K

C
O
N
T
E
N
T
(
E
n
t
r
y
I
d
)

C
A
S
C
A
D
E

O
N

D
E
L
E
T
E

+
S
e
a
r
c
h
a
b
l
e
:

T
Y
P
E
S
.
B
O
O
L

+
D
a
t
a
:

B
F
I
L
E

EN
TR

Y
_G

R
O

U
PS

+
E
n
t
r
y
i
d
:

T
Y
P
E
S
.
E
N
T
R
Y
I
D

=

F
K

E
N
T
R
Y
(
E
n
t
r
y
I
d
)

C
A
S
C
A
D
E

O
N

D
E
L
E
T
E

+
G
r
o
u
p
I
d
:

T
Y
P
E
S
.
G
R
O
U
P
I
D

=

F
K

G
R
O
U
P
(
G
r
o
u
p
I
d
)

C
A
S
C
A
D
E

O
N

D
E
L
E
T
E

G
R

O
U

PS
+
G
r
o
u
p
I
d
:

T
Y
P
E
S
.
G
R
O
U
P
I
D

=

P
K

+
G
r
o
u
p
N
a
m
e
:

T
Y
P
E
S
.
G
R
O
U
P
N
A
M
E

#
a
d
d
G
r
o
u
p
(
n
a
m
e
:
T
Y
P
E
S
.
G
R
O
U
P
N
A
M
E
)

#
r
e
m
o
v
e
G
r
o
u
p
(
g
i
d
:
T
Y
P
E
S
.
G
R
O
U
P
I
D
)

#
g
e
t
G
r
o
u
p
N
a
m
e
(
g
i
d
:
T
Y
P
E
S
.
G
R
O
U
P
I
D
)
:

V
A
R
C
H
A
R
2

U
SE

RS
_G

R
O

U
PS

+
U
s
e
r
I
d
:

T
Y
P
E
S
.
U
S
E
R
I
D

=

F
K

U
S
E
R
S
(
U
s
e
r
I
d
)

C
A
S
C
A
D
E

O
N

D
E
L
E
T
E

+
G
r
o
u
p
I
d
:

T
Y
P
E
S
.
G
R
O
U
P
I
D

=

F
K

G
R
O
U
P
S
(
G
r
o
u
p
I
d
)

C
A
S
C
A
D
E

O
N

D
E
L
E
T
E

U
SE

RS

+
U
s
e
r
I
d
:

T
Y
P
E
S
.
U
S
E
R
I
D

+
U
s
e
r
N
a
m
e
:

T
Y
P
E
S
.
U
S
E
R
N
A
M
E

U
N

IQ
U

E(
Fr

om
En

tr
y+

Li
nk

Ty
pe

+T
oE

nt
ry

)
LI

N
K

+
L
i
n
k
T
y
p
e
:

T
Y
P
E
S
.
E
N
T
R
Y
I
D

+
F
r
o
m
E
n
t
r
y
:

T
Y
P
E
S
.
E
N
T
R
Y
I
D

+
F
r
o
m
R
e
q
T
o
:

T
Y
P
E
S
.
B
O
O
L

+
T
o
E
n
t
r
y
:

T
Y
P
E
S
.
E
N
T
R
Y
I
D

+
T
o
R
e
q
F
r
o
m
:

T
Y
P
E
S
.
B
O
O
L

+
c
r
e
a
t
e
L
i
n
k
(
l
i
n
k
T
y
p
e
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,
f
r
o
m
E
n
t
r
y
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,

t
o
E
n
t
r
y
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
)

+
c
r
e
a
t
e
L
i
n
k
(
l
i
n
k
T
y
p
e
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,
f
r
o
m
E
n
t
r
y
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,

f
r
o
m
R
e
q
T
o
:
T
Y
P
E
S
.
B
O
O
L
,
t
o
E
n
t
r
y
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,

t
o
R
e
q
F
r
o
m
:
T
Y
P
E
S
.
B
O
O
L
)

+
d
e
l
e
t
e
L
i
n
k
(
l
i
n
k
T
y
p
e
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,
f
r
o
m
E
n
t
r
y
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,

t
o
E
n
t
r
y
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
)

EN
TR

Y
_V

IE
W

U
SE

RS
_G

R
O

U
PS

_V
IE

W

+
U
S
E
R
_
I
D
:

T
Y
P
E
S
.
U
S
E
R
I
D

+
G
R
O
U
P
_
I
D
:

T
Y
P
E
S
.
G
R
O
U
P
I
D

G
R

O
U

PS
_V

IE
W

+
G
R
O
U
P
_
I
D
:

T
Y
P
E
S
.
G
R
O
U
P
I
D

+
G
R
O
U
P
N
A
M
E
:

T
Y
P
E
S
.
G
R
O
U
P
N
A
M
E

C
O

N
TE

N
T_

C
LO

B
_V

IE
W

SE
LE

C
T

C
.*

 F
R

O
M

 C
o

n
te

n
t_

C
LO

B
 C

W
H

ER
E

En
tr

y_
R

ea
d

ab
le

.E
n

tr
yI

d
 =

C
o

n
te

n
t_

C
LO

B.
En

tr
yI

d
+
E
n
t
r
y
I
d
:

T
Y
P
E
S
.
E
N
T
R
Y
I
D

=

F
K

C
O
N
T
E
N
T
(
E
n
t
r
y
I
d
)

C
A
S
C
A
D
E

O
N

D
E
L
E
T
E

+
S
e
a
r
c
h
a
b
l
e
:

T
Y
P
E
S
.
B
O
O
L

+
D
a
t
a
:

C
L
O
B

EN
TR

Y
_R

ES
TR

IC
TE

D
SE

LE
C

T
U

N
IQ

U
E

En
tr

yI
d,

 U
se

rN
am

e,
U

se
rI

d,
C

o
n

te
n

tT
yp

eI
d

FR
O

M
 E

n
tr

y
N

AT
U

R
A

L
JO

IN
 U

se
rs

W
IT

H
 R

EA
D

 O
N

LY

SE
LE

C
T

E.
*

FR
O

M
 E

n
tr

y
E

W
H

ER
E

(’C
J’

=
U

SE
R

O
R

(E
.U

se
rI

d
=

U
ti

ls
_P

kg
.g

et
U

se
rI

d
()

)
O

R
E.

En
tr

yI
d

 IN

 (
SE

LE
C

T
EG

.E
n

tr
yI

d

FR

O
M

 U
se

rs
_G

ro
u

p
s

U
G

, E
n

tr
y_

G
ro

u
p

s
EG

W

H
ER

E
(E

G
.G

ro
u

p
Id

=
U

G
.G

ro
u

p
ID

 A
N

D

 U
G

.U
se

rI
d

=
U

ti
ls

_P
kg

.g
et

U
se

rI
d

()
))

SE
LE

C
T

G
ro

u
p

Id
,G

ro
u

p
N

am
e

FR
O

M
 G

ro
u

p
s

W
IT

H
 R

EA
D

 O
N

LY

SE
LE

C
T

U
se

rI
d,

G
ro

u
p

Id
 F

R
O

M
 U

se
rs

_G
ro

u
p

s
W

H
ER

E
G

ro
u

p
Id

 IN
 (

SE
LE

C
T

G
ro

u
p

Id
 F

R
O

M
 U

se
rs

_G
ro

u
p

s

W
H

ER
E

U
se

rI
d

=
U

TI
LS

_P
KG

.g
et

U
se

rI
d

()
)

SE
LE

C
T

U
se

rN
am

e
A

S
U

se
rN

am
e,

 U
se

r_
ID

 A
S

U
se

rI
d

FR
O

M
 S

YS
.D

B
A

_U
SE

RS
, S

YS
.D

B
A

_R
O

LE
_P

RI
V

S
W

H
ER

E
G

R
A

N
TE

E=
U

se
rN

am
e

A
N

D
 G

R
A

N
TE

D
_R

O
LE

=
’C

J_
U

SE
R

’ W
IT

H
 R

EA
D

 O
N

LY

Le
ge

nd
En

tr
y,

 C
h.

 3
St

or
ag

e,
 C

h.
 4

Pr
ov

en
an

ce
, C

h.
 5

Se
ar

ch
in

g,
 C

h.
 6

Se
cu

rit
y,

 C
h.

 7

Fi
gu

re
 3

: B
C

J-
D

B
O

ra
cl

e
di

ag
ra

m
 in

di
ca

tin
g

re
la

tio
ns

hi
ps

an

d
co

lo
r c

od
in

g
th

e
ch

ap
te

r c
ov

er
in

g
th

at
 sy

ste
m

21

ENTRY

CJ.CONTENT_BLOB

CJ.CONTENT_CLOB

CJ.CONTENT_BFILE

CJ.ENTRY

permissions

LINK CJ.LINK

content

CJ.ENTRY_GROUPS

metadata

USERS

CJ.GROUPSGROUPS

CJ.USERS

CJ.USERS_GROUPS

Chapter III: Type Hierarchy & Data Abstraction
Introduction
The core of the BCJ system is its type hierarchy and data abstraction model. This hierar-
chy and its rules shape many of the defining attributes of the system. The design goals
for the type hierarchy were to provide a system that:

1.	 Provided core type definitions that could be used pervasively,
2.	 Could be extended by users as well as administrators, and
3.	 Would allow grouping of types to facilitate a rudimentary form of namespaces.

Given these three goals, a simple system utilizing a core of 3 “master” types was
developed.

The data abstraction and storage capabilities present in the BCJ system allow interac-
tion with data in a generic manner while enabling key search and computation with
better performance and lower latency than a more traditional approach would have.
The fundamental abstraction present in the BCJ system is the concept of an entry as the

22

atomic unit of information. A single entry should, ideally, contain information necessary
to characterize what is stored without the client being concerned with how it is stored.
This is accomplished through use of various content types and content storage types.
Additionally, an entry should contain the important metadata necessary for attribution.
The content storage types will be discussed in the data storage chapter, and attribution
will be discussed in the chapter on provenance.

Entry Basics
Note:	 For simplification other fields present in the metadata of an entry that are not

relevant to the present discussion have been omitted from discussion at this time
but will be discussed as they become pertinent.

An entry is composed of many fields. Entries are represented in the database as a single
row in the ENTRY table. The five most important fields in the definition of an entry for
the type hierarchy are:

1.	 EntryId (INTEGER): This is the primary key for the Entry table. All entries
created after initialization of the database shall have a positive value. Only core
database entries may have a negative value. As the primary design philosophy is
one of recursion, the value of 0 is reserved to prevent infinite recursion in the
definition of the master types.

2.	 UserId (INTEGER): This field references the creator of the entry. Used in combi-
nation with other tables this defines the security permissions on an entry and aids
a user in locating resources.

3.	 ContentTypeId (INTEGER): References by EntryId the type of information stored
in this entry.

4.	 Title (VARCHAR2): Used to assign a title to an entry. Titles need not be unique.
5.	 JournalId (INTEGER): References by EntryId another entry, which must be of

content type journal, in which this entry is located. All journals are attached to a
singular root journal.

Entry Rules
1.	 EntryId is the primary key and must be unique. For all but the core entries,

EntryId will be a positive-valued INTEGER. Only for the core entries that are
manually inserted is EntryId allowed to be a negative value. This partitioning of
the domain of the integers is used to divide the core, system world from the user
world.

2.	 The UserId field must reference a valid row in the Users view.

23

3.	 The ContentTypeId must reference an entry that is either the master content type
or a content type definition that directly references the master content type.

4.	 The JournalId must reference an entry that is in fact a journal.

The Master Types
The three MASTER_ types in the BCJ are the foundation for all other types in the
system. A clear understanding of the philosophy behind these types will help in under-
standing many of the other design attributes of the system. The first of the master types
necessary to build the type hierarchy is the MASTER_CONTENT_TYPE. This is the
basis of all types in the system. The EntryId for this type is a negative number meaning
that it can only be created via manual insertion as an administrator. The UserId, conse-
quently, is that of the user ‘CJ’, the owner of the schema. The ContentTypeId is a recursive
reference to the master content type itself. This self referential nature is yet another reason
why this entry must be manually inserted into the table without any rules being applied.
In a tabular format the information about the core types can be represented as:

EntryId UserId ContentTypeId Title JournalId
-100 CJ -100 “MASTER_CONTENT_TYPE” 0
-101 CJ -100 “MASTER_JOURNAL_TYPE” 0
-102 CJ -100 “MASTER_ENTRY_RELATION_TYPE” 0
-103 CJ -101 “ROOT_JOURNAL” 0

Table 2: Core Types Table

In the diagram below, showing the linkages between the core types, the left side of each
box has three green ports (dots), for the start of a pointer to another entry. The right
side of each box has three red ports (dots), for the end of a pointer to another entry. The
box has four rows of information. The first row is the title; the second row, EID, is the
EntryId; the third row, CTID, is the ContentTypeId; the fourth row, JID, is the JournalId
and references the entry’s parent. The ports are on the same horizontal row as the ID they
are associated with.

24

MASTER_CONTENT_TYPE
EID=-100
CTID=-100
JID=0

MASTER_ENTRY_RELATION_TYPE
EID=-102
CTID=-100
JID=0

MASTER_JOURNAL_TYPE
EID=-101
CTID=-100
JID=0

ROOT_JOURNAL
EID=-103
CTID=-101
JID=0

System Journal
EID=1
CTID=-101
JID=-103

Annotation
EID=2
CTID=-102
JID=1

Core Types

Figure 4: Core Types Diagram
The two additional entries shown in the figure “Core Types Diagram”, with the
EntryId of 1 and 2, are an example of user-generated entries in the BCJ-DB. The entry
titled “System Journal” shows how the ContentTypeId (CTID) is linked to the entry
“MASTER_JOURNAL_TYPE.”. Second, this same entry has a parent journal of the
entry “ROOT_JOURNAL.” The other entry, “Annotation,” is an example of a new
relationship type being defined. This entry has a CTID of -102, the entry “MASTER_
ENTRY_RELATION_TYPE.” Lastly, we see how this new entry has been placed in the
new “System Journal.”

Interacting with Entries
The four primary actions to consider when interacting with entries are:

1.	 Creating a new entry
2.	 Reading from an entry
3.	 Writing to an entry, and
4.	 Deleting an entry.

All four methods will be discussed, but throughout this chapter and the next four chap-
ters, the creation of an entry including source code and a flow chart of the steps involved

25

predominates. This is done because entry creation is always the first step in interacting
with entries and, therefore, serves well to characterize nearly all aspects involved with
entry management. The proceeding figure contains a flow chart showing the complete
version of the createEntry function. At present the flow chart might not make sense.
However, after reading the next few chapters, the createEntry function will become
clear as further details are provided. Reference to this diagram, when appropriate, is
recommended.

Lastly, some mention of code conventions is in order. In Oracle PL/SQL code (often
referred to simply as Oracle code), tags preceding the semantic name associated with a
variable are used to indicate the type of variable.

Tag Meaning
g_ Global Variable
p_ Parameter to a Function/Procedure
v_ Local Variable in a Function/Procedure

Table 3: Program Tag Definitions

The entry rules specify that an entry must have a unique id to be used as the primary
key. To ensure the primary key is unique, a sequence that produces unique integers in a
sequential manner is utilized. This sequence has the name EntryId_Seq. In Oracle it is
specified as:

CREATE SEQUENCE ENTRYID_SEQ INCREMENT BY 1 START WITH 1
NOCYCLE;

An entry must have a content type specified. A ContentTypeId must reference an EntryId
that both exists and has a ContentTypeId that references the master content type. The
JournalId, as with the content type, must reference an EntryId that exists and the entry
referenced must have a ContentTypeId that references the master journal type. Lastly, so
that the caller can find the new entry, the function should return the EntryId that was
retrieved from the sequence.

26

contentTypeId != g_masterJournalType

Yes

v_journalctid == g_masterJournalType

Yes

No

No

isStorageTypeValid?

Yes

createEntry

Retrieve ENTRYID_SEQ.NextVal

switch(contentStorageType)

INSERT INTO CONTENT_BLOB

INSERT INTO ENTRY VALUES(...)

INSERT INTO CONTENT_CLOB

CALL FileIO.createEntry(eid,jid,status)

RETURN ENTRYID

DONE

createDate := CURRENT_TIMESTAMP
modifyDate := CURRENT_TIMESTAMP

contentLastAccessDate := CURRENT_TIMESTAMP
committed := 0

deprecated := 0
hidden := 0

userId: = UTILS_PKG.getUserId()

Trigger ENTRY_TABLE_INSERT fires

Raise Invalid ContentTypeId Error

Raise Invalid ContentTypeId Error

Raise InvalidStorageType ErrorNo

Figure 5: Flowchart for the createEntry function
Given the above fields, a reasonable prototype for an entry creation method would be:

createEntry (
	 journalid,
	 contentTypeId)

While not required by the entry model, this prototype could be enhanced through two
additional parameters, the title and the system generated flag. The Title, as discussed
earlier, is a string. The SystemGenerated flag, on the other hand, has not been discussed
previously. This flag is implemented as a BOOL that can signal true and false. An entry
requires this field to be set at creation time. This metadata field specifies if the entry was
created by the system or by a user. Examples of system generated entries include built-
in content types (including the master types) and error files from experiments. While

27

this field can be helpful, it is not essential or even necessary for proper system operation.
Rather, it is a convenience to limit the scope during searches. The function prototype is
now:

createEntry (
 journalid,
 contentTypeId,
 systemGenerated,
 title)

In Oracle, with the proper type references, this becomes:
FUNCTION createEntry (
 p_journalId IN TYPES.ENTRYID,
 p_contentTypeId IN TYPES.ENTRYID,
 p_systemGenerated IN BOOL.BOOL,
 p_title IN TYPES.ENTRYNAME)
 RETURN TYPES.ENTRYID;

The keyword FUNCTION specifies that this is a function definition to Oracle. The next
string is the title of the function. Within the parentheses is the parameter listing. The
parameters specify (in order):

1.	 the parameter name,
2.	 if the parameter is an input, output, or both, and
3.	 the type the parameter is.

Lastly, the return value type is specified. For the createEntry method all parameters
are INputs. In the BCJ-DB, the type specification generally references a package and a
type definition within the package. The notation for this specification is “PACKAGE.
TYPEDEF”. This function uses the TYPES package and the BOOL package. From
TYPES, the ENTRYID and ENTRYNAME type definitions are used. From BOOL,
only the definition of BOOLean is used. If an invalid reference for p_journalId or p_con-
tentTypeId is provided, an exception is thrown and an entry is not created. In the next
chapter the final parameter present in the createEntry method will be discussed.

With the method for creating an entry established, the next goal is to read from and
write to an entry. This is done by interacting with the table that stores the metadata
for an entry. The name of this table, not surprisingly, is ENTRY. The content for an
entry is stored in separate tables. The easiest way to read an entry is to select all fields
from ENTRY where the ENTRYID matches the desired entry and read from the result.
To write to an entry, simply perform the appropriate SQL update on the fields to be
changed. In SQL, reading an entry could be described as:

28

SELECT * FROM ENTRY WHERE ENTRYID=123456;

As an example of a write operation, consider updating the title of an entry:
UPDATE ENTRY SET TITLE=’New Title’ WHERE ENTRYID=123456;

Clearly if this were the full extent of the work done by the BCJ-DB the system would
hardly be worth discussing. Not all fields of an entry may be modified for security rea-
sons. In subsequent chapters interesting and unique features governing operations,
including interacting with content, will be discussed.

When erasing an entry, care needs to be taken because the content is detached from the
metadata. For this reason, only a function interface is provided. An entry can be erased
by referencing the primary key of an entry, EntryId, and calling the eraseEntry method.
This method returns a Boolean indicating if the deletion were successful. The signature
for eraseEntry is:

PROCEDURE eraseEntry (
 p_eid IN TYPES.ENTRYID);

If the entry does not exist, an exception indicating that fact is thrown.

29

ENTRY

CJ.CONTENT_BLOB

CJ.CONTENT_CLOB

CJ.CONTENT_BFILE

CJ.ENTRY

permissions

LINK CJ.LINK

content

CJ.ENTRY_GROUPS

metadata

USERS

CJ.GROUPSGROUPS

CJ.USERS

CJ.USERS_GROUPS

Chapter IV: Storage Architecture
Introduction
The storage demands on the BCJ-DB to support both rapid search and local cluster-
based computation were the primary drivers to develop the data abstraction model. This
model splits an entry into two components: metadata and content-data. The metadata of
an entry is stored in the ENTRY table. This facilitates rapid access via indexing and quick
searching. The content of an entry, however, has a hybrid storage architecture utilizing
both tables in the database and files on a file system accessible by the database and the
cluster.

Content Storage Type
The two driving factors for the design were latency and volume. A third attribute, the
need for search, was added to reduce unnecessary load on the database from indexing. To
achieve these goals, the storage architecture stores entry content in three locations. Two
of the storage types are stored inside the database while the third is stored on a shared

30

file-system. Character Large Object (CLOB) and Binary Large Object (BLOB) type con-
tent are stored internally. Binary File (BFILE) data is stored externally.

Latency Volume Searchable
CLOB Low Low Yes
BLOB Low Low No
BFILE High High No

Table 4: Comparison of content storage types

From the table, it becomes clear that CLOB is useful for annotations and other metadata
schema used for informational provenance because it is indexed. BLOB’s are used to store
binary objects that may need frequent reference and are small in size. Examples include
all content types, workflow and experiment definitions, and journal definitions. BFILEs
are used to store files, such as the human genome, that are large, require rapid cluster
access, and will rarely, if ever, be viewed or modified extensively in the BCJ client.

Entry Interaction
The three storage types available in the BCJ enable a more flexible storage system that
provides higher responsiveness to the tasks involved in computational biology through
specialization. Fortunately the impact of this specialization is minimal on the interaction
with entries.

Entry Creation
With the addition of this field, the interface to create new entries changes only slightly.
Namely, a content storage type must be specified. The Oracle PL/SQL is:

FUNCTION createEntry (
 p_journalId IN TYPES.ENTRYID,
 p_contentTypeId IN TYPES.ENTRYID,
 p_systemGenerated IN BOOL.BOOL,
 p_title IN TYPES.ENTRYNAME,
 p_storageType IN TYPES.STORAGETYPE)
 RETURN TYPES.ENTRYID;

This is the complete specification for creation of an entry in the BCJ-DB. All param-
eters are still inputs. The return value is the EntryId of the new entry. And, as before, an
exception is thrown if an invalid p_journalId or p_contentTypeId is passed in. Lastly, if a
StorageType that is unrecognized is provided an exception indicating that fact is thrown.

When the createEntry method is called, it first checks all parameters to determine if any
rules are broken. If any are, an appropriate exception is thrown. If no rules are broken,

31

the EntryId to be assigned to the new entry is retrieved from the sequence ENTRYID_
SEQ and the new entry is inserted into the entry table. Lastly, based on the content
storage type specification, one of three things is done. If the storage type is BLOB,
written TYPES.ST_BLOB, the ENTRYID and an empty BLOB are inserted into the
CONTENT_BLOB table. Similarly for CLOB (TYPES.ST_CLOB), the ENTRYID
and an empty CLOB are inserted into the CONTENT_CLOB table. Lastly, for a BFILE
(TYPES.ST_BFILE), something similar in significance but different in implementation,
happens—a Java Stored Procedure (JSP) created in Oracle is called. This JSP will create a
file on the shared file system. Before proceeding with the JSP, the code to this point is:

FUNCTION createEntry (
 p_journalId IN TYPES.ENTRYID,
 p_contentTypeId IN TYPES.ENTRYID,
 p_systemGenerated IN BOOL.BOOL,
 p_title IN TYPES.ENTRYNAME,
 p_storageType IN TYPES.STORAGETYPE
)
 RETURN TYPES.ENTRYID
AS
-- Local variables
 v_cval TYPES.ENTRYID;
 v_journalctid TYPES.ENTRYID;
 v_status INTEGER;
BEGIN
 -- Is the ContentTypeId != g_masterJournalType
 -- If it is, then they are really creating a journal and should call createJournalEntry
instead.
 IF p_contentTypeId = g_masterJournalType
 THEN
 errpkg.raise(errnums.en_invalid_contenttypeid);
 END IF;

 -- Is the Entry represented by journalId really a journal?
 SELECT ContentTypeId INTO v_journalctid FROM ENTRY
 WHERE ENTRYID=p_journalId;
 IF v_journalctid != g_masterJournalType
 THEN
 errpkg.raise(errnums.en_invalid_contenttypeid);
 END IF;

 -- Is the StorageType valid?
 IF(p_storageType != TYPES.ST_BLOB) AND
 (p_storageType != TYPES.ST_CLOB) AND
 (p_storageType != TYPES.ST_BFILE)

32

 THEN
 errpkg.raise(errnums.en_invalid_storagetype);
 END IF;

 /* All checks have been meet, so we can proceed */
 -- Get the next value in the sequence for the primary key
 EXECUTE IMMEDIATE
 ‘SELECT ENTRYID_SEQ.NextVal FROM dual’ INTO v_cval;

-- Insert the values passed in into the ENTRY table. This fires a trigger as well.
 INSERT INTO ENTRY(
 EntryId, JournalId, SystemGenerated, ContentTypeId,
 StorageType, Title)
 VALUES(
 v_cval, p_journalId, p_systemGenerated,
 p_contentTypeId, p_storageType, p_title);

 -- Initialize the corresponding row in the CONTENT_ table
 IF (p_storageType = TYPES.ST_BLOB) THEN
 INSERT INTO CONTENT_BLOB(EntryId,Data)
 VALUES(v_cval, EMPTY_BLOB());
 ELSIF (p_storageType = TYPES.ST_CLOB) THEN
 INSERT INTO CONTENT_CLOB(EntryId,Data)
 VALUES(v_cval, EMPTY_CLOB());
 ELSIF (p_storageType = TYPES.ST_BFILE) THEN
 FileIO.createEntry(v_cval,p_journalId,v_status);
 ELSE -- Invalid Storage Type
 errpkg.raise(errnums.en_invalid_storagetype);
 END IF;

 COMMIT;

Figure 6: createEntry source code
Read & Write LOB Content
Reading and writing of the two Large Object (LOB) types is done through a functional
interface. When reading or writing an entry, a pointer to a temporary LOB that is a
copy of the actual data is used for interaction. This is done for security reasons to pre-
vent modification of the actual content present in an entry. Thus, when a user requests
to read the content of an entry that has a content type of BLOB or CLOB, permissions
for access are checked by the security framework (discussed in chapter seven). If access is
granted, the BCJ-DB copies the content from the appropriate table (CONTENT_BLOB
or CONTENT_CLOB) to a temporary LOB. The return value for the read function
is a pointer to the temporary LOB. When writing, a similar procedure takes place. The
user writes into a temporary LOB and then calls the appropriate write function. The

33

BCJ-DB will then evaluate the security rules for writing to an entry and if the user is al-
lowed to perform the write, the content will be copied into the appropriate table. In the
case of both read and write, if the user is not allowed to perform the action, an excep-
tion is thrown. If the EntryId specified does not exist, an exception indicating that fact is
thrown. Because EntryId is the primary key, it is used to reference the source/destination.
The Oracle PL/SQL for reading an entry is quite clear:

FUNCTION readEntryContent (
 p_eid IN TYPES.ENTRYID)
 RETURN BLOB;

Read & Write BFILE Content
BFILE storage has a central base directory where the directories for all of journals that
exist on the system are located. Entries are stored as files placed inside the directory with
the same name (actually a number) as the JournalId value. Security requirements dictate
that the file referenced by the BFILE be placed in a directory only accessible by the BCJ
computational server and the BCJ-DB. This prevents modification or deletion of entry
content of storage type BFILE.

/basePath
/123

/234

/124
/129
/478

/239
/925

Figure 7: BFILE Base Path

The figure “BFILE Base Path”, represents a situation where there are two journals, with
the JournalId values of 123 and 234. There are a total of five entries. Three of the entries,
124, 129, and 478 are in journal 123. The other two, 239 and 925, are in journal 234.
This type of mapping between the database and a UNIX file system is done to better
load-balance the number of files in a directory. Although this design has limitations with
respect to shortcomings present in the underlying filesystem, it should be robust under
nearly all circumstances. A more robust method using hashing could easily be developed
by modifying the source code in the JSPs that handle BFILE access.

34

Reading a BFILE is done by calling a method with a similar prototype to that for the
two LOB types. However, to permit easier access to the large data typical of BFILEs, the
addition of two parameters, one that specifies the offset into the content to begin reading
from and another that specifies the number of bytes to be read, have been added. This
allows selectively reading a portion of the file. For instance, a user may wish to preview
the first 10,000 bytes of a file to see the header information on the output from an ex-
periment. This can be easily accomplished via this method. The prototype is as follows:

FUNCTION readEntryContentBfile (
 p_eid IN TYPES.ENTRYID,
 p_offset IN INTEGER,
 p_length IN INTEGER)
 RETURN BLOB;

This method, as with the LOBs, copies the content requested to a temporary LOB and
returns a pointer to that temporary. The only difference being that this time only a por-
tion of the content may be contained in the temporary.

To write to a BFILE, the user writes to a temporary BLOB. This temporary BLOB is
then passed as a parameter into the write function for a BFILE. The primary difference
between the read and write methods is that partial writing is not allowed for BFILE. The
temporary BLOB must contain all data that is to be placed into the BFILE. This decision
was made because of the inherent difficulty in handling large files. The BCJ-DB design
did not invision a scenario where this type of access would be important. When large
data sets are used in bioinformatics, it is typically as the input to an experiment, as with
the human genome, or the output of an experiment that will later be processed by fur-
ther algorithms or visualization techniques, as with molecular dynamics. In either case,
user modification of large content outside of the computational environment was not a
use-case that was felt to be important.

35

ENTRY

CJ.CONTENT_BLOB

CJ.CONTENT_CLOB

CJ.CONTENT_BFILE

CJ.ENTRY

permissions

LINK CJ.LINK

content

CJ.ENTRY_GROUPS

metadata

USERS

CJ.GROUPSGROUPS

CJ.USERS

CJ.USERS_GROUPS

Chapter V: Provenance
Introduction
To maintain provenance information, the BCJ-DB employs a number of techniques. The
two key areas involved in provenance are:

1.	 The metadata present in an entry stores attribution data and
2.	 Relationships (links) between entries.

The first part of this chapter will discuss the metadata fields of an entry used in support
attribution provenance. The latter part will discuss the use of links to maintain infor-
mational provenance. Using RDF triples for storing semantic relationships is hardly
unique. However, the addition of two fields in support of provenance integrity proves
to be unique. Chapter six discusses additional information provenance fields for use in
searches. Finally, the focus on integrity continues in chapter seven with a discussion of
the security model.

36

Attribution Metadata
To this point, four entry fields have been discussed in detail. In chapter three, the
EntryId, ContentTypeId, JournalId, and Title were the focus. Chapter 4 discussed
StorageType. This chapter presents an additional five fields, thereby doubling the number
of available fields. The five new fields are:

1.	 UserId,
2.	 CreateDate,
3.	 ModifyDate,
4.	 CommitDate, and
5.	 Committed.

The first field, UserId, identifies the user that created this entry. An entry is assigned this
value at creation and it is unalterable after creation. The UserId is used both for attribu-
tion and for security, regulating who may modify an entry. Synonyms include “entry
owner” and “entry creator”.

CreateDate is a high-precision timestamp indicating the instant the entry was created.
The purpose of this field is to signal when work began on an entry. The timestamp used is
retrieved during the invocation of the createEntry method. After createEntry inserts the
new row into the database, the CreateDate field is unalterable.

ModifyDate is also a high-precision timestamp and specifies the last time the content for
this entry was written to. This field can be used to track when the last work was done
on an entry. This field has a role in both attribution and informational provenance that
may be used in searches. During the invocation of a method to write to the content, the
timestamp is retrieved and the ModifyDate field of the entry is updated.

The last two fields, CommitDate and Committed, are closely related and form the final
piece of an entry used to maintain the attribution integrity. The concept of committing
an entry was developed so that the content could be locked, preventing further altera-
tion. Committing changes ensures accurate records indicating the date a particular piece
of work was completed. Entries are created in an uncommitted state. For example, before
being committed the content may be modified at will without restriction by the entry’s
owner. When the owner is pleased with the content of the entry, it may be committed,
signaling the completion of work. A trigger on the ENTRY table detects alteration of

37

the value of the Boolean Committed. If Committed changes from false to true, the current
timestamp is retrieved and the CommitDate field is set with the retrieved value.

After committed, only modification of entry metadata fields related to organizational
convenience is allowed. These organizational fields will be discussed in chapter six. Thus,
at present, the example of the rating field, used to indicate the importance or useful-
ness of an entry, will suffice. The title field may not be altered after an entry has been
committed.

Entry Relationships
Entry relationships, also known as links, form the basis of many provenance systems.
Provenance management systems typically use RDF 3-tuples for the storing the relation-
ships between items. While good at describing relationships, the RDF 3-tuple does not
address concerns about maintaining the integrity of the provenance semantics they imply.
To address this limitation, the BCJ-DB adds two additional fields to the RDF 3-tuple
model to indicate if the subject or predicate has an essential dependency on the other.

In the BCJ-DB, the subject-predicate-object nomenclature transforms into ToEntry-
LinkType-FromEntry, respectively. The ToEntry is a reference to the EntryId of the sub-
ject of the relationship. Likewise, FromEntry references the EntryId of the object of the
relationship. And, lastly, the LinkType is a reference to an entry that defines a relation-
ship type. As discussed in chapter 3, an entry that defines a relationship type has a
ContentTypeId that references the master entry relationship entry. All relationships use an
“IS-A” type of wording. This decision, though not purely arbitrary, was not seen as neces-
sarily superior to a “HAS-A” wording. However, it was felt that having both could lead
to confusion and might necessitate the use of inverse relationships in searches to handle
situations where the opposite wording was used. For example, the inverse of “John has
a son Sam” is “Sam is the son of John.” Both sentences specify the same type of familial
connection but swap the location of the subject and object. All relationship types should
be able to conform to the structure:

FromEntry is a LinkType of ToEntry

Using the example above, there could be a LinkType of “son” defined. The FromEntry
would be “Sam” and the ToEntry would be “John.” This would be written as: “Sam is a
son of John.” This specification should ease searches for additional relationships that may

38

exist in the system. For instance, it might be desirable to find all records that are “son of
John” or find all sons in general simply by looking for the specific relationship type.

The primary key for the Link table is the 3-tuple of ToEntry-LinkType-FromEntry. Few
rules regulate the table. As should be evident, the value in ToEntry should not be present
in FromEntry or LinkType. Similarly, the value in FromEntry should not be present in
ToEntry or LinkType.

The two new flags to indicate the dependencies between the ToEntry and the FromEntry
(the subject and the object) are given the names ToRequiresFrom and FromRequiresTo.
Establishing a dependency between entries signifies if an entry requires the other to form
an unbroken provenance trail. An easy way to understand this concept is with a concrete
example. A researcher defines a workflow to test a hypothesis. The workflow “WF” takes
as input an entry “In” and outputs entry “Out”. Clearly if “In” were deleted both “WF”
and “Out” would no longer have the appropriate information to provide replication
capability or contextual understanding. Similarly, if “WF” were deleted “Out” would no
longer have a workflow to define how it was generated. The consequence in both cases
is data without appropriate metadata to describe where it came from and how it was
generated.

The table below describes the valid combinations of flag values.

ToRequiresFrom FromRequiresTo Valid?
False False Yes
False True Yes
True False Yes
True True No

Table 5: Link table dependency flag values

As described in the table above, it is not possible for both the ToRequiresFrom and the
FromRequiresTo flags to be simultaneously set to true. The rationale behind this decision
is that this would cause an inextricable link between the two entries with no possibility to
break the linkage. It should be noted, however, that a circular dependency chain between
entries could be created. The primary difference between the two, however, is that in the
case of the dependency chain the loop can be broken if the dependency requirement of
any one of the entries can be altered. In the case of both values being set to true, however,
there is no possibility of ever breaking the dependency loop.

39

Entry Relationship Interaction
To keep the use of the entry relationship simple, only two methods were added to the
interface: createLink and deleteLink. To create a link, five parameters are required:

1.	 FromEntry—the entry the link is from,
2.	 LinkType—the type of link (referenced as an EntryId),
3.	 ToEntry—the entry the link points to,
4.	 FromReqTo—if the FromEntry has an essential dependency on the ToEntry, and
5.	 ToReqFrom—if the ToEntry has an essential dependency on the FromEntry.

The method createLink does the obvious and simply inserts into the Link table the appro-
priate values. The prototype for this method is:

PROCEDURE createLink (
 p_linkType IN TYPES.ENTRYID,
 p_fromEntry IN TYPES.ENTRYID,
 p_fromReqTo IN BOOL.BOOL,
 p_toEntry IN TYPES.ENTRYID,
 p_toReqFrom IN BOOL.BOOL
)

The method deleteLink, similarly, simply removes a link from the table. This is an unfor-
tunate weakness of the new model. The prototype for the method is:

PROCEDURE deleteLink (
 p_linkType IN TYPES.ENTRYID,
 p_fromEntry IN TYPES.ENTRYID,
 p_toEntry IN TYPES.ENTRYID,
)

Link deletion only requires a unique reference to the primary key of a link and is not
dependent on the two new flags added.

An accurate method for establishing who could delete a link when there were different
owners for the ToEntry and the FromEntry was never fully established and so this func-
tionality is not implemented at present. The major challenge with coming to a decision
on how this should be handled focused on the compromise between the desire for data
integrity and the wish to remove the potential for abusive and/or overzealous creation of
links between entries owned by different users causing data that may be irrelevant being
locked into the system. A compromise solution, disallowing the removal of a link where
the user attempting the deletion is not the owner of both the ToEntry and the FromEntry
in conjunction with the usage of the Deprecated field of an entry seems to be appropri-
ate. To explain further, the problem with the link dependency exists for the user who

40

has had their information linked to. For example, if researcher A ran an experiment that
produced an output useful to researcher B, who subsequently linked to the output entry
and used it in an experiment of their own, that entry would then have an essential depen-
dency. Eventually, a more encompassing approach wherein the database could be run in
two modes seems workable. In one more the data is strictly managed (committed entries
could never be removed). In the other more pragmatic relaxed security mode, commit-
ted entries could be removed, but some guarantees on provenance maintenance would be
lost. This dual security mode is discussed in the next chapter. To finish up this discussion,
the use of Deprecated should allow tagging information that has become irrelevant to the
creator of the information even if they are unable to delete it as a result of a strict security
mode.

Provenance Collection & Usage
Provenance information is gathered in two ways: through automatic provenance gather-
ing and through an API. These two collection methods are complementary and do not
overlap. The automatic collection of provenance is done through typical interaction with
the BCJ-DB, such as creating an entry, updating a field of an entry, or updating the con-
tent of an entry. The provenance information input through an API typically comes from
BCJ plug-ins. For instance, when a user executes an experiment and output is generated,
the experiment plug-in will create links indicating the essential dependency of the ex-
periment outputs on the experiment definition. Likewise, the quick text annotation tool
available in the BCJ navigator makes an annotation relationship between the text entered
and the entry that has focus in the navigator.

Once collected, provenance information may be retrieved by navigators and tools to
provide pertinent information to the user while reducing unnecessary clutter. The current
BCJ navigator allows filtering by author, all date types, flags such as deprecated, rating,
and hidden, and categorization by content types. Additionally, an auxiliary pane in the
navigator uses entry relationships to display a type-categorized tree view of the entries
related to the current selection. All of the following examples of BCJ usage of provenance
information derived the provenance via SQL queries against the Entry and Link tables.
By providing an open interface using views instead of a purely functional interface,
the BCJ-DB makes it possible to perform complex join queries relating entries to one
another.

41

Remarks
Typical research without a provenance framework utilizing flat files stores provenance
information in headers or throughout the file. Although this approach provides some
form of provenance, mainly attribution of a data source, it is weak even in providing that
limited provenance because it requires careful management of files to ensure they are as-
sociated with the correct experiments. In the world of bioinformatics with rapid informa-
tion expansion, this solution rapidly becomes unmanageable by an individual. The time
required for management will begin to out-weigh the time spent performing productive
research. Thus, an integrated system such as the BCJ that tracks provenance as a user
approaches their daily work can be an essential aid in combating the data management
overhead.

The BCJ-DB’s rigorous authorship and entry create/commit timestamps make it capable
of providing non-repudiation assurances. The enhancements to the basic RDF 3-tuple
model foster collaboration between researchers by ensuring that the use of data provided
by a fellow researcher is without fear of its becoming inaccessible at a later date.

42

Chapter VI: Search
Introduction
With the volumes of information the BCJ clients automatically produce in the form of
relations between entries, the BCJ-DB must provide adequate search capabilities. In fact,
the BCJ-DB views search not just as a feature. Rather, it views search as a way of life
for presenting useful information to BCJ users in every action they perform. The BCJ
navigator concept is the most obvious representation of this. Navigators perform many
searches to present a view of the data present in the BCJ-DB. These views are typically
user-specified “slices” through the provenance information stored in the BCJ-DB. For ex-
ample, limiting the navigator to a particular journal or journals through use of the work-
ing set feature limits the scope of a view to a subset of information that has been manu-
ally associated by users through their choice to place one or more entries within a journal.
Navigators might use creation or modification dates to sort entries. In other areas, such
as with the workflow editor and experiment editor, search is used to find blocks that can
be placed and available data sources that provide valid input to a particular block. For

ENTRY

CJ.CONTENT_BLOB

CJ.CONTENT_CLOB

CJ.CONTENT_BFILE

CJ.ENTRY

permissions

LINK CJ.LINK

content

CJ.ENTRY_GROUPS

metadata

USERS

CJ.GROUPSGROUPS

CJ.USERS

CJ.USERS_GROUPS

43

example, if a block takes FASTA as its input, when searching for inputs to that block, the
scope will be limited to the types that would make a valid workflow/experiment.

“Helper” Metadata Fields
The BCJ-DB features a number of metadata fields that are designed to help a user find
what they are looking for. To this point, a total of eight have been discussed. They are
UserId, ContentTypeId, CreateDate, ModifyDate, CommitDate, Committed, Title, and
SystemGenerated. These fields are all important to provenance and thus are equally impor-
tant to search. A system that maintains provenance that is not searchable is merely keep-
ing provenance for an “after the fact” type of analysis. The use of provenance at creation
time facilitates better results that are easier to obtain by limiting the potential data that
must be dealt with. Without further ado, the last four entry metadata fields are:

1.	 ContentLastAccessDate,
2.	 Deprecated,
3.	 Hidden, and
4.	 Rating.

ContentLastAccessDate specifies the last time the owner accessed the content of the entry.
The date is modified anytime the content is accessed, even after the entry has been com-
mitted. This field’s primary use is in a BCJ entry navigator for sorting based on the last
time an entry’s content was accessed. The date could also be useful when displaying a list
of possible inputs for a port in a workflow by sorting the most recently used items to the
top of the list.

Deprecated indicates that the owner has marked the entry as no longer being relevant.
The reasoning could simply be that the entry is no longer up-to-date or perhaps has been
found to be incorrect and cannot be deleted due to an essential dependency. In either
case, this field can prove very useful for reducing the visual clutter present in a navigator
and for searching for annotations, results, workflows, or other information when per-
forming global searches of the BCJ-DB.

Hidden indicates that an entry, while not deprecated, is for some reason cluttering the
search space and a user wishes to limit it from appearing. This field is used by tools in
situations where information needs to be stored but would be distracting and cause
“information overload” if displayed in the navigator or other results. A common use of
this flag is with the experiment execution debug file (actually an entry). The debug entry

44

contains the scripts, program standard in and out, and other useful information about an
experiment execution. While this entry can be useful in investigating a potential prob-
lem, it is typically more of a visual distraction and is unnecessary. By making this entry
hidden, important audit trail provenance is maintained—the fourth type of provenance
the BCJ maintains.

Lastly, Rating, indicates an integer value from 0 to 5 of the rating the user wants to assign
to an entry. This rating could be used for any purpose. While the original specification
did not include such a field, discussion with a number of users led to the creation and
inclusion of this field. The value ‘0’ is used when the value is unset. The range from 1 to
5 specifies set values, where 1 is the lowest and 5 is the highest rating. In the navigator
scenario, a rating on an entry could be used in ordering the entries. Another possibil-
ity would be for users to use the flag to assign a value indicating the quality of the data.
Users could then search, for example, for data that was of a particular content type, had
particular contents, and had a rating greater than 3.

Content Indexing
The three-level storage architecture described in chapter four was an important design
decision. The purpose of the architecture, as described earlier, was to enable search while
maintaining excellent performance for local cluster-based computation. By partitioning
storage into three levels, data that needs indexing can be indexed and data where index-
ing would have a high burden with limited or no benefits is left unindexed. For example,
large gene sequences are typically stored as BFILEs. Because indexing gene sequences
would requires large computational and memory resources from the database with no
real benefits to the user, BFILE storage type is not indexed. BLOB data is typically a seri-
alized Java object, a picture, or another format that is unsearchable and is also left unin-
dexed. CLOB data, however, is textual information that is typically of high value. Thus,
partitioning the storage makes it possible to only index the entry content that needs to be
indexed. The index specification is:

CREATE INDEX CONTENT_CLOB_IDX ON CONTENT_CLOB(DATA)
INDEXTYPE IS CTXSYS.CONTEXT
PARAMETERS (‘sync (every “sysdate+(1/24/60)”) MEMORY 128M’);

The last line of the specification, with the parameters, simply indicates that the index is
updated once every hour and that the updating process can use at most 128 megabytes of
memory.

45

Complex Join Queries
The end product of the many features discussed so far is a database that is flexible, exten-
sible, and provides comprehensive provenance information stored within. The “trick”, of
course, is how to get access to the information. The BCJ-DB answer is through queries.
While many systems only provide rudimentary query functionality, where a simple ques-
tion such as, “Tell me all entries authored by user Alice?” is asked, the BCJ-DB supports
much more complicated queries. Because all information that is accessible to a user is
available, queries asking questions such as, “Show me all entries authored by Alice that
were output from a workflow that used the BLAST block?” This query would be a search
that joined the Entry table to the Link table and then joined back to the Entry table.
Fundamentally, all tables are accessible (given the user has appropriate permissions to the
specific row) and thus may be joined together. A query could ask for “All annotations on
workflows that contain the text ‘searchForMe’.” A good formulation of this query would
be to first find the EntryId of all entries that have the text “searchForMe” joined with
ToEntry, with the rows in the Link table where the LinkType references the entry relation-
ship definition titled “Annotation,” and, lastly, to then join the FromEntry to all entries
that are of content type “Workflow.”

46

Chapter VII: Security
Introduction
Security conscious system design supporting authentication for data access has long been
the standard security model present in systems. Typical systems support only very coarse-
grained security where permissions are assigned to entire projects or journals, similar to
assigning permissions on a top-level directory (one attached to the root) and having the
permissions inherited by all files and directories within it. In this model to share a spe-
cific piece of information with select actors, a new top-level directory would need to be
created with the desired permissions and the information copied into that directory. The
problems with coarse-grained security is that the top-level becomes polluted with many
directories to describe all possible combinations of permissions, provenance information
may be obfuscated or lost, and maintenance is complicated by having duplicate files.

ENTRY

CJ.CONTENT_BLOB

CJ.CONTENT_CLOB

CJ.CONTENT_BFILE

CJ.ENTRY

permissions

LINK CJ.LINK

content

CJ.ENTRY_GROUPS

metadata

USERS

CJ.GROUPSGROUPS

CJ.USERS

CJ.USERS_GROUPS

47

By providing advanced security features, the BCJ-DB strives to accomplish three things:
1.	 Create a secure, private workspace for individuals,
2.	 Encourage collaboration through the ability to selectively share information with

fine-grained controls, and
3.	 Maintain the integrity of all provenance information the BCJ collects.

To accomplish these goals, the BCJ-DB uses a number of approaches. In chapters three
and four the data abstraction, content storage type, and functional interfaces were intro-
duced. In chapter five, the concept of committing an entry was introduced along with
the fundamental actor in the BCJ-DB, a user. This chapter furthers these ideas through
discussion of the group-based access controls, the BFILE storage type, and the functional
interface.

Before proceeding further, an overview of the entire Oracle portion of the BCJ-DB in-
terface is in order. Figure eight shows all of the tables, methods, and procedures discussed
up to this point. Additionally, it shows the three new tables used for storing security-pa-
rameters and the six views that implement the security specified by the underlying tables.
In this figure, the thin arrow heads represent foreign key relationships with the arrows
pointing to the foreign key referenced. The broad arrows (filled in arrow-head) point
from an underlying table to the exported view of that table.

Users & Groups
The primary actors in the BCJ-DB are users. Users are defined by two characteristics:

1.	 They have an Oracle account that grants them connect privileges, and
2.	 They have been granted the ‘CJ_USER’ role.

A single schema, ‘CJ’, contains all tables, views, packages, and sequences necessary for
operation of the BCJ-DB. Two Oracle roles, CJ_User and CJ_Admin provide two levels
of access for other Oracle users to this schema. The CJ_User role defines a limited set
of access permissions to the CJ schema. In particular, CJ_User is able to execute the
packages:

1.	 TYPES: type aliases,
2.	 BOOL: defines the Boolean type,
3.	 USER_PKG: functions & procedures used by users, such as createEntry, and
4.	 UTILS_PKG: functions to find out information about a user.

48

CJ_User is granted select on all six views, namely:
1.	 ENTRY_VIEW,
2.	 ENTRY_RESTRICTED,
3.	 CONTENT_CLOB_VIEW,
4.	 GROUPS_VIEW,
5.	 USERS_GROUPS_VIEW, and
6.	 USERS.

The CJ_Admin role is for administrating the CJ schema and performing advanced opera-
tions from the BCJ environment, such as creating and removing users and groups and
associating a user with one or more groups.

Because Oracle roles are used to isolate the BCJ-DB from the rest of the Oracle database
and grant access, users are not stored in a table. Rather, they are a view generated by que-
rying against the Oracle DBA_USERS table (stores all users on this Oracle database) and
the DBA_ROLE_PRIVS view (associates roles with users and lists their privileges). The
SQL for creating this view is:

CREATE OR REPLACE VIEW USERS
AS
 SELECT USERNAME AS USERNAME,USER_ID AS USERID
 FROM SYS.DBA_USERS, SYS.DBA_ROLE_PRIVS
 WHERE GRANTEE=USERNAME AND GRANTED_ROLE=’CJ_USER’
 WITH READ ONLY;

This query can be understood as finding all rows in the DBA_Role_Privs view where the
role that has been granted is CJ_User and joining the Grantee column of that sub-query
with the UserName column of the DBA_Users table. The end product is a view that con-
tains all Oracle users that have been granted the role CJ_User.

BCJ-DB groups specify a collection of users. This is accomplished through an indirect
reference to a list of users as specified in the Users_Groups table. Creation of new groups
and management of group membership is the role of the CJ user or a user with the CJ_
Admin role. The Groups table has two columns, GroupId and GroupName. The GroupId
comes from a sequence specified identically (other than name) to that used for generating
unique EntryId values. The GroupName is assigned as a parameter in the addGroup proce-
dure. The Users_Groups table contains two foreign keys—one to the Users view referenc-
ing UserId and another to the Groups table referencing GroupId. To associate a user with

49

Fi
gu

re
 8

: C
J D

at
ab

as
e

D
ia

gr
am

EN
TR

Y
+E
nt
ry
Id
:
TY
PE
S.
EN
TR
YI
D
=
PK

+U
se
rI
d:
 T
YP
ES
.E
NT
RY
ID

+S
ys
te
mG
en
er
at
ed
:
TY
PE
S.
BO
OL

+C
on
te
nt
Ty
pe
Id
:
TY
PE
S.
EN
TR
YI
D

+C
re
at
eD
at
e:
 T
IM
ES
TA
MP
(6
)
WI
TH
 T
IM
E
ZO
NE

+M
od
if
yD
at
e:
 T
IM
ES
TA
MP
(6
)
WI
TH
 T
IM
E
ZO
NE

+C
om
mi
tD
at
e:
 T
IM
ES
TA
MP
(6
)
WI
TH
 T
IM
E
ZO
NE

+C
om
mi
tt
ed
:
TY
PE
S.
BO
OL

+T
it
le
:
VA
RC
HA
R(
25
6)

+J
ou
rn
al
Id
:
TY
PE
S.
EN
TR
YI
D

+C
on
te
nt
La
st
Ac
ce
ss
Da
te
:
TI
ME
ST
AM
P(
6)
 W
IT
H
TI
ME
 Z
ON
E

+R
at
in
g:
 N
UM
BE
R(
1)

+D
ep
re
ca
te
d:
 T
YP
ES
.B
OO
L

+H
id
de
n:
 T
YP
ES
.B
OO
L

+c
re
at
eE
nt
ry
(j
ou
rn
al
Id
:T
YP
ES
.E
NT
RY
ID
,c
on
te
nt
Ty
pe
Id
:T
YP
ES
.E
NT
RY
ID
,

sy
st
em
Ge
ne
ra
te
d:
TY
PE
S.
BO
OL
,t
it
le
:T
YP
ES
.E
NT
RY
NA
ME
):
 T
YP
ES
.E
NT
RY
ME
TA

+c
re
at
eJ
ou
rn
al
En
tr
y(
co
nt
en
tT
yp
eI
d:
TY
PE
S.
EN
TR
YI
D,

sy
st
em
Ge
ne
ra
te
d:
TY
PE
S.
BO
OL
,

ti
tl
e:
TY
PE
S.
EN
TR
YN
AM
E)
:
TY
PE
S.
EN
TR
YM
ET
A

+r
ea
dE
nt
ry
Co
nt
en
t(
ei
d:
TY
PE
S.
EN
TR
YI
D)
:
TY
PE
S.
EN
TR
YD
AT
A

+r
ea
dE
nt
ry
Me
ta
(e
id
:T
YP
ES
.E
NT
RY
ID
):
 T
YP
ES
.E
NT
RY
ME
TA

+w
ri
te
En
tr
yM
et
a(
ei
d:
TY
PE
S.
EN
TR
YI
D)
:
TY
PE
S.
EN
TR
YM
ET
A

+w
ri
te
En
tr
yC
on
te
nt
(e
id
:T
YP
ES
.E
NT
RY
ID
,i
nD
at
a:
TY
PE
S.
EN
TR
YD
AT
A)

+d
el
et
eE
nt
ry
(e
id
:T
YP
ES
.E
NT
RY
ID
)

CO
N

TE
N

T
+E
nt
ry
Id
:
TY
PE
S.
EN
TR
YI
D
=
FK
 E
NT
RY
(E
nt
ry
Id
)
CA
SC
AD
E
ON
 D
EL
ET
E

+S
to
ra
ge
Ty
pe
:
NU
MB
ER
(1
)

CO
N

TE
N

T_
CL

O
B

+E
nt
ry
Id
:
TY
PE
S.
EN
TR
YI
D
=
FK
 C
ON
TE
NT
(E
nt
ry
Id
)
CA
SC
AD
E
ON
 D
EL
ET
E

+S
ea
rc
ha
bl
e:
 T
YP
ES
.B
OO
L

+D
at
a:
 C
LO
B

CO
N

TE
N

T_
BL

O
B

+E
nt
ry
Id
:
TY
PE
S.
EN
TR
YI
D
=
FK
 C
ON
TE
NT
(E
nt
ry
Id
)
CA
SC
AD
E
ON
 D
EL
ET
E

+S
ea
rc
ha
bl
e:
 T
YP
ES
.B
OO
L

+D
at
a:
 B
LO
B

CO
N

TE
N

T_
BF

IL
E

+E
nt
ry
Id
:
TY
PE
S.
EN
TR
YI
D
=
FK
 C
ON
TE
NT
(E
nt
ry
Id
)
CA
SC
AD
E
ON
 D
EL
ET
E

+S
ea
rc
ha
bl
e:
 T
YP
ES
.B
OO
L

+D
at
a:
 B
FI
LE

EN
TR

Y_
G

RO
U

PS
+E
nt
ry
id
:
TY
PE
S.
EN
TR
YI
D
=
FK
 E
NT
RY
(E
nt
ry
Id
)
CA
SC
AD
E
ON
 D
EL
ET
E

+G
ro
up
Id
:
TY
PE
S.
GR
OU
PI
D
=
FK
 G
RO
UP
(G
ro
up
Id
)
CA
SC
AD
E
ON
 D
EL
ET
E

G
RO

U
PS

+G
ro
up
Id
:
TY
PE
S.
GR
OU
PI
D
=
PK

+G
ro
up
Na
me
:
TY
PE
S.
GR
OU
PN
AM
E

#a
dd
Gr
ou
p(
na
me
:T
YP
ES
.G
RO
UP
NA
ME
)

#r
em
ov
eG
ro
up
(g
id
:T
YP
ES
.G
RO
UP
ID
)

#g
et
Gr
ou
pN
am
e(
gi
d:
TY
PE
S.
GR
OU
PI
D)
:
VA
RC
HA
R2

U
SE

RS
_G

RO
U

PS
+U
se
rI
d:
 T
YP
ES
.U
SE
RI
D
=
FK
 U
SE
RS
(U
se
rI
d)
 C
AS
CA
DE
 O
N
DE
LE
TE

+G
ro
up
Id
:
TY
PE
S.
GR
OU
PI
D
=
FK
 G
RO
UP
S(
Gr
ou
pI
d)
 C
AS
CA
DE
 O
N
DE
LE
TE

U
SE

RS

+U
se
rI
d:
 T
YP
ES
.U
SE
RI
D

+U
se
rN
am
e:
 T
YP
ES
.U
SE
RN
AM
E

UN
IQ

UE
(F

ro
m

En
try

+L
in

kT
yp

e+
To

En
try

)
LI

N
K

+L
in
kT
yp
e:
 T
YP
ES
.E
NT
RY
ID

+F
ro
mE
nt
ry
:
TY
PE
S.
EN
TR
YI
D

+F
ro
mR
eq
To
:
TY
PE
S.
BO
OL

+T
oE
nt
ry
:
TY
PE
S.
EN
TR
YI
D

+T
oR
eq
Fr
om
:
TY
PE
S.
BO
OL

+c
re
at
eL
in
k(
li
nk
Ty
pe
:T
YP
ES
.E
NT
RY
ID
,f
ro
mE
nt
ry
:T
YP
ES
.E
NT
RY
ID
,

to
En
tr
y:
TY
PE
S.
EN
TR
YI
D)

+c
re
at
eL
in
k(
li
nk
Ty
pe
:T
YP
ES
.E
NT
RY
ID
,f
ro
mE
nt
ry
:T
YP
ES
.E
NT
RY
ID
,

fr
om
Re
qT
o:
TY
PE
S.
BO
OL
,t
oE
nt
ry
:T
YP
ES
.E
NT
RY
ID
,

to
Re
qF
ro
m:
TY
PE
S.
BO
OL
)

+d
el
et
eL
in
k(
li
nk
Ty
pe
:T
YP
ES
.E
NT
RY
ID
,f
ro
mE
nt
ry
:T
YP
ES
.E
NT
RY
ID
,

to
En
tr
y:
TY
PE
S.
EN
TR
YI
D)

EN
TR

Y_
VI

EW

U
SE

RS
_G

RO
U

PS
_V

IE
W

+U
SE
R_
ID
:
TY
PE
S.
US
ER
ID

+G
RO
UP
_I
D:
 T
YP
ES
.G
RO
UP
ID

G
RO

U
PS

_V
IE

W

+G
RO
UP
_I
D:
 T
YP
ES
.G
RO
UP
ID

+G
RO
UP
NA
ME
:
TY
PE
S.
GR
OU
PN
AM
E

CO
N

TE
N

T_
CL

O
B_

VI
EW

SE
LE

CT
 C

.*
FR

O
M

 C
on

te
nt

_C
LO

B
C

W
H

ER
E

En
tr

y_
Re

ad
ab

le
.E

nt
ry

Id
 =

Co
nt

en
t_

CL
O

B.
En

tr
yI

d
+E
nt
ry
Id
:
TY
PE
S.
EN
TR
YI
D
=
FK
 C
ON
TE
NT
(E
nt
ry
Id
)
CA
SC
AD
E
ON
 D
EL
ET
E

+S
ea
rc
ha
bl
e:
 T
YP
ES
.B
OO
L

+D
at
a:
 C
LO
B

EN
TR

Y_
RE

ST
RI

CT
ED

SE
LE

CT
 U

N
IQ

U
E

En
tr

yI
d,

 U
se

rN
am

e,
U

se
rId

,C
on

te
nt

Ty
pe

Id
FR

O
M

 E
nt

ry
 N

AT
U

RA
L

JO
IN

 U
se

rs
W

IT
H

 R
EA

D
 O

N
LY

SE
LE

CT
 E

.*
FR

O
M

 E
nt

ry
 E

W
H

ER
E

(’C
J’=

U
SE

R
O

R
(E

.U
se

rId
=U

til
s_

Pk
g.

ge
tU

se
rId

())
O

R
E.

En
tr

yI
d

IN

 (
SE

LE
CT

 E
G

.E
nt

ry
Id

FR
O

M
 U

se
rs

_G
ro

up
s U

G
, E

nt
ry

_G
ro

up
s E

G
 W

H
ER

E
(E

G
.G

ro
up

Id
=U

G
.G

ro
up

ID
 A

N
D

 U

G
.U

se
rId

=U
til

s_
Pk

g.
ge

tU
se

rId
())

)

SE
LE

CT
 G

ro
up

Id
,G

ro
up

N
am

e
FR

O
M

 G
ro

up
s W

IT
H

 R
EA

D
 O

N
LY

SE
LE

CT
 U

se
rId

,G
ro

up
Id

 F
RO

M
 U

se
rs

_G
ro

up
s

W
H

ER
E

G
ro

up
Id

 IN
 (

SE
LE

CT
 G

ro
up

Id
 F

RO
M

 U
se

rs
_G

ro
up

s
 W

H
ER

E
U

se
rId

=U
TI

LS
_P

KG
.g

et
U

se
rId

())

SE
LE

CT
 U

se
rN

am
e

AS
 U

se
rN

am
e,

U
se

r_
ID

 A
S

U
se

rId
FR

O
M

 S
YS

.D
BA

_U
SE

RS
, S

YS
.D

BA
_R

O
LE

_P
RI

VS
W

H
ER

E
G

RA
N

TE
E=

U
se

rN
am

e
AN

D
 G

RA
N

TE
D

_R
O

LE
=’

CJ
_U

SE
R’

 W
IT

H
 R

EA
D

 O
N

LY

50

Fi
gu

re
 9

: C
J S

ch
em

a
Pa

ck
ag

es

C
J.

U
SE

R_
PK

G

+
c
r
e
a
t
e
E
n
t
r
y
(
p
_
j
o
u
r
n
a
l
I
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,
p
_
c
o
n
t
e
n
t
T
y
p
e
I
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,

p
_
s
y
s
t
e
m
G
e
n
e
r
a
t
e
d
:
B
O
O
L
.
B
O
O
L
,

p
_
t
i
t
l
e
:
T
Y
P
E
S
.
E
N
T
R
Y
N
A
M
E
,
p
_
s
t
o
r
a
g
e
T
y
p
e
:
T
Y
P
E
S
.
S
T
O
R
A
G
E
T
Y
P
E
)
:

T
Y
P
E
S
.
E
N
T
R
Y
I
D

+
c
r
e
a
t
e
J
o
u
r
n
a
l
E
n
t
r
y
(
p
_
p
a
r
e
n
t
J
o
u
r
n
a
l
I
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,

p
_
s
y
s
t
e
m
G
e
n
e
r
a
t
e
d
:
B
O
O
L
.
B
O
O
L
,

p
_
t
i
t
l
e
:
T
Y
P
E
S
.
E
N
T
R
Y
N
A
M
E
)
:

T
Y
P
E
S
.
E
N
T
R
Y
I
D

+
r
e
a
d
E
n
t
r
y
C
o
n
t
e
n
t
B
l
o
b
(
p
_
e
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
)
:

B
L
O
B

+
r
e
a
d
E
n
t
r
y
C
o
n
t
e
n
t
C
l
o
b
(
p
_
e
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
)
:

C
L
O
B

+
r
e
a
d
E
n
t
r
y
C
o
n
t
e
n
t
B
f
i
l
e
(
p
_
e
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,

p
_
o
f
f
s
e
t
:
I
N
T
E
G
E
R
,
p
_
l
e
n
g
t
h
:
I
N
T
E
G
E
R
)
:

B
L
O
B

+
w
r
i
t
e
E
n
t
r
y
C
o
n
t
e
n
t
B
l
o
b
(
p
_
e
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,

p
_
i
n
d
a
t
a
:
B
L
O
B
)

+
w
r
i
t
e
E
n
t
r
y
C
o
n
t
e
n
t
C
l
o
b
(
p
_
e
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,

p
_
i
n
d
a
t
a
:
B
L
O
B
)

+
w
r
i
t
e
E
n
t
r
y
C
o
n
t
e
n
t
B
f
i
l
e
(
p
_
e
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,

p
_
i
n
d
a
t
a
:
B
L
O
B
)

+
e
r
a
s
e
E
n
t
r
y
(
p
_
e
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
)

+
e
n
t
r
y
E
x
i
s
t
s
(
p
_
e
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
)
:

B
O
O
L
.
B
O
O
L

+
c
r
e
a
t
e
L
i
n
k
(
p
_
l
i
n
k
T
y
p
e
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,
p
_
f
r
o
m
E
n
t
r
y
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,

p
_
f
r
o
m
R
e
q
T
o
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,
p
_
t
o
E
n
t
r
y
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,

p
_
t
o
R
e
q
F
r
o
m
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
)

+
d
e
l
e
t
e
L
i
n
k
(
p
_
l
i
n
k
T
y
p
e
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,
p
_
f
r
o
m
E
n
t
r
y
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,

p
_
t
o
E
n
t
r
y
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
)

+
g
e
t
C
o
n
t
e
n
t
S
i
z
e
(
p
_
e
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
)
:

I
N
T
E
G
E
R

+
g
e
t
C
o
n
t
e
n
t
P
a
t
h
(
p
_
e
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,
p
_
s
t
a
t
u
s
:
N
U
M
B
E
R
)
:

V
A
R
C
H
A
R
2

+
h
a
s
E
s
s
e
n
t
i
a
l
D
e
p
e
n
d
e
n
c
i
e
s
(
p
_
e
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
)
:

B
O
O
L
.
B
O
O
L

+
h
a
s
E
s
s
e
n
t
i
a
l
D
e
p
e
n
d
e
n
t
s
(
p
_
e
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
)
:

B
O
O
L
.
B
O
O
L

+
i
s
T
i
t
l
e
I
n
U
s
e
(
p
_
t
i
t
l
e
:
T
Y
P
E
S
.
E
N
T
R
Y
N
A
M
E
,
p
_
c
t
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
,

p
_
j
i
d
:
T
Y
P
E
S
.
E
N
T
R
Y
I
D
)
:

B
O
O
L
.
B
O
O
L

C
J.

TY
PE

S
+
E
N
T
R
Y
I
D
:

C
J
.
E
N
T
R
Y
.
E
N
T
R
Y
I
D

+
G
R
O
U
P
I
D
:

C
J
.
G
R
O
U
P
S
.
G
R
O
U
P
I
D

+
U
S
E
R
I
D
:

C
J
.
U
S
E
R
S
.
U
S
E
R
I
D
%
T
Y
P
E

+
E
N
T
R
Y
N
A
M
E
:

V
A
R
C
H
A
R
2
(
2
5
6
)

+
E
N
T
R
Y
M
E
T
A
:

V
A
R
C
H
A
R
2
(
2
0
0
0
)

+
U
S
E
R
N
A
M
E
:

V
A
R
C
H
A
R
2
(
3
0
)

+
G
R
O
U
P
N
A
M
E
:

V
A
R
C
H
A
R
2
(
3
0
)

+
P
A
S
S
W
O
R
D
:

V
A
R
C
H
A
R
2
(
3
0
)

+
S
T
O
R
A
G
E
T
Y
P
E
:

C
H
A
R

+
B
O
O
L
:

C
H
A
R

+
S
T
_
B
L
O
B
:

C
O
N
S
T
A
N
T

C
H
A
R

=

'
0
'

+
S
T
_
C
L
O
B
:

C
O
N
S
T
A
N
T

C
H
A
R

=

'
1
'

+
S
T
_
B
F
I
L
E
:

C
O
N
S
T
A
N
T

C
H
A
R

=

'
2
'

+
r
e
f
_
c
u
r
s
o
r
:

R
E
F

C
U
R
S
O
R

C
J.

B
O

O
L

+
B
O
O
L
:

C
H
A
R

+
F
A
L
S
E
(
)
:

B
O
O
L

+
T
R
U
E
(
)
:

B
O
O
L

+
V
A
L
(
B
:
B
O
O
L
)
:

V
A
R
C
H
A
R
2

C
J.

SE
Q

U
EN

C
ES

+
E
N
T
R
Y
I
D
_
S
E
Q
:

I
N
T
E
G
E
R

=

I
N
C
R
E
M
E
N
T

B
Y

1

S
T
A
R
T

W
I
T
H

1

N
O
C
Y
C
L
E

+
G
R
O
U
P
I
D
_
S
E
Q
:

I
N
T
E
G
E
R

=

I
N
C
R
E
M
E
N
T

B
Y

1

S
T
A
R
T

W
I
T
H

1

N
O
C
Y
C
L
E

+
L
I
N
K
I
D
_
S
E
Q
:

I
N
T
E
G
E
R

=

I
N
C
R
E
M
E
N
T

B
Y

1

S
T
A
R
T

W
I
T
H

1

N
O
C
Y
C
L
E

C
J.

A
D

M
IN

_P
KG

+
c
r
e
a
t
e
G
r
o
u
p
(
i
n

p
_
g
r
o
u
p
N
a
m
e
:
V
A
R
C
H
A
R
2
,
o
u
t

p
_
g
i
d
:
T
Y
P
E
S
.
G
R
O
U
P
I
D
)

+
c
r
e
a
t
e
U
s
e
r
(
i
n

p
_
u
s
e
r
N
a
m
e
:
T
Y
P
E
S
.
U
S
E
R
N
A
M
E
,

i
n

p
_
p
a
s
s
w
o
r
d
:
T
Y
P
E
S
.
P
A
S
S
W
O
R
D
,

o
u
t

p
_
u
i
d
:
T
Y
P
E
S
.
U
S
E
R
I
D
)

+
d
r
o
p
G
r
o
u
p
(
i
n

p
_
g
i
d
:
T
Y
P
E
S
.
G
R
O
U
P
I
D
)

+
d
r
o
p
U
s
e
r
(
i
n

p
_
u
i
d
:
T
Y
P
E
S
.
U
S
E
R
I
D
)

+
a
d
d
U
s
e
r
T
o
G
r
o
u
p
(
i
n

p
_
u
i
d
:
T
Y
P
E
S
.
U
S
E
R
I
D
,
i
n

p
_
g
i
d
:
T
Y
P
E
S
.
G
R
O
U
P
I
D
)

+
d
r
o
p
U
s
e
r
F
r
o
m
G
r
o
u
p
(
i
n

p
_
u
i
d
:
T
Y
P
E
S
.
U
S
E
R
I
D
,

i
n

p
_
g
i
d
:
T
Y
P
E
S
.
G
R
O
U
P
I
D
)

C
J.

ER
RN

U
M

S
+
I
N
V
A
L
I
D
_
E
N
T
R
Y
I
D
:

I
N
T
E
G
E
R

=

-
2
0
0
0
0

+
I
N
V
A
L
I
D
_
G
R
O
U
P
I
D
:

I
N
T
E
G
E
R

=

-
2
0
0
0
1

+
R
E
A
D
_
A
C
C
E
S
S
_
V
I
O
L
A
T
I
O
N
:

I
N
T
E
G
E
R

=

-
2
0
0
0
2

+
W
R
I
T
E
_
A
C
C
E
S
S
_
V
I
O
L
A
T
I
O
N
:

I
N
T
E
G
E
R

=

-
2
0
0
0
3

+
I
N
V
A
L
I
D
_
C
O
N
T
E
N
T
T
Y
P
E
I
D
:

I
N
T
E
G
E
R

=

-
2
0
0
0
4

+
I
N
V
A
L
I
D
_
S
T
O
R
A
G
E
T
Y
P
E
:

I
N
T
E
G
E
R

=

-
2
0
0
0
5

+
F
I
L
E
N
O
T
F
O
U
N
D
:

I
N
T
E
G
E
R

=

-
2
0
0
0
6

+
I
N
V
A
L
I
D
P
A
R
A
M
E
T
E
R
:

I
N
T
E
G
E
R

=

-
2
0
0
0
7

C
J.

ER
RP

KG

+
h
a
n
d
l
e
(
i
n

e
r
r
c
o
d
e
:
P
L
S
_
I
N
T
E
G
E
R
=
N
U
L
L
,
i
n

e
r
r
m
s
g
:
V
A
R
C
H
A
R
2
=
N
U
L
L
,

i
n

l
o
g
e
r
r
:
B
O
O
L
E
A
N
=
T
R
U
E
,
i
n

r
e
r
a
i
s
e
:
B
O
O
L
E
A
N
=
F
A
L
S
E
)

+
r
e
p
o
r
t
_
a
n
d
_
s
t
o
p
(
i
n

e
r
r
_
i
n
:
I
N
T
E
G
E
R
=
S
Q
L
C
O
D
E
,

i
n

m
s
g
_
i
n
:
V
A
R
C
H
A
R
2
=
N
U
L
L
)

+
r
e
p
o
r
t
_
a
n
d
_
g
o
(
i
n

e
r
r
_
i
n
:
I
N
T
E
G
E
R
=
S
Q
L
C
O
D
E
,

i
n

m
s
g
_
i
n
:
V
A
R
C
H
A
R
2
=
N
U
L
L
)

+
r
a
i
s
e
(
i
n

e
r
r
c
o
d
e
:
P
L
S
_
I
N
T
E
G
E
R
=
N
U
L
L
,
i
n

e
r
r
m
s
g
:
V
A
R
C
H
A
R
2
=
N
U
L
L
)

+
l
o
g
(
i
n

e
r
r
c
o
d
e
:
P
L
S
_
I
N
T
E
G
E
R
=
N
U
L
L
,
i
n

e
r
r
m
s
g
:
V
A
R
C
H
A
R
2
=
N
U
L
L
)

+
l
o
g
t
o
(
i
n

t
a
r
g
e
t
:
P
L
S
_
I
N
T
E
G
E
R
,
i
n

d
i
r
:
V
A
R
C
H
A
R
2
=
N
U
L
L
,

i
n

f
i
l
e
:
V
A
R
C
H
A
R
2
=
N
U
L
L
)

C
J.

Fi
le

IO

+
c
r
e
a
t
e
E
n
t
r
y
(
e
i
d
:
N
U
M
B
E
R
,
j
i
d
:
N
U
M
B
E
R
,
S
T
A
T
U
S
:
N
U
M
B
E
R
)

+
r
e
a
d
E
n
t
r
y
(
e
i
d
:
N
U
M
B
E
r
,
o
f
f
s
e
t
:
N
U
M
B
E
R
,
l
e
n
g
t
h
:
N
U
M
B
E
R
,

s
t
a
t
u
s
:
N
U
M
B
E
R
)
:

B
L
O
B

+
w
r
i
t
e
E
n
t
r
y
(
e
i
d
:
N
U
M
B
E
R
,
d
a
t
a
:
B
L
O
B
)

+
d
e
l
e
t
e
E
n
t
r
y
(
e
i
d
:
N
U
M
B
E
R
,
j
i
d
:
N
U
M
B
E
R
,
s
t
a
t
u
s
:
N
U
M
B
E
r
)

+
c
o
m
m
i
t
E
n
t
r
y
(
e
i
d
:
N
U
M
B
E
R
,
j
i
d
:
N
U
M
B
E
R
,
s
t
a
t
u
s
:
N
U
M
B
E
r
)

+
u
n
c
o
m
m
i
t
E
n
t
r
y
(
e
i
d
:
N
U
M
B
E
R
,
j
i
d
:
N
U
M
B
E
R
,
s
t
a
t
u
s
:
N
U
M
B
E
R
)

+
g
e
t
E
n
t
r
y
L
e
n
g
t
h
(
e
i
d
:
N
U
M
B
E
R
,
j
i
d
:
N
U
M
B
E
R
,
s
t
a
t
u
s
:
N
U
M
B
E
R
)
:

N
U
M
B
E
R

+
g
e
t
E
n
t
r
y
P
a
t
h
(
e
i
d
:
N
U
M
B
E
R
,
s
t
a
t
u
s
:
N
U
M
B
E
R
)
:

V
A
R
C
H
A
R
2

C
J.

U
TI

LS
_P

KG

+
g
e
t
U
s
e
r
I
d
(
)
:

T
Y
P
E
S
.
U
S
E
R
I
D

+
g
e
t
U
s
e
r
N
a
m
e
(
)
:

T
Y
P
E
S
.
U
S
E
R
N
A
M
E

+
g
e
t
U
s
e
r
N
a
m
e
(
i
n

u
i
d
:
T
Y
P
E
S
.
U
S
E
R
I
D
)
:

T
Y
P
E
S
.
U
S
E
R
N
A
M
E

+
h
a
s
R
o
l
e
C
j
U
s
e
r
(
)
:

B
O
O
L
.
B
O
O
L

+
h
a
s
R
o
l
e
C
j
A
d
m
i
n
(
)
:

B
O
O
L
.
B
O
O
L

+
h
a
s
R
o
l
e
(
i
n

r
o
l
e
N
a
m
e
:
V
A
R
C
H
A
R
2
)
:

B
O
O
L
.
B
O
O
L

<
<
U
S
E
>
>

<
<
U
S
E
>
>

<
<
U
S
E
>
>

<
<
U
S
E
>
>

<
<
U
S
E
>
>

<
<
U
S
E
>
>

<
<
U
S
E
>
>

<
<
U
S
E
>
>

<
<
U
S
E
>
>

<
<
U
S
E
>
>

<
<
U
S
E
>
>

<
<
U
S
E
>
>

51

a group, an entry is placed in the Users_Groups table indicating the UserId that is to be a
member of a group, represented by its GroupId.

Below is a hypothetical set of users, groups, and associations between the two. There are
two groups beyond the standard ‘ALL’ and ‘NONE’ group specifications. There are four
users defined: Lance, Ed, Gary, and Victor. All four users are a member of the group
‘ALL’. Lance is a member of the ECBC group. Ed is a member of both the ECBC and
the ITTC groups. Gary is a member of no additional groups. Lastly, Victor is a member
of only the ITTC group.

GROUPS USERS_GROUPS USERS
GroupId GroupName GroupId UserId UserId Username

0 NONE 1 1 1 Lance
1 ALL 1 2 2 Ed
2 ECBC 1 3 3 Gary
3 ITTC 1 4 4 Victor

2 1
2 2
3 2
3 4

Table 6: Users_Groups Example

Entries, Groups, and Actions
With the basic framework for describing the actors in place, the objects must now have
access control lists specifying the actor(s) that may access the objects and what actions
they may perform on the object. To keep things simple, the BCJ-DB does not concern
itself with complicated actions. The model only supports control over reads and writes at
the entry-level.

Create Access Control
Entry creation can be performed by any BCJ user with any JournalId specified as the
journal the entry is to be contained within. This decision has positive implications for
collaboration (everyone may create entries anywhere) and the only potential negative
implication of other users having entries in a journal you “own” is easily rectified through
the navigator’s use of queries to populate its view, thus allowing filtering out of entries by
particular users. This global shared data space is one of the primary ways the BCJ benefits
users in their collaborative efforts. The challenge, of course, is balancing the desire for
collaboration with the need to have a private workspace. The BCJ addresses this via the

52

navigator and filters. This allows “virtual” private workspaces where others can contribute
at will, but a user can choose to ignore the contributions of another user or users at any
time.

Read Access Control
A third table, Entry_Groups, specifies the association between EntryId and the GroupIds
granted read access of that EntryId and associated content.

The rules for processing of the Entry_Groups table are as follows:
1.	 Ownership takes precedence over group membership.
2.	 If a user owns an entry that is uncommitted, the user:

a.	 Can read and write to all user fields, and
b.	 Can read and write to the content.

3.	 If a user owns an entry that is committed, the user:
a.	 Can read all entry fields,
b.	 Can write to certain user fields,
c.	 Can read the content, and
d.	 Cannot write to the entry content.

4.	 If an action related to a particular EntryId locates no rows in the Entry_Groups
table this:

a.	 Is equivalent to having the group ‘NONE’ assigned to that EntryId.
b.	 Thus, only the owner may access the entry, as defined by rules 1 and 2.

5.	 If a user attempting to perform an action on a particular EntryId is a member of
at least one group that has been granted access to that entry and does not own
the entry, the user:

a.	 Can read all entry fields,
b.	 Cannot write to any entry fields,
c.	 Can read the entry content, and
d.	 Cannot write to the entry content.

6.	 If a user attempting to perform an action on a particular EntryId is not a member
of at least one group granted access to an entry and does not own the entry:

a.	 The user cannot read or write to any entry fields,
b.	 The user cannot read or write entry content, and
c.	 An appropriate exception is thrown in response to the action.

To summarize, entry ownership is the primary criterion. If a user owns the entry, group
permissions are irrelevant. Only if user does not own the entry do groups need to be con-
sidered. Permissions are additive. A user only needs to be a member of one of the groups
specified in the ACL for an entry to be granted read access.

53

Continuing with the previous example, the tables below contain the same users, groups,
and group membership information as previously. There are four entries represented in
the Entry_Groups table. In the case of EntryId = 1, GroupId 1 and 2 (ALL and ECBC)
have been granted access. Therefore, the users Lance, Ed, Gary, and Victor are allowed to
read this entry. For EntryId = 2, GroupId 2 and 3 (ECBC and ITTC) are specified and
thus Lance, Ed, and Victor may read this entry. For EntryId = 3, GroupId 2 (ECBC) is al-
lowed access, thus Lance and Ed may access it. Lastly, EntryId = 4 has the ‘NONE’ group
specified, indicating that no user other than the entry’s owner may access it.

USERS USERS_GROUPS ENTRY_GROUPS
UserId Username GroupId UserId EntryId GroupId

1 Lance 1 1 1 1
2 Ed 1 2 1 2
3 Gary 1 3 2 2
4 Victor 1 4 2 3

2 1 3 2
GROUPS 2 2 4 0

GroupId GroupName 3 3
0 NONE 3 4
1 ALL
2 ECBC
3 ITTC

Table 7: Entry_Groups Example

Entry Metadata & Commit
While all entry metadata fields are readable by users granted access, not all fields are writ-
able. In particular, two categories of metadata fields exist:

1.	 System-controlled, and
2.	 User-controlled.

The system-controlled fields may only be modified by the ‘CJ’ schema itself. Modification
is accomplished through the use of a functional interface and via triggers. For instance,
methods such as createEntry automatically determine the caller’s UserId and place the
value in the UserId field when inserting. These system-controlled fields are very important
for BCJ-DB integrity and non-repudiation of attribution provenance. Within the system-
controlled fields, there are two times where the ability to alter the value stored in a field
changes. The first time is at creation. During the creation process fields such as UserId
and CreateDate are fixed. In the interval between an entry being created and committed,
all fields but those fixed at creation may be altered. After an entry has been committed,

54

only a small set of “helper” fields that are designed to improve search capability, such as
Deprecated and Rating, may be altered.

System-Controlled
 Fixed at Creation Fixed at Commit

EntryId Yes X
UserId Yes X

CreateDate Yes X
ModifyDate No Yes
CommitDate No Yes

ContentLastAccessDate No No

Table 8: System-Controlled Fields

User-Controlled
Fixed at Creation Fixed at Commit

Commited No Yes*
ContentTypeId No Yes
Deprecated No No
Hidden No No
JournalId No No
Rating No No
SystemGenerated Yes No
Title No No

Table 9: User-Controlled Fields

Write Access Control
As mentioned in earlier chapters, write access to an entry is limited to the entry’s creator
(owner). This policy decision means that multiple writers to a single entry are not al-
lowed. In a system that uses page concepts, limiting the ability of multiple writers to a
single page could prove quite negative for collaboration. In the BCJ-DB, however, the
fine granularity of the information stored within a single entry mitigates the potential
benefits of allowing multiple writers to a single entry. Instead of writing to the same
entry, other users make annotations on entries to comment on the work being done by
others.

Owner-initiated writes can be to either the metadata or the content of an entry. When
writing to the metadata of an entry, a functional interface is not presented because this
might limit the search functionality. Instead, triggers are used on the entry view and
table. The triggers on the entry table are standard triggers, of which there are three. They
are on the insert, update, and delete calls. These triggers are fired by functions or by

55

trigger rewrites from Entry_View. The insert and delete triggers are only fired by func-
tion calls. The trigger on update, however, can be invoked because of a rewrite present
on Entry_View that simply passes on a call to update for the user-controlled fields (see
section later in this chapter) if the current user is the entry’s owner. The insert trigger fires
before the insert and sets important fields, such as UserId, CreateDate, and other fields
that must be non-null at creation time.

CREATE OR REPLACE TRIGGER ENTRY_TABLE_INSERT
 BEFORE INSERT ON ENTRY
 REFERENCING OLD AS OLD NEW AS NEW
 FOR EACH ROW
DECLARE
 uid TYPES.USERID;
BEGIN
 /* Find userid of person performing INSERT on the table */
 uid := UTILS_PKG.getUserId();
 /* Update appropriate Date fields to current system date */
 :new.CreateDate := CURRENT_TIMESTAMP;
 :new.ModifyDate := CURRENT_TIMESTAMP;
 :new.ContentLastAccessDate := CURRENT_TIMESTAMP;
 :new.Committed := 0;
 :new.Deprecated := 0;
 :new.Hidden := 0;
 /* Update UserId field to the USER_ID of the person performing the INSERT */
 :new.UserId := uid;
END ENTRY_TABLE_INSERT;
/

The update trigger on entry has a bit more complex role. It must handle the behavior
related to what is allowed to happen with an entry that is committed or has dependents.
In particular, if an entry has dependents, the Committed field may not be altered to un-
commit the entry. This is one of the ways removal of an entry that is referenced by other
entries is prevented until the other entries are removed—by not allowing Committed to
change. The second method, of course, takes into account the addition to the RDF 3-
tuple to ensure essential dependencies are enforced. The function hasEssentialDependents
takes one parameter, EntryId, and determines if essential dependents upon the entry exist
by checking if either of two scenarios exist in the Link table:

1.	 If the entry is referenced as the ToEntry and there is a FromReqTo that is true, or
2.	 If the entry is referenced as the FromEntry and there is a ToReqFrom that is true.

If either scenario occurs, hasEssentialDependents returns BOOL.TRUE.

56

Delete Access Control
With the owner-only policy for write permission on an entry established, the delete rules
may now be specified. The delete rules can be summarized as follows:

1.	 If the current user is not the owner, the deletion is never allowed.
2.	 If the entry has essential dependents, the deletion is never allowed.
3.	 If the user owns the entry and the entry is committed but has no essential depen-

dents, it may be deleted.*
4.	 If the entry is owned by the current user, is not committed and has no essential

dependents, it may be deleted.

* See compromise under Strict vs Relaxed Security

The table below summarizes these rules. The ‘X’ stands for “don’t care.”

Current User == Owner Committed hasEssentialDependents() Deletion
FALSE X X Denied

X X TRUE Denied
TRUE TRUE FALSE Allowed*
TRUE FALSE FALSE Allowed

Table 10: Entry Deletion Rules

Strict vs. Relaxed Security
The asterix on rule 3 is there because of a compromise that was later introduced into the
BCJ-DB. The original specification for the BCJ-DB only allowed for a very strict model
where once an entry was committed, it could never be deleted—regardless of essential de-
pendents or ownership. The suggestion to users was to make use of the deprecated flag in
the entry metadata and along with filters to reduce visual clutter in the navigator and per-
form what amounts to a deletion from the visual field, but not from the database. While
very appealing conceptually, the problem relates to the database itself and the manage-
ment of large volumes of deprecated data that could perhaps otherwise be removed from
the system. For example, every time an experiment is executed, the outputs generated
are committed automatically to prevent the user from altering the results. Unfortunately,
given the large potential number of iterations a researcher may perform while trying to
form a hypothesis, the amount of low-value (in terms of usefulness) and high-cost (in
terms of storage) data will blossom dramatically. The solution to this problem was to
develop a more relaxed set of rules that could be applied to the deletion of an entry. The
rules in the table above and in the text represent this relaxed security mode.

57

While beneficial for storage reasons, this mode does have its drawbacks. In particular,
the relaxed security mode allows the deletions of an entry that is committed so long as
there are no essential dependents. Unfortunately, at present no control over who may
remove a relationship between entries exists. Thus, even though a second user may have
placed an essential dependency on an entry, the first user could remove that essential
dependency and then proceed to delete a committed entry. As a result, the database has
two modes it can run in, a strict mode where even if an entry has no essential dependents
the entry cannot be removed once committed and a relaxed mode where the essential
dependent concept takes can override the committed concept if an entry has no essential
dependents.

Managing Access Permissions
Only the owner of an entry may alter the groups allowed to access an entry. This is done
through triggers on the Entry_Groups table. Whenever a user attempts an insert, update,
or delete of a row in this table, the user attempting to perform the action is checked to
verify that they are the owner of the EntryId being referenced. If user is not the owner,
an exception is thrown. If the user is the owner, the trigger checks to ensure that the
GroupId referenced by the call in fact exist. If it does not, an exception is thrown.

BFILE Security
The creation of the BFILE storage type, while offering performance enhancing benefits,
had the potential to harm the BCJ-DB’s ability to ensure data integrity. To enhance data
integrity, a special file system on the cluster was created that only the database server and
a special user that submitted experiments for execution to PBS could access. To further
prevent modification of the files, the Oracle server changes the mode bits when an entry
changes from being uncommitted to committed and vice-a-versa.

Mode bits are used to control the permissions on UNIX files. There are three actors the
mode bits address; each actor has three actions. The first digit in the mode bits specifies
the rights for the owner of the file; the second digit specifies the rights for the group as-
sociated with the file; and the last digit is for all other users not included by the previous
two categories. The precedence in evaluating the mode bits, from highest to lowest, is:
user, group, other. The two modes specified below are ‘660’, which means both the user
and group can read from and write to the file but cannot execute it, and ‘440’, which

58

means that both the user and group can read the file but cannot write to it. In both ‘440’
and ‘660’, the other mode bits specifies no read, write, or execute permission is granted.

Of the three triggers on the entry table, two of them have functionality to assist the
BFILE implementation for security reasons. First, the update trigger on the Entry table
will call a Java Stored Procedure (JSP) whenever the committed field changes from ‘0’
to ‘1’ (false to true) to change the mode bits on the associated file to ‘440’ from their
original value of ‘660’. If the update trigger detects a committed entry is being uncom-
mitted, an inverse function that changes the mode bits from ‘440’ to ‘660’ is called.
When an entry is deleted, the other trigger is activated and if the storage type is BFILE,
then appropriate JSP is invoked to remove the file from the file-system. Even though the
file-system should be secure, taking the precaution of immediate deletion of the content
is prudent. Additionally, the immediate deletion policy saves disk space that might other-
wise be wasted.

Security Views
With the structure in place for assigning access controls to entries, all that remains is to
use the values set to implement the rules. This is done through six views. The first view,
Users, has already been discussed extensively.

Groups_View
The view Groups_View simply presents the Groups table in a read-only format.

Users_Groups_View
The view Users_Groups_View presents a slightly more complicated picture by using the
UserId of the current user to limit the view presented to the users and groups that the
current user is also a member of. Using the example from this chapter, the user Gary was
only a member of the ‘ALL’ group. As such, Gary could only see the other users/group
pairs where the user was a member of the ‘ALL’ group. The rows from Users_Groups
where GroupId=1 would be the only rows displayed in the view. Victor, on the other
hand, is a member of ‘ALL’ and ‘ITTC’. Therefore, Victor can see all rows from Users_
Groups where GroupId=1 or 3. The code for this simple but useful view is:

SELECT UserId,GroupId FROM Users_Groups
WHERE GroupId IN
	 (SELECT GroupId FROM Users_Groups)
	 WHERE UserId=Utils_Pkg.getUserId()	

59

Entry_View
Entry_View is the most complicated view and ties together four tables. They are Users_
Groups, Groups, Entry_Groups, and Entry. Entry_View has three paths that could result in
an entry being viewable:

1.	 The current user is ‘CJ’,
2.	 The current user is the owner of the entry, or
3.	 The current user is a member of a group that has been granted access to the entry.

The first two should be rather obvious. Entry_View first finds all groups that are attached
to the EntryId by using the Entry_Groups table. Entry_View then retrieves the UserId of
the current user and then finds all groups that user is a member of by consulting Users_
Groups. The view then compares the two sets of groups to determine if any intersection
between the two exists. If the two are conjoint, the user is granted access. If the two sets
of groups are disjoint, then Entry_View will not display that row of the Entry table to the
current user. The code for the view is:

SELECT E.* FROM Entry E
WHERE (
	 ‘CJ’=USER OR
	 (E.UserId=Utils_Pkg.getUserId()) OR
	 (E.EntryId IN (SELECT EG.EntryId from Users_Groups UG, Entry_Groups EG
	 WHERE (
		 EG.GroupId=UG.GroupId AND
		 UG.UserId=Utils_Pkg.getUserId()))

Exception Handling & Entry_Restricted
The last topic has do with what happens when a user is unable to access an entry. The
BCJ-DB attempts to take a pragmatic approach to the problem while still maintaining
good security and preventing excessive information leakage. The general consensus was
that if an entry were inaccessible but a user was trying to access it, the reason for this
occurrence was a change in the permissions assigned to the entry. To assist the user, a
view that would present some limited information about the entry that might identify
the owner and direct the user to the entry was desired. This view presents the EntryId,
UserName, UserId, and ContentTypeId, of all entries but excludes the Title field and is
specified as:

SELECT UNIQUE EntryId,UserName,UserId,ContentTypeId
FROM Entry NATURAL JOIN Users WITH READ ONLY

Overall, this simple view provides the ability to trace the owner of an entry who changed
the access controls.

60

Content_CLOB_View
The final view integrates with the BCJ-DB search capabilities. This view presents the
CLOB content present to those who have read-access to the associated entry. The view
does this by performing a simple, but effective, join on an internal view used to deter-
mine read access permissions. The code is:

SELECT C.* FROM Content_CLOB C

WHERE Entry_Readable.EntryId = Content_CLOB.EntryId

Concluding Remarks
The security model, while simplistic in nature, is flexible and efficient and provides far
greater security assurances than many competing provenance management systems do
while still affording good search capabilities. The use of views is fundamental to making
all of the features of the BCJ-DB accessible.

61

Chapter XIII: Analysis & Conclusion
Analysis
The Bioinformatics Computational Journal, unlike its predecessors and many of its
contemporaries, truly provides an integrated computational biology platform. Within the
BCJ ecosphere, the BCJ-DB is responsible for all data and meta-data management. In
order to perform these duties, the BCJ-DB addressed a number of important areas.

First, a flexible, extensible type hierarchy was implemented. The four core entries achieve
those attributes through a simple but elegant design. The core concept is that data can
and should be decomposed into a single entity to be managed—an entry. This entry
should be identified by a globally unique identifier within the BCJ-DB environment.
Each entry is associated with one simple type definition. While other systems have de-
veloped a hierarchy to represent relationships between types, the BCJ-DB shunned that
approach for the a simpler flat structure where all types are linked to a single master type.
This link to a master type is done only to distinguish type definitions from other entries
in the system. Unfortunately, in the bioinformatics field having a type hierarchy can be
complicated to manage and also impedes the easy addition of new types.

To help manage this flat structure, the concept of a journal was added to the system.
Although the entry-journal structure could be implemented through the use of relation-
ships, instead it was done through a single field in the entry meta-data. Links offer flex-
ibility but at the cost of lower performance. Static allocation of the parent journal field in
the entry meta-data improved performance and promoted the concept from a 2nd order
to a 1st order data management technique. A similar decision was made with the content
type field for an entry.

At present, the BCJ-DB’s primary limitation is the breakdown of absolute security in the
essential dependency concept. This breakdown occurs when an unwitting or malicious
user places a large number of links that create an essential dependency on entries that are
inaccessible to the user. The problem is that an essential dependency link should only be
allowed to be made to a committed entry. However, the current BCJ-DB implementa-
tion does not perform this check and should do so. When a user attempts to create a
new relationship that will create an essential dependency, checks should be performed to
ensure that this principle is not violated.

62

BCJ-DB performance has not been analyzed thoroughly. Simplistic benchmarks evalu-
ating the read and write performance to various content types were performed with a
single reader/writer. These results were favorable, but further investigation into multiple-
user benchmarks should be performed. However, in its goals to develop an integrated
computational biology framework with powerful provenance and security features while
maintaining excellent cluster performance, the BCJ was very successful. Experiments run
through the BCJ had identical performance to their command-line counterparts. The
big win with the BCJ, of course, is the automatic provenance tracking, job submission,
results management, and ability to easily share inputs, workflows, and results with others.

Conclusion
When comparing the biological research performed with notebooks in a wet-lab and
the more modern computer-based bioinformatics research, the most critical problem is
the impedance mismatch between the paper world and the computer world. With paper
devices such as laboratory notes and books, conveniently flipping through pages in search
of useful information can be done using “fuzzy” searches and other pattern recognition
techniques humans are born with innately and developed further over the subsequent
years.

In the electronic world, unfortunately, these techniques are not generally applicable.
Computational sciences nearly always result in “information overload,” where an indi-
vidual is overwhelmed by the sheer volume of data presented and can no longer critically
evaluate the information present because the throughput necessary to obtain results in
a reasonable time is unattainable. Two, often complementary, solutions to information
overload exist. The first is the development of better computer algorithms to filter or oth-
erwise reduce the information to a manageable form. The second is furnish better tools
for data management. Better data management makes it possible to know that your pages
are well organized with full metadata and are always accessible. When combined with
powerful search, by analogy, the system is like a dictionary where it is always easy to flip
to the right page when looking up a word of interest.

The data management techniques that enable this capability are comprehensive collection
of all five types of provenance metadata along with powerful search capabilities to ask
insightful questions about the data and metadata that has been collected. While many
systems address some limited form of informational or replication provenance, few ad-

63

dress questions of accurate, secure attribution and auditing. No current systems answer
questions of data quality in a comprehensive manner for bioinformatics because of a lack
of suitable metrics with which to evaluate data quality.

To address these challenges, the BCJ-DB supports four of the five types of metadata and
can perform powerful searches involving metadata and data. The extensible content and
relationship types allows users to add to the data and metadata search features of the
BCJ-DB. Subsequently, the user can use those search features without having to abandon
prior research accomplished with the BCJ. The managed storage provided by the BCJ-
DB ensures that vital information is retained forever, even if the user is not the owner.
The powerful search capabilities encourage users to use found data to further their own
work, perhaps then deriving new results from the original data and subsequently sharing
of the new results with others.

Consequently, the globally shared workspace of the BCJ-DB provides an area for collabo-
ration and sharing of ideas beyond that typically seen. By having a single shared location
for storage of all resources, users can easily share by simply modifying the access permis-
sions on an entry. The ability to share not just data but workflows in a common space
greatly improves collaboration. Workflows encapsulate ideas and processing concepts, not
just raw data. By working in the same journal, work can be organized for easy access by
all members of a project. Powerful annotation capability comes from the ability to define
new types of content that can be attached. Powerful annotation helps remove the po-
tential for a plot of the potential energy in an molecular dynamics energy minimization
experiment becoming separated from the inputs, workflows, parameters, and outputs it
was derived from.

Flexible scoping of shared information encourages users to share because they know that
only small bits of information will be shared with a select set of users and groups they
specified. Unlike with coarse-grained security, users are not forced to share an entire jour-
nal when a colleague simply needs one piece of information. On the other hand, if a user
wants to share all entries with all users, that can also be done.

Furthermore, the BCJ-DB extension of the RDF 3-tuple into a 5-tuple not only prevents
loss of important provenance but also encourages collaboration because users can use

64

information provided by others in their research since the researcher is guaranteed that
information cannot be removed.

By combining a globally shared workspace with powerful search capabilities, an extensi-
ble type hierarchy, and a fine-grained security model, and the concept of essential de-
pendency relationships between entries, the BCJ-DB makes a truly powerful ally for the
bioinformatics research community.

65

Citations
[Anon95] “Information revolution calls for changes in behavior,” Chemical and
Engineering News, American Chemical Society, March 27, 1995. Available HTTP:

http://pubs.acs.org/hotartcl/cenear/950327/art04.html

[Bran03] D. Brandon, K. Vandivort, R. Brunner, G. Budescu, “2003 BioCoRE Survey
Report,” Theoretical and Computational Biophysics Group, Beckman Institute for
Advanced Science and Technology, University of Illinois at Urbana-Champaign, 2003.
Available HTTP: http://www.ks.uiuc.edu/Research/biocore/eval/surveyData/BioCoRE_

2003_Survey_Report.pdf

[Bune06] P. Buneman, A.P. Chapman, J. Cheney, “Provenance Management in Curated

Databases,” ACM SIGMOD Conference on Management of Data, 2006.

[Butl05] D. Butler, “Electronic Notebooks: A new leaf,” Nature, Issue 436, pp. 20-21.

[Fitz00] M.C. Fitzgerald, “The evolving, fully loaded, electronic laboratory notebook,”
Chemical Innovation, American Chemical Society, January, 2000. Available HTTP:

http://pubs.acs.org/hotartcl/ci/00/jan/inet.html

[Eric96] T. Erickson, “The Design and Long-Term Use of a Personal Electronic
Notebook: A Reflective Analysis,” Human Factors in Computing: The Proceedings of
CHI ‘96, Vancouver, BC, CA, April 1996. Available HTTP: http://www.visi.com/

~snowfall/notebook.html

[Gobl02] C.Goble, “Position Statement: Musings on Provenance, Workflow and
(Semantic Web) Annotations for Bioinformatics,” in Workshop on Data Derivation and

Provenance, Chicago, 2002.

[Gray02] J. Gray, A. Szalay, A. Thakar, C. Stoughton, J. vandenBerg, “Online Scientific
Data Curation, Publication, and Archiving,” Microsoft Research Technical Report
MSR-TR-2002-74.

[Gray05] J. Gray, D. Liu, M. Nieto-Santisteban, A. Szalay, D.J. DeWitt, G. Heber,
“Scientific Data Management in the Coming Decade,” RECORD, Association for

http://pubs.acs.org/hotartcl/cenear/950327/art04.html
http://www.ks.uiuc.edu/Research/biocore/eval/surveyData/BioCoRE_2003_Survey_Report.pdf
http://www.ks.uiuc.edu/Research/biocore/eval/surveyData/BioCoRE_2003_Survey_Report.pdf
http://pubs.acs.org/hotartcl/ci/00/jan/inet.html
http://www.visi.com/~snowfall/notebook.html
http://www.visi.com/~snowfall/notebook.html

66 67

Computing Machinery Special Interest Group on Management of Data (ACM
SIGMOD), vol. 34, no. 4, December, 2005.

[Gupt05] A. Gupta, B. Ludascher, L. Raschid, “Report on the 2nd International
Workshop on Data Integration in the Life Sciences (DILS’05),” ACM SIGMOD
Record, Volume 35, Issue 2, June, 2006, pp. 56-58.

[Gwiz98] J. Gwizdka, “Categorization Is Difficult: Use of an Electronic Notebook for
Organizing Design Meeting Notes,” in Proceedings of Human Factors and Ergonomics
Society 42nd Annual Meeting, Chicago, October 5-10 1998, pp. 516-520.

[Hala87a] F.G. Halasz, T.P. Moran, and R.H. Trigg, “NoteCards in a Nutshell,” in
Proceedings of CHI+GI 1987, 1987, pp. 133-143.

[Hala87b] F.G. Halasz, “Reflections on NoteCards: Seven Issues for the Next Generation
of Hypermedia Systems,” Communications of the ACM: Hypertext ’87 Papers,

November, 1987, pp. 836-852.

[Myer01a] J.D. Myers, E. Mendoza, A. Geist. Scientific Annotation Middleware:
Technical Overview. [Online] Available HTTP: http://collaboratory.emsl.pnl.gov/sam/

samtechoverview.html

[Myer01b] J.D. Myers, E. Mendoza, B. Hoopes, “A Collaborative Electronic Laboratory
Notebook,” in Proceedings of the IASTED International Conference on Multimedia Systems
and Applications (IMSA 2001), August 13-16, 2001, Honolulu, Hawaii. Available

HTTP: http://collaboratory.emsl.pnl.gov/presentations/papers/ELN.IMSA.final.pdf

[Myer03a] J.D. Myers, A.R. Chappell, M. Elder, “Re-Integrating the Research Record,”

Computing in Science and Engineering, May/June, 2003.

[Myer03b] J.D. Myers, C. Pancerella, C. Lansing, K.L. Schuchardt, B. Didier, “Multi-
Scale Science: Supporting Emerging Practice with Semantically Derived Provenance,” in
Proceedings of the Semantic Web Technologies for Searching and Retrieving Scientific

Data Workshop, Sanibel Island, FL, Oct 20, 2003.

http://collaboratory.emsl.pnl.gov/sam/samtechoverview.html
http://collaboratory.emsl.pnl.gov/sam/samtechoverview.html
http://collaboratory.emsl.pnl.gov/presentations/papers/ELN.IMSA.final.pdf
http://ic.arc.nasa.gov/projects/scisw2003/cfp.htm
http://ic.arc.nasa.gov/projects/scisw2003/cfp.htm

66 67

[Shan05] S. Shankar, A. Kini, D.J. DeWitt, J. Naughton, “Integrating Databases and
Workflow Systems,” RECORD, Association for Computing Machinery Special Interest

Group on Management of Data (ACM SIGMOD), vol. 34, no. 3, September, 2005.

[Simm05a] Y.L. Simmhan, B. Plale, D. Gannon, “A Survey of Data Provenance in e-
Science,” RECORD, Association for Computing Machinery Special Interest Group on
Management of Data (ACM SIGMOD), vol. 34, no. 3, September, 2005. Available

HTTP: http://www.sigmod.org/sigmod/record/issues/0509/p31-special-sw-section-5.pdf

[Simm05b] Y.L. Simmhan, B. Plale, D. Gannon, “A Survey of Data Provenance in e-
Science,” Technical Report IUB-CS-TR618, Computer Science Department, Indiana
University, 2005. Available HTTP: http://www.cs.indiana.edu/pub/techreports/TR618.

pdf

[Skid98] J.L. Skidmore, M.J. Sottile, J.E. Cuny, A.D. Malony, “A Prototype Notebook-
Based Environment for Computational Tools Computational Tools,” IEEE/ACM

Conference on Supercomputing, 1998, pp. 22-32.

[Taub06] J. Tauberer. (2006, July). What is RDF. [Online]. Available HTTP: http://
www.xml.com/pub/a/2001/01/24/rdf.html

[Rose06] L. Randall, Interview with Charlie Rose, Charlie Rose, PBS, New York City,
NY, USA, December 12, 2006.

http://www.sigmod.org/sigmod/record/issues/0509/p31-special-sw-section-5.pdf
http://www.cs.indiana.edu/pub/techreports/TR618.pdf
http://www.cs.indiana.edu/pub/techreports/TR618.pdf
http://www.xml.com/pub/a/2001/01/24/rdf.html
http://www.xml.com/pub/a/2001/01/24/rdf.html

