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• Majority of efforts up to date focused on ILP

• PRISM and DISC first attempts to accelerate applications 
through instruction set metamorphosis, limited ILP

• GARP one of first studies to directly address ILP, processor 
and reconfigurable fabric on the same chip, gains less than 
overhead

• General purpose processors followed similar approach

• Final conclusion ILP is limited

Problem Statement

Instruction Level Parallelism vs. Task Level Parallelism



07-Dec-07

• New emphasis on TLP

• Multiprocessor Systems on Chip, Parallel Computing 

• FPGA solutions such as Hthreads, Milan’s, ReconOS and 
Thread Warping

Problem Statement

Instruction Level Parallelism vs. Task Level Parallelism

Erik Anderson



07-Dec-07

• The objective of this thesis is to merge the capabilities of 
modern TLP with the existing ILP capabilities of HandelC

• HandelC has a large domain of users

• HCthreads is to bring modern programming techniques and 
model to that base

• Enhancing the programming model through combining ILP and 
TLP capabilities will bring additional performance

Problem Statement
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• First contribution is a threading library called HCthreads based
on Pthreads, major components:

• The Dispatcher
• The Terminator
• The Functional Units

• Second contribution is a support library that enables the use of
HandelC cores on platforms not supported by Celoxica using 
the Hthreads system

Problem Statement

Contributions of This Thesis
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• Started with Estrin in 
1959

• Popular nowadays in 
different fields

Background & Related Work

Field Programmable Gate Arrays

www.xilinx.com
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• Many available Academic and Commercial Tools
• HandelC is one of the most popular

• Main objective is to bridge the HW/SW boundary

• Most target a SIMD computational model
• extends ILP approach

• Support a subset of ANSI C, pointers and recursion are not 
supported

• Add pragmas to guide the translation process

Background & Related Work

C 2 Hardware
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• HandelC is based on the CSP algebra

• Each assignment must occur in one clock cycle

A = ( C + V + D ) / G
• This will generate deep logic

• Provides the “par” construct to express SIMD operations

• Does provide some TLP level primitives but no runtime support 
(counter intuitive for programmers)
• Spinning semaphores and channels
• User can create multiple main functions

Background & Related Work

HandelC
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• Pthreads provides support to 
implement heterogeneous 
threads on different platforms, 
very comprehensive set of 
features

• Many of the Pthreads features 
are not required

• HCthreads targets 
homogeneous threads

• Processing cores in 
HCthreads are truly parallel 
not pseudo concurrent

HCthreads: Design and Implementation

HCthreads Design

• pthread_create() 
• pthread_exit()
• pthread_cancel() 
• pthread_join() 
• pthread_detach()
• pthread_kill() 
• pthread_mutex_destroy () 
• pthread_mutex_lock () 
• pthread_mutex_trylock ( ) 
• pthread_mutex_unlock () 
• pthread_cond_signal() 
• pthread_cond_wait() 
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• DETACHED is to replace pthread_detach and related attributes, 
defines if all threads in the systems are detached or joinable

• CONTAINER_SIZE, defines the number of entries in the ready 
to run container, different applications require different number 
of entries

• R2RSTACK, defines if the ready to run container will behave 
like a stack or a queue, solves the breadth first search problem

• NO_FNUNITS, defines the number of parallel functional units in 
the system

HCthreads: Design and Implementation

HCthreads Implementation: Attributes
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• The Dispatcher, a light weight 
scheduler responsible for assigning 
threads to functional units,

• The Terminator, a central location 
where all functional units report 
when the current thread has 
completed its computation

• The Functional Units, multiple 
engines each running a separate 
copy of the accelerated function

HCthreads: Design and Implementation

HCthreads Implementation: Components
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• All previously mentioned attributes should be defined by the 
programmer

• Programmer needs to define the accelerated function

• Programmer needs to define the input argument structure

• hcthread_create is used to create threads, comes with two 
signatures depending on the employed joinable or detached 
threading scheme

• hcthread_join is used to join on threads only if a joinable 
scheme is used

HCthreads: Design and Implementation

HCthreads Implementation: Interface
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• Threads and functional units state, 
• bit fields with each bit representing a thread or a unit,
• a high bit indicates a free resource and a low bit indicates a 

busy resource
• Simpler circuits to check for free resources and to update 

state

• Ready to run container, keeps order of created threads, can 
behave like a stack or a queue

• Input argument array, parallels the ready to run container and 
maintains a copy of the input argument for created threads

HCthreads: Design and Implementation

HCthreads Implementation: Data Structures
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• Integration with Hthreads can extend the use of HandelC cores 
on platforms not supported by Celoxica

• VHDL wrapper required to interface HandelC cores into the 
HWTI

• HandelC cores act as slaves to VHDL wrappers

• the VHDL wrapper marginalized this approach to only 
support a streaming model

Support Utilities

First prototype: Simple Data Streaming
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• In this approach the HandelC core assumes the responsibilities 
of the VHDL wrapper

• All services and abstractions of the Hthreads system are now 
accessible to the HandelC core

• HWTI services encapsulated within HandelC library functions

Support Utilities

Current Solution: Full integration with Hthreads
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• Both Solutions have 
same code in accelerated 
functions

• When introducing two or 
more units HCthreads 
has less overhead, better 
scheduling in HCthreads 
when compared to par 
invocations

• Some irregular results 
due to known bug in 
semaphore arbitration

Results

Simulator Results

J stands for joinable designs

D stands for detached designs
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• HCthreads produces 
better timing but requires 
additional resources

• Though no speedups 
could be achieved in 
memory intensive 
applications when having 
multiple units, HCthreads 
can be used to implement 
recursion with minimal 
overhead

Results

ML310 Results
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• The ML310 test cases incorporated the Hthreads support library 
with requests to HWTI services:

• Load, Store
• Push, Pop
• Malloc, Free
• Thread exit

• Current test setup does not employ all Hthreads services such 
as mutexes and thread operations

• Separate test cases constructed to verify such cases
• More testing is needed

Results

HandelC and Hthreads Integration
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• For this section, no 
quantitative results to present 
but can state that HCthreads 
makes the coding of TLP in 
HandelC easier

• HCthreads provides free 
support for recursion even if 
no TLP is warranted

Results

Enhancing the programming model
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• HCthreads managed to combine ILP and TLP capabilities in 
HandelC enhancing the programming model

• HCthreads succeeded in providing the same speedups in 
computationally intensive applications with no overhead

• More testing is needed for the Hthreads support library

• Incorporate the globally distributed local memory offered by 
Hthreads into the HandelC address space to enhance the 
programming model further

Conclusions and Future Work
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Pattern Recognition Using Neural Networks

Questions

?


