
07-Dec-07

Enabling Task Level Parallelism
in HandelC

Thamer AbuYasin

07-Dec-07

• I would like to thank my committee members
• Dr. Andrews
• Dr. Alexander
• Dr. Agah

For their patience, guidance, assistance … for everything

• Also, I would like to thank the entire population of the CSD Lab
for their help and the friendly atmosphere, especially my
teammates in the Hthreads project, Jason, Erik, Jim, Fabrice,
Wes, Seth, Shane, Elias and the original cast that I never got to
meet

Acknowledgements, and many thanks

07-Dec-07

• Received a bachelor of science in electrical engineering from
the University of Jordan, spring 2003

• Worked in the field of electronic and information systems for two
years after graduation

• Joined KU in fall 2005 to pursue a master of science in
computer engineering, under a Fulbright scholarship

Academic and Professional Background

07-Dec-07 4

• Problem Statement

• Background & Related Work

• HCthreads: Design and Implementation

• Support Utilities

• Results

• Conclusions and Future Work

Enabling Task Level Parallelism in HandelC

Agenda

07-Dec-07

• Majority of efforts up to date focused on ILP

• PRISM and DISC first attempts to accelerate applications
through instruction set metamorphosis, limited ILP

• GARP one of first studies to directly address ILP, processor
and reconfigurable fabric on the same chip, gains less than
overhead

• General purpose processors followed similar approach

• Final conclusion ILP is limited

Problem Statement

Instruction Level Parallelism vs. Task Level Parallelism

07-Dec-07

• New emphasis on TLP

• Multiprocessor Systems on Chip, Parallel Computing

• FPGA solutions such as Hthreads, Milan’s, ReconOS and
Thread Warping

Problem Statement

Instruction Level Parallelism vs. Task Level Parallelism

Erik Anderson

07-Dec-07

• The objective of this thesis is to merge the capabilities of
modern TLP with the existing ILP capabilities of HandelC

• HandelC has a large domain of users

• HCthreads is to bring modern programming techniques and
model to that base

• Enhancing the programming model through combining ILP and
TLP capabilities will bring additional performance

Problem Statement

07-Dec-07

• First contribution is a threading library called HCthreads based
on Pthreads, major components:

• The Dispatcher
• The Terminator
• The Functional Units

• Second contribution is a support library that enables the use of
HandelC cores on platforms not supported by Celoxica using
the Hthreads system

Problem Statement

Contributions of This Thesis

07-Dec-07 9

• Problem Statement

• Background & Related Work

• HCthreads: Design and Implementation

• Support Utilities

• Results

• Conclusions and Future Work

Enabling Task Level Parallelism in HandelC

Agenda

07-Dec-07

• Started with Estrin in
1959

• Popular nowadays in
different fields

Background & Related Work

Field Programmable Gate Arrays

www.xilinx.com

07-Dec-07

• Many available Academic and Commercial Tools
• HandelC is one of the most popular

• Main objective is to bridge the HW/SW boundary

• Most target a SIMD computational model
• extends ILP approach

• Support a subset of ANSI C, pointers and recursion are not
supported

• Add pragmas to guide the translation process

Background & Related Work

C 2 Hardware

07-Dec-07

• HandelC is based on the CSP algebra

• Each assignment must occur in one clock cycle

A = (C + V + D) / G
• This will generate deep logic

• Provides the “par” construct to express SIMD operations

• Does provide some TLP level primitives but no runtime support
(counter intuitive for programmers)
• Spinning semaphores and channels
• User can create multiple main functions

Background & Related Work

HandelC

07-Dec-07 13

• Problem Statement

• Background & Related Work

• HCthreads: Design and Implementation

• Support Utilities

• Results

• Conclusions and Future Work

Enabling Task Level Parallelism in HandelC

Agenda

07-Dec-07

• Pthreads provides support to
implement heterogeneous
threads on different platforms,
very comprehensive set of
features

• Many of the Pthreads features
are not required

• HCthreads targets
homogeneous threads

• Processing cores in
HCthreads are truly parallel
not pseudo concurrent

HCthreads: Design and Implementation

HCthreads Design

• pthread_create()
• pthread_exit()
• pthread_cancel()
• pthread_join()
• pthread_detach()
• pthread_kill()
• pthread_mutex_destroy ()
• pthread_mutex_lock ()
• pthread_mutex_trylock ()
• pthread_mutex_unlock ()
• pthread_cond_signal()
• pthread_cond_wait()

07-Dec-07

• DETACHED is to replace pthread_detach and related attributes,
defines if all threads in the systems are detached or joinable

• CONTAINER_SIZE, defines the number of entries in the ready
to run container, different applications require different number
of entries

• R2RSTACK, defines if the ready to run container will behave
like a stack or a queue, solves the breadth first search problem

• NO_FNUNITS, defines the number of parallel functional units in
the system

HCthreads: Design and Implementation

HCthreads Implementation: Attributes

07-Dec-07

• The Dispatcher, a light weight
scheduler responsible for assigning
threads to functional units,

• The Terminator, a central location
where all functional units report
when the current thread has
completed its computation

• The Functional Units, multiple
engines each running a separate
copy of the accelerated function

HCthreads: Design and Implementation

HCthreads Implementation: Components

07-Dec-07

• All previously mentioned attributes should be defined by the
programmer

• Programmer needs to define the accelerated function

• Programmer needs to define the input argument structure

• hcthread_create is used to create threads, comes with two
signatures depending on the employed joinable or detached
threading scheme

• hcthread_join is used to join on threads only if a joinable
scheme is used

HCthreads: Design and Implementation

HCthreads Implementation: Interface

07-Dec-07

• Threads and functional units state,
• bit fields with each bit representing a thread or a unit,
• a high bit indicates a free resource and a low bit indicates a

busy resource
• Simpler circuits to check for free resources and to update

state

• Ready to run container, keeps order of created threads, can
behave like a stack or a queue

• Input argument array, parallels the ready to run container and
maintains a copy of the input argument for created threads

HCthreads: Design and Implementation

HCthreads Implementation: Data Structures

07-Dec-07 19

• Problem Statement

• Background & Related Work

• HCthreads: Design and Implementation

• Support Utilities

• Results

• Conclusions and Future Work

Enabling Task Level Parallelism in HandelC

Agenda

07-Dec-07

• Integration with Hthreads can extend the use of HandelC cores
on platforms not supported by Celoxica

• VHDL wrapper required to interface HandelC cores into the
HWTI

• HandelC cores act as slaves to VHDL wrappers

• the VHDL wrapper marginalized this approach to only
support a streaming model

Support Utilities

First prototype: Simple Data Streaming

07-Dec-07

• In this approach the HandelC core assumes the responsibilities
of the VHDL wrapper

• All services and abstractions of the Hthreads system are now
accessible to the HandelC core

• HWTI services encapsulated within HandelC library functions

Support Utilities

Current Solution: Full integration with Hthreads

07-Dec-07 22

• Problem Statement

• Background & Related Work

• HCthreads: Design and Implementation

• Support Utilities

• Results

• Conclusions and Future Work

Enabling Task Level Parallelism in HandelC

Agenda

07-Dec-07

• Both Solutions have
same code in accelerated
functions

• When introducing two or
more units HCthreads
has less overhead, better
scheduling in HCthreads
when compared to par
invocations

• Some irregular results
due to known bug in
semaphore arbitration

Results

Simulator Results

J stands for joinable designs

D stands for detached designs

07-Dec-07

• HCthreads produces
better timing but requires
additional resources

• Though no speedups
could be achieved in
memory intensive
applications when having
multiple units, HCthreads
can be used to implement
recursion with minimal
overhead

Results

ML310 Results

07-Dec-07

• The ML310 test cases incorporated the Hthreads support library
with requests to HWTI services:

• Load, Store
• Push, Pop
• Malloc, Free
• Thread exit

• Current test setup does not employ all Hthreads services such
as mutexes and thread operations

• Separate test cases constructed to verify such cases
• More testing is needed

Results

HandelC and Hthreads Integration

07-Dec-07

• For this section, no
quantitative results to present
but can state that HCthreads
makes the coding of TLP in
HandelC easier

• HCthreads provides free
support for recursion even if
no TLP is warranted

Results

Enhancing the programming model

07-Dec-07 27

• Problem Statement

• Background & Related Work

• HCthreads: Design and Implementation

• Support Utilities

• Results

• Conclusions and Future Work

Enabling Task Level Parallelism in HandelC

Agenda

07-Dec-07

• HCthreads managed to combine ILP and TLP capabilities in
HandelC enhancing the programming model

• HCthreads succeeded in providing the same speedups in
computationally intensive applications with no overhead

• More testing is needed for the Hthreads support library

• Incorporate the globally distributed local memory offered by
Hthreads into the HandelC address space to enhance the
programming model further

Conclusions and Future Work

07-Dec-07

Pattern Recognition Using Neural Networks

Questions

?

