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ABSTRACT 

A radar sensor may be constructed by deploying a spatially distributed cluster 

of small and relatively simple radar satellites (also called microsats), thus constituting 

a single “distributed” radar sensor, whose spatial extent may exceed hundreds of 

meters or even kilometers. While each array element (microsat) by itself will be a 

poor radar sensor, the collection and proper processing of radar data from each 

microsat would form a single, distributed radar sensor whose performance can 

potentially exceed any single radar system. 

In recent years, significant research has been directed at solving problems 

associated with the Synthetic Aperture Radar (SAR) using this distributed sensor 

concept. However, little progress has been made on applying this concept to the 

problem of forming topographic SAR images, a technique in which a surface map of 

both scattering intensity and surface height is produced, resulting in a three-

dimensional topographic map of an illuminated surface 

The existing models and associated topographic SAR algorithms used to 

obtain high-precision digital elevation models were developed under the assumption 

that every spatial element provides a quality SAR image. However, this does not 

apply to the distributed sensor because, under dynamic flight conditions, the array 

formed by the constellation of multi-satellites will be sparsely populated and 

randomly spaced. Furthermore, since individual elements forming the constellation 

are limited in aperture, no single element is capable of producing quality SAR 
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images. Hence, the mathematical models and algorithms developed for conventional 

Top SAR are not suitable for random and sparse configurations.  

The main focus of this thesis is to develop algorithms for determining accurate 

and unambiguous estimates of surface height using the space-time radar 

measurements provided by a distributed radar array. A technique is first developed to 

organize the information collected by a distributed system. Using eigensensor 

analysis, the five sensor parameters of the radar-time, frequency and 3D spatial 

location- are equivalently represented by a 3D synthetic aperture. Using this synthetic 

aperture, effective topographic SAR processing and estimation algorithms were 

developed. The developed algorithms were tested for different topographic scenarios. 
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1. INTRODUCTION 

1.1 Motivation 

 

Over the last few years, there has been considerable interest in the concept of 

moving radar technology on to spaceborne platforms. The main reason why this mode 

of radar operation is preferred is because of the several advantages that it offers. 

Spaceborne radars do not require any on board personnel or flight operators. This, in 

effect, means that no human beings are placed in a position of danger during the 

process of data acquisition. Air-borne vehicles are the usual targets for destruction 

during any military conflict. However radars on space-based platforms are safe once 

they are placed in orbit and hence are very useful for reconnaissance and other 

military applications.  

However, one of the biggest advantages of using spaceborne radars is its 

ability to provide global coverage. Radars on airborne platforms are limited by 

airspace restrictions and their coverage is therefore limited. However, no such 

restriction applies to spaceborne radars. At the same time, as with most engineering 

solutions, there are also a few disadvantages associated with space-based radar 

technology. One of the biggest constraints is the trade-off involving sensor weight, 

size and power. Microwave radar uses an electromagnetic wavelength longer, by 

several orders of magnitude, than optical or infrared systems, and thus the sensing 

aperture (i.e. antenna) size must be correspondingly larger. Another problem arises 

from the fact that the radar is an active sensor, which means that it must generate the 
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large electromagnetic power required to illuminate targets of interest. This “power-

aperture” problem has proved to be a major stumbling block when it comes to 

implementing space-based radar systems because constructing and deploying a 

satellite with a very large antenna structure while generating high transmitter power is 

both a difficult and costly endeavor.  The decision to implement a cluster of “radar 

satellites” is mainly directed towards mitigating this space-size-power tradeoff 

problem. 

The main motivation behind the use of such radar satellite constellations is 

that instead of building a single large, complex satellite, we could deploy a spatially 

distributed cluster of small and relatively simple radar satellites called microsats. 

With this approach, we no longer face the problem of having to build a single large 

antenna structure with a design capable of generating high transmitter power. This 

burden is now distributed across many satellites. Each satellite in this “microsat” 

constellation implements a transmitter, a receiver and a processor and thus a large, 

sparse multi-static radar array is formed in space. Since we have replaced a large 

aperture with smaller radar constellations, the system we have now constitutes a 

single “distributed” radar sensor, which is capable of illuminating a very large area. 

Although each array element alone is not useful for any specific application, a 

colllection of such radar microsats would form a single, distributed radar sensor 

whose performance exceeds that of a single-aperture radar system. The advantages of 

this system are numerous: it involves smaller, lighter and less expensive systems. An 

individual system failure merely degrades the performance of the entire distributed 
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radar system and the overall system performance can be augmented at any time in the 

future by adding more individual systems [1]. Figure 1-1 provides an interesting 

illustration of the arrangement of multi-aperture sparse arrays in space.  

Figure 1-1 Multi-aperture sparse array formations [19,20] 

A significant amount of research has been directed towards solving problems 

associated with applying this distributed sensor concept to the SAR and GMTI radar 

problems. Some spaceborne configurations that have been suggested are the 

Interferometer Cartwheel in Europe [14] and the TechSat21 concept in the USA [12]. 

The Interferometric Cartwheel is proposed as a passive (receive-only) constellation of 

micro-satellites in a special orbit configuration. Such a system produces a set of radar 

images which can be combined to improve the final resolution in range and azimuth 

and thus systematically produce across-track and along-track interferometric data. On 

the other hand, the TechSat21 employs a cluster of free-floating satellites, each of 

which transmits its own orthogonal signal and receives all reflected signals. The 
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cluster essentially forms a multi-element interferometer with a large number of 

grating lobes and significant ground clutter. The primary applications of the cartwheel 

are generation of the Digital Elevation Model (DEM) using cross-track interferometry 

and the mapping of ocean current using the along-track configuration. The TechSat21 

has been primarily focused on SAR and Moving Target Indicator (MTI). 

One of the most important research goals in this area involves improving the 

accuracy of elevation estimates. However, little progress has been made on applying 

this concept to the problem of forming topographic SAR (TopSAR) images using 

sparse and randomly spaced arrays resulting from realistic dynamic constraints. 

Typically, a sparse array will result in a beam pattern that is not really useful because 

it exhibits significant sidelobe levels across all directions outside the mainbeam, 

thereby influencing the accuracy of the SAR images. However, with the right kind of 

processing, such a sparse array can provide a significant improvement in radar 

performance and prove to be useful for topography-estimation applications. 

We now go back to our discussion about the features of a distributed radar 

constellation because a clear understanding of the same is required to appreciate the 

complexities involved when it comes to processing the responses and extracting 

information from such systems. One important requirement of a distributed sensor, 

which consists of several microsat constellations, is that the relative position of each 

microsat remains approximately constant with time. However, what might actually 

happen is that such a collection of satellites at different altitudes (and therefore 

different velocities) might drift apart as they orbit the Earth. This in turn means that 
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we need to expend more fuel in order to make sure the arrangement of the radar 

constellation remains relatively stable and does not change with time. However, what 

we could do to overcome this problem is design the array geometry in such a way that 

we can construct a satellite constellation which remains approximately constant as it 

orbits the Earth. This in turn ensures that a minimum amount of fuel is required to 

control the precise positioning of these satellites. Traditional antenna arrays are dense 

and regularly spaced while the microsat elements of a stable constellation turn out to 

be sparse and randomly distributed. Hence, it is obvious that a dynamically stable 

distributed radar would be significantly different from an airborne distributed radar 

sensor. Because of the evident difference in geometry, new radar signal processing 

algorithms must be created for this distributed sensor. 

The concept of SAR interferometry basically involves using two SAR sensors, 

which are vertically displaced to form an interferometric baseline. By comparing the 

complex phase difference between the two resulting SAR images, a topographic map 

can be produced. In particular, extracting the height information of the corresponding 

data of a certain area is an interesting application. Although the distributed radar 

constellation, which is at our disposal, provides multiple interferometric baselines (N 

satellites provide (N-1)*N/2 baselines), what we should note is that we still do not 

have multiple interferometric SAR baselines. Moreover, the main problem associated 

with the distributed design is that each microsat element is likely to have insufficient 

power and aperture size and consequently, no accurate estimates can be generated 

with the data collected by one single element alone. In other words, the measurements 
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collected by just one constellation element are not enough to form an unambiguous 

SAR image. What we need is the accumulation of data from all the microsats in order 

to obtain accurate estimates. Therefore, again, we come to the conclusion that 

standard interferometric algorithms and techniques are not applicable to this new 

distributed sensor concept. New processing algorithms must be derived and applied to 

provide a topographic map of improved accuracy over other interferometric SAR 

concepts. 

1.2 Organization of the document 

The following chapters of this document contain a detailed description and 

analysis of the methodology adopted for developing topographic SAR estimation and 

processing algorithms for a multi-aperture spaceborne radar. 

Chapter two deals with a detailed description of the software simulator 

developed using Matlab. This simulator provides a set of complex valued samples, 

which constitute the measurement data, collected by a sparse and random 

configuration of antennas. The mathematics behind the modeling of this radar 

response vector will be described in detail. The second half of this chapter will deal 

with a discussion about the transformation matrix and its interpretation. This will lead 

to a detailed derivation of the 3D Synthetic aperture using eigensensor analysis 

followed by a few simulation examples. 

Chapter three deals with the development and implementation of a Kalman 

Filter for processing of data obtained from a multiple-aperture spaceborne radar [3]. 
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The performance of the Kalman filter is evaluated with two different test cases and 

the advantages of this algorithm over the other estimators are briefly discussed. 

Chapter four deals with the theory behind topography estimation using 

distributed radar array measurements. We start by looking at the conventional 

topographic SAR, discuss the geometry and the concepts involved in height 

estimation using standard interferometric techniques and then extend this idea to the 

distributed topographic SAR. This chapter ends with a discussion about optimal 

partitioning of the measurement space in order to form a set of two SAR images. 

Chapter five forms the core of the thesis and starts by completely describing 

the topography-estimation algorithm developed during the course of this research. 

The first test case looks at a simple two-dimensional situation and enables us to 

understand the effects of eigensensor analysis. This test also helps us to decide on the 

methodology to be adopted for optimal partitioning of the measurement space. The 

second test case deals with a more realistic three-dimensional situation and we test 

the algorithm with different topographic scenarios. The forward-look SAR geometry 

is explained in detail and compared with the standard side-look case. The results 

obtained are displayed in the form of three-dimensional elevation models as well as 

contour plots.  

Chapter six summarizes all the concepts developed during the research, 

presents conclusions and recommends possible opportunities for future research 

work. 
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2. MULTI-APERTURE SPACE-BORNE ARRAYS 

2.1 The Multi-aperture SAR Simulator 

 Due to the lack of actual multi-aperture sparse radar array data, it is necessary 

to create a software model, which will enable us to procure an accurate set of 

complex receiver samples that accurately reflect the measurements of an arbitrary 

space-time radar when it is illuminating an arbitrary and diverse target set. This 

section aims at providing a brief illustration of the mathematics that describe a multi-

aperture spaceborne radar model [4]. Figure 2-1 depicts the radar geometry. 
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Figure 2-1 Radar Geometry (Side-look case) 

Center of target grid 

Radar moving  

at velocity vx ‘NY’ pixels 
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2.1.1 Model description - Transmit space 

 The multi-aperture space-borne radar transmit space consists of two sub-

spaces, the temporal (time-frequency) sub-space, and the spatial sub-space. The 

spatial sub-space consists of three dimensions extending across the three spatial 

dimensions and basically defines the location of the transmit antenna. The temporal 

sub-space, on the other hand, spreads out across the dimensions of time and 

frequency. To be more specific, we could say that the transmit signal is described by 

a weighted superposition of a set of wide timewidth, wide bandwidth orthonormal 

basis functions. A windowed Fourier transform is used to describe the transmit signal 

in terms of (slow-time basis functions) time and (fast-time basis functions) frequency. 

This result is then sampled across time and frequency, so that the signal can be 

described as a set of (B*T) complex values. The transmit signal sent out by the radar 

thus consists of a set of complex valued samples that spread out across this overall 

five-dimensional space. The various vectors that occupy the transmit space are: 

s
jz - denotes a vector which occupies the spatial sub-space and represents the position 

vector specifying the location of the j
th
 transmit antenna. 

t

kz - denotes a vector which occupies the temporal (time-frequency) sub-space 

The transmit temporal position vectors could be visualized as pointing to 

locations on a two-dimensional grid which has U number of samples in the ‘time’ 

direction and V number of samples in the ‘frequency’ direction. 
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jkz denotes the combined five dimensional vector in the total transmit signal space 

and is of the form 

[ , , , , ]Tjk j j j k kz x y z t ω=                                       (2.1) 

The vector shown above completely describes the spatial location of the j
th
 

transmit antenna and values of the k
th 
time-frequency sample associated with it. The 

transmit signal generated by this particular transmit antenna is given by )( jkzs . All the 

elements of the transmit signal can thus be arranged into a single N-dimensional 

vector where N= J*K.  N refers to the total number of complex-valued samples 

contained in the transmit signal while J refers to the number of transmit antennas and 

K refers to the number of time-frequency samples transmitted by each of those 

transmit antennas. 

2.1.2 Model description – Target space 

 The entire target space is characterized with a complex scattering coefficient γ 

and a set of position vectors corresponding to each target pixel. The target position 

vector is denoted by  

[ , , , ]y x y z vt t t t t=                                            (2.2) 

where xt, yt and zt define the position of the t
th
  target  in a three-dimensional cartesian 

space while vt specifies the radial velocity of the target with respect to ground 

velocity.  
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1 2 3[ , , ........ ]
tN= γ γ γ γγ  represents a vector of dimension equal to Nt (the number of 

targets) and contains the complex scattering values corresponding to each target. 

2.1.3 Model description – Receiver space 

 Just as we observed with the transmit space, the radar receive space also 

consists of a three-dimensional spatial sub-space and a two-dimensional temporal 

(time-frequency) sub-space. The various vectors that constitute the receive (sensor) 

space are: 

s
is - denotes a vector which occupies the spatial sub-space and represents the position 

vector specifying the location of the i
th
 receive antenna.  

'
t
ks - denotes a vector which occupies the temporal (time-frequency) sub-space 

'iks  denotes the combined five dimensional vector in the receive space and is of the 

form 

' ' '[ , , , , ]Tik i i i k ks x y z t ω=                                        (2.3) 

All the elements of the receive signal can be arranged into a single M-dimensional 

vector where M= I*K’.  M refers to the total number of complex-valued samples that 

constitude the received signal while I refers to the number of receive antennas and K’ 

refers to the number of time-frequency samples received by each receive antenna 

element. The radar response vector r  is, therefore, an M-dimensional vector and 

contains all the complex measurement values that represent the A/D samples of a 

space-time radar. 
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The main function of the simulator is to simulate this radar response vector by 

modeling the electromagnetic effects on the transmitted, scattered and the received 

signal. To achieve this, we need to relate the receive measurements to the target and 

the transmit signal description via far-field propagation operators. The following 

operators further assist us to model this radar response vector. 

Kθ  - is the frequency matrix which relates the transmit space to the target space 

Kϕ - is the frequency matrix which relates the receive signal space to the target 

position space. 

The frequency matrix is also termed as the Transformation matrix and will be 

explained in detail in the next section, 

1 2 3 4 5[ , , , , ........ ]TMn n n n n n=n  is a vector of the same dimension as the measurement 

vector and represents the measurement noise. Each element of that vector is a zero-

mean complex random variable with variance 2

nσ  

We also define a matrix H  that is a very important part of the radar model 

equation and is called the propagation matrix. This is because the H-matrix 

completely models the propagation effects on the transmit signal as it travels from the 

transmitter to the target, undergoes scattering and is received back at the radar. It 

should be noted that the evaluation of the H-matrix involves far-field approximations 

considering the given space-based radar scenario. 
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 The H-matrix contains elements of the form, 

       

                   (2.4)

  

where Ht
mn
 is an M-by-N matrix corresponding to target ‘t’. M refers to the total 

number of received samples while N refers to the number of transmit signal samples. 

( , : )hg m n t  is a complex weighting function that relates the transmit temporal and 

spatial samples to each other, for a given target t. 

With the above definitions, we can now proceed and obtain an expression for the M-

dimensional measurement vector, r .  

The transmit signal s , target scattering coefficient tγ and the measurement noise 

vector n  are related to the response vector r  as, 

tN

t t
t

γ= +∑r H s n                                              (2.5) 

where r  is the measurement vector consisting of M samples. 

We could go ahead and define an M-dimensional normalized measurement vector ρt 

for each target such that 

t t=ρ H s                                                       (2.6) 

The normalized measurement vector described above is a very important vector 

because it is basically the full set of measurement vectors obtained by a radar at a 

discrete set of space and time locations due to a particular target. If these response 

vectors are weighted by their appropriate scattering coefficient values and added 

( )
( , : )

sT sT T t t tT s s
m t t nt n

js K y jy K K zjy K zmn

t hH g m n t e e eϕ ϕ θθ− −−=



 

 

14 

together, the result would be the set of measurements obtained by a radar due to all 

scatterers within the illuminated area. 

Thus, 

tN

t t
t

γ= +∑r ρ n                                                  (2.7) 

We can now define another matrix P  which is basically the collection of the 

normalized response vectors corresponding to each target. Thus, we have 

1 2 3
....

Nt

 =   
P ρ ρ ρ ρ                                        (2.8) 

Thus, the entire set of measurements can now be represented in matrix-vector 

notation as, 

= +r Pγ n                                                    (2.9) 

2.2 The Transformation Matrix and its interpretation 

 In the previous section, we looked at the various model equations that finally 

lead to the expression for radar response. (2.9) contains all the components of the 

radar physics and expresses the complex measurement that would be obtained by a 

radar due to a set of scatterers (targets). The received signal is a delayed version of 

the transmit signal with a phase component that depends on the time-varying 

propagation delay. The transformation matrix provides information about the rate of 

change of the phase of the radar response with respect to various sensor and target 

parameters. We now proceed by defining some important parameters which will be 

useful to derive the transformation matrix.  
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With reference to the radar geometry shown in Figure 2-1, the spaceborne 

system travels in the positive direction at velocity vx and the array phase reference is 

located at the origin of the coordinate system. Assuming a flat earth, the z-coordinate 

of all targets on the ground is –h, where h is the altitude of the array phase reference 

[1]. The following vectors are useful to proceed with derivation of the transformation 

matrix: 

[ ]Ty x y ht t t= −  denotes the position of a target on the earth’s surface where 

 zt= -h                                                               

[ ]0 0xv v=  represents the radar system’s velocity            

[ ]i i i is x y z=  represents the location of the the i
th 
sensor (radar receiver). This 

vector contains only the spatial information of a receive antenna and is therefore a 

subset of the 'iks vector defined in the previous section.  

In terms of the above position and velocity vectors, the range from the transmitter to a 

target is given by, 

2 2 2( ) ( ) ( )tx tgt i t x t tR s y v t x y h− = − = − + +                     (2.10) 

Similarly, the range from the target back to a receiver is given by, 

2 2 2( ) ( ) ( )tgt rx i t i x t i t iR s vt y x v t x y y z h− = + − = + − + − + +           (2.11) 

The two-way propagation delay is therefore given by, 

2 2 2 2 2 21
( ) ( ) ( ) ( ) ( ) ( )i x t i t i x t tx v t x y y z h v t x y h

c
τ  = + − + − + + + − + +  

  (2.12) 
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The phase of the radar response will finally be, 

ψ ωτ=                                                       (2.13) 

or, 

2 2 2 2 2 2( ) ( ) ( ) ( ) ( ) ( )i x t i t i x t tx v t x y y z h v t x y h
c

ω
ψ  = + − + − + + + − + +  

 (2.14) 

In order to obtain the sensor transformation matrix and then the synthetic sensor, two 

first-order Taylor expansions of the phase of the radar response are carried out [1,10]. 

Thereafter, using the array phase reference, mean sensor time and mean frequency, 

the sensor parameters around which the expansion is performed are given by, 

[ ]0 0 0 0
T

o cs ω=                                     (2.15) 

The central point of illumination on the ground and thus the point around which the 

expansion is performed is taken as, 

[ ]y x y ho o o= −                                          (2.16) 

Now, in terms of derivates, the sensor transformation matrix relating the receive 

signal space to the target position space -Kϕ  is given by, 

2 2 2 2 2

' '

2 2 2 2 2

' '

2 2 2 2 2

' '

t i t i t i t k t k

t i t i t i t k t k

i i i k k

x x x y x z x t x

K
y x y y y z y t y

h x h y h z h t h

ϕ

ω

ω

ω

 ∂ ∂ ∂ ∂ ∂
 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ 

 
∂ ∂ ∂ ∂ ∂ = Ψ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
 
 ∂ ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

                  (2.17) 
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Substituting (2.14) - (2.16) into (2.17), and evaluating the above matrix at os and oy , 

the sensor transformation matrix becomes, 

2 2 2 2

3 3 3 3

2 2

3 3 3

2 2

3 3 3 3

( ) 2 ( ) 2

( ) 2 2

( ) 2 2

o o o o x o o

c oo o o o

c o o o o x o o o

c o c oo o o

o o o o o

c oo o o o

h y x y hx v h y x

w RR R R R

w x y h x hy v x y y
K

c w R w RR R R

hx hy x y hx h

w RR R R R

ϕ

 − + − − +
 
 
 

− + − =  
 
 − − − + − − 
  

    (2.18) 

where (xo,yo,-h), represents the center of the square grid comprising the target pixels 

and 2 2 2
o o oR x y h= + + . 

If we consider a standard side-looking case, then 0ox =  and the sensor 

transformation matrix becomes, 

2

3 3

2

3 3

21
0 0 0

2
0 0

2
0 0

x

o o

c o o

c oo o

o o

c oo o

v

R R

w hy yh
K

c w RR R

hy y h

w RR R

ϕ

 −− 
 
 

−− =  
 
 − − − 
  

              (2.19) 

We can split the transformation matrix into separate spatial and temporal pieces such 

that 
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2

3 3

2

3 3

1
0 0

0

0

o

spatial c o

o o

o o

o o

R

w hyh
K

c R R

hy y

R R

 − 
 
 

−− =  
 
 − − 
  

and 

2
0

2
0

2
0

x

o

temporal o

c o

c o

v

R

y
K

w R

h

w R

 −
 
 
 

=  
 
 −
 
  

 

        (2.20) 

The sensor transformation matrix thus provides with information regarding the 

change of phase with respect to various parameters such as sensor location and target 

geometry. However, what is evident from the double derivative is that this 

information is coupled. The phase varies with time, space, frequency and the location 

of the scatterer. However, the only scatterer-dependent parameters that affect how the 

received phase varies over the sensor are the x, y and z coordinates of the target 

position (scatterer). Since the target has only three variables that affects its response 

at the radar, we can say that we need only three sensor dimensions to represent the 

SAR data. Thus, the hypothesis is that although the phase varies with respect to five 

sensor parameters, those sensor parameters can be projected into the coordinates of 

three independent eigensensors, and this concept will be discussed in detail in the 

next section. 

2.3 The 3D Synthetic Aperture – Eigen Sensor Analysis 

Eigensensor analysis basically refers to the problem of finding a coordinate 

system in which the solution to a given problem has a simple expression. Several 
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aspects of distributed radar systems make effective signal processing problematic. 

The most significant of these is the characteristics of the spatial array, which provides 

both a sparse and a random sampling over a large volume. Moreover, the sensor look 

angle will not be typically perpendicular to the direction of sensor velocity (leading to 

a non-zero squint angle), so that isorange and isodoppler contours will not be 

perpendicular, nor will they align with the traditional cross-track and along-track 

directions. Consequently, traditional radar tools and signal processing algorithms are 

not applicable to the sparse array concept. The distributed system collects information 

as a function of frequency, time and three spatial dimensions but the sampling in 

these five dimensions is aperiodic and each measurement provides independent but 

coupled information about any and all target dimensions. 

A very useful tool for organizing and analyzing the information collected by a 

distributed system is the eigensensor analysis [1]. Using this technique, we can 

separate out the distributed radar measurements into their fundamental components, 

so that sensor behavior and signal processing can be accurately determined. The 

construction of the eigensensor begins with the phase function '( ; )ik ts yψ  of the field 

scattered from a stationary target located at yt . Assuming that the target is 

illuminated by a modulated form of a carrier signal exp{ }j toω , this scattered phase 

function can be written in terms of the five-dimensional measurement vector 'iks  

mentioned in the previous section. As already shown, this vector describes the five 

radar measurement dimensions time t, relative frequency r oω ω ω= − and the three 
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dimensions of space which define the spatial location of the receive elements. If we 

expand this phase function as a Taylor series around the center of the radar 

measurement soand then retaining only the first two terms gives a far-field 

approximation for the scattered phase [1]: 

'( , ) ( , ) |
ot ik t o s sy s y s sψ ψ ψ≈ +∇ ∆

 

' ' ' ' '( , ) ( , ) ( , ) ( , ) ( , )

s so os s so o o

t ik t ik t ik t ik t ik
i i i r

i i i

y s y s y s y s y s
x y z t

x y z t

ψ ψ ψ ψ ψ
ω

ω
∂ ∂ ∂ ∂ ∂

= + + + +
∂ ∂ ∂ ∂ ∂

 

( ) ( ) ( ) ( ) ( )
Dx t i y t i z t i t r tk y x k y y k y z y y tτ ω ω= + + + +                                    (2.21) 

The five derivative operators provide the five measurements associated with the radar 

sensor. 

Delay ( )tyτ is given by the change in phase with respect to ωr 

Doppler ( )
D tyω is given by the change in phase with respect to time, t. 

,,k k kx y z  represent the spatial frequencies 

On the whole, all these five target “frequencies” can be expressed as a vector as 

shown below. 

( ) ( ) ( ) ( ) ( ) ( )
Dt x t y t z t t ty k y k y k y y yτ ω =  Ε                     (2.22) 

The main problem with this arrangement is that each of the five frequencies is 

dependent on all the three target dimensions and therefore we could say that each of 

the five sensor measurements in 'iks  provides information about every dimension of 
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the target location yt . Therefore what is required is some sort of “decoupling” in the 

sensor measurements so that useful information could be extracted out of the radar 

response data. 

Thus, in order to interpret the transformation matrix in a better fashion, it is written in 

terms of its singular value decomposition (SVD). As seen from (2.19), Kϕ is a three-

dimensional matrix with the three rows corresponding to the three target dimensions 

(third dimension being height). When expanded in terms of its SVD, 

* * TK U S Vϕ =                                               (2.23) 

where 

[ ]1 2 3U u u u=      (3 x 3 matrix) 

1

2

3

0 0 0 0

0 0 0 0

0 0 0 0

S

σ

σ
σ

 
 =  
  

    (3 x 5 matrix)     

[ ]1 2 3 4 5V v v v v v=    (5 x 5 matrix)                      (2.24) 

While the S matrix consists of the non-singular values resulting from the 

decomposition, the columns of the matrix U  consist of the eigen vectors of 

TK Kϕ ϕ and the columns of the matrix V  consists of the eigen vectors of TK Kϕ ϕ . The 

symbol ‘*’ denotes the multiplication operation. 

We could also express the result of the SVD as 

3

1

T
i i i

i

K u vϕ σ
=

= ∑                                              (2.25) 
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where iu  are three-dimensional and iv  are five-dimensional orthonormal vectors. 

Analysis of the propagation matrix in the measurement space enables us to obtain the 

eigensensors. We proceed by simplifying the far-field phase expression into scalar 

terms. 

0( , ) T T T
ik t ik ik ts y s s K yϕψ κ≈ +                                                                                  (2.26) 

where Kψ represents the frequency matrix or transformation matrix which relates the 

receive signal space to the target position space. 

Using (2.25), (2.26) can now be written as, 

' ' ' 1 1 1 ' 2 2 2 ' 3 3 3( , ) ( )( ) ( )( ) ( )( )T T T T T T T
ik t o ik ik t ik t ik ts y s s v u y s v u y s v u yψ κ σ σ σ= + + +  

              T
o ikx α β γκ κ α κ β κ γ= + + +                                                                     (2.27) 

The result shows that a complex sensor can be represented in terms of three 

decoupled measurements, which are referred to as eigensensors. The scalar value 

1
T

t tu yα =  is used to provide information only about the target frequency ' 1 1
T
iks vακ σ= , 

which is a scalar value dependent on the target position in the direction of 1v only. A 

similar relationship exists between measurement β, target frequency κβ and the 

direction 2v  as well as the measurement γ, target frequency κγ and the direction 3v . 

The eigen vectors iu and iv , therefore, form a very good basis for our radar problem. 

The measurements α, β and γ are determined by projecting the sensor measurement 

vector 'iks  on to iv  while the target frequencies κα,,κβ and κγ are determined by 

projecting the target position vector ty on to the eigen space defined by iu . 
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2.4 Eigensensor Simulations 

It is clear from the previous section that we can project a five-dimensional 

radar measurement space into a three-dimensional measurement eigen space or 

eigensensor space. Similarly, the physical target space can be replaced by an 

equivalent three-dimensional eigen target space. Figure 2-2 depicts the two-

dimensional eigen space representation of a sparse radar array consisting of 8 receive 

antennas with 17 time samples and 31 frequency samples. The z dimension of the 

target location is ignored because of which the target space is two-dimensional and 

this leads to a two-dimensional eigensensor space. Figure 2-3 depicts an equivalent 

three-dimensional eigensensor which results if the target space is three-dimensional in 

nature (target height also considered).  

The result of such a projection on to the new eigensensor coordinates is that 

we obtain a measurement scenario, which is analogous to the far-field approximations 

carried out for the standard side-looking SAR. One sensor measurement (relative 

frequency) provides information only about one target frequency (delay), which is a 

function of target position in one direction (cross-track), while a second measurement 

(time) provides information only about the second target frequency (doppler), which 

is a function of the target position in an orthogonal direction (cross-track). At the 

same time, this design also collects data across one spatial dimension to provide 

information about a third target frequency that is a function of the target position in 

the vertical direction (height).  
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Figure 2-2  Two dimensional Eigensensor array for a small microsat constellation consisting of 8 

receive antennas. 

 

Figure 2-3 Measurement space completely characterized by a three-dimensional Eigensensor 

space representing 8 receive antennas where each antenna receives 17 time samples and 31 

frequency samples 
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Thus, the strength of this decomposition is that it can be used to transform the 

distributed radar problem into a form where the analysis is clear and well defined. 

In this chapter, we have successfully looked at how to simulate the radar 

response vector by developing a software model and then showed how to utilize the 

concepts of eigensensor analysis to convert the sparse radar array problem to a form 

which can be easily applied to interferometry. The next chapter deals with the design 

and implementation of the SAR (Kalman) processor 
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3. KALMAN FILTER 

3.1 Significance of the Kalman filter design 

 There has been significant research carried out related to development of 

algorithms for processing of the sparsely populated multiple aperture spaceborne 

radar [1,3,13]. [3] specifically deals with the application of the Kalman filtering 

technique for SAR processing of sparse satellite clusters and comparison of its results 

with the other estimation techniques. Some of the algorithms that were initially used 

for this purpose were the matched filter, the maximum-likelihood filter and the 

minimum mean-squared error filter [13]. Even though the matched filter is able to 

maximize the received energy with respect to noise, it is unable to minimize the error 

due to the presence of clutter in target response. Clutter basically refers to any objects 

that cause unwanted reflections of a radar’s electromagnetic energy to be returned to 

the radar receiver. These unwanted returns interfere and compete with the valid 

returns of interest and cause the radar response to become cluttered and difficult to 

decipher. In the SAR scenario that we consider, all the target resolution cells 

surrounding the target of interest are said to constitute clutter. This is because, if we 

are estimating the scattering coefficient of a specific target pixel, we do not wish to 

receive any responses from the surrounding pixels. Thus, if the responses from the 

illuminated targets are significantly correlated, a very large error will result. 

Generally, in the case of the sparse arrays, the responses of all surrounding resolution 
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cells will be correlated to a great extent and hence a different linear processor must be 

implemented. 

 The maximum likelihood (ML) estimator has the ability to minimize the error 

due to clutter but does nothing to reduce the interference due to noise. As a result, the 

estimation error degrades rapidly with any decline in the measurement SNR. Now, if 

we possess some a priori knowledge of the radar transmit power and noise figure, 

then a minimum mean squared error estimator can be implemented. The MMSE 

estimator is a discrete implementation of a Wiener filter and minimizes the error due 

to both noise and clutter. In other words, if the matched filter maximizes signal to 

noise and the ML estimator maximizes signal to clutter, the MMSE estimator can be 

said to maximize signal to interference. We can therefore say that the MMSE filter is 

the mathematically optimum compromise between the correlation and the ML filters. 

 The biggest disadvantage of an MMSE filter is that a matrix inverse operation 

that appears in one of the intermediate steps can be impractically large for many radar 

problems and this can slow down the computing speed drastically. The solution to 

this problem is that the MMSE estimate can be computed iteratively wherein the data 

vector is split into smaller segments in order to reduce the processing time. This leads 

to the Kalman Filter algorithm. The Kalman filter is an iterative implementation of 

the MMSE estimator [3]. We can implement it by operating on sections of the radar 

response vector r , rather than on the entire length of the vector. Before using the 

Kalman processor for applications involving interferometry, we need to test the 

efficacy of the algorithm and the accuracy of its estimation, and that forms the focus 
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of this chapter. The following sections provide a detailed explanation regarding the 

theory behind Kalman filter design, its implementation and analysis of the results 

obtained. 

3.2 Kalman Filter Theory 

 

In 1960, R.E Kalman presented the set of recursive equations that have come 

to be known as the Kalman Filter. However there were several other major 

developments that actually preceded the introduction of the Kalman Filter. R.A 

Fischer initially introduced the idea of maximum likelihood estimation. This 

approach was followed by Kolmogorov in 1941 and Wiener in 1942, when they 

independently developed a linear minimum mean-square estimation technique that 

received considerable attention and provided the foundation for the subsequent 

development of the Kalman filter theory [18]. 

In simple words, we could say that the purpose of a Kalman filter is to 

estimate the state of a system from a set of measurements, which contain random 

errors or noise. The system is said to be composed of two essential parts, the state or 

process equation and the measurement or observation equation. In state-space 

notation, the state equation or the process equation models the expected variation in 

the parameter x(k), which is to be estimated. It is given by, 

( ) ( ) ( ) ( )k k k k= +x A x b                                       (3.1) 

As mentioned earlier, x(k) is the parameter which is to be estimated while A(k) is 

known as the state transition matrix which models the expected variation in the value 
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of x(k) from k-1 to k. In other words, the state transition matrix relates the state at a 

previous step k-1 to the state at the current step k. b(k) represents the process noise 

and conveys the uncertainty in the modeling of this expected variation. 

The observation or measurement equation is given by 

                                                ( ) ( ) ( ) ( )k k k k= +z H x v                                          (3.2) 

Here, H(k) describes the relationship between the signal vector x(k) and the 

observation vector z(k) while v(k) represents the measurement noise. 

With respect to the above equations, we can state that the Kalman filter 

process basically involves optimally solving (3.1) and (3.2) and thereby utilizing the 

entire set of observed data contained in z(k) to obtain the minimum mean-square 

estimate of the parameter x. The complete algorithm as well as the application to a 

radar scenario will be discussed in the next section. 

3.3 Application to the Radar scenario 

Although the Kalman filter algorithm is usually described from the point of 

view of application to time-varying, dynamic systems, we can just the same apply it 

to static systems. Hence, this algorithm is very useful for our radar scenario. We call 

the radar application a static one because we assume that the state vector containing 

the scattering coefficient of the target resolution cells, which is the parameter to be 

estimated, remains approximately constant with respect to time, space and frequency 

over the extent of the radar measurement. 
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As seen from (2.7), the radar response vector is given by the following 

equation, 

tN

t t
t

γ= +∑r ρ n                                          (3.3) 

It is clear from the above equation that the response vector is given by the sum of the 

weighted responses of all illumination targets with the included effect of noise. From 

(2.9) 

= +r Pγ n                                                  (3.4) 

where, 

                                         [ ]1 2 3 .... Tγ γ γ γ=γ                                   (3.5) 

and 

                                         
1 2 3 ....

tN
 =  P ρ ρ ρ ρ                                    (3.6) 

Our final objective is to estimate the scattering coefficient γ given the radar response 

vector r. We could achieve the same by using any linear estimator, which can be 

written as, 

γ T γ=
)

                                                      (3.7) 

where 

γ
)
 is the estimate of the complex scattering coefficient γ  

T is a matrix that describes the linear estimator 

For the Linear Minimum Mean-squared or Wiener estimator, T is given by [3], 

1[ ]T K P PK P K −= +T T
MMSE nγ γ                            (3.8) 
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where 

γK is given by { }TE γγ  

nK is given by { }nn
TE  

As mentioned earlier, the main problem that we face when implementing this 

estimator is the inverse operator that appears in (3.8). This inversion operation can be 

very large for several radar problems and is a potential stumbling block when it 

comes to computation. The solution to this problem is the Kalman filter algorithm. 

We can take the radar response vector and split it up into, say, L vectors each 

with a dimension of 5 (as an example). It should however be noted that the length of 

the segments is arbitrary and can be as small as 1. The segmented response vector 

looks as shown below, 

1 2 3 4 5 6 7 8 9 10 4 3 2 1

(1) (2) ( )

..... M M M M M

r r r L

r r r r r r r r r r r r r r r− − − −

 
 =
 
 

r
144424443 144424443 1444442444443

 

                                                                                                                                  (3.9) 

Equivalently, we can also segment the matrix P, which is a collection of the 

normalized response vectors corresponding to all targets, into smaller pieces. 

(1) ( 2 ) (3 ) . . .. ( )P  =  
T

T T T TP P P P L                  (3.10) 

Finally, we can segment the noise vector as shown below, 

                              [ ](1) (2) (3) .... ( )n n n n L=n                                  (3.11)   
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The parameter that is to be estimated in this case is γγγγ and r is the observation vector. 

Thus, in case of this radar problem, we can refer to (3.1) and define the process or 

state equation as, 

( ) ( ) ( 1) ( )l l l l= − +γ A γ u                                       (3.12) 

where A(l) is the state transition matrix as described in (3.1) and u(l) is process noise 

which represents the uncertainty in A(l). 

Equation (3.4) gives the relationship between the measurement vector and the state 

vector and therefore it is very similar to the observation equation given in (3.2). 

Hence, the observation equation for the radar scenario can be defined as, 

                                                  ( ) ( ) ( ) ( )l l l l= +r P γ n                                            (3.13)        

where l represents the iteration number or the section of data (out of a total of L 

sections of data) on which the processing is being done.  

A change in the value of l corresponds to a change in a set of radar measurements, 

which are collected over time, space and frequency. We start by assuming that the 

scattering coefficients are constant with respect to these three parameters of 

measurement. Thus ( )lA  is an identity matrix. The following “initial values” are 

chosen as an input to the algorithm. 

2

2

ˆ (0 / 0) { } 0

(0 / 0)

(0 / 0)

( ) 0

n n

u

E

I

I

l

γ γσ

σ

= =

=

=

=

γ γ

K

K

K

                           (3.14)
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The Kalman filter algorithm can be described as follows: 

Step 1:  The estimated scattering coefficient ( 1/ 1)l l− −γ
)

 and the error covariance 

matrix of the scattering coefficients, ( 1/ 1)l lγ − −K , are known after processing the 

previous step. 

Step 2: Initially, the a priori error covariance matrix is obtained as follows 

( / 1) ( 1/ 1) ( )ul l l l lγ γ− = − − +K K K                                  (3.15) 

where ( )u lK is the covariance matrix of the noise process u and its value is taken as 

zero. 

Step 3: The Kalman gain matrix is then computed. This calculation of the Kalman 

gain is carried out with the objective of minimizing the effect of the error covariance 

matrix of the scattering coefficients ( )lγK . The process ensures that the mean square 

error is minimized, which based on the orthogonality theorem occurs when the error 

in the estimate is orthogonal to the measurement data [3]. Thus we have, 

( ) 1( / 1) ( )[ ( ) ( / 1) ( ) ( )]T T

nl l l l l l l l lγ γ
−= − − +G K P P K P K               (3.16) 

In the above equation, ( )lG  is the Kalman gain. 

Step 4: (Innovation process): This step involves the computation of the error between 

the observed measurement and the predicted measurement. The error value obtained 

is called the innovation. 

ˆ( ) ( ) ( ) ( 1/ 1)l l l l l= − − −ν r P γ                                      (3.17) 

 where ( )lν is the innovation value. This value refers to some new information that is 

required for the next step of estimation. In other words, the innovation reflects the 
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discrepancy between the predicted measurement ˆ( ( ) ( 1/ 1))l l l− −P γ and the actual 

measurement ( ( ))lr . A residual of zero would mean that the two are in complete 

agreement and we have no further new information, which in turn would mean that 

we have reached the end of the estimation process. The innovation, which forms the 

essence of the Kalman Filtering Theorem, is orthogonal to all the past observations 

and could be used to make an optimal estimate of γ [3]. 

Step 5: The final objective in the Kalman process is to find the estimate ˆ ( / )l lγ as a 

linear combination of an a priori estimate ˆ ( 1/ 1)l l− −γ  and a weighted difference 

between the actual measurement and a measurement prediction, which is defined by 

the product of the Kalman gain and the innovation. Thus, a new estimate value is 

obtained using the previously calculated Kalman gain and the innovation value. 

ˆ ˆ( / ) ( 1/ 1) ( ) ( )l l l l l l= − − +γ γ G ν                                   (3.18) 

where ˆ ( / )l lγ  is the new MMSE estimate of γ̂  given ( )lr . 

From (3.16) and (3.18), it is interesting to see that as the measurement error 

covariance [ ( )n lK ] approaches zero, the Kalman gain weights the innovation more 

heavily. On the other hand, if the estimate error covariance [ ( )lγK ] approaches zero, 

then the Kalman gain weights the innovation less heavily. In other words, as the 

measurement error covariance approaches zero, the actual measurement r is “trusted” 

more and the predicted measurement is trusted less. This process helps us move 

closer to the correct estimate. 

Step 6: The updated error correlation matrix is then given by 
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( / ) [ ( ) ( )] ( / 1)l l l l l lγ γ= − −K I G P K                                  (3.19) 

At the end of the last step we have ˆ ( / )l lγ  and ( / )l lγK . Repeating the iteration 

once more would produce ˆ ( 1/ 1)l l+ +γ and ( 1/ 1)l lγ + +K .  

The entire Kalman filter algorithm is repeated until all the radar measurements 

have been utilized and good estimates are obtained. The next section deals with 

implementation of the Kalman Filter algorithm so that it can be used to obtain an 

estimate of target scattering coefficients given a set of radar measurements. 

3.4 Kalman Filter – Performance Analysis 

 In order to test the efficacy of the developed Kalman filter, a series of tests 

were carried out with sets of randomly chosen scattering coefficients. This section 

aims at outlining some important factors to be considered while setting up the 

algorithm and analyzing its performance. 

3.4.1 Selecting physical parameters for the Radar model 

One very important criteria when it comes to forming SAR images is the 

minimum number of spatial receive elements and hence the number of receive time-

frequency samples that are required to unambiguously estimate the scattering 

coefficients corresponding to the target image pixels. Hence, a systematic approach 

was followed to decide on the various physical parameters that were provided as 

inputs to the SAR simulator. For the test under consideration, all the targets were 

taken to be arranged in the form of a two-dimensional square grid of dimension Nx by 
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Ny where Nx is the number of resolution cells in the x-direction while Ny refers to an 

equal number of resolution cells in the y-direction. If ∆x is the resolution along the x-

direction and ∆y is the resolution along the y-direction, then we can denote the target 

position vectors as 

                                             
[ * , * , , ]t x y t ty n x n y z v= ∆ ∆

                 (3.20)
 

where 
1 1

2 2

x x
x

N N
n

− − − ≤ ≤ 
 

 and 
1 1

2 2

y y
y

N N
n

− − 
− ≤ ≤ 
 

 

 The resolution of the radar was chosen to equal in both along-track and cross-track 

directions, which caused the resolution cells to be square. This condition helps us to 

set a first constraint on the ratio of Bandwidth B to the Time width, T. The radar 

resolution in the x-direction is given by the following equation [4], 

cxo

o

fvUT

cR
x

2
=∆                                              (3.21) 

where 

fc - center frequency of the transmit signal 

U – number of time samples 

To – signal repetition interval 

vx – radar velocity 

Ro- radar range 

Similarly, the resolution in the y-direction, for the considered scenario, is given by 

iB

c
y

θsin2
=∆                                              (3.22) 
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where 

B is the bandwidth 

c is the velocity of light 

iθ  is the tilt angle 

By using the condition that the resolution is equal in both directions and then re-

arranging (3.21) and (3.22) we reach a constraint on the B/T ratio given by 

o

c

y

vf

T

B
=                                                       (3.23) 

The above equation is termed the “square pixel constraint equation”. 

A necessary condition for unambiguously imaging all resolution cells is that 

the number of independent measurement samples should be greater than the number 

of resolution cells. This requirement is defined by an important radar parameter called 

clutter rank, which is effectively equal to the number of resolution cells (given by Nx 

* Ny) in a SAR image. Now, since the number of independent measurement samples 

is approximately equal to I*B*T, where I is the number of spatial receive elements, 

we find that unambiguous imaging can result only when, 

                                                     NyNxTBI *** >                                            (3.24) 

In order to establish a convenient rule for deciding on the minimum number of spatial 

receive elements I required for accurate estimation, we define a parameter that is 

given by the ratio of the total number of resolution cells to the signal time-bandwidth 

product. This parameter is called β  and it is given by [4], 
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BT

NN yx=β                                                (3.25) 

For a single aperture radar, this value should be less than or equal to 1 in order 

to ensure unambiguous imaging. However, for multi-aperture radar, this value can be 

greater than one, provided the number of receive antennas is sufficient. For example, 

the value of β  was chosen as 4.2 for all the simulations carried out in this section. 

This means that the time-bandwidth product using only one antenna is sufficient to 

unambiguously image only around 25% of the original image. In order to get better 

estimates, we would need to increase the number of receive antennas. Thus, we see 

that the value for β  sets the lower bound on the number of required antennas.  

Comparing (3.18) and (3.19), we find that, 

BT

NN
I

yx=> β                                                (3.26) 

This confirms our earlier premise that the number of spatial receive elements should 

be greater than the value of β  in order to obtain good estimates.  

The physical extent of the arrays is usually too small to resolve the resolution 

cells and therefore resolution is mainly determined by the temporal values of the 

signal bandwidth and time width.  If the spatial extent of the array in the along track 

direction is Lx, then the approximate width of the main beam is given by: 

xc

s
Lf

cR
X 0=∆                                                 (3.27) 

We can now define a parameter η which represents the ratio of the spatial resolution 

to the temporal resolution i.e. 
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x

X s

∆

∆
=η                                                     (3.28) 

For all the simulations carried out in this thesis, the value of η was taken as 5 which 

means that the width of the main antenna beam is approximately five times the 

resolution along the x-direction.  

One module in the radar model was devoted to assigning the various input 

parameters that could be utilized while simulating the response data. Some of these 

input values, which were common to all the tests, are summarized in Table 3-1. These 

values are consistent with a spaceborne radar in low-Earth orbit. 

Radar System height 183 km 

Radar velocity 780 m/s 

Tilt angle (θi) 0.7854 radians (45 degrees) 

Radar Range 259 km 

Pulse repetition frequency (prf) 20.65 KHz 

Center frequency of transmit signal 10 GHz 

Table 3-1 Set of values chosen as input to the SAR simulator 

3.4.2 Test 1 – Randomly chosen scattering coefficients 

The first test that was carried out establishes the efficacy of the Kalman filter. 

The scattering coefficient values that were used to form the image were assigned 

random magnitude and phase values. The other input parameters were assigned in 

accordance with Table 3-2. 
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The performance of the Kalman Filter is expressed in terms of the variation in 

error versus the fraction of data processed [3]. The error criterion, which serves as a 

good indicator of estimation accuracy, is the Mean-squared error (MSE) µ of pixel 

magnitudes normalized by the image’s mean-squared pixel magnitude. We have, 

)(

)ˆ()ˆ(

γγ
γγγγ

µ
H

H −−
=                                        (3.29) 

The fraction of measurement vector processed, ε, is given by, 

L

l
=ε                                                       (3.30) 

Where l is the number of measurement vectors processed by the Kalman Filter out of 

a total of L vectors. In (3.29), 
H
 denotes a conjugate transpose operation. 

Number of receive elements (antennas) 8  

Number of along/cross-track target pixels 31 

Number of time samples 15 

Number of frequency samples 31 

Total number of samples/receive antenna 465 

Length of aperture 2.286 m 

Along-track target resolution 679.3 m 

Cross-track target resolution 679.3 m 

Table 3-2 Input parameters unique to Test 1 
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Figure 3-1 Performance of the Kalman Filter – MSE versus ε 

Figure 3-1 provides information about the variation of µ with respect to ε. The final 

estimate obtained after all the measurements have been processed is identical to the 

actual image, which explains the low value of MSE provided by the Kalman Filter. 

3.4.3 Test 2 – Results 

This section deals with displaying the results obtained when the Kalman filter 

was tested with a more realistic scenario. Figure 3-2(a) shows the input image 

provided to the simulator. The image shows a view of the University of Kansas 

Memorial stadium in Lawrence, Kansas and was cropped and converted to a 31-by-31 

resolution image. The pixel intensities were assigned a random phase value and the 

resulting set of complex scattering coefficients was used as one of the input vectors to 
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the SAR simulator. Table 3-3 shows the various parameter values assigned during 

this simulation. 

 
 

                             (a) Actual Image                                               (b) Estimated Image 

Figure 3-2 Kalman Filter Performance – Comparison of actual and estimated SAR images 

 

 

Number of receive elements (antennas) 8 

Number of along-track target pixels 31 

Number of cross-track target pixels 31 

Number of time samples 15 

Number of frequency samples 31 

Total number of samples/receive antenna 465 

Length of aperture 2.286 m 

Along-track target resolution 679.3 m 

Cross-track target resolution 679.3 m 

 

Table 3-3 Input parameters unique to Test 2 
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Figure 3-3 Performance of Kalman Filter while estimating KU Football stadium image 

 

Figure 3-3 is similar to Figure 3-2 and depicts a plot of µ versus ε. The Kalman Filter 

algorithm gives a final MSE of almost -43 dB which is indicative of very good 

estimation. Figure 3-4 shown on the next page gives us some insight into how the 

Kalman Filter proceeds through its iterations while estimating the scattering 

coefficient values. 
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Figure 3-4 Performance of the Kalman Filter- Estimates obtained during intermediate iterations 

of the Kalman filter algorithm. The numbers below each figure indicate the fraction of the 

measurement vector that has been processed up to that stage of estimation 
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                  (a) With 1 receive aperture                                  (b) With 8 receive apertures 

Figure 3-5 Indicates need for multiple apertures 

 

Another purpose of this test is to display the need for multiple receive 

apertures to enhance the quality of estimation. Figure 3-5(a) shows a SAR image 

formed using only one receive antenna while Figure 3-5(b) shows the SAR image 

formed using multiple (eight) receive antennas. It is quite obvious from the above 

result that having only one receive aperture provides a low time-bandwidth product 

and hence an insufficient number of time-frequency samples to accurately form a 

SAR image. Thus, as mentioned at the beginning of this section, this test strengthens 

the case for a multi-aperture system and also depicts the application of the Kalman 

Filter to a radar scenario. The Kalman filter thus forms a very efficient SAR 

processor and provides a robust and accurate way to form accurate SAR images.  The 

next step is to look at the application of this tool to SAR interferometry, a technique 

which forms the core of this thesis. 
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4. TOPOGRAPHY ESTIMATION USING DISTRIBUTED 

RADAR ARRAY MEASUREMENTS 

 This chapter deals with a detailed discussion of the concepts leading to a 

topography-estimation algorithm, which will be applicable to a distributed radar 

design concept.  

We will begin by looking at the conventional topographic SAR, briefly 

discuss why the traditional interferometric techniques do not apply to the distributed 

concept and then move on to a detailed analysis of the methodology useful for height 

estimation using distributed radar array measurements. 

4.1 Conventional Topographic SAR 

  

 

 

 

 

 

 

 

 

 

Figure 4-1 SAR Interferometry – basic geometry [2] 
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The conventional TopSAR technique makes use of the phase differences 

between two complex SAR images of the same scene acquired from two spatially 

separated locations, either by using two antennas in a single-pass mode or a single 

antenna in a repeat-pass mode. A simple implementation of a SAR interferometer 

uses two antennas separated by a fixed distance horizontally in a plane orthogonal to 

the platform velocity vector. This separation is called the interferometric baseline or 

simply the baseline. The baseline introduces the small depression angle difference 

between the two images that SAR interferometry requires. Ideally, the remaining data 

collection geometry parameters and the radar system parameters remain the same for 

both the SAR images. 

Considering Figure 4-1, if we utilize only sensor 2, target 1 cannot be 

distinguished from target 2 because RS2-T1 = RS2-T2. Hence, there is no detectable phase 

difference between both the echo signals. Applying a second sensor solves this 

ambiguity because in that case, RS1-T2 ≠  RS2-T2 [2]. 

The phase of the echo signal that is reflected back from target 2 at the sensor 1 is: 

1 2
1

2 *2 S TRπ
φ

λ
−=                                              (4.1) 

The phase measured at sensor 2 is given by: 

2 2
2

2 *2 S TRπ
φ

λ
−=                                              (4.2) 

Now, forming the phase difference of both signals results in the interferometric 

phase: 
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                             1 2 1 2 2 2

4
*( )a S T S TR R

π
φ φ φ

λ − −= − = −                                           (4.3) 

which is then used to numerically compute the height [2]. 

In general, the estimation of the Digital Elevation Model from interferometric 

SAR raw data involves the following steps [2,15]: 

Processing 

We start with two corresponding, interferometrically recorded raw-data 

scenes. Processing the SAR data leads to the formation of two complex SAR images. 

These two images are formed from the data collected from two different recording 

positions. 

The first image is formed from the values given by: 

1

1 1| | * je= φ
γ γ                                                                                                             (4.4) 

where 1γ represents the vector which contains the scattering coefficients of all target 

pixels required to form Image-1 i.e. [ ]1 11 12 13 1.... Ntγ γ γ γ=γ                        (4.5) 

On the other hand, the second image is formed using the complex values given by 

2

2 2| | * je= φ
γ γ                                                                                                            (4.6) 

where 2γ  is the vector that contains all the scattering coefficient values needed to 

form Image-2 i.e. [ ]2 21 22 23 2.... Ntγ γ γ γ=γ .                                                 (4.7) 

Coregistration 

This procedure corrects any geometric recording distortions due to the different 

recording positions of both the receiving antennas. 



 

 

49 

Formation of the Interferogram 

The interferogram is formed by calculating the conjugated complex pixel-wise 

multiplication of the two complex SAR images. This complex interferogram contains 

the current height information. 

1 2* . ajT e= = φ
γ γ γ a                                                                                                    (4.8) 

where 2a 1
φ = φ -φ  and a = 1 2| | * | |γ γ . 

T
 indicates a conjugate transpose.  

However, at this stage we do come across the problem of phase ambiguity since the 

phase measurements wrap around the interval [-π,π]. 

Calculation of interferometric phase 

To utilize the height information out of the complex interferogram with the 

help of the arc tangent function, the phase value is calculated. 

Im{ }
arctan 2 , 0, 1, 2,....

Re{ }
a N Nπ

 
= + = ± ± 

 

γ
φ

γ
                    (4.9) 

Phase Unwrapping 

The problem of phase ambiguity is resolved with the helped of the phase-

unwrapping algorithm [17]. Hence, the unambiguous phase is obtained. 

a h⇒φ φ                                                        (4.10) 

[Ambiguous phase ⇒  Unambiguous phase] 

Reconstruction of Imaging geometry 

This step involves geometric calculation of the slant height out of the 

unambiguous phase. One desirable method used for improving the utility of the 
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interferogram data is orthorectification [2], which corrects the interferogram for the 

range layover effect and produces a smooth map. 

Creation of the Digital Elevation Model 

The final stage of processing involves calculation of the ground height from 

the slant height values, leading to the creation of a Digital Elevation Model (DEM). 

The entire process is also described in the flowchart shown in Figure 4-2. 

The generation of the DEM and its accuracy is dependent on the phase 

unwrapping methods, which in turn are linked to orbital parameters and particularly 

to the interferometric baseline. For a single-pass system, we have accurate 

information about the baseline formed with the two physical antennas, and thus 

topography can be calculated using an exact inverse algorithm [2,5]. However, for 

repeat-pass systems, the exact knowledge of orbital parameters and the precise 

estimation of the baseline length and orientation pose big problems. 

The existing models and TopSAR processing algorithms to obtain high-precision 

DEM were developed keeping in view 

1) a well-defined circular or elliptical geometry limited by vertical and horizontal 

baseline requirements 

2) the assumption that every spatial element provides a quality SAR image 

However, as it has been already pointed out, the array formed by a spaceborne 

constellation of multi-satellites will be sparsely populated and randomly spaced. 

Moreover, individual elements that make up the constellation are constrained with 

respect to aperture size and design and therefore a single element (receive antenna) is  
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not capable of forming accurate SAR images on its own. Hence, the conventional 

TopSAR algorithms need to be modified accordingly in order to be applicable to this 

new distributed case. In Chapter 2, we have discussed the procedure of simulating the 

response from a sparse, randomly distributed array and in Chapter 3, we looked at the 

idea of forming SAR images by utilizing such a radar response. We will now proceed 

by looking at how to use those SAR images to obtain accurate topography estimates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4-2 Flowchart depicting height estimation using standard interferometric techniques 
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4.2 Distributed Topographic SAR 

The eigensensor analysis technique described in the previous chapter provides 

the solution to the problems we face when it comes to developing processing and 

estimation algorithms relevant to the sparse, randomly distributed SAR. Using this 

technique, we can organize the measurement data that has been obtained and slice 

that data vector into two parts, so that the measurement samples from each part can be 

used to form two independent SAR images. Thereafter, the procedure of finding the 

height estimates is very similar to the standard interferometric SAR. 

One very important characteristic of spaceborne radar sensors is the clutter 

rank. A radar collects a limited amount of information since the measurement vector 

is finite in dimension. For a radar to be effective, this measurement dimension must 

exceed the amount of information required to completely describe all the illuminated 

targets. Thus, we could define information as the minimum number of “significant” 

eigen values of a measurement covariance matrix [11]. For spaceborne radar, the 

dominant scatterer is the earth’s surface and therefore the minimum number of 

independent measurement samples required to describe the scattering from an 

illuminated target is known as the clutter rank. As mentioned in the section, this 

number is effectively equal to the number of resolution cells (pixels) in a SAR image. 

When it comes to micro-satellite arrays consisting of several elements, we have to 

collect the data samples from all elements of the array to create a measurement vector 

whose dimension exceeds the clutter rank. Thus, the strength of a space-time radar 

sensor is that a fine-resolution SAR image can be formed over an arbitrarily large 
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area. By adding additional antennas to the radar array, the dimension of sensor 

measurement can be increased without altering the clutter rank. In this manner, the 

measurement dimension of the distributed radar can always be made to exceed the 

clutter rank, no matter how large the image area which is to be mapped. Moreover, 

the ratio of the measurement dimension to the clutter rank can be made large by 

adding a sufficient number of elements to the distributed array. This is in contrast 

with traditional single-aperture SAR, wherein increasing the measurement 

dimensions (which effectively means increasing the bandwidth or timewidth) leads to 

a proportionate increase increase in clutter rank. 

If we extend the same idea to the distributed topographic SAR, we find that a 

necessary condition is that the measurement dimension should be at least twice the 

clutter rank. This is because we need enough measurement samples so that even after 

partitioning the measurement set into two parts, we have a number of measurement 

samples that exceeds the number of pixels in the SAR image. Thus, the overall 

distributed radar can be viewed as a composite of two (or even more) sensors. The 

next section will deal with the actual methodology used for partitioning. 

4.3 Partitioning the radar measurement space 

For the standard interferometer, the time frequency ),( ωt  data of each SAR 

element (receive antenna) forms a plane in the three-dimensional measurement space. 

These planes are parallel to each other, and perpendicular to the measurement 

dimension associated with the interferometric baseline. Partitioning this data is 
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therefore straightforward because each time-frequency data plane can now be used to 

form a SAR image. The main technical challenge that we come across is that of 

developing a methodology for segmenting the distributed radar measurement vector 

in an optimal manner, where the optimization criterion is minimized estimation error 

while forming the SAR images.  In other words, how can measurement data from the 

distributed radar be decomposed into two (or more) unambiguous SAR sensors such 

that a topographic map can be generated with the smallest error? To accomplish this, 

we must return to the concept of the eigensensor. For SAR interferometry, the 

illuminated surface target is expressed as a function of three spatial dimensions which 

are x, y and z where z indicates surface height. From (2.19), we know that the 

resulting sensor transformation matrix is a 3x5 matrix and has three non-singular 

values. To recap the results of the eigensensor analysis, it has already been shown in 

section 2.3 about how the radar measurements that span five dimensions can be 

projected onto the eigen vectors 21 ,vv  and 3v , resulting in a three-dimensional 

synthetic array where each measurement dimension provides information about one 

specific target frequency only. This three-dimensional eigensensor provides a tool for 

optimally partitioning the distributed radar data such that a set of independent SAR 

images can be formed. 

As it will be seen in the results shown later, when it comes to the sparse, 

distributed radar system, the standard side-looking case is quite simple to analyze. 

This is because when it comes to the side-looking scenario, the eigensensor space 

contains time-frequency planes corresponding to each receive antenna lying parallel 
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to each other. On analyzing the three-dimensional eigensensor space, it is found that 

the γ dimension contains information pertaining to the along-track and vertical 

positions of the radar receive antennas. Hence, if the time-frequency planes 

corresponding to each receiver antenna were spatially apart along this γ  eigensensor 

dimension, it would effectively mean that the receiver antennas are spatially separated 

along a rough interferometric baseline in physical space as well. Therefore we could 

simply pick the planes corresponding to one-half the receive elements (which are 

spatially separated from the other half in physical space as well as in eigen space) to 

form one SAR image and utilize the remaining half of the measurement samples to 

form the second SAR image. This process is depicted in Figure 4-3. 

 

 

 

 

     (a) Actual arrangement of receive antennas in space                        (b) Equivalent Eigensensor            

Figure 4-3 Depiction of eigensensor and methodology of partitioning (Side-look) 
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The figure 4-3(a) looks at an arrangement of six receive antennas in space. 

The spatial location of the antennas is such that two spatially separate composite SAR 

sensors (consisting of two groups of three receive antennas each) can be formed. As 

seen in Figure 4-3 (b) the process of eigensensor analysis organizes the data in such a 

way that the time-frequency planes corresponding to the antennas contained in SAR 

sensor 1 constitute partition 1 while those corresponding to the antennas contained in 

SAR sensor 2 constitute partition 2. These two data sets obtained after partition are 

used to form the required complex SAR images. 

Now, if we consider a forward (or backward) looking case, the problem 

becomes more complex because the planes which contain measurement data does not 

lie along parallel planes but will be distributed throughout the three-dimensional 

measurement space defined by the eigen coordinates α, β and γ. However, the 

measurement data can still be partitioned in a manner analogous to the standard SAR 

interferometer. The data can be partitioned into parallel layers, where the data in each 

layer can be used to form a SAR image. In this way, the distributed radar sensor can 

be decomposed into one or more independent SAR sensors. An important point to be 

noted here is that it is quite possible that two measurement samples taken at different 

times and at different receive antennas can occupy the same location on the 

eigensensor array. And this makes the partitioning problem more critical. Firstly, the 

thickness of each layer depends again on the clutter rank – the number of 

measurement samples included in each layer must exceed this clutter rank which, as 

mentioned earlier, equals the number of pixels in the SAR image. Secondly, the 
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partitioning process should also take into account the orientation of the layers within 

the eigensensor space. The challenge is to determine which would be the right way to 

slice the measurement space. The answer lies in the fact that there is one 

measurement direction in the eigen sensor array, γ, which is associated with a change 

in the surface height. The extent of the eigen array in this direction is analogous to the 

length of the interferometric baseline of the standard SAR interferometer. In other 

words, the length of the array in this direction is very important with respect to 

estimation accuracy. Thus, the larger this baseline, more accurate will be the 

topographic estimate. We could therefore conclude that the measurement samples in 

the eigensensor should be partitioned into layers perpendicular to the direction of the 

coordinate γ. The resulting SAR images correspond to independent samples along the 

equivalent interferometric baseline of the eigensensor and thus provide a set of 

complex scattering estimates for each resolution cell that would potentially lead to 

accurate topographic estimates. 

We have now established a mechanism to organize the response of a 

distributed, sparse SAR (eigensensor analysis) and also discussed the methodology 

that could be used to partition the measurement space, form two complex images and 

use interferometric techniques to estimate the height of the topography. The next 

chapter deals with describing the topography estimation algorithm and analyzing the 

various tests and simulations that were carried out to apply the above techniques and 

discuss the results obtained. 
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5. TOPOGRAPHY ESTIMATION ALGORITHM 

5.1 Description of the algorithm 

This section contains the core of the thesis and will describe, in detail, the 

topography-estimation algorithm that was developed for generating a three-

dimensional elevation model corresponding to the height of a given landscape. In the 

previous chapter, we looked at a technique to organize and partition the measurement 

space so that suitable processing algorithms could be applied to the sparse, distributed 

case as well. The following steps summarize the topography estimation algorithm, 

and the various results obtained will be shown in the following sections: 

Step 1: Simulating the distributed SAR response 

The space-time radar simulator is used to obtain a set of measurement samples 

that constitute the response vector. Once the response and the normalized response 

vectors ρ are obtained, we could use these vectors along with other information to 

estimate the value of scattering coefficients that constitute a SAR image by using the 

Kalman filter algorithm, which was developed and described in Chapter 3. The base 

case that is considered is one in which all the targets are at zero height (no elevation). 

The basePmatrices (and thus the component normalized response vector-ρmatrices) 

were evaluated for this case and stored as data files. As mentioned earlier, the 

normalized measurement vector ρ is very important because it basically consists of 

the full set of measurement vectors obtained by the radar at a discrete set of space and 

time locations due to a particular target. Hence, by storing the ρ vectors 
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corresponding to the case when all the targets are at zero height, what we mean is that 

the SAR processor has information only about the targets when they are all located 

over a flat surface with no elevation at all. However, in reality, the topography varies 

with respect to altitude. It could contain grasslands with gradually varying slopes or 

mountainous regions with steep slopes. Hence, the actual case would be one wherein 

we supply the SAR simulator with the real values of height and evaluate the actual 

response vectorr .   

Step 2: Partitioning the measurement data 

What we actually need is a set of two complex SAR images. Hence, the 

measurement vector r is partitioned using the technique explained in section 4.3 in 

order to form two complex SAR images using measurements from the two partitions.  

Step 3: Processing 

The two primary inputs to the Kalman processor are again the vectors r andρ . 

Now, while the Kalman processor has the ρ vectors corresponding to zero target 

height (base case), the response vector that we are providing it with contains the 

measurements corresponding to the actual varying topography. Hence, when we form 

the two SAR images using the partitioned sets of data, there will be an “error” in 

estimation using the KF.  

Step 4: Calculation of interferometric phase 

We are particularly interested in the phase errors, which refer to the errors in 

estimation of the phase of the scattering coefficient values. This phase error value is 

found to be proportional to the target height. The difference in the phase values 



 

 

60 

corresponding to a particular target, detected at both the SAR sensors, is what we 

define as interferometric phase and a plot of this parameter enables us to obtain a 

clear indication of how it varies with target height. 

To start with, let us define the estimated scattering coefficient of a particular target, 

say ‘t’, at sensor 1 as 1tγ  where, 

1

1 1| | * j

t t eγ γ= φ                                                   (5.1) 

It is evident that 1tγ  is one of the elements of the vector 1γ  defined in (4.5) 

Similarly, we define the estimated scattering coefficient of the same target at sensor 2 

as 2tγ  where, 

2

2 2| | * j

t t eγ γ= φ                                                   (5.2) 

Then we have, 

1 2* T
diff t tγ γ γ=  = 1 2( )

1 2| | * | |
j

t t eγ γ −φ φ
                                      (5.3) 

Again, from (4.7) 2tγ  would be one of the elements of the vector 2γ  which contains 

all the scattering coefficients required to form the second SAR image. 

The value of difference in phase 1 2−φ φ  is the interferometric phase and is a very 

critical parameter when it comes to estimating height. 
T
 indicates conjugate transpose. 

Step 5: Surface height estimation 

To finally estimate the height, we need to have some idea about how the 

interferometric phase varies with different target heights. In order to get this 

information, simulations were carried out wherein a chosen target was moved to 

different heights and the corresponding interferometric phase was recorded at each 
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step. A plot of the obtained values enables us to calculate the critical “slope” value 

(rate of change of interferometric phase with respect to height) necessary for height 

estimation. 

With this information, we could now obtain the interferogram corresponding 

to the actual surface topography in which each target pixel is elevated to a certain 

height, calculate the interferometric phase and with the obtained “slope” information, 

the height of each target pixel could be estimated to form a complete digital elevation 

model (DEM). The flowchart shown in figure 5-1 describes the complete surface 

estimation algorithm. It is quite clear that this algorithm is fundamentally quite 

similar to the standard interferometric techniques and very useful because with it, we 

have a very useful tool to carry out topographic estimation even with the sparse and 

distributed spaceborne radar arrays 
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Figure 5-1 Depiction of the topography-estimation algorithm 

Calculate interferometric phase 

corresponding to each pixel of the 

SAR image(interferogram formation) 

Utilize KF-1 to 

form SAR Image-1 

using partition-1 

Utilize KF-2 to 

form SAR Image-2 

using partition-2 

Calculation of height from phase 

Creation of Elevation model using 

estimated height values 

Obtain raw measurement data using 

distributed, space-time radar 

simulator 

Optimally partition the measurement 

vector to ensure minimized 

estimation error 
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5.2 Test 1 – Targets along the cross-track axis 

Before testing the algorithm with a more realistic scenario, a simple scenario was 

considered. This section deals with a test carried out in which  a 15x15 square target 

grid was considered but then all targets, expect those that are spread out along a line 

over the cross-track reference axis, were removed. We are therefore concerned only 

with two dimensions – y (cross-track) and z (height). Figure 5-2 depicts the layout of 

the targets. 

 

Figure 5-2 Target space – Standard side-looking scenario 

All targets are initially assumed to be at zero altitude. We also assume a standard 

side-look SAR scenario. The main objective of this test was to mainly 

1) observe and analyze the measurement space as well as the target space in 

eigen dimensions.  

Radar  
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2) Determine how to partition the measurement space optimally so that the 

information gained from this test could be extended to a more realistic three-

dimensional scenario. 

 

Figure 5-3 Arrangement of receive antenna elements in space 

In order to simplify the problem, the number of time samples was fixed at one. 

Figure 5-3 depicts the spatial receive antenna array arrangement. The coordinates of 

the antenna location were chosen randomly by taking into consideration the length of 

the radar array. We need to keep in mind that the along-track position of a target is 

completely measured by time and the along-track position of the receiver. On the 

other hand, the cross track location is completely measured by frequency and the 

cross-track receiver position. 
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Table 5-1 indicates the parameters were used as input to the SAR simulator in order 

to carry out this test. 

Number of receive elements (antennas) 8 

Number of along-track target pixels 1 

Number of cross-track target pixels 15 

Number of time samples 1 

Number of frequency samples 30 

Total number of samples/receive antenna 30 

Length of aperture 2.267 m 

Along-track target resolution 685 m 

Cross-track target resolution 685 m 

Table 5-1 Input values for the radar simulator during Test-1 

The target pixels were assigned scattering coefficient values whose magnitude and 

phase were picked randomly. The radar simulator provided a response vector which 

consisted of 240 samples.   Figure 5-3(a) depicts the measurement (sensor) space in 

eigen dimensions while Figure 5-3(b) depicts the target space in eigen dimensions.  
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Figure 5-4(a) 2D Eigensensor array (1-time sample and 30-frequency samples/antenna) 

 

 

Figure 5-4(b) Target space in Eigen dimensions 
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Figure 5-5(a) Target space projected on to eigen coordinates – all targets are at zero altitude 

 

 

Figure 5-5(b) Target space projected on to eigen coordinates – targets are at varying altitudes 
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Since we are looking at a two-dimensional case, the eigen space is also two-

dimensional while the transformation matrix ϕK is a 2x5 matrix. The target “eigen” 

coordinates are labeled as βt and γt while the eigensensor coordinates are designated 

as β and γ. It is clear that when the target position vector ty is projected on to the 

vector u (obtained after SVD on the transformation matrix), it gets rotated as seen in 

the Figure 5-5(a). The eigensensor is also two-dimensional and consists of the 

measurement (frequency) samples corresponding to each antenna neatly lined up next 

to each other.  From our discussion about eigensensor analysis, we know that the 

sensor dimension β provides information about the target position along dimension βt 

while the sensor dimension γ provides information about the target position along γt.  

Therefore, in order to determine the interferometric phase, we work in the eigen 

space. Each target pixel is provided a perturbation equal to its height along the γt 

dimension since this will be sensed by the γ dimension of the eigensensor. We already 

know from Section 4.3, that the optimal partitioning would occur if the eigensensor is 

portioned into layers perpendicular to the dimension which corresponds to target 

height. Therefore, since the γt dimension corresponds to target height, we would need 

to partition in a direction which is perpendicular to the γ dimension as shown in 

Figure 5-5. The partitioning process provides us with two sets of measurement 

samples which can be used to form the two complex SAR images. 

From (5.3), the interferometric phase can be calculated. However what we still 

need to investigate is how this phase value varies with target height. In order to obtain 

this information, a test was carried out wherein target 8 was moved to different 
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(y) 

(z) 

(x) 

heights ranging from a depth of 10,000 meters to a peak of 10,000 meters. The results 

obtained are depicted in Figure 5-8. 

 

 

Figure 5-6 Partitioning of measurement space to form two SAR images 

 

 

 

 

 

 

 

 

 

Figure 5-7 Target 8 shifted in order to determine the interferometric phase at different heights 
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Figure 5-8 clearly depicts the variation of interferometric phase with respect 

to the target position along the eigen dimension γt. As expected, the phase value lies 

in the interval [–π, +π] and beyond heights/depths of around 2000 meters, we have to 

overcome phase ambiguities because of the wrap-around effect. 

 

Figure 5-8 Variation of interferometric phase with target height 

The reason we need the above plot is that it gives us critical information about the 

rate of change of the phase. This value is given by the slope of the linear portion of 

the above plot. With this information we can determine the height of any given target 

pixel if we know the difference between the phase values recorded at the two SAR 

sensors as seen from (5.3). 

γγγγt 
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We are also interested in examining the change in interferometric phase 

recorded due to other targets when only target number 8 is shifted to different 

altitudes. For example, what we expect is that when target pixel number 8 is at a 

height of approximately 500 m and another target (say target pixel number 11) is at 

zero altitude, we should ideally detect no difference in the phase values recorded (in 

the response from target number 11) at the two SAR sensors. Figure 5-9 depicts a plot 

of the relative change in the interferometric phase due to change in height of target 8 

when compared to other targets, which are kept at zero altitude. 

 

Figure 5-9 Change in the interferometric phase corresponding to target 8 when compared to that 

of other targets 

Another interesting plot obtained during this test is shown in Figure 5-10. This 

plot gives the variation of the normalized magnitude of the scattering coefficient 

8
th
 Target  

Other Targets  

γγγγt 
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corresponding to target 8 as it is moved to different altitudes.  Basically, it gives us an 

idea about what maximum height or depth the target can be at in order to stay within 

the main beam of the radar antenna. From (3.21), the approximate width of the main 

beam is given by, 

xc

s
Lf

cR
X 0=∆                                                  (5.4) 

where Lx is the spatial extent of the radar array in the along-track direction. 

By calculations using the above equation, it is found that the width of the main beam 

is around 3425m and this is corroborated by Figure 5-10. 

  

Figure 5-10 Variation of the normalized magnitude coefficient of target pixel 8 as it is moved to 

different altitudes 
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We then go ahead and compare the width of the beam obtained in the fully-

focused case (in which the KF utilizes all the measurement samples) to the beam 

widths obtained with KF-1 and KF-2 individually. The acronym KF used here refers 

to the Kalman Filter. Since the length of the array reduces effectively by a one-fourth, 

we see from (5.4) that the beam width increases (approximately four times). Figure 5-

11 demonstrates this behavior. 

 

Figure 5-11 Comparison of variation of normalized magnitude of scattering coefficient (i) Fully 

focused KF (ii) KF-1 (iii) KF-2 

 

With the information obtained using this test, we are ready to apply the topography 

estimation algorithm to a more realistic three-dimensional scenario, and this will be 

the focus of the next section. 

γγγγt 
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5.3 Test 2 – Three-dimensional scenario 

We are now ready to test the algorithm with a more realistic scenario in which 

the targets are spread out over a square grid such that the resolution along one 

dimension is the same as the resolution along the other. Each target pixel was 

assigned a specific scattering coefficient value whose magnitude and phase was 

chosen randomly. Figure 5-12 shows the layout of the target pixels over a three-

dimensional Cartesian coordinate system while Figure 5-13 shows the optical image 

that is formed by assigning randomly generated values of scattering coefficients to 

each target pixel. 

 

Figure 5-12 Three-dimensional target space (63x63) with targets at zero altitude 
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Figure 5-13 Randomly chosen scattering coefficient values for each pixel of the given target grid 

 

The values chosen as input to the radar simulator are shown in Table 5-1 

Number of receive elements (antennas) 8 

Number of along-track pixels 63 

Number of cross-track pixels 63 

Number of time samples 31 

Number of frequency samples 63 

Total number of samples/receive antenna 1953 

Length of aperture 1.1143 m 

Along-track target resolution 335 m 

Cross-track target resolution 335 m 

Table 5-2 Input values for the radar simulator during Test-2 
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Figure 5-14 below shows the scenario where each target pixel is at a different 

altitude. 

 

Figure 5-14 Three-dimensional target space with targets at different altitudes 

The sensor transformation matrix will be a 3x5 matrix in this case because we 

have to consider all the three dimensions (along-track, cross-track and height) of the 

target in our measurements. Using eigensensor analysis, we obtain the three-

dimensional eigensensor as well as the target layout in eigen space. The standard 

side-look case provides us with a very simple representation of the measurement 

space in eigen dimensions. As seen from Figure 5.15(a), all the time-frequency 

samples corresponding to a particular receive element form a two dimensional plane 

and the time-frequency planes corresponding to all the antennas neatly line 

themselves parallel to each other which greatly simplifies the problem. However, as it 

will be seen later, the analysis is a little more complicated when it comes to the 

forward-look or the backward look case. 
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Figure 5-15(a) 3D Eigensensor array (Side-look) 

 

Figure 5-15(b) Target space in Eigen dimensions 
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Having organized the measurement data obtained at the output of the SAR 

simulator, we could proceed by partitioning the data in order to form the two complex 

SAR images. Again, from the concepts discussed in the previous section, we know 

that the sensor dimension γ can detect any position of the target along the γt. 

dimension which basically contains information about any change in the surface 

height. Thus we partition the data in such a way that the time-frequency samples 

corresponding to four out the eight receive antennas lie in one partition and the 

remaining samples constitute the second partition. The two SAR images that are 

formed using these two partitions are equivalent to images of the same surface 

formed from two spatially separate locations and in this case, the interferometric 

baseline is provided by the extent of the eigensensor along the γ dimension. 

 

 

Figure 5-16 Partitioning the three-dimensional Eigensensor 

PARTITION-1 used to 

form SAR Image-1 

PARTITION-2 used to 

form SAR Image-2 
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Before proceeding with the process of height-estimation, a quick test was 

carried out to observe the variation of interferometric phase with target position. Due 

to computational constraints, a simpler three-dimensional scenario consisting of a 15 

by 15 grid was chosen and a test was carried out wherein target 113 was picked and 

moved to different heights ranging from a depth of 20,000 meters to a peak of 20,000 

meters. Figure 5-17(a) depicts the variation of interferometric phase as a function of 

target height. It is observed that the width of the main beam is wider because of the 

different spatial arrangement of the receive antennas when compared to the two-

dimensional case. Figure 5-17(b) shows a plot of the normalized magnitude of 

scattering coefficient corresponding to target pixel 113 as it is moved along the βt 

eigen dimension. 

 

Figure 5-17(a) Variation of interferometric phase with position of 113
th
 target for a 3D scenario 
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Figure 5-17(b) Normalized magnitude of scattering coefficient as a function of target position 

Figure 5-17(a) provides us very critical information regarding the rate of change of 

the interferometric phase with respect to target position along the βt dimension which 

corresponds to target height. We can define some important vectors at this stage. 

From (4.5), 1 11 12 13 1......
tNγ γ γ γ =  γ  represents the complex scattering 

estimates of a specific resolution cell as determined by KF-1 using the measurement 

samples contained in one out of the two available partitions. 

From (4.7), [ ]2 21 22 23 2...... Ntγ γ γ γ=γ  represents the complex scattering 

estimates of a specific resolution cell as determined by KF-2 using the measurement 

samples contained in the second partition. 
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[ ]1 2 3 .....INT INT INT INT INT Ntφ φ φ φ− − − −=φ  represents the interferometric phase 

due to each target pixel. 

Thus if the slope as seen in Figure 5-17(a) is denoted by S and the interferometric 

phase ( 21 φφ − ) due to target ‘t’ is given by tφ , then the height ht of that particular 

pixel is given by, 

S
h t

t

φ
=                                                       (5.5) 

We can apply (5.5) to an entire vector consisting of the interferometric phase values 

corresponding to each pixel and this enables us to construct an elevation model using 

the estimated height values. A topographic scenario generated using the peaks 

function in MATLAB was provided as input to the radar simulator and the surface 

height was then estimated using the topography estimation algorithm.  

The algorithm provides very good results with respect to estimating the height 

of each target pixel, as seen from the plots presented. An important observation made 

was that the algorithm provides accurate estimates of surface height if we assume that 

the surface topology is relatively regular and slowly changing – an assumption which 

works very well in all but the most rugged and mountainous regions. 

Figure 5-18(a) depicts the high-resolution scenario that was considered as the 

next test case while Figure 5-18(b) depicts the results obtained by using the height-

estimation algorithm. The plots on the following page show the corresponding 

contour plots which give us a good idea regarding the accuracy of estimation. 
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Figure 5-18(a) Three-dimensional elevation model depicting the ACTUAL topography-1 

 

Figure 5-18(b) Three-dimensional elevation model depicting the ESTIMATED topography-1 
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Figure 5-19(a) Contour plot depicting ACTUAL surface topography-1 

 

Figure 5-19(b) Contour plot depicting ESTIMATED surface topography-1 
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It should be pointed out that one important assumption that was made in all 

these simulations is that the maximum height encountered over a given topography 

was always taken to be within the width of the main beam of the receive antenna 

[Figure 5-17(b)] so that no phase ambiguities occurred. This simplifies our problem 

because otherwise height estimators usually provide typically degenerate solutions as 

a result of the ambiguity associated with phase measurement, which then needs to be 

resolved. 

The algorithm was then tested on a different topographic scenario shown in 

Figure 5-20(a). Figure 5-20(b) shows the estimated surface height layout while Figure 

5-21(b) provides a contour plot. The image with 63x63 resolution was the highest 

resolution image that was considered for simulations because processing an image 

with higher resolution was plagued by memory and computational constraints. 

The tests carried out in this section thus far have clearly demonstrated the 

application of a new algorithm, which is very useful for processing the data from 

sparse satellite clusters and utilizing the information gathered by the radar to estimate 

the height of the illuminated topography. 
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Figure 5-20(a) Three-dimensional elevation model depicting the ACTUAL topography-2 

 

Figure5-20(b) Three-dimensional elevation model depicting ESTIMATED topography-2 
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Figure 5-21(a) Contour plot depicting ACTUAL surface topography-2 

 

Figure 5-21(b) Contour plot depicting ESTIMATED surface topography-2 
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5.4 Test 3 – Forward-look SAR 

All the tests that have been described up till now considered a normal side-

looking SAR scenario. This section deals with the application of the topography-

estimation algorithm to a forward-look SAR scenario. 

5.4.1 Forward-look SAR geometry 
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Figure 5-22 Radar Geometry (Forward-looking case) 
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Figure 5-22 illustrates typical forward-look geometry which is quite similar to 

the side-look geometry demonstrated in Figure 2-1. The sensor moves in the positive 

x-direction with a velocity vx while the center of the square target grid is defined by 

the coordinates (xo, yo). In the side-looking case, xo = 0 and 22 hyR oo += whereas in 

the forward-look case, clearly 0≠ox  while 222 hyxR ooo ++= . 

Similar to the side-look SAR, the forward-look SAR creates a two-

dimensional range-doppler mapping of the three-dimensional illuminated scene. 

However, a very important characteristic by which the forward-look differs from the 

standard side-looking SAR is the way in which its grid of range-Doppler resolution 

cells intersects the XY plane. This is shown in Figure 5-23. When imaging using side-

look geometry, lines of constant range and constant Doppler in the XY plane intersect 

each other orthogonally. These intersections divide the XY plane into separate 

resolution cells. In forward-look however, these two sets of lines are parallel and do 

not resolve scatterers in the Y direction. Figure 5-23 basically illustrates this 

difference by showing sections of the iso-range Doppler circles for each case. 

Therefore, at low grazing angles, the side-look SAR provides little vertical resolution, 

while the forward-look SAR provides little resolution in the Y direction. Figure 5-24 

provides a comparison of the image geometries in both the cases while Figure 5-25 

gives an example of the difference in the images of a test site formed using both 

forward and side look scenarios. 
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(a) Side-look SAR 

 

 

(b) Forward-look SAR 

Figure 5-23 Directions of range and doppler resolution [6] 
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(a) Side-look SAR 

 

(b) Forward-look SAR 

Figure 5-24 Illustration of Image geometries [6] 
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(a) Side-look SAR 

 

(b) Forward-look SAR 

Figure 5-25 Images of a radar test site from two geometries [6] 
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It is observed that the eigensensor analysis is a more complicated when it 

comes to the forward-look (or backward look) case as compared to the standard side-

look scenario. The eigensensor array looks very different and consequently the 

process of partitioning the measurement space to form two complex SAR images, is 

also more difficult. To start with, we know from (2.9) that, 

2 2 2 2( ) 2 ( ) 2

3 3 3 3

2 2( ) 2 2

3 3 3

2 2( ) 2 2

3 3 3 3

h y x y hx v h y xo o o o x o o

w Rc oR R R Ro o o o

w x y h x hy v x y yc o o o o x o o oK
c w R w Rc o c oR R Ro o o

hx hy x y hx ho o o o o

w Rc oR R R Ro o o o

 − + − − +
 
 
 
 − + −

=  
 
 
 − − − + − −
 
  

 

As it has been mentioned earlier, x0 is a non-zero value and consequently, all 

the elements of the K matrix are non-zero as well. After performing singular value 

decomposition on the above matrix, we obtain the projection vectors iu , is and iv . In 

the side-look case, we observed that the projection of the five dimensions of the 

measurement space (x,y,z,t,ω) into a three-dimensional eigensensor is such that each 

of the five dimensions is projected only along one eigensensor dimension. However, 

in the forward look situation, the projection is not that simple. Each measurement 

dimension is now projected on to more than one eigensensor dimension because of 

which the entire measurement space as well as the three-dimensional target space is 

rotated across the three dimensions. This is precisely what leads to the complicated 

eigensensor scenario, which was described earlier in this section. Figure 5-26(a) 

depicts the eigensensor array corresponding to 8 receive antennas recording 31 time 
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samples and 65 frequency samples. As seen from the figure, the time-frequency 

samples corresponding to each receive antenna do not line up neatly as in the side-

look case but are spread out more sparsely. Hence, on partitioning the eigensensor, it 

is seen that the data samples localized within a given partition layer will generally not 

be localized in the physical measurement space of time, frequency and spatial 

locations. In other words, it is possible that two measurement samples taken at 

different times and at different apertures can occupy the same location on the 

eigensensor array. 

Figure 5-26(b) shows the target grid in eigen dimensions. In order to 

determine the correct partitioning technique for the forward-look, we again define α, 

β  and γ  as the dimensions of the three-dimensional eigen sensor array while αt, βt  

and γt are the dimensions of the eigentarget space. The results of singular value 

decomposition show that the γt eigen dimension contains information about the 

target’s height. The tests that we performed on the side-look scenario actually help us 

a lot to deal with the forward-look case because the information that we gathered 

earlier enables us to decide on how to go about partitioning this 3D eigensensor. For 

instance, we know that γ is the eigensensor dimension which can sense any change in 

target’s height dimension and moreover the array is also thinnest along γ. Therefore, 

just as we did in the side-look case, we could partition the eigensensor in a direction 

perpendicular to the dimension (γ) that can sense the target height.  
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Figure 5-26(a) 3D Eigensensor array (forward-look) 

 

Figure 5-26(b) Target space (63x63 size) in eigen dimensions 
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Figure 5-27 Partition of eigensensor – Forward-look scenario 

Once we obtain the two sets of measurement samples, we can use them to form two 

complex SAR images to get two scattering estimates for each target pixel. As 

elaborated earlier, the partitioning process in the forward-look scenario leads to a 

situation wherein measurement samples corresponding to the same receive element 

may lie in different partitions. The procedure thereafter is exactly the same as the 

side-look case and we are then ready to apply the topography-estimation algorithm to 

the forward-look case. 

5.4.2 Test 4-Results 

Figure 5-28(a) depicts the actual topography provided to a SAR simulator 

which collects the measurements from a forward-look position. Figure 5-28(b) 

depicts the estimated surface topography – the result obtained as the output of the 

developed height-estimation algorithm. 

 

Partition-2 used to form 

SAR Image-2 

Partition-1 used to form 

SAR Image-1 

Plane (perpendicular to 

γγγγ dimension) along 

which eigensensor array 

is sliced 



 

 

96 

APPLICATION TO FORWARD-LOOK SAR SCENARIO 

 

Figure 5-28(a) Three-dimensional elevation model depicting the ACTUAL topography 

 

Figure 5-28(b) Three-dimensional elevation model depicting the ESTIMATED topography 
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APPLICATION TO FORWARD-LOOK SAR SCENARIO 

 

Figure 5-29(a) Contour plot depicting ACTUAL surface topography 

 

Figure 5-29(b) Contour plot depicting ESTIMATED surface topography 
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6. CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

The main motivation for this research was the fact that existing SAR models 

and associated TopSAR processing algorithms developed for regular and linear arrays 

cannot be used for large, sparse, random arrays and, to the best of our knowledge, no 

study has been carried out to lay out the details regarding a TopSAR system which 

uses such a spaceborne distributed radar configuration. Therefore, the challenge was 

to organize the measurement data obtained from such a sparse and random radar 

configuration and process the data to form SAR images. Then, the need was to 

develop a topographic estimator, which could be applied to the processed data to 

determine the height of the illuminated surface. All these objectives were 

successively accomplished over the months of research dedicated to this problem. 

A mathematical model [4] was developed and used to create a random, sparse 

space-time radar simulator. This model completely characterized the entire 

“distributed” radar constellation that is both sparsely populated and randomly spaced.  

The data samples from all the receive elements of such an array were collected to 

form a measurement vector of samples in space-time and frequency, whose 

dimension exceeds the clutter rank. Then, this measurement vector was optimally 

partitioned using the three-dimensional eigensensor approach. Through simulations, 

it is proved that under high SNR conditions, this approach has the potential to provide 
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high-quality, independent and unambiguous SAR images, which could then be used 

for estimation of surface topology. 

 A topography estimation algorithm was developed to estimate the surface 

height of an illuminated surface area. The height vector generated by the algorithm 

was then used to create a three-dimensional elevation model, which provides 

complete information about the height of each target resolution cell. Thus, it was 

proved that the data provided by a sparse and random configuration of arrays can also 

be used for topographic estimation, hitherto not possible using conventional sensors 

and algorithms. 

6.2 Future work 

The performance of the topography estimation algorithm developed during 

this research could be further evaluated as a function of factors such as transmit 

signal, illumination area, resolution, SNR, constellation size, number of microsats and 

satellite positioning error. The results obtained could then be compared with those 

procured with traditional interferometric SAR systems, in terms of both estimation 

accuracy and ambiguity. One big assumption that was made during the simulations 

was that the maximum height of the illuminated area lies within the region 

corresponding to unambiguous phase. However, future work could deal with the 

problem of phase ambiguity and incorporate the theory of phase unwrapping [17] to 

overcome this limitation. The performance of the estimator can also be further 

improved using super-resolution techniques such as MUSIC and ESPIRIT [21,22]. 
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