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Abstract 
 
One of the main characteristics of any radar system in general, is the system’s 

transmit signal. An ideal transmit signal has two main functions to perform. First, it 

should be designed in such a way that most of the energy falls on the targets of 

interest and not on the clutter or the targets that we are not concerned, and the second 

function is to produce responses from dissimilar targets to be totally uncorrelated. 

The main objective of this study was to devise an optimal space-time transmit 

waveform that would produce responses from dissimilar targets to be as uncorrelated 

as possible. In this effort, an Algorithm has been developed in such a way that it 

comes up with a space-time transmit signal based on a given scenario of the radar 

system. This transmit signal tries to minimize the maximum correlation between any 

two targets in a target area. Having developed the Algorithm, its performance was 

analyzed numerically by generating its inputs randomly from a Gaussian distribution. 

A radar model was designed and the performance was also analyzed by giving inputs 

to the Algorithm from the model. From the analysis, it was learnt that the 

performance of the Algorithm largely depends on the given scenario of the radar 

system. It has also been found that, as the dimensions of the transmit signal subspace 

is increased, more flexibility was provided to the Algorithm to come up with the best 

code possible. Hence, higher the total number of dimensions better is the ability of the 

Algorithm to come up with the best code.  

Therefore, in this thesis it has been proved that it is possible to develop a 

space-time transmit signal, which aims to minimize the maximum correlation 



 xii 

between dissimilar targets in a target grid by the virtue of its spatial and temporal 

properties. 
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CHAPTER - 1 

1. Introduction 
 
In general, the transmit signal is a very important factor of any radar system. Hence, 

in order to have a very good estimate of the scattering coefficients of the targets, the 

transmit signal has been used as a design parameter. In this study, Algorithms that 

come up with a space-time transmit signal are developed for multi-static radar 

systems. This transmit signal tries to make the responses from dissimilar targets, as 

orthogonal as possible. Although the Algorithms can be used for any kind of radar, in 

this study, they have been used for multi-static synthetic aperture radar systems. 

Hence, in this chapter, firstly, we will look into the characteristics of Single aperture 

radar and then will discuss Multi aperture Synthetic aperture radar system. 

1.1 Synthetic Aperture Radar 
 
Synthetic Aperture Radar is the most effective form of radar used in remote sensing 

for imagery. It utilizes complex data processing techniques in order to achieve a 

narrow beam. It forms its images in 2-Dimensions. One, Range direction, which is 

also called the cross-track direction, is in the direction perpendicular to the direction 

of propagation of the radar. Two, Azimuth direction also called the Along-Track 

direction, is along the direction of the propagation of the radar. The range resolution 

depends on the width of the pulse that is transmitted or in other words it depends on 

the bandwidth of the radar. This is true for both, SAR radars as well as any other kind 

of radars. The azimuth resolution depends on the beamwidth of the radar. Synthetic 
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aperture radar has much better azimuth resolution compared to other radars. This is 

because, for a fine azimuth resolution, a radar needs to have a very big antenna and 

for normal radars to have such a big antenna is physically impractical. As the 

synthetic aperture radar synthesizes a large antenna it achieves a very narrow 

beamwidth, hence a very fine azimuth resolution.  

Single element synthetic aperture radar, as the name indicates, contains only 

one aperture and functions by synthesizing a big radar antenna. It functions by 

moving from one point to another either in air or space, and collects data all along its 

journey. It processes the entire data collected as though there were a virtual antenna 

whose length was equal to the distance of its journey. This feature of SAR helps in 

achieving a very narrow beamwidth or a very fine azimuth resolution with 

comparatively small antenna mounted on an aircraft or a satellite. A single aperture 

synthetic aperture radar can either have a fine azimuth resolution or wider coverage 

area. This is because, the single aperture radar can collect only BT number of 

independent samples, where B being the bandwidth and T being the observation time 

of the radar. In other words, it can only illuminate an area of BT target pixels. This 

problem can be addressed by employing a multi-aperture radar. 

1.2 Multi Element Synthetic Aperture Radar  
 

A Multi-Aperture radar is a constellation of coherent receivers working as a 

single radar system. In this system, we make use of spatial diversity technique by 

using multiple transmit and multiple receive elements. Each element in this system is 
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located spatially at a different location thus receiving data at different angles of 

arrival. Therefore, there are new spatial dimensions which are utilized to adequately 

resolve the targets in the azimuth direction while covering a wider area. This gives a 

possibility of having a cluster of coherent elements moving in the space coordinating 

with each other acting as a single radar system. 

 The main advantage of a Multi-Aperture (Multi-Element) Synthetic Aperture 

Radar over a Single Synthetic Aperture Radar system is that it enables a radar to have 

fine azimuth resolution simultaneously with a wider coverage area. If there are a total 

of N number of apertures in the radar system, then the multi-element radar system 

collects a total of NBT number of independent samples, hence there is an increase of 

N times in the total number of independent samples received compared to single 

aperture radar. This additional information is used to achieve wider coverage area and 

finer azimuth resolution.  

Another important point to note is that the energy in the ambiguity function of 

a single aperture synthetic aperture radar is constant, that is, energy cannot be 

removed from the ambiguity function. However, for a space-time transmit signal, the 

ambiguity function is not invariant. Thus, by proper design of the space-time transmit 

signals; it is possible to minimize the energy in the ambiguity function, that is, 

minimize the maximum correlation between any to targets in a target grid. 
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1.3. Motivation:  
 
Having received the response signal from the targets, the received signal needs to be 

processed in order to estimate the scattering characteristics of the targets. The most 

common estimator used to process the received signal is the matched filter. For a 

multi-aperture radar, the matched filter gives a very good estimate of the scattering 

characteristics if the apertures are arranged in a well defined contiguous pattern, but 

the estimate is not very good if the arrangement of the apertures is in a distributed 

fashion. As the arrangement of a physical multi-aperture radar resembles a distributed 

arrangement, a solution needs to be found out in order to have a good estimate of the 

scattering characteristics using a distributed aperture array. 

 It will be shown in the future chapters that a good estimate can be achieved by 

an estimator if the correlation between any two targets in a target grid is zero. As it is 

impossible to achieve zero correlation between any two targets responses, efforts can 

be made to minimize the correlation. The main aim of this study is to design 

algorithms that come up with optimal space-time transmit signals, that when 

transmitted would produce the response signals from different targets to be as 

orthogonal as possible.  

The key idea behind coming up with such a code is to minimize the maximum 

correlation present between dissimilar targets. We call this approach as the Mini-Max 

solution. In this effort, an optimization criterion has been developed which acts as a 

yard stick that measures the performance of our algorithms. The bound of the values 

this criterion can assume, is a very important factor. Tighter the bound, lower is the 
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correlation between two targets. The derivation and analysis of the optimization 

criterion is discussed in future chapters. 

1.4 Outline of the Thesis 
 
Having found the motivation and the reason for this study, several questions were 

encountered in due course of the study. In the beginning, after developing the 

optimization criteria, we wanted to know if there was any direct relation between the 

criteria and the correlation coefficient. As the correlation coefficient is being 

minimized by tightening the bound of the criterion, it is very important to realize the 

relation between the criterion and the correlation coefficient. It was found that, by 

tightening the bound of the criterion we are actually reducing the real part of the 

complex correlation, thereby reducing the magnitude of the correlation. Hence, a 

direct relation exists between the criterion and the correlation coefficient, only if the 

imaginary part of the complex correlation becomes zero.  

Having developed the algorithms, we wanted to see their performance initially 

using numerical data. In course of this numerical analysis, we tried to study the 

performance by varying the total number of independent measurements taken and 

dimensions of the transmit signal. It was found that the performance of the algorithms 

improved as we increased the total number of measurements and the dimensions of 

the transmit signal. We also found that, apart from the total number of measurements 

and the dimension of the transmit signal, the performance of the algorithms were also 

depended on the given radar scenario. Another important question that arose was how 
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good the result is given by the algorithms, in general. That is, we needed a yard stick 

to compare the performance of the transmit signal given by the algorithms. Thus, in 

order to get an idea of the efficacy of the algorithms, we compared the results with a 

randomly generated code and a code given by the Genetic Algorithm. Comparing the 

performance of the transmit signal given by the algorithm to that of a randomly 

generated code, we found that the transmit signal given by the algorithm performed 

much better in terms of lowering the maximum correlation. The plots of this 

comparison are shown in the subsequent chapters. When compared with the genetic 

algorithm, the code given by the genetic algorithm performed slightly better than the 

algorithm developed in this study. This shows that the algorithm may not come up 

with the best possible code in all radar system scenarios. 

After analyzing the performance of the algorithm using numerical inputs, we 

then wanted to see how the algorithm would perform in conditions simulating real 

radar scenario. In order to answer this question, a radar model was designed in which 

the transmit signal was designed as a superposition of orthogonal basis functions. The 

performance of the algorithms was analyzed using the inputs of the algorithm from 

the radar model. It was found that as we increased the total number of basis functions, 

more flexibility was provided to the algorithm to come up with a better code. The 

limit on number of basis functions that can be used has also been derived in this 

study. 

All the above experiments were performed using one transmit element. We 

then wanted to see the performance by increasing the total number of transmit 
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elements to 2, that is, including spatial dimensions to the transmit signal. It was found 

that the transmit signal obtained for this scenario performed better than one transmit 

element scenario in terms of reducing the maximum correlation between the targets. 

A disadvantage of using multiple transmit element is that, the ambiguity function for 

a multi transmit element space-time transmit signal does not remain invariant. Hence, 

for a case having multiple transmit elements, the algorithm needs to be modified such 

that it considers all the targets in the target grid to come up with a code. 
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CHAPTER – 2 

2. Processing and Analysis of Multi-static Radar System. 

In this chapter, a linear multi-static radar system is considered and its received signal 

is derived and processed. The derivation is based on the fact that for a linear radar 

system, the received signal is just a delayed form of transmit signal modified by the 

scattering coefficients of the targets. This chapter also explains the motivation behind 

this study. It discusses the processing of the received signal such that correct 

scattering estimates are obtained. It answers the question as to why we seek to have 

the responses from two dissimilar targets orthogonal to each other. 

2.1 Description and Analysis 
 
A linear, multistatic radar model was considered in order to analyze the response 

signal as shown in Fig 2.1. Let us assume there are a total of ‘Y’  apertures out of 

which one aperture is acting as both a transmitter and a receiver and all the other 

apertures act as only receivers. A total of ''m  measurements are taken, assuming 

there are a total of ''t  number of targets and we want to derive a transmit signal of 

dimension ''n  which will minimize the maximum correlation between two dissimilar 

targets.  
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Y - Receivers 
  
 Transmitter 
 
 
 
 
 
 
                                                                                                      Target Responses 
                                                                                                      
 
 
 
 
 
 t - Targets 
 
 
 

Fig 2.1: A multi-static radar system with ‘ t’  number  of targets and their  reflections. 

 
 
When a signal is transmitted by a radar, it travels through the propagation medium 

from the transmitter to the targets and gets scattered by the targets back to the 

receiver traveling through the same propagation medium. Thus, the received signal is 

just a delayed version of the transmit signal altered by the propagation medium and 

the scattering characteristics of the target. Therefore, the received signal over an 

illumination area of A can be represented in mathematical form as shown below [1]. 

               )(')'()',,()()( tndAdttsttxhxtr o += γ             (3.1) 

)(),()( tndAtxx
A

o += ργ  

 

k
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Where, 

  x
�

 Represents the position vector of a target. 

 )(ts  
�

 Describes the complex transmit signal.  

)(xoγ  
�

 Describes the complex scattering coefficient of the target surface. 

)',,( ttxh
�

 Represents a complex time-varying impulse response describing the 

effects on the transmit signal when it travels from the transmitter to the receiver. 

)(tn
�

 Is the complex noise. 

In general, any signal that is constrained in bandwidth and time can be approximated 

using its basis functions. Therefore, the transmit signal )(ts  can be written in terms of 

a finite set of  N  discrete samples as,            

                          
=

−≈
N

n
ss nTtgnTsts

1

)()()(                  (2.2) 

Where, )( snTs are the discrete samples of the continuous transmit signal )(ts and 

)(tg is the interpolation function that can be used to reconstruct the signal from its 

discrete values.  

Similarly, the continuous received signal, the complex noise and the scattering 

coefficients can be described in to their respective discrete samples and are denoted 

as, 

                               

)(

)(

')'()',,(

)(

)(

sm

nn

ssi
i
mn

ioi

sm

mTnn

tss

dtnTtgtmTxhH

Ax

mTrr

=
=

−=

∆=
=

γγ

    (2.3) 
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Representing a continuous signal in terms of its discrete samples enables us to 

represent the received signal equation in linear algebra. Hence, substituting the 

equation (2.3), we can write (2.1) as [3], 

        nsHr +=
i

iiγ   (2.4) 

         n+=
i

iiγ    (2.5) 

                                                  nPr +=       (2.6) 

Where,                                     sH ii =            (2.7) 

       ][ 321 T.....;;.........;;P =  

     
T

M4321

T
N4321

.r,.........,r,r,rr

,........s,s,s,ss

][

][

=

=

r

s
 

Therefore, in the equation (2.6),P  relates the scattering parameters  to the 

measurement vector r .  It can also be viewed as, P  being a linear system through 

which  passes, considering  as a signal. 

2.2 Estimators:  
 
The received signal or the measurement vector needs to be processed so that the 

scattering characteristics of the targets can be estimated. There are different 

estimators that can be used to estimate the scattering characteristics of a target; one of 

the estimators called linear estimators will be discussed in this report. 

                      Linear estimator provides the most simple and efficient way of 

estimating the scattering of a target. It estimates the scattering coefficient by taking 
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the dot product of the radar response and the estimate operator for each target. The 

general equation for the linear estimator is given by  

rW 'ii =γ̂                   (2.8) 

The most common and simplest form of linear estimator is the correlation filter or the 

matched filter.  

2.2.1 Matched filter 
 
Any received radar signal contains signal, clutter and white noise. A matched filter is 

used to increase the signal to noise ratio (SNR) at its output. It achieves the maximum 

SNR by correlating the normalized response from a target with the response obtained 

from the received signal.  The normalized response from a target pixel is given by,  

2

i

i

�

�

mfW =                 (2.9) 

Substituting the above equation into the linear estimator general equation (2.5) we 

have,                        
2

'

2

'

ˆ

i

i

ij
i

ji
ii

n
+

�

≠
+= γγ                (2.10) 

In this expression, the first term represents an error less estimate of the scattering of 

the target, the second term represents the clutter energy which is the correlation 

between the target of interest and the other targets, and the third term is a noise term. 

It is obvious from the equation (2.10), that in order to get a close estimate of the 

scattering of the targets, we need to have the clutter energy and the noise as low as 

possible. Though, the matched filter minimizes the error due to noise, it is incapable 
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to remove the effect on the estimate due to the clutter. Hence, other estimators are 

considered to achieve a precise scattering estimate of the targets. We discuss about 

two other filters as follows. 

2.2.2 Maximum Likelihood Estimator: 
 
The maximum likelihood estimator can be found by first forming the maximum 

likelihood function of the equation (2.5). The maximum likelihood function is 

obtained by taking the natural log of the conditional probability density function of 

the measurement vector r as [3], 

       �
�
�

�

�

�
�
�

�

�

��
�

��
�

−== )()(2/1-expln]/(ln[)( Pr1-
nKP-r

nK2

1
)rPr,L H

π
       (2.11) 

Where, nK  is the covariance matrix of the zero mean complex noise. 

The value of  which maximizes the maximum likelihood function )(r,L can be 

found by taking the derivative of )(r,L with respect to  and equating it to zero. 

Hence, the value of  which maximizes )(r,L is the maximum likelihood estimate of 

 denoted by max_likeˆ  

For more information about maximum likelihood estimator, please refer to reference 

[3]. The operator that performs the maximum likelihood estimation is given by,                             

P'1-P][P'1~Pwmax_like ==                  (2.12) 

and the estimated vector is give by, 

)r(wmax_likemax_like =ˆ               (2.13) 
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substituting (2.12) in (2.13), we get 

        nP'1-P][P'max_like +=ˆ               (2.14) 

Therefore, in the above equation, the second term is an error which is only due to 

noise. Therefore, the maximum likelihood estimator completely suppresses the error 

due to the clutter and performs very well in high SNR scenarios, but the performance 

of this filter deteriorates for low SNR cases.  

2.2.3 Minimum Mean Square Error Estimator 
 

A Minimum Mean Squared Error Estimator comes up with an estimate of a signal 

based on the minimum mean squared error criteria given by, 

( ){ }
0

ˆ 2

=
∂

−∂=
mmseW

MMSE
E

        (2.15) 

It can also be visualized as stated in the orthogonality principle, which states that the 

error in estimation is orthogonal to each observation made. [3] 

                         Again the derivation of the MMSE operator is beyond the scope of 

this thesis. For further details please refer to reference [3]. 

The Minimum Mean Squared Error Estimator is given by [3], 

       1~
n��mmse ]'KP''[PKP''KW +=        (2.16) 

Where, nK and �K are noise covariance and scattering coefficient covariance 

respectively. 
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From the above equation, it is very clear that as the covariance of the noise tends to 

infinity, the magnitude of the minimum mean square error estimator approaches to 

zero. It tries to maximize the Signal to Interference ratio (SIR) where Interference is 

defined as sum of clutter and noise energy.  Hence, in presence of high noise, it is 

best to use the MMSE filter to the other two estimators. Though it has been proved in 

the previous study that MMSE estimator performs much better than the matched 

filter, the MMSE filter processing algorithms are more complex and expensive to 

implement.  

        Another important point that is to be noted is that from all expressions of the 

operators W, it can be realized that all the estimators would give us the same result if 

the responses from different targets, i.e. the 
i
 vectors were perfectly orthogonal to 

each other. In other words for all targets ji ≠ , 0' =ji . Hence, as the MMSE 

estimator is complex and expensive to implement, we could use the Matched filter 

processing technique and still get good results if the responses from dissimilar targets 

are orthogonal to each other. 

           Therefore, in order to have an accurate estimate of the scattering coefficients 

of the targets from the received signal using a matched filter, we need the responses 

from dissimilar targets to be as orthogonal as possible. Thus, the entire effort of this 

study is to make the responses of dissimilar targets as orthogonal as possible to each 

other. 
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CHAPTER - 3 

3. The Optimization Criterion 
 
In order to develop the Algorithms that generate the space-time transmit signals 

which in turn make the responses from dissimilar targets as orthogonal as possible, a 

mathematical criterion is needed such that the solution that satisfies the criterion is 

the same solution that satisfies our requirements. In this chapter, the derivation and 

analysis of such an optimization criterion is discussed. As the bound of the criterion is 

being tightened in order to minimize the correlation coefficient between dissimilar 

targets, a very important question that needs to be answered is how closely the 

criterion relates to the correlation coefficient.  

3.1 Analysis of the optimization criteria  
 
As discussed in the last chapter, we seek to minimize the correlation between 

dissimilar targets such that the scattering coefficients of the targets are estimated 

correctly. Apart from making the responses from two different targets as orthogonal 

as possible, we also do not desire the energy in a target response to be zero. Hence, a 

criterion is needed whose solution when used as transmit signal, minimizes the 

correlation between dissimilar targets. Such a criteria is derived as follows, 

The total energy in a radar response is given by, 

=
i

i
i

iETotal '     (3.1) 

Where, i is the response of the target ‘ i’ . 
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Similarly, the sum of the energies of each target response is given as,  

=
i

iiEsum '              (3.2) 

When only two targets are considered, equation (3.1) and (3.2) can be written as, 

))(''( jijiE 2Total ++=−     (3.3) 

                                                     ijjijjii '''' +++=       (3.4) 

And                                    )''( jjiiE 2sum +=−            (3.5)                                                           

From equation (3.4) it can be seen that the first two terms give the energy in an 

individual target response, where as, the third and fourth terms give the correlation 

between two dissimilar targets.  

         Hence, our objective is to minimize the correlation between two targets (third 

and fourth terms in (3.4)) as much as possible. This requirement can be satisfied using 

a criterion formed by taking the ratio of equations (3.4) and (3.5). We call this 

criterion as the optimization criteria , given by, 

)''(

))(''(

jjii

jiji

+
++

=      (3.6) 

From equation (2.7) we can write i as, 

                                                   sH ii =  

 Substituting iρ in (3.6) we have, 

             
)sH'HH'(Hs'

)sH(H)'H(Hs'

jjii

jiji

+
++

=           (3.7) 

Defining two matrices, A and B as,  
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)H(H)'H(HA jiji ++=             (3.8) 

                                      )H'HH'(HB jjii +=               (3.9) 

Using the matrices A and B, (3.7) can also be written as, 

Bss'
Ass'=             (3.10) 

Therefore, a solution s to the equation (3.10) that makes the values of  to be 1 is the 

same solution that ensures the responses from two dissimilar targets are totally 

uncorrelated. This can be proved mathematically as, when the responses from the 

targets i and j are totally uncorrelated, then, 

     
0' =ji    (3.11)

 

Substituting (3.11) in (3.6), we get =1. 

The main advantage of using this criterion is that the matrices A and B are positive 

definite matrices, which means eigen analysis can be used to derive a solution for .  

Expanding (3.6) we get,  

)''(

)''''(

jjii

ijjijjii

+
+++

=

           (3.12) 

A limit for -values can be derived as follows.  

If the target responses are normalized then,  

1'' == jjii     (3.13) 

Substituting (3.13) in (3.6) we have,  

)'Re(1 ji+=     (3.14) 
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Hence, the term ji ' has a maximum value of 1 when the two response vectors are 

aligned in the same direction, and has a minimum value of -1, when the two vectors 

are aligned in the opposite direction. Substituting these maximum and minimum 

values of ji '  in (3.14), we get the limit for -values as, 

20 ≤≤  

Therefore, the values of  lie between 0 and 2. 

From the equation (3.10) we have, 

                                                         
Bss'
Ass'=

             
 

From the definition of B matrix in equation (3.9), we can clearly say that the matrix B 

is a Hermitian Matrix. That is, complex conjugate transpose of B is itself.  

      BB' =            (3.15) 

 The B matrix can also be represented as, 

                    1/21/2BBB =                  (3.16) 

Also,                                              IBB 1/21/2 =−              (3.17) 

Multiplying the identity matrix with A in (3.10) we have, 

sBBs'
IAIss'

1/21/2
=        (3.18) 

Substituting (3.16) and (3.17) in (3.18) we have, 

sBBs'
sBABBBs'

1/21/2

1/21/21/21/2 −−

=          (3.19) 

We then represent 1/2sB  as, 
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sBs 1/2=~
             (3.20) 

Also,                                        s)'(B's 1/2=~             (3.21) 

    
1/2Bs''s =~

              (3.22) 

as B is Hermitian, 1/21/2 B)'(B =  

Substituting s~ in equation (3.19) we have, 

               (3.23) 

 

Normalizing s~ makes s's ~~ =1. Therefore, we are left with only the numerator of the 

equation (3.23). 
 

                         sABB's 1/21/2 ~~ −−=               (3.24) 

Let us define a matrix C which is given by, 

                          
1/21/2ABBC −−=                (3.25) 

Therefore substituting C in (3.23) we have, 

                                                        
s's
sC's

~~

~~
=                  (3.26) 

The C matrix is the most important matrix used in the development of the 

Algorithms. It can be represented in terms of its Eigen values as well as Eigen 

vectors. The eigen values can be considered as the values that would assume when 

the corresponding eigen vectors are used as solutions to the criteria. The C matrix can 

be represented in terms of its eigen values and eigen vectors as, 

s's
sABB's 1/21/2

~~

~~ −−

=
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=
=

N

1n
nn 'vvC ˆˆn

�
         (3.27) 

where,  nλ  are the eigen values of the C matrix, 

             nv̂  are the eigen vectors of the C matrix. 

and        n  is the total number of dimensions in the C matrix. 

The eigen values of the C matrix are a very important parameter. As was stated 

before, they are the values would assume when the corresponding eigen vectors are 

used as solutions to the criteria. The eigen values assume a value between 0 and 2. 

                                      i.e.,               20 ≤≤ nλ  

The maximum and minimum values of nλ ( maxλ and minλ ) are considered to be a 

bound of the -values. The whole effort of Algorithms that have been developed will 

be to tighten this bound as far as possible. That is, bringing the values maxλ  and 

minλ as close to 1 as possible. A value of nλ or  equal to 1 has a solution which will 

make the responses from two targets perfectly uncorrelated. So, seeking all the 

nλ values close to 1 would bring down the correlation proportionally. 

There is a C matrix for every pair of targets. If C matrices are formed with a main 

target of interest and more than one other targets, one at a time, say we have a total of 

T targets including the target of interest, then there a total of (T-1) number of C 

matrices and a total of N*(T-1) number of eigen values. Irrespective of the target pair 

the eigen values belong to, we seek to make the maximum value of nλ as close to 1 as 

possible indirectly bringing down the maximum correlation.  
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A parameter that is used to decide the worst eigen values (i.e., maxλ  and minλ ) is 

described as, 

                                           )1(cos90 1
nλθ −−= −              (3.28) 

Where, o90=θ  
�

 Responses from two targets are perfectly correlated. i.e., when the 

eigen value nλ = 0 or 2. 

        o0=θ
�

 Responses from two targets are perfectly uncorrelated. i.e., when the 

eigen value nλ = 1 

Another parameter which gives us the correlation between two targets is given by, 

ji

ji '=ξ    (3.29) 

where ξ is the correlation coefficient between targets i and j. 

i  and j are the responses of targets i and j respectively, given by, 

sH ii =    (3.30) 

The angle between the two response vectors from the correlation coefficient can also 

be derived as,                                )(cos 1 ξφ −= .  

Hence we seek to minimize θ  or maximizeφ , which indirectly means to tighten the 

eigen value bound.  

3.3 Relation between the correlation coefficient  and  
 
An important point that needs to be taken note of, is the relation between the 

correlation coefficient  and . 
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From the equation (3.6) the criteria can also be written as, 

��
���

��
�� �

+
−=

22

'
Re21

ji

ji    (3.31) 

Where, ji '  gives us the complex correlation between target ‘ i’  and target ‘ j’ . 

Hence, by seeking a value close to 1, we are actually minimizing the real part of the 

complex correlation term (second term in the equation (3.26)). However, if the 

imaginary part of the complex correlation is equal to 0, and ji = , then can be 

written as, 

−=��
�	


��
���


−= 1
'

1
ji

ji
     (3.32) 

Therefore, a direct relation between and exists only when the imaginary part of 

the complex correlation is zero and the responses from the two targets have equal 

energy. Plots that justify the usage of the optimization criteria  to search for a better 

transmit code are shown in Chapter-4 and Chapter -6.  

3.3 Inverse of the B matrix 
 
As stated before, a positive definite square matrix can be written in terms of its eigen 

values and eigen vectors as,  

=
n

nnn 'ˆˆB µ          (3.33) 

where,  nµ  are the eigen values of the B matrix, 
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             nˆ  are the eigen vectors of the B matrix. 

and n  is the total number of dimensions in the B matrix. 

In the same way the inverse of this B matrix can also be represented in terms of the 

eigen values and eigen vectors of the B matrix as, 

=−

n
nn

n

'ˆˆ
1

B 1

µ
            (3.34) 

 
But, it is very important to note that, when the B matrix is a non full-ranked matrix, 

only non-zero eigen values should be substituted in the above expression. This 

method of inversion is called pseudo inversion. Hence, for a non full ranked B matrix, 

The inverse is taken as, 

          =−

n
nn

n

'ˆˆ
1

B 1

µ
         )0( >nµ    (3.35) 

 
Pseudo inversion of the B matrix is used after the first iteration in Algorithm-2. 
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CHAPTER - 4 

4. Description and Evaluation of Algorithm-1 and Algorithm-2 
 

This chapter deals with the development, analysis and performance 

comparison of Algorithm-1 and Algorithm-2. In this chapter, the performance of the 

algorithms is evaluated based on randomly generated inputs. It addresses various 

concerns about how the algorithms would perform if the total number of 

measurements taken and the dimension of transmit signals are varied. It has also been 

shown based on various experiments that the performance of the algorithms largely 

depends on the radar scenario. Having, successfully developed the algorithm, a very 

important question that was to be answered was, how good is the result given by the 

Algorithm in general? This chapter answers the above question by comparing the 

algorithm result with a randomly generated result and a result generated by the 

Genetic Algorithm. 

 

4.1 Algorithm 1(Collective Projection Algorithm) 
 
Algorithm-1 is a basic Algorithm that was developed to achieve a transmit code that 

will minimize the maximum correlation between two dissimilar targets. The main 

idea behind this Algorithm is to tighten the bound of the eigen spectrum by projecting 

orthogonal to all the (N-1) worst vectors present in the total subspace of all the C 

matrices. In this Algorithm, eigen analysis is applied on the C matrices.  

From equation (3.26) we have,                          
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s's
sC's

~~

~~
=            (4.1) 

Writing the C matrix in terms of its eigen values and eigen vectors,   

          
=

=
N

1n
nn 'vvC ˆˆn

�

             (4.2)
 

where,  nλ  are the eigen values of the C matrix, 

             nv̂  are the eigen vectors of the C matrix, 

And,      n  is the total number of dimensions in the C matrix. 

 

A C matrix with N dimensions can be represented in terms of N eigen values and N 

eigen vectors. As, a C matrix is formed between the main target of interest and some 

other target in the grid, a total of (T-1) number of C matrices are formed, where T is 

the total number of targets present. Hence, a total of N*(T-1) number of eigen vectors 

corresponding to (T-1) number of C matrices are present. Out of these N*(T-1) eigen 

vectors, (N-1) worst eigen vectors corresponding to the (N-1) worst eigen values are 

chosen based on the value of θ . These eigen vectors are named as “worst vectors”  for 

the reason that, if these eigen vectors were used as solutions to (4.1), a value close to 

0 or 2 is obtained which indicates a high correlation between the targets. The (N-1) 

worst vectors are eliminated by searching for a code in a subspace orthogonal to those 

vectors. As the solution for the equation (4.1) is in s-squiggle )~(s  form, the (N-1) 

worst vectors are initially converted into s-form, and then the orthogonal projection is 

performed on them. If s is a vector that is orthogonal to (N-1) worst vectors, then, it 
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is considered to be a better solution and gives us a -value which is better than those 

values obtained by using any of the (N-1) vectors as solutions. Thus, using s as a 

solution, a better maximum correlation is achieved. The next worst eigen vector 

which is the Nth worst eigen vector that has not been eliminated will give the 

particular correlation coefficient value between two targets that can be considered as 

a bound. This indicates that, the solution (s-vector) would not come up with a 

correlation value greater than that obtained by using the Nth worst eigen vector. 

Hence we use the s-vector as the transmit signal.  

The Flow chart of this Algorithm is as shown in Fig 4.1. 
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Algorithm - 1 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 4.1: Flow Chart of Algor ithm-1 

Generate the propagation matrices (H-
matrices) randomly or from the model. 
There is an H-matrix for every target. 

Compute A, B and C for the target of 
interest(Target-1) and every other target 
pair. 
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4.2 Performance of Algorithm-1 
 
 
In order to analyze the performance of Algorithm-1, the propagation matrices (H-

matrices) are generated randomly. Since the H-matrices are complex matrices, both 

the real and the imaginary parts of every single element of the matrix are generated 

randomly from a Gaussian distribution with zero mean and variance one. The size of 

H-matrices is M x N x T where, M is the total number of measurements taken, N is the 

dimension of the transmit code and T is the total number of targets.  

For analysis purpose we set M=100; N = 40 and T=10. 

The results are as shown, 

 

Fig 4.2: Eigen spectrum before or thogonal projection. 
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Fig 4.2 shows the spectrum of the eigen values of the C matrix before the orthogonal 

projection in the subspace of (N-1) worst vectors. It is observed from the Fig 4.2 that 

the eigen values are very loosely bound with a maximum value of 1.8121 and a 

minimum value of 0.2028. It can also be noticed that the eigen values are well within 

the values of 0 and 2. 

 

Fig 4.3: Eigen spectrum after  the orthogonal projection. 

 

Fig 4.3 shows the spectrum of the eigen values after the projection in the orthogonal 

subspace. As can be seen from Fig 4.3, the worst eigen values have been eliminated 

and the bound is tighter compared to the bound of the spectrum before the projection. 

The maximum value in this spectrum is 1.6928, corresponding to a θ = 43.85 degrees 
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and the minimum value is 0.30675 corresponding to θ = 43.88 degrees. Though the 

bound is not very tight, it is better than the bound before the projection. The Nth 

worst eigen value that has not been eliminated is 0.30675. The corresponding eigen 

vector gives us a correlation coefficient value of 0.6707 (φ =47.87 degrees) which 

acts as a bound. Hence, any vector that is obtained by projecting orthogonal to the 

subspace of the (N-1) number of worst vectors will give correlation values no greater 

than 0.6707. Fig 4.4 shows the spectrum of - values calculated using the transmit 

code s given by the Algorithm. As we can see the  values are very close to 1 with 

maxχ =1.0969 and minχ =0.8510. The - values are well within the bound of 0.30675 

set by the Nth worst vector. The maximum correlation coefficient obtained with the 

transmit code is 0.1561.  

 

Fig 4.4: - value spectrum obtained using the transmit code given by Algor ithm-1 
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A shortcoming of this Algorithm is that, it does not take into account the possibility 

of two or more of the (N-1) worst eigen vectors being parallel to each other. The (N-

1) worst eigen vectors are picked and orthogonal projection performed on them 

collectively. There is a good possibility of the worst vectors being highly correlated to 

each other. Hence projecting orthogonal without taking into account the correlation 

between the vectors would not help much.  

                  Therefore, the above reason gave us the motivation to develop a new 

Algorithm which takes into account the correlation between the worst vectors. The 

new Algorithm is called Algorithm-2 and it will be analyzed in the next chapters.   

4.3 Algorithm-2(Individual Projection Algorithm) 
 
This Algorithm takes into account the correlation between the worst eigen vectors of 

the C matrices. In this Algorithm, instead of projecting orthogonal to all the (N-1) 

worst vectors simultaneously and then finding the transmit code, the orthogonal 

projection is done individually i.e, one worst vector after the other.  It picks the first 

worst eigen vector, and then searches for the next worst eigen vector in the 

orthogonal subspace of the first one. It again searches for the third worst eigen vector 

in the subspace orthogonal to the second one. It continues this for (N-1) times 

(iterations), where N being the total number of dimensions of the transmit signal. 

After (N-1) iterations, only one dimension is left, which gives us the best transmit 

signal. After each iteration, as we are projecting orthogonal to the worst eigen vector, 

the resulting eigen spectrum of the C matrices will have a tighter bound than the 
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bound before that particular iteration. If there are a total of “T”  targets, then after the 

(N-1) iterations, we will have (T-1) number of eigen values corresponding to (T-1) 

pairs of targets. Now the C matrix of each pair of targets has only one eigen value 

associated with it. These eigen values are precisely the same values we would get if 

the transmit code given by the Algorithm is used as a solution to the equation (4.1). 

There is no eigen bound as there was in Alg-1, but an exact correlation value can be 

derived between the targets by using the transmit code given by the Algorithm. As 

this Algorithm makes sure that it projects orthogonal to all the (N-1) dimensions 

unlike Algorithm-1, we expect it to perform better than Algorithm-1.  

The flow chart of Algorithm-2 is shown in Fig 4.5. 
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Algorithm-2 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 4.5: Flow char t of Algor ithm-2 

Generate the propagation matrices (H-
matrices) randomly or from the model. 
There is an H-matrix for every target. 

Compute A, B and C for the target of 
interest(Target-1) and every other target 
pair. 
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Each C matrix is N X N sized and we have a 
total of (T-1) C matrices where T is the total 
number of targets. Hence we have a total of 
N*(T-1) eigen values and eigen vectors. We 

choose the first worst Eigen vector based onθ . 
say s~  

 

Convert to normal form, 

sBs 1/2~−=  

Normalize s, 
s
s

s =ˆ  

Construct Projection matrix,  
'ssIPr ˆˆ−=  
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(N-1) times 



 35 

4.4 Performance of Algorithm-2 
 
The performance of Alg-2 has been evaluated by first generating the H-matrices 

randomly. Both the real as well as the imaginary parts of the complex elements have 

been generated from a Gaussian distribution with 0 mean and variance 1. The H-

matrices that are used for analysis of this Algorithm are exactly the same H-matrices 

that were used for the analysis of Algorithm-1.  

M = 100; N = 40 and T = 10. 

The results are as shown in the following figures. 

 

Fig 4.6: Eigen spectrum before the star t of iterations. 

 
The Fig 4.6 shows the spectrum of eigen values of the C matrices before any 

iterations. As can be seen from the figure, the bound is quite loose with minimum 

value = 0.2028 (θ = 52.86 degrees) and maximum value = 1.8121(θ = 54.3 degrees).  

From the θ  value it is decided that 1.8121 is the worst eigen value and the 
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corresponding eigen vector is picked to search for a better code in its orthogonal 

space. A projection matrix is then constructed using this eigen vector and the H-

matrices are updated.  Now a new set of C matrices are formed between the main 

target and all the other targets, and again a worst eigen vector is picked to form a 

projection matrix to project orthogonal to that vector and the H-matrices are updated 

once again.  This process is repeated (N-1) times. 

Fig 4.7 histogram shows the eigen value spectrum after the first iteration. 

 

Fig 4.7: Eigen Spectrum after  the first iteration. 

 
As can be seen from Fig 4.7, the worst eigen value has been brought closer to 1 

compared to the values before the first iteration. In this new spectrum, again the worst 

eigen vector is chosen based on the worst eigen value, which in this case is 1.7979 

(θ = 52.93 degrees) and a better code is searched for in the orthogonal space of its 

corresponding eigen vector. 
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The eigen value spectrum after Iteration = 27 is shown in Fig 4.8. 

 

Fig 4.8: Eigen spectrum after  I teration=27 

The eigen value spectrum after Iteration = 40 is shown in Fig 4.9. 

 

Fig 4.9: Eigen spectrum after  I teration=40 
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Hence, the worst eigen value has been tightened from a value of 1.8121 (θ  = 54.3 

degrees) in the beginning, to a value of 1.0168 (θ = 3.54 degrees) after (N-1) 

iterations. The corresponding correlation coefficient value is 0.1386 corresponding to 

φ  = 82.03 degrees. This means that the response from the most correlated target is at 

an angle of 82.03 degrees to the response from the main target of interest. Hence we 

have minimized the maximum correlation to 0.1386 (-17dB). 

              A plot that shows the convergence of bounds of the eigen values of the C 

matrices with respect to the iteration number is shown in Fig 4.10. In order to 

distinctly identify the curves, smaller values of M, N and T have been chosen.   

M=20; N=6; T=8 

 

Fig 4.10: Plot showing convergence of the bound with respect to iteration number . 
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The above figure shows the convergence of the eigen value bound with respect to the 

iteration number. From the figure it can be noted that, the bound has converged from 

Iteration-1 to Iteration-6. The solid lines on top and bottom represent the maximum 

and minimum eigen values after its corresponding iteration. The dashed lines in the 

middle are the lines joining the worst eigen values of its respective C-matrix. That is, 

each dashed line corresponds to one particular C matrix, and is a plot of worst eigen 

values of that particular C matrix, over all the iterations. Hence, we observe that the 

worst eigen value after the first iteration is from C5 matrix (i.e., the C matrix formed 

between Target-1 which our target of interest and Target-6) and worst eigen value 

after the second iteration is from C4 and so on. A list of all the iterations is given 

below, 

Iteration-1 
�

 Worst eigen value picked from C5 (Target-1 and Target-6) 

Iteration-2 
�

 Worst eigen value picked from C4 (Target-1 and Target-5) 

Iteration-3 
�

 Worst eigen value picked from C1 (Target-1 and Target-2) 

Iteration-4 
�

 Worst eigen value picked from C5 (Target-1 and Target-6) 

Iteration-5 
�

 Worst eigen value picked from C3 (Target-1 and Target-4) 

Iteration-6 
�

 Worst eigen value picked from C3 (Target-1 and Target-4) 

 

Therefore, the Eigen value bound has been converged from min = 0.2706 and max = 

1.6647 to min = 0.8966 and max = 1.2452 in Fig 4.10. 
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4.5 Analysis of the optimization criterion using numerically 
generated input values. 
 
As the optimization criterion  directly relates to the real part of the complex 

correlation and not to the magnitude of the correlation, a very important question that 

needs to be answered is, how acceptable is it to use as a criterion to derive a 

transmit signal that tries to minimize the correlation between dissimilar targets?  A 

plot between the correlation coefficient (ξ ) and −1  clearly answers the question. 

The H-matrices are generated randomly and are used as inputs to Algorithm-2. The 

correlation coefficient and −1  values are calculated using the transmit signal given 

by the Algorithm. The plot is as shown in Fig 4.11. 

 

Fig 4.11: Plot showing the cor relation coefficient curve and −1  curve. 
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From Fig 4.11, it can be clearly seen that the correlation coefficient plot closely 

follows the −1 plot. The value −1 gives us the absolute value of the real part of 

the complex correlation and the correlation coefficient represents the magnitude of 

the complex correlation. Hence, it can be seen from the plot that by reducing the real 

part, in most cases we are reducing the magnitude of the complex correlation. Thus, 

the optimization criterion is an acceptable criterion that can be used to minimize the 

correlation between dissimilar targets. 

4.6 Comparison of Algorithm-1 to Algorithm-2  
 
The performances of Algorithm-1 and Algorithm-2 have been compared for different 

values of M, N and T. Both the Algorithms have been complied for 20 Monte Carlo 

iterations. After each Monte-Carlo iteration, Algorithm-1 and Algorithm-2 give their 

respective solutions using which the -values and the correlation values have been 

calculated using equations (3.10) and (3.29) as,    

Bss'
Ass'=

        ti

ti '=ξ
 

A -value histogram and a maximum correlation coefficient value histogram are 

plotted for all the 20 Monte-Carlo iterations collectively. Having plotted these 

histograms for both the Algorithms, the performances have been compared in terms 

of standard deviation of the -values and mean of the maximum correlation 

coefficient values. As the bound of -values is of main interest, we considered the 

standard deviation of the -value distribution as a measure of performance of the 
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Algorithms. The mean of s in all the cases is approximately 1, hence, only the 

standard deviation of the values will be discussed in this report. Thus, lower the 

standard deviation tighter is the - bound and better is the performance of the 

Algorithm. Also, we intend the maximum correlation coefficient histogram to have a 

mean as low as possible. Lower the mean, better is the performance of the Algorithm. 

Fig 4.12 shows the different cases for which the comparisons are made.  

 

Fig 4.12: Different cases that Algor ithm-1 and Algor ithm -2 have been compared in. 

 
The Algorithms have been compared for 12 different cases corresponding to different 

values of M, N and T as shown in Fig 4.11. Showing the results of all the 12 cases 

would be redundant to come to a conclusion, hence, the three most important cases 

will be discussed, which are indicated by a square box, in Fig 4.12. The value of M 

has been varied from 100 to 3000 and the value of N has been varied from 4 to 40, 

whereas the value of T has been kept constant at 10. 
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4.6.1 Case – 1: (M=3000; N=4; T=10) 

Case -1 
m=3000;t=10; n=4   - ratio = std1/std2 = 1.06

Alg-1                                                               Alg-2

χ

χ- Histogram
χ- Histogram

Max Corr Coeff Histogram Max Corr Coeff Histogram

 

Fig 4.13: Compar ison of Histograms of and maximum Correlation coefficient values, 
for  Alg-1 and Alg-2 for  case1 
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The Fig 4.13 shows a comparison between the histograms of -values as well as 

maximum correlation coefficients for Alg-1 and Alg-2. The plots on the left side 

show the histograms corresponding to Alg-1 and the plots on the right correspond to 

Alg-2. As can be seen from Fig 4.13, there is not much improvement in the chi 

standard deviation of Alg-2 from Alg-1. The ratio of the standard deviation of the 

distribution of  of Alg-1 to Alg-2 is about 1. The mean of the maximum correlation 

coefficient values for Alg-1 is 1.061 times that of Alg-2. 

 

4.6.2 Case – 6: (M=1000; N=8; T=10) 

In this case, the value of M has been decreased from 3000 to 1000 and the value of N 

has been increased from 4 to 8. The histograms of Alg-1 and Alg-2 are shown in Fig 

4.14. 

Again, in this case the ratio of the standard deviation of  values for Alg-1 to Alg-2 

is not too high and is only 1.11. And the mean of the maximum correlation of Alg-1 

is almost same as that of Alg-2. 
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Case -6 
m=1000; t=10; n=8   - ratio = std1/std2 = 1.11

Alg-1                                                               Alg-2

χ- Histogram
χ- Histogram

Max Corr Coeff Histogram Max Corr Coeff Histogram

χ

 

Fig 4.14: Compar ison of Histograms of  and Correlation for  Alg-1 and Alg-2 for    
case-6 
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4.6.3 Case – 12: (M=100; N=40; T=10) 

In this case, the value of M has been decreased from 1000 to 100 and the value of N 

has been increased from 8 to 40. The histograms of Alg-1 and Alg-2 are as shown in 

Fig 4.15, 

Case -16 
m=100; t=10; n=40  - ratio = std1/std2 = 1.33

Alg-1                                                               Alg-2

χ- Histogram
χ- Histogram

Max Corr Coeff Histogram Max Corr Coeff Histogram

χ

 

Fig 4.15: Compar ison of Histograms of  and Correlation for  Alg-1 and Alg-2 for  

Case-12 
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The ratio of standard deviations of  values from Alg-1 to Alg-2 in this case is 1.33 

and the ratio of mean of maximum correlation coefficient for Alg-1 to Alg-2 is 1.165. 

Summarizing all the above cases, a plot of the standard deviation values with 

respect to the transmit signal dimension can be plotted for both Alg-1 and Alg-2. The 

plot is as shown in Fig 4.16. 

Alg-1                                                               Alg-2

 

Fig 4.16: Plots of standard deviation of  with respect to the transmit signal dimension 
for  Alg-1 and Alg-2. (m is the total number of measurements taken.) 

 

The standard deviation values for Alg-1 are very close to that of Alg-2 for M=3000; 

1000; 500. However, Alg-2 performs better than Alg-1 for M=100. 
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Similarly a plot showing the mean of the maximum correlation coefficient values 

with respect to the dimension of the transmit signal is as shown in Fig 4.17. 

Alg-1                                                               Alg-2

Fig 4.17: Plot showing the mean of max correlation with respect to the transmit signal 
dimension for  Alg-1 and Alg-2. 

 

Therefore, from the above cases it is very difficult to come to a precise conclusion 

about the performance of the Algorithms. For H-matrices generated from single 

Gaussian distribution, though there is an improvement in the standard deviation of 

Alg-2 compared to Alg-1 for all cases, the improvement is not a very significant one. 

Also, the means of the maximum correlation for Alg-2 are approximately equal to 
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that of Alg-1. Therefore, we can say that for constant H-matrices (Matrices generated 

from single Gaussian distribution) the performance of both the Algorithms in terms of 

standard deviation of  values and mean of the maximum correlation values is very 

similar. 

The H-matrices whose elements have been generated from Gaussian 

distributions of different means and different variances have been generated and the 

performances of Algorithms have been analyzed in those cases as well. 

4.7 H matrices generated from Gaussian distributions with 
different Means and different Standard Deviations 
 

 

 

 

 

 

 

 

 

H  

 

 

 

 

 

 

Fig 4.18: Four blocks of the “ Varying H-matr ices”  with different mean and different 
standard deviations. 
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Each element in this kind of H-matrices has been selected randomly from four 

different Gaussian distributions having different means and different variances. A 

single H matrix of MxN dimension has been divided into 4 blocks, so that the 

elements in these blocks can be chosen from Gaussian distributions having different 

means and different standard deviations. Both the real and imaginary parts have been 

generated independent of each other and have been joined to form a complex element. 

All the 4 blocks together make up a single H matrix. The division of the H-matrix 

into different blocks is as shown in the Fig 4.18. 

 

The elements in the first block have been picked randomly from a Gaussian 

distribution of 0.5 mean and 0.4 standard deviation. The second, third and fourth 

blocks have elements from Gaussian distributions with means 1, 0.2 and 0 and 

standard deviations 0.7, 0.1, 1 respectively. All these four blocks have been joined to 

form one single H-matrix of dimension M x N. Every target has a corresponding H-

matrix. These H-matrices for each target has been generated independently. 

 

Therefore, using these new H-matrices as inputs to Algorithm-1 and 

Algorithm-2, their performances have been analyzed in the same manner as in the 

previous section. 
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4.7.1 Case – 1: (M=3000; N=4; T=10) 
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χ

χ- Histogram
χ- Histogram

Max Corr Coeff Histogram Max Corr Coeff Histogram

 

Fig 4.19: Compar ison of Histograms of  and Correlation for  Alg-1 and Alg-2 for  case-1 

 

In this case, M=3000; N=4 and T=10, the standard deviation of the  values for Alg-2 

is 9.28 times that of Alg-1. The histograms are as shown in Fig 4.19. The ratio of the 

means of the maximum correlation coefficients for Alg-1 to Alg-2 is 8.85. A 

significant improvement compared to a similar case of constant-H matrices. (Matrices 

with generated from Gaussian distribution of constant mean constant variation). 
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4.6.2 Case – 2: (M=1000; N=8; T=10) 
 
In this case, the value of M has been decreased from 3000 to 1000 and the value of N 

increased from 4 to 8. The histograms of Alg-1 and Alg-2 are as shown in Fig 4.20, 
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χ

χ- Histogram
χ- Histogram

Max Corr Coeff
Histogram

Max Corr Coeff Histogram

 

Fig 4.20: Compar ison of Histograms of  and Correlation for  Alg-1 and Alg-2 for    
Case-6 

The  standard deviation ratio of Alg-1 to Alg-2 is 8.65. And the maximum 

correlation coefficient mean ratio is 5.1  
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4.6.3 Case – 12: (M=100; N=40; T=10) 
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χ- Histogram
χ- Histogram
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Fig 4.21: Compar ison of Histograms of  and Correlation for  Alg-1 and Alg-2 for     
case-12 

In this case, the value of M has been decreased from 1000 to 100 and the value of N 

has been increased from 8 to 40. The histograms of Alg-1 and Alg-2 are as shown in 
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Fig 4.21. The standard deviation ratio of Alg-1 to Alg-2 is 2.635, and the maximum 

correlation mean ratio of Alg-1 to Alg-2 is 1.276. 

 

Plots summarizing all the above cases are as shown below, 

� � � �� � � � �
� � � � � ��������������������������������������������������������������� � � � �

 

Fig 4:22: Plots of standard deviation of with respect to the transmit signal dimension 
for  Alg-1 and Alg-2. 

From the Fig 4.22, it has been observed that Alg-2 has much lower standard 

deviations than those of Alg-1, for lower transmit signal dimensions, however, both 
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the Algorithms give approximately the same standard deviations for large number of 

measurements (M) and higher number of transmit signal dimensions (N). 

 

Plots showing the variation in mean with respect to the transmit signal dimension is 

as shown below. 

� � � �� � � � �
� � � � � ��������������������������������������������������������������� � � � �

 

Fig 4:23: Plot showing the mean of max correlation with respect to the transmit signal 
dimension for  Alg-1 and Alg-2. 

From Fig 4.23, it is very clear that Alg-2 provides much lower maximum correlations 

than Alg-1 for low transmit signal dimensions, where as they give almost the same 

results for higher number of measurements and higher transmit signal dimensions. 
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Therefore, from all the above cases in this section, we conclude that, when 

varying-H matrices (H-matrices generated from different Gaussian distribution) are 

used, there is a significant improvement in the performance of Algorithm-2 compared 

to Algorithm-1 in terms of standard deviation of -values and means of the 

maximum correlations coefficients for low transmit signal dimensions. However, 

both the Algorithms give approximately same results when there are a high number of 

measurements (M) and high number of transmit signal dimensions (N). 

From all the cases in both the sections, that is, for constant H-matrices and varying-H 

matrices, the conclusions made are as follows. 

1) Higher the total number of measurements (M) and higher the total number of 

dimensions of the transmit signal (N), better is the performance of both the 

Algorithms. 

2) For H matrices generated from a single Gaussian distribution, it is very 

difficult to say which Algorithm performs better, as, both the Algorithms give 

approximately same results (Standard Deviations of - values and Means of 

the maximum correlation coefficients) for the same values of M, N and T. 

3)  For H matrices generated from different Gaussian distributions having 

different means and different variances, there is a significant improvement in 

the performance of Algorithm-2 compared to Algorithm-1 in terms of 

standard deviation of -values and means of the maximum correlation 

coefficients for low transmit signal dimensions. However, both the 

Algorithms give approximately same results when high number of 
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measurements (M) and high number of transmit signal dimensions (N) are 

used. 

Hence, as the performance of Algorithm-2 is either same or better than that of 

Algorithm-1 for all the cases that have been discussed, Algorithm-2 is considered as a 

better and effective algorithm and will be used in all the future experiments in this 

study. Therefore, it is very clear from the above discussion that the performance of 

Algorithm-2 not only depends on the total number of measurements (M), the number 

of dimensions of the transmit signal (N) and the total number of targets (T) but also 

depends on the structure of the H-matrices. Now the only question that remains is, in 

general, how useful is the solution given by Algorithm-2? 

In order to answer this question, we compared the performance of the transmit 

signal given by Algorithm-2 to the performance of solution given by Genetic 

Algorithm and randomly generated codes. This comparison will be discussed in the 

next section. 

4.8 Comparison of Algorith-2 solution with Genetic Algorithm 
Solution and Randomly Generated Solutions 

4.8.1 Genetic Algorithm: 
 
Genetic Algorithm is a process in which, the best solution is derived by first 

considering a group of possible solutions. Then out of this group, a group of fit 

solutions is selected and are combined or mutated to come up with a new generation 

of better solutions. The fitness of a solution is decided by how well the solution 

satisfies the given criteria of the problem. After the mutation, a new group of fit 
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solutions is selected out of the second generation of solutions using the criteria to 

come up with a third generation of more fit solutions. This process is continued til l 

there is no more improvement in the criteria and the fittest of the last generation 

solutions is considered to be the best solution [11].  

In our case, the criteria that was used by the genetic Algorithm was,  

                             
22

1

2

1 '

t

t
t =β where  }........,4,3,2{ Tt ∈  

where,                                           sH ii =  
 

And we seek a solution s that minimizes the largest value in the set of values of 

tβ (Mini-Max solution). The varying–H matrices were generated with M=100; N=8 

and T=10 in order to be used by the Genetic Algorithm. The set of tβ value that the 

Genetic Algorithm came up with using its best solution are as shown in Table-1 

 

 

 

 

 

 

Table-1: Table showing the set of tβ  values obtained using the code given by 

Genetic Algorithm. 

 

T 
tβ  

Target-2 0.0001 

Target-3 0.0000 

Target-4 0.0002 

Target-5 0.0011 

Target-6 0.0002 

Target-7 0.0002 

Target-8 0.0002 

Target-9 0.0000 

Target-10 0.0008 
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The maximum tβ value in the above table is 0.0011 corresponding to target-5. 

Therefore the genetic Algorithm can minimize the maximum correlation energy 

between 1 and t to 0.0011. That is -30 dB. 

4.8.3 Randomly Generated Codes 
A randomly generated code is used to compute the set of tβ -values. The tβ -values 

obtained using a randomly generated code is shown in Table-2, 

 

  

 

 

 

 

 

 

 

 

 

 

 

Table-2: Table showing the set of tβ  values obtained using three randomly 

generated codes. 

Random Code -3 

T 
tβ  

  Target-2 0.1662 

Target-3 0.1387 

Target-4 0.1202 

Target-5 0.1119 

Target-6 0.1716 

Target-7 0.1957 

Target-8 0.1459 

Target-9 0.2026 

Target-10 0.1178 

Random Code -1 

T 
tβ  

  Target-2 0.1249 

Target-3 0.0791 

Target-4 0.0691 

Target-5 0.0317 

Target-6 0.0472 

Target-7 0.1318 

Target-8 0.0612 

Target-9 0.0788 

Target-10 0.0573 

  Random Code -2 

T 
tβ  

  Target-2 0.1041 

Target-3 0.0275 

Target-4 0.0162 

Target-5 0.0610 

Target-6 0.0481 

Target-7 0.0259 

Target-8 0.0479 

Target-9 0.0317 

Target-10 0.0080 
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The maximum tβ  value given by Random code-1, Random code-2 and Random 

code-3 are 0.1318 (-8.6dB), 0.1041 (-9.8dB) and 0.2026(-7dB) respectively.  

4.8.3 Algorithm -2: 
 
In order to compare the results of the Genetic Algorithm and Algorithm-2, same set 

of H-matrices were used as inputs to Algorithm-2 as were used for the Genetic 

Algorithm. The set of tβ values that the Algorithm solution came up with are as 

shown in Table-3.  

 

  

 

 

 

 

Table-3: Table showing the set of tβ  values obtained using the code given by 

Algorithm-2. 

The maximum tβ  value in this case is 0.0175, that is, -17.56dB, corresponding to 

target-7.  

 

 

 

 

T 
tβ  

Target-2 0.0162 

Target-3 0.0021 

Target-4 0.0092 

Target-5 0.0041 

Target-6 0.0003 

Target-7 0.0175 

Target-8 0.0019 

Target-9 0.0057 

Target-10 0.0124 
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                                                                            Max tβ                                                                      

 
   Random Codes 

    
           -9dB 

  
           -10dB 

  
         -7dB 

 
Algorithm-2 Code 

   
                                              -18dB 

 
Genetic Algorithm 
Code 

 
                                              -30dB 

 

Table-3: Table showing Max tβ  values obtained using 3 randomly generated codes, 

Algorithm-2 Code, and Genetic Algorithm Code. 

 

Therefore, Algorithm-2 code is better than a Random Code-1, Random code-2 and 

Random code-3 by 8.96dB, 7.76dB and 11.56dB respectively and the Genetic 

Algorithm performs better than Algorithm-2 code by 12dB in terms of the maximum 

tβ value. Though the genetic Algorithm is better than Algorithm-2, there is no 

mathematical basis for the functioning of it. Also, the genetic Algorithm takes a huge 

amount of time to come up with the best solution. For this particular case, it took 

about 12 hours to come up with the best code, whereas Algorithm-2 gave us the best 

solution in less than 30 seconds. Therefore, though the genetic Algorithm is better by 

12 dB compared to Algorithm-2, it cannot be used in situations where processing time 

is an important factor.  

4.8.3 Comparison with Random Codes: 
 
The performance of the solution given by Algorithm-2 has been compared with codes 

generated randomly, for different cases of M, N and T. This comparison tells us 
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whether our Algorithm is actually working as we intended or is giving some random 

solution.  Every element in the random code is generated from a Gaussian distribution 

of 0 mean and variance 1. 

The comparison will be done on the same cases as was done in the previous sections. 

4.8.1.1 Case – 1: (M=3000; N=4; T=10) 
 
The histograms given by the random code and Algorithm-2 code are as shown in Fig 

4.23. The  histogram obtained by using the random code has a very loose bound. 

Not a single -value is equal to 1. Also, the maximum correlation coefficient 

histogram has very high values. On the other hand, the histogram given by Alg-2 

code is very tightly bound and has its mean at 1. The correlation histogram has very 

low maximum correlation coefficient values. Hence it is very clear from the Fig 4.24 

that Alg-2 performs much better than a Random code for this case. 
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Fig 4.24: Compar ison of Histograms of and Correlation for  Alg-1 and Alg-2 for  case-1 
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4.8.1.2 Case – 6: (M=1000; N=8; T=10) 
 
In this case, the value of M has been decreased from 3000 to 1000 and the value of N 

has been increased from 4 to 8. The histograms of Alg-2 and Random Code are as 

shown in Fig 4.25. 
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Fig 4.25: Compar ison of Histograms of  and Correlation for  Alg-1 and Alg-2 for     
case 6 
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Again in terms of the tightness of the  bound and the maximum correlation 

coefficient values, solution given by Alg-2 is much better than a randomly picked 

code. 

4.8.1.3 Case – 3: (M=100; N=40; T=10) 
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Fig 4.26: Compar ison of Histograms of  and Correlation for  Random Code and Alg-2 
for  case1 
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In this case, the value of M has been decreased from 1000 to 100 and the value of N 

has been increased from 8 to 40. The histograms of Alg-2 and Random Code are as 

shown in Fig 4.26. In this case also, Alg-2 solution is better than a random code. 

Therefore from the above cases it can be concluded that Algorithm-2 gives us 

a much better solution than a randomly generated code, irrespective of M, N and T 

values. 
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CHAPTER - 5 

5. Simulation of a Radar Model 

 
The results shown previously for the performance of the Algorithms were obtained 

using the propagation matrices (H-matrices) generated randomly from Gaussian 

distributions. In order to evaluate the performance of Algorithm-2 with results 

obtained using the propagation matrices that closely resemble the actual physical 

conditions that the transmit signal would undergo; a physical radar model has been 

designed that completely represents a side looking Synthetic Aperture Radar model.  

The different parts of the radar model are, the space-time transmit signal, the 

target set and the space-time receive measurements. Each one of them will be 

discussed in the next few sections. 

5.1 Transmit Signal Model  
 

The transmit signal in our model is represented as a set of complex valued samples 

lying in a multi-dimensional space. This multi-dimensional space consists of temporal 

subspace as well as spatial subspace. Consequently, the complex valued samples of 

the transmit signal will have a temporal component as well as a spatial component.  

The temporal component of the samples is denoted in time and frequency, thus the 

total number of dimensions in temporal subspace given by tZ is 2. 

Let K be the total number of transmit temporal samples. These are the transmit 

samples transmitted at different times and at different frequencies but, by the same 
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transmit element. Therefore, the temporal position vector of the k-th transmit sample 

is given in time and frequency as,  

            T
kk

t
k tz ],[ ω=           (5.1)

 

Similarly, the spatial component of the samples are represented in 3 dimensions, i.e, 

X, Y, and Z directions, hence the total number of dimensions in transmit spatial 

subspace given by sZ  is 3.          

Let J be the total number of samples in the spatial subspace. In other words, the 

number of samples in the spatial subspace is equal to the number of transmit elements 

used in the radar model. Each transmit element transmits a sample at a particular time 

and at a particular frequency, hence, we can have multiple samples transmitted at the 

same time and at the same frequency but by different transmit elements (differing 

spatially). Thus, the total number of transmit spatial samples at a given time is equal 

to the total number transmit elements used in the model. 

The spatial position vector of the j-th transmit sample given in 3 coordinate axes is 

defined as,                                     T
jjj

s
j zyxz ],,[=                  (5.2) 

Combining both temporal and spatial subspaces, there are a total of 

st ZZZ += dimensions, i.e., 5 in the total subspace. 

Hence, the total number of spatial and temporal samples is given by JKN = , that is, 

all the samples transmitted at different times and at different frequencies by different 

transmit elements. 
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The overall position vector of the jk-th sample defined in the combined space of 

temporal and spatial is given by,   

           T
kkjjjjk tzyxz ],,,,[ ω=       (5.3) 

Where, jkz defines the complete position of a transmit sample in both spatial subspace 

as well as the temporal subspace. 

The value of the jk-th complex valued sample can be denoted with respect to its 

position vector as, 

jkjk szs =)(  

All the complex values are arranged into a single complex vector of size N (J*K) x 1 

as, 

      TTs
K

TsTsTs ssss ])(,..........)(,)(,)[( 321=s           (5.4) 

Similarly, the position vectors can be written with ‘n’  as its index as, njk zz = . 

Where, the mapping of n, j and k is given by, 

                                                    JjkJn −+= )(  

Where,             Jj ≤≤1  and Kk ≤≤1  

Hence,                                       JKNn =≤≤1  

The description of the transmit signal discussed before, as a set of complex 

samples is given in a general form. In our radar model, the transmit signal has been 

defined as a weighted superposition of a set of wide time width and wide bandwidth 

orthonormal basis functions. It is then described in terms of a set of complex valued 

samples obtained by sampling the windowed fourier transformation of every single 
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pulse. This design of transmit signal as a superposition of different basis functions is 

as follows. 

In general, a real valued transmit signal can be described as, 

         })(Re{)( tcj
s etStv ω−=             (5.5) 

where, )(tS
�

 Complex function constructed as a weighted superposition of complex 

basis functions )(tpqψ . 

            P
�

 An odd integer number indicating the total number of slow time 

functions and p is its index. 

           Q
�

 An odd integer number indicating the total number of fast time functions 

and q is its index. 

cω
�

 Real valued carrier frequency in radians given by, )2( cc fπω =  

cf
�

 Carrier frequency in (Hz). 

The complex basis functions )(tpqψ  are given by, 

−=
u

ouTcj
oqppq euTtftst ωψ )()()(    (5.6) 

where,  oT
�

 Signal repetition interval (sec). )/1( oo fT =  

 of
�

 Signal Repetition Frequency (Hz). 

 U
�

 An odd integer indicating total number of pulses transmitted. 
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)(tsp

�
 One of the P slow-time functions, each with a narrow bandwidth and 

time width T. Each )(tsp function is denoted by integer p , which 

ranges from,    ��
���� −≤≤��

���� −−
2

1

2

1 P
p

P
 

            )(tfq

�
 One of the Q fast-time functions, each with a narrow time width and 

a wide bandwidth B.  Each )(tfq  function is denoted by q , which 

ranges from,  ��
���� −≤≤��

���� −−
2

1

2

1 Q
q

Q
 

A train of U pulses can be denoted by −
u

ouTcj
oq euTtf ω)( . Each pulse in the pulse 

train is described by the fast-time function )(tfq . Hence, there is an entire pulse train 

for every fast-time function )(tfq . 

The pulses are represented by u , where u is an odd integer, ranging from  

��
���� −≤≤��

���� −−
2

1

2

1 U
u

U
 

The complex function )(tS  is given by, 

                                 =
p q

pqpq tStS )()( ψ                        (5.7) 

                        −=
p q u

ouTcj
oqppq euTtftsStS ω)()()(      (5.8) 

where, pqS are the complex weights of the basis functions. 
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All the fast-time basis functions are derived from a main function called the mother 

function )(tg f . Each fast-time function )(tfq  is a slightly time delayed version of the 

mother function. 

i.e.                                     qcj

qfq etgtf
τωτ )()( −=                Where, oq T<<τ     (5.9) 

Where, qτ is defined as the time delay used to generate the fast-time basis functions. 

Similarly, the slow-time functions are also derived from the mother-function )(tgs . 

Each slow-time function is a frequency shifted version of the main mother-function. 

As it is a frequency shifted function, the mother function and the slow-time basis 

function are represented in frequency domain as, )(ωsG  and )(ωpS  respectively [13].  

 
The slow-time basis function is given as, 

                       )()( psp GS ωωω −=     where, op ωω <<      (5.10) 

Where, pω is the frequency shift used to generate the slow-time basis functions. 

Substituting the above equations of fast-time and slow-time basis functions and 

taking a windowed fourier transformation, the equation of our transmit signal (5.8) is 

transformed as, 

qcjouTj

q
fpq

p

oTpju

oso eeGSeuTguTs
τωωωω ωω )(

)()(),(
−−−=   (5.11) 

The windowed fourier transform of S(t) is now sampled. After windowing, if the 

frequency spectrum is sampled at Nyquist rate, then there will be an overall of 2BT 

samples which is much higher than the time-bandwidth product of the windowed 

signal, oBT . Hence, the signal needs to be shifted back to ouT   so that the spectrum 
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can be sampled with higher spacing. This shifting is performed by multiplying the 

frequency spectrum by ouTje ω . Therefore, the Nyquist spacing for the shifted version 

of the windowed transmit signal is oω , however, it was chosen to oversample the 

spectrum with a spacing of 2/oω  between the samples, so that more of the signal can 

be seen in the time-domain. Hence, there is a total of )2/( ov ωω =  number of 

frequency samples where, ‘ v’  is an integer value that varies from  

��
���� −≤≤��

���� −−
2

1

2

1 V
v

V
 

Therefore, there are an overall of UV number of complex transmit samples.  

 Thus, ),( ωouTs can be denoted as uvs  and is given by, 

  
qc

ov
j

q

o
fpq

p

oTpju

osuv e
v

GSeuTgs
τωω

ω ω )
2

(
)

2
()(

−−
=    (5.12) 

A new term, pq
uvψ  has been defined as, 

       
qc

ov
j

o
f

oTpju

os
pq

uv e
v

GeuTg
τωω

ω ωψ
)

2
(

)
2

()(
−−

=
      (5.13)

 

Substituting the above term in (5.12) we have, 

=
p q

pq
pq
uvuv Ss ψ    (5.14) 

Where, uvs  are the total number of temporal-samples of the transmit signal and 

pqS are the complex weights of PQ number of basis functions. Hence, the complex 

temporal samples have been successfully written in terms of complex weights of the 

basis functions defined earlier in this chapter. Now, the Algorithm that has been 
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developed in this study needs to find the best possible “weights”  for the basis 

functions which will give us the lowest possible correlation between the target of 

interest and some other target in a target grid. 

Reindexing, the samples can be denoted with a single index using the mappings as,  

rqp →, : p, q, indices are mapped to r by, ��
���� +++=

2

1
)(

PQ
qpQr  

Range of p, q, and r are given as, 

��
���� −≤≤��

���� −−
2

1

2

1 P
p

P
, 

��
���� −≤≤��

���� −−
2

1

2

1 Q
q

Q
 

PQRr =≤≤1  

Similarly, kvu →, : p, q, indices are mapped to r by, ��
���� +++=

2

1
)(

UV
vuVk  

Range of p, q, and r are given as, 

��
���� −≤≤��

���� −−
2

1

2

1 U
u

U
, 

��
���� −≤≤��

���� −−
2

1

2

1 V
v

V
 

UVKk =≤≤1  

Therefore, the equation (5.14) can be written in a reindexed form as, 

                                              =
r

rkrk Ss ψ                                         (5.15) 

where, ks is a set of K samples and can be written in a vector form as,  
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                                     T
k

t ssss ]....,,.........,,[ 321=s                       (5.16) 

rS is a set of R complex values and can be written in a vector form as, 

                       T
R

t SSSS ].........,,.........,,[ 321=S
      (5.17)

 

and krψ  is a matrix of K x R size give as, 

              

�
�
�
�
�
�
�
�
�

�

�

�
�
�
�
�
�
�
�
�

�

�

=

KKKKK

R

R

R

ψψψψ

ψψψψ
ψψψψ
ψψψψ

321

3333231

2232221

1131211

��

��

��

���

���

���

  (5.18) 

 

The superscript ‘ t’  indicates the temporal subspace. 

Using the above representation of the samples, the model equation (5.15) can be 

written as, 

tt Ss =       (5.19) 

Equation (5.19) gives us one vector of ts , corresponding to one transmit element. As 

a space-time transmit signal is being defined, more than one transmit element are to 

be considered. Let us say there is a total of ‘ J’  number of transmit elements. 

Therefore the model equation (5.15) will change to,  

                    =
r

jrkrjk Ss ψ      (5.20) 

        
t
j

t
j Ss =

            (5.21)
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Which defines the transmit sample vector for a specific transmit element j. 

Including the spatial dimension in our model equation (5.15) we have, 

                                               
=

=

r

s
rJkr

s
k

r

s
rkr

s
k

SIs

Ss

ψ

ψ
   (5.22) 

Where,              T
Jkkkk

s
k ssss ].........,.........,,[ 321=s  

                    T
Jrrrr

s
r SSSS ]...........,.........,,[ 321=S                   

                                   

A matrix, ψ
krD  is defined such that Jkrkr ID ψψ =  

Therefore, equation (5.22) is transformed into, 

s
r

r
kr

s
k SDs = ψ          (5.23) 

Another matrix, kF  is defined such that, 

                                                ]......,.........,[ 21
ψψψ
kRkkk DDDF =  

Therefore substituting kF in equation (5.23) we have, 

                                                SFs k
s
k =          (5.24) 

Finally the model equation (5.24) can be written as, 

    FSs =                      (5.25) 

Where,             T
k ]..........,.........,[ 21 FFFF =  

TTt
J

TtTtTt ]).........(..........)(,)(,)[( 321 sssss =  

                                   ]).....(,.........)(,)(,)[( 321
Tt

J
TtTtTt SSSSS =  
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5.2 Target Model 
 
A total of tN number of targets lying on the ground was considered to define the 

target model. These targets lie in a Y dimensional space. Each target has a position 

vector associated with it and is given by ty . The complex scattering coefficient of 

each target is given by tγ , hence there are tN number of scattering values given by the 

vector as, 

T

tN ]............,.........,,[ 321 γγγγ=     (5.29) 

Therefore, the entire target model can be described by the position vectors of the 

targets as well as the complex scattering values. 

The arrangement of the target system used in the model will be discussed in the future 

sections. The above description only gives a general overview of a target system. 

5.3 Receiver Measurements 
 
The receiver measurements are described in the same way as the transmit signal. The 

receive measurements in this model are represented as a set of complex valued 

samples lying in a multi-dimensional space. This multi-dimensional subspace consists 

of temporal subspace and spatial subspace. Consequently, the received complex 

valued samples will have a temporal component as well as a spatial component.  

The temporal component of the samples is denoted in time and frequency, therefore, 

the total number of dimensions in temporal subspace given by tX is 2. 



 78 

Let 'K  be the total number of receive temporal samples. These are the receive 

samples received at different times and at different frequencies but by the same 

receive element. 

Therefore, the temporal position vector of the k’ -th receive sample is given in time 

and frequency as,                         T
kk

t
k tx ],[ ''' ω=     (5.30) 

 Similarly, the spatial component of the samples are represented in 3 dimensions, i.e, 

X, Y, and Z directions, hence the total number of dimensions in receive spatial 

subspace given by sX  is 3.          

Let ‘ I’  be the total number of receive samples in the spatial subspace. In other words 

the number of samples in the spatial subspace is equal to the number of receive 

elements used in the radar model. Each receive element receives a sample at a 

particular time and at a particular frequency, hence we can have multiple samples 

received at the same time and at the same frequency but by different receive elements 

(differ spatially). Therefore, the overall spatial samples is equal to the total number of 

receive elements used in the model. 

 Thus, the spatial position vector of the i-th transmit sample given in 3 coordinate 

axes is defined as,           T
iii

s
i zyxx ],,[=           (5.31) 

Combining both temporal and spatial subspaces, there are a total of st XXX +=  

dimensions, i.e., 5 in the combined subspace. 



 79 

Hence, the total number of spatial and temporal samples is given by 'IKM = , that is, 

all the samples received at different times, at different frequencies by different 

receive elements. 

The overall position vector of the ik’ -th sample defined in the combined space of 

temporal and spatial subspaces is given by,   

T
kkiiiik tzyxx ],,,,[ ''' ω=     (5.31) 

Where, 'ikx defines the complete position of a receive sample in both spatial subspace 

as well as the temporal subspace. 

The value of the ik’ -th complex valued sample can be denoted with respect to its 

position vector as, 

'' )( ikik rxr =  

The complex values are arranged into a single complex vector of size M(I*K’ ) x 1 as, 

TTs
K

TsTsTs rrrrr ])......(,.........)(,)(,)[( 321=    (5.32) 

Similarly, the position vectors can also be written with ‘m’ as their index as, 

mik xx =' . 

Where, the mapping of m, i and k’  is given by, 

                                                  IiIkm −+= )'(  

where,              Ii ≤≤1  and ''1 Kk ≤≤  

hence,                                       '1 IKMm =≤≤  
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5.4 Model Equations 
 
From Chapter-2, Equation (2.4) gives the relation between the received signal vector 

r to the transmit signal vector sand the scattering value vector as, 

nHr += st
t

tγ          (5.33) 

Where, n is an M dimensional complex vector representing random noise. 

The most important part of the above relation is the propagation matrix, tH which of 

the dimension M x N. In order to derive the propagation matrix, the following 

parameters are to be discussed first. 

θK
�

 This is a frequency matrix which accounts for the change of phase with respect 

to the transmitter position, temporal frequency and time. Basically it accounts for the 

change in phase of the transmit signal as it travels from transmitter to the target. It has 

a dimension of Y x Z. 

φK
�

 This is also a frequency matrix which accounts for the change in phase of the 

signal from the target to the receiver. It’s a Y x X dimension vector. 

):,'( tkkgt
h

�
 It’s a complex weighting function that relates the temporal samples of 

the transmit signal to the temporal receive samples for a given target ‘ t’ . We will be 

discussing more about the kind of weighting function used in the model in the future 

section. 
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),( tjgs
hJ

�
 It’s again a complex weighting function that weights the spatial transmit 

samples. It can be viewed as a transmit antenna pattern that corresponds to beam 

shaping or antenna tapering characteristic. 

),( tigs
hI

�
 A complex weighting function that weights the spatial receive samples. It 

can be viewed as a receive antenna pattern that corresponds to beam shaping or 

antenna tapering characteristic. 

The tH matrix is described as an M x N dimensional matrix given by, 

t
nztKtKT

tyjs
nzsKT

tyjty
TsK

Ts
mxj

h
mn
t eeetnmg

)(
):,( θϕθφ +−−−

=H      (5.34) 

Separating the above expression into temporal and spatial parts using various 

mappings described above as, 

t
nz

tKtKT
tyjt

h

s
nzsKT

tyjty
TsK

Ts
mxjs

h
mn
t etkkgeetjigH

)(
):,'():,( θϕθφ +−−−

=    (5.35) 

Where,  

):,'():,():,;,'():,( tkkgtjigtjkikgtnmg t
h

s
h

s
hh ==   (5.36) 

Therefore the temporal part is given by a K’  x K matrix as, 

t
nztKtKT

tyjt
h

t
kk

t
t etkkg

)(

' ):,'( θϕ +−== HH   (5.37) 

and the spatial part is given as a matrix of I x J dimension as, 

s
nzsKT

tyjty
TsK

Ts
mxjs

h
s
ij

s
t eetjig θφ −−

== ):,(HH         (5.38) 

The combined tH matrix can be written as,  

s
t

t
tt HHH ⊗=       (5.39) 
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(where, ⊗ denotes a Kronecker product) 

Hence from the equation (2.7) we know that the response vector of target ‘ t’  is given 

by, 

                
sH tt =

                    (5.40) 

Also, using the transmit signal model equation, in which the transmit signal has been 

described to be a weighted superposition of orthonormal basis functions. Hence from 

equation (5.25) we have, 

                                                       FSs =    (5.41) 

Where, s is an N dimensional vector containing the transmit signal space-time 

samples and S is a W- dimensional transmit weight vector that gives the weights for 

the transmit signal basis functions. 

Substituting s in the above equation we have, 

SH

FSH

'tt

tt

=
=

    (5.42) 

Where,                                    )(' jttt IHFHH ⊗==    (5.43) 

Hence, the propagation matrices i.e., tH matrices, that give the relation between the 

response vectors and the transmit signal samples, have been converted to 'tH matrices 

that relate the response vectors to the weight vector of the basis functions of the 

transmit signal. 
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5.5 Default values used in the Radar Model 
 
Let us consider a radar system which is flying at an altitude ‘ h’  with a velocity ‘ v’  in 

the x-direction. Let the radar be looking at a target grid of yxxNN , and the center of 

the target is located at x = 0; y =Yo. The radar setup is as shown in Fig 5.1. 

 ẑ  

 v Multistatic Radar System 

 
 
                             iθ  

  
  Ro Target Area 

 h yN y∆  

 
 
 
 ŷ  
 

                 Yo 

 xNx∆  

x̂  
 
 

Fig 5.1: Multistatic Synthetic Aper ture Radar System 

 
 
• Transmit temporal position vectors – The transmit temporal position vector has 

been defined to be in a two dimensional space of time and frequency as, 

    T
kk

t
k tz ],[ ω=

               (5.44)
 

As discussed before, the frequency domain of a single pulse of the transmit signal 

is sampled at a rate of )2/( oω , hence there are a total of V frequency samples 
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spaced 2/oω  apart and a total of U samples in the time domain spaced oT distance 

apart. Therefore, the transmit element position vector can be written as, 

       T
oo

t
k vuTz )]2/(,[ ω=        (5.45) 

Where, the mapping of k, u, and v are given as, 

��
���� +++=

2

1
)(

UV
vuVk  

• Receive Temporal Position vectors – Similar to the transmit temporal position 

vectors, the received position vectors also lie in a two dimensional space of time 

and frequency and is given by, 

  T
kk

t
k tx ],[ ''' ω=          (5.46) 

A receive window of duration oo TtT ≤≤−  has been used for the complex 

weighting function defined by ):,'( tkkgt
h  that weights the receive samples 

accordingly. The frequency spectrum of this window has been sampled using the 

Nyquiste criteria, resulting in frequency samples placed oω distance apart. 

Therefore, there are a total of V’  receive frequency samples and a total of U’  time 

samples corresponding to U’  received pulses. Hence, the receive position vector 

can be defined as, 

T
oo

t
k vTux ]','[' ω=      (5.47) 

Where,              ��
���� −≤≤��

���� −−
2

1'
'

2

1' U
u

U
,  ��

���� −≤≤��
���� −−

2

1'
'

2

1' V
v

V
  

��
���� +++=

2

1''
)'''('

VU
vVuk , ''''1 VUKk =≤≤  
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Now, we define relations between, the total number of transmit pulses U, the total 

number of receive pulses U’ , the total number of transmit frequency samples V 

and the total number of receive frequency samples V’  as, 

2' += UU  -- The model has been designed in such a way that the receiver 

receives two pulses more than the number of pulses actually transmitted.  

2

1
'

−= V
V  or 

2

1
'

+= V
V  -- Based on the sampling rates of windowed transmit 

signal spectrum and response signal spectrum, it is very clear that the total 

number of receive frequency samples are approximately half of the total number 

of transmitted frequency samples. 

 

• Target Position vectors – The target position vector have been defined to be in a 

four dimensional subspace. In those four dimensions, three dimensions 

correspond to X, Y, and Z directions, where, the targets lie in the X-Y plane and Z 

corresponds to the height of the targets. The other dimension corresponds to the 

velocity of the target. The target position vectors have been defined as, 

T
ttyxt vzynxny ],,,[ ∆∆=     (5.48) 

Where, ��
���� −≤≤��

���� −−
2

1

2

1 x
x

x N
n

N
 and ���

����� −
≤≤���

����� −
−

2

1

2

1 y
y

y N
n

N
 

Where, xN and yN  are the total number of targets in X and Y axis respectively. 

The mapping of yx nn , and t  is shown as, 
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( ) ���
����� +

++=
2

1yx
yyx

NN
nNnt    Where, NxNyt ≤≤1  

• Temporal Complex Weighting function – The temporal complex function has 

been defined as a function that weights and relates transmit temporal samples to 

receive temporal samples. 

It can also be seen as a receive window that has a time width of oo TtT ≤≤− , and 

windows the receive pulse. This weighting function is such that for targets below 

the center target in a target grid, it includes energy not only from a particular 

receive pulse corresponding to a particular transmit pulse; it also includes the 

energy from the pulse transmitted before that particular pulse. Similarly for 

targets above the center target, it includes energy from a particular pulse as well 

as energy from the pulse transmitted after the particular pulse.  This weighting is 

function as, 

),:,;','():,'( yx
t
h

t
h nnvuvugtkkg =  

0)]1'()'([
)'2(
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sin.1
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                      (5.49) 
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0)]1'()'([
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where, 1)( =tδ  for 0=u  and 0)( =tδ for 0≠u  

  2/1
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 for vv ='2                       (5.50) 
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 for vv ≠'2       (5.51) 

 

• Spatial complex weighting function – As stated before, the spatial complex 

functions weight the spatial receive samples. This function has been set as 1 in the 

model, which means there are no weights attached to the spatial samples. 

1),(),( == tjgtig s
hJ

s
hI  

• θK  and ϕK  - The frequency matrices θK  and ϕK  are defined as, 
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Separating the spatial part and the temporal part we have, 
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Similarly,  ϕK  is defined as, 
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(For more information on the derivation of these frequency matrices, please refer the 

reference [3]) 

 

• Target Spacing – Targets are spaced one resolution cell apart in the model. 

The resolution in the Doppler direction is given by [14],  

co

o

vfUT

cR
x

2
=∆              (5.54) 
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And the resolution in the range directions is given by, 

  
o

o

BY

cR
y

2
=∆ .                 (5.55) 

(The description of the Radar Model has been taken from references [14]) 

5.6 Numerical Values for the Model 
 
The numerical values of the various parameters used in the model have been derived 

by applying several constraints on to the model. One such constraint is that the 

resolutions along the along-track axis and the cross-track axis have been made equal. 

From this constraint we can derive expressions for bandwidth B and total time width 

T as,  

    
o

cyx

Y

vfNN
B

β
=         (5.56) 

and                                             
c

oyx

vf

YNN
T

β
=          (5.57) 

Where, β  is the ratio of total number of targets to the product of time and bandwidth 

and is given as,                     

BT

NN yx=β     (5.58) 

The expressions for U and V have can also be derived from the above constraint as, 

β
xN

U =                (5.579) 
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and                               
β

yN
V

2
=              (5.60) 

From the discussion in previous sections, we know that, 

U

T
To =

          (5.61) 

Also, the fast time function delay has been set as,  
B

q
q =τ            (5.62)  

And the slow-time function frequency shift is defined as,  
��

����
=

T

p
p πω 2        (5.63) 

Since the total number of samples received, must be greater than the total number of 

targets, to have an unambiguous image, we can say that the total number of receive 

elements must be greater thanβ . i.e., 

BT

NN
I yx=> β    (5.64) 

A term η  has been defined, which gives the ratio of the beam width of the radar to 

the spatial resolution. This term helps in defining the spatial extent of the receive 

elements, given by xL .                     
x

xs

∆
∆

=η    (5.65) 

where, sx∆ is the main beam width given by, 

xc

o
s Lf

cR
x =∆    (5.66) 

Therefore, the spatial extent of the receive elements is given by, 

        
xf

cR
L

c

o
x ∆

=
η

         (5.67) 
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Numerical Values:  

Following are the numerical values that have been given as inputs to the Algorithm. 

These values resemble closely the parameters of a low-orbit radar would have.  

The values of β and η are assumed as, 

31

5

2.4

==
=
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NyNx

η
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Therefore, the derived values are, 
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Using all the numerical values mentioned in this section as inputs to the Algorithm, 

the complex propagation matrices ( H' -matrices) are obtained for every single target 

in the target grid.  

Hence, theseH' - matrices are used as inputs to our Algorithm to derive an 

optimal space-time signal. The performance of Algorithm-2 with the new model will 

be analyzed in the subsequent chapters. 
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CHAPTER - 6 

6. Analysis of Algorithm-2 using the Radar Model 

A radar model has been designed as discussed in the previous chapter. This chapter 

evaluates the performance of Algorithm-2 using inputs to the algorithm from the 

radar model. It answers various questions on the performance of the Algorithm based 

on the variation of the total number of basis functions. It has been found that as the 

total number of basis functions are increased, the chances of the Algorithm coming up 

with a best code also increases. This poses a question as to how far can the total 

number of basis functions can be increased? An upper limit on the total number of 

basis functions is also derived in this chapter. It has also been shown that as the total 

number of transmit elements are increased from 1 to 2, the performance of the 

algorithm improves, but the ambiguity plot seizes to remain invariant. Also, a 

comparison of the final code given by the Algorithm with a randomly generated code 

has been done, which gives us an idea about the efficacy of the final result given by 

the Algorithm. 

6.1 Performance Analysis of Algorithm-2 with the Radar Model 

Having designed the model, the numerical values discussed in the previous chapter 

have been used as inputs to the model. A 31 x 31 grid i.e., xN =31 and yN =31, has 

been chosen for the analysis of the algorithm performance as it closely resembles a 

practical physical model. Also, having a bigger grid would require huge amount of 

processing time and system memory. Thus, substituting the numerical values, the 'H  
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matrices are generated for every single target on the grid. These 'H  matrices are then 

used as inputs to the Algorithm. Ideally, all the 'H - matrices corresponding to all the 

targets should be used as inputs to the algorithm. But based on observations made on 

the performance of the model, only the 'H  matrices corresponding to the targets on 

the Cross-Track Axis are used. 

The observations made were, 

1) The Ambiguity function for a standard transmit signal is symmetric about 

along track and cross track axis. Hence, the targets lying only in one quadrant 

can be considered rather than all the four quadrants of the grid. This would 

speed up the process of finding the best code. 

2) The Ambiguity function of a space-time signal transmitted using one transmit 

element is invariant of the target of interest. That is no matter which target we 

consider as the target of interest in the grid, we would get the same ambiguity 

pattern with respect to that particular target. 

3) The model has an error in generating the 'H  matrices for the targets along the 

Along Track Axis.  

Hence, in view of the above observations, only the targets along the cross-track axis 

in the grid have been considered. For these targets, the performance of the algorithm 

for different values of P and Q has been analyzed. 

For all the following cases shown in the next few sections, the total number of 

transmit elements used is 1 i.e., J=1 and the total number of receive elements used are 

15 i.e., I=15. The total number of Ps and Qs are varied over the several cases shown. 
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6.1.1 Case-1(P=1; Q=1; J=1): 
 
 The total number of slow-time functions ‘P’  is set to 1 and the total number of fast-

time functions ‘Q’  is also set to 1.  

The Ambiguity (Correlation) plots obtained using the transmit code generated by the 

Algorithm are as shown in Fig 6.1  

 

Fig 6.1: Spatial, Total and Temporal Ambiguity plot along the Cross Track axis for  P=1; 
Q=1. 

 

The green plot in Fig 6.1 indicates the Temporal ambiguity plot which conveys by 

how much the maximum correlation is reduced when only the temporal aspect of the 

transmit signal is considered. Since P and Q are equal to 1, the algorithm does not 
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have much freedom to find the best code. Hence, the maximum temporal ambiguity is 

down only by 1dB. The black plot shows the spatial ambiguity plot along the cross-

track axis. Furthermore, when the temporal and spatial plots are added in dB, the total 

ambiguity pattern is obtained in dB which is indicated by the red curve in the figure. 

From Fig 6.1 we can see that the total maximum correlation has been lowered by 

9dB.  

 

Fig 6.2: A 2-D plot of the correlation of the target of interest and all the targets in the 
gr id   (2-D ambiguity plot) for  P=1; Q=1. 

Fig 6.2 shows the correlation of the main target of interest with all other targets in the 

grid, obtained using the transmit signal given by the Algorithm. The targets in the 

rectangular box are the targets on which the algorithm has worked and the target in 

the circle is the target of interest. Red color in the above plot, indicates a very high 
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correlation, where as the dark blue color indicates very low correlation. The bright 

spots along the corners and the center of the grid indicate Doppler and Range 

ambiguities. An ideal two dimensional plot should have a red spot on the target of 

interest, which indicates a high correlation of the target with itself and dark blue color 

everywhere else.  

6.1.2 Case 2 (P=3; Q=3; J=1): 
 
In this case, the total number of slow-time functions, P is set to 3 and the total 

number of fast-time functions, Q is also set to 3.  

The Ambiguity (Correlation) plot obtained by using the transmit code generated by 

the Algorithm is as shown in Fig 6.3. 

 

Fig 6.3: Spatial, Total and Temporal Ambiguity plot along the Cross Track axis for  

P=3; Q=3. 
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As can be seen from the fig. 6.3, the total ambiguity plot has a maximum total 

correlation of -10dB which indicates that there has not been much of an improvement 

when compared to a case of P=1 and Q=1. Improvement will be noticed as P and Q 

further increased. The 2-D plot of this case is as shown in Fig 6.4. 

 

Fig 6.4: A 2-D plot of the correlation of the target of interest and all the targets in the 
gr id   (2-D ambiguity plot) for  P=3; Q=3. 

6.1.3 Case 3 (P=5; Q=5; J=1): 
 
The total number of slow-time functions, P is set to 5 and the total number of fast-

time functions, Q is also set to 5.  

The Ambiguity (Correlation) plots obtained by using the transmit code generated by 

the Algorithm are as shown in Fig 6.5 and Fig 6.6. 
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Fig 6.5: Spatial, Total and Temporal Ambiguity plot along the Cross Track axis for  
P=5; Q=5. 

 

Fig 6.6: A 2-D plot of the correlation of the target of interest and all the targets in the 
gr id   (2-D ambiguity plot) for  P=5; Q=5. 
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In this case, the maximum total ambiguity is about -12dB which shows an 

improvement of 3dB when compared to the case where P=1; Q=1 and an 

improvement of 2dB when compared to the case of P=3; Q=3. 

6.1.4 Case 4 (P=7; Q=7; J=1): 
 
The total number of slow-time functions, P is set to 7 and the total number of fast-

time functions, Q is also set to 7.  

The Ambiguity (Correlation) plots obtained by using the transmit code generated by 

the Algorithm are as shown in Fig 6.7 and Fig 6.8.. 

 

Fig 6.7: Spatial, Total and Temporal Ambiguity plot along the Cross Track axis for  
P=7; Q=7. 
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Fig 6.8: A 2-D plot of the correlation of the target of interest and all the targets in the 
gr id   (2-D ambiguity plot) for  P=7; Q=7. 

 

In this case the total maximum ambiguity is about -16dB. There is a considerable 

improvement when compared to the previous cases. This is attributed to the increased 

dimension of the transmit signal which is given by, J*P*Q. In this case, the transmit 

signal has a dimension of 49, hence the algorithm has a subspace having 49 

dimensions to search for the best code, compared to the previous cases, case-1, case-

2, and case-3 where the dimensions were 1, 9 and 25 respectively. 
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6.1.5 Case 5 (P=9; Q=9; J=1): 
 
The total number of slow-time functions, P is set to 9 and the total number of fast-

time functions, Q is also set to 9.  

The Ambiguity (Correlation) plots obtained by using the transmit code generated by 

the Algorithm are as shown in Fig 6.9. 

 

Fig 6.9: Spatial, Total and Temporal Ambiguity plot along the Cross Track axis for  
P=9; Q=9 

 

In this case there is not much of an improvement in the total maximum ambiguity as 

compared to a case where P=7 and Q=7. It is equal to -15dB.  
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Fig 6.10: A 2-D plot of the correlation of the target of interest and all the targets in the 
gr id   (2-D ambiguity plot) for  P=9; Q=9. 

 

6.1.6 Case 6 (P=11; Q=11; J=1): 
 
The total number of slow-time functions, P is set to 11 and the total number of fast-

time functions Q, is also set to 11.  

The Ambiguity (Correlation) plots obtained by using the transmit code generated by 

the Algorithm are as shown in Fig 6.11 and Fig 6.12. 
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Fig 6.11: Spatial, Total and Temporal Ambiguity plot along the Cross Track axis for  
P=11; Q=11. 

 

Fig 6.12: A 2-D plot of the correlation of the target of interest and all the targets in the 
gr id   (2-D ambiguity plot) for  P=11; Q=11. 
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This is the final case that will be discussed for one transmit element. There is 

a limit on how much the values of P and Q can be increased. This limit will be 

discussed later in this section. The maximum values that could be assigned to P and Q 

were P=11 and Q=11. The maximum total ambiguity for this case is -16dB. An 

improvement of 7dB as compared to the standard transmit signal (P=1; Q=1 and J=1) 

is observed. 

Hence from the all the cases discussed, it is clear that as the total number of 

basis functions is increased, the maximum correlation drops by a great extent. This is 

because, as the total number of basis functions is increased, that is, as the total 

number of slow-time and fast-time functions are increased, the Algorithm achieves 

more flexibility to come up with a better code. In other words, more the number of 

basis functions, bigger is the subspace in which the Algorithm can search for the best 

code, hence the possibility of coming up with the best possible code improves. 

The limit on the number of Ps and Qs is discussed as follows. 

As discussed before, the fast time functions are a time shifted form of the mother 

function )(tg f . The shift in time is given as, qτ  where,  

    oq T<<τ  

Where, oT  is the pulse repetition time.  

When more than one fast time functions are considered, in order to differentiate 

between two consecutive pulses, the duration of total number of fast time functions 

should not exceed the pulse repetition time. 
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i.e.,                                                    

     

oq TQ <<τ

         (6.1)

 

Hence, the total number of fast time functions (Q) should be selected in such a way 

that the combined duration should not exceed the pulse repetition time. 

   
q

oT
Q

τ
≤  

Similarly, a limit can be defined for slow-time functions as well. As it is known, the 

slow-time functions are a frequency shifted version of the mother function )(ωfG . 

The frequency shift is defined as pω  where, 

op ωω <<  

where, oω is the pulse repetition frequency. 

Hence the frequency extent of the total number of slow-time functions should not 

exceed the pulse repetition frequency. Therefore a limit on the number of P’s used 

can be set,  

p

oP
ω
ω

<<    (6.2)

       

 

6.2 Analysis of the Algorithm with 2 Transmit Elements (J = 2) 
 
Having analyzed the Algorithm for all the cases with 1 transmit element (J=1), the 

Algorithm has been analyzed for 2 transmit elements that is J=2. By doing this, a 

spatial dimension has been included to the transmit signal. Hence, there are two 

transmit elements at different spatial position vectors. 
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Same cases of P and Q will be considered as were considered for 1 transmit element. 

6.2.1 Case 1 (P=1; Q=1; J=2): 
 
The total number of slow-time functions ‘P’  is set to 1 and the total number of fast-

time functions ‘Q’  is also set to 1.  

The Ambiguity (Correlation) plot obtained using the transmit code generated by the 

Algorithm is as shown in Fig 6.13. Only the total ambiguity plot along the cross-track 

axis will be shown, as the temporal ambiguity plot cannot be plotted for J=2 unlike 

J=1 cases. 

 

Fig 6.13: Total Ambiguity plot along the Cross Track axis for  P=1; Q=1. 
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Fig 6.14: A 2-D plot of the cor relation of the target of interest and all the targets in the 
gr id   (2-D ambiguity plot) for  P=1; Q=1. 

From the ambiguity plot it is noticed that the maximum total correlation is about -

9dB. More improvement can be seen as the number of P’ s and number of Q’ s is 

increased. The 2-D plot for this particular case is as shown Fig 6.14. 

Here again, similar to J=1 2-D plots, red color indicates high correlation and dark 

blue color indicates a very low correlation between the target of interest and the other 

target.  

6.2.2 Case 2 (P=3; Q=3; J=2): 
 
The total number of slow-time functions, P is set to 3 and the total number of fast-

time functions, Q is also set to 3.  
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The Ambiguity (Correlation) plots obtained by using the transmit code generated by 

the Algorithm are as shown in Fig 6.15 and Fig 6.16. 

 

Fig 6.15: Total Ambiguity plot along the Cross Track axis for  P=3; Q=3. 

 

Fig 6.16: A 2-D plot of the correlation of the target of interest and all the targets in the 
gr id   (2-D ambiguity plot) for  P=3; Q=3. 
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The total ambiguity plot has a maximum total correlation of -11dB. This is an 

improvement of 2-dB when compared to the previous case. 

6.2.3 Case 3 (P=5; Q=5; J=2): 
 
The total number of slow-time functions P is set to 5 and the total number of fast-time 

functions Q is also set to 5.  

The Ambiguity (Correlation) plots obtained by using the transmit code generated by 

the Algorithm are as shown in Fig 6.17 and Fig 6.18.. 

 

Fig 6.17: Total Ambiguity plot along the Cross Track axis for  P=5; Q=5. 
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In this case, the maximum total ambiguity is about -19dB which is an improvement of 

8dB as compared to the case where P=5; Q=5 and an improvement of 10dB as 

compared P=3; Q=3 case. 

 

Fig 6.18: A 2-D plot of the correlation of the target of interest and all the targets in the 
gr id   (2-D ambiguity plot) for  P=5; Q=5. 

 

6.2.4 Case 4 (P=7; Q=7; J=2): 
 
The total number of slow-time functions P is set to 7 and the total number of fast-time 

functions Q is also set to 7.  

The Ambiguity (Correlation) plots obtained by using the transmit code generated by 

the Algorithm are as shown in Fig 6.19 and Fig 6.20. 
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Fig 6.19: Total Ambiguity plot along the Cross Track axis for  P=7; Q=7. 

 

Fig 6.20: A 2-D plot of the correlation of the target of interest and all the targets in the 
gr id   (2-D ambiguity plot) for  P=7; Q=7. 
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In this case the total maximum ambiguity is about -24dB. A considerable 

improvement is observed when compared to the previous cases.  

6.2.5 Case 5 (P=9; Q=9; J=2): 
 
The total number of slow-time functions P is set to 9 and the total number of fast-time 

functions Q is also set to 9.  

The Ambiguity (Correlation) plots obtained by using the transmit code generated by 

the Algorithm are as shown in Fig 6.21 and Fig 6.22. 

 

Fig 6.21: Total Ambiguity plot along the Cross Track axis for  P=9; Q=9 

 

In this case there is a not much improvement in the total maximum ambiguity 

compared to a case where P=7 and Q=7. It is again equal to -24dB.  
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Fig 6.22: A 2-D plot of the correlation of the target of interest and all the targets in the 
gr id   (2-D ambiguity plot) for  P=9; Q=9. 

 

6.2.6 Case 6 (P=11; Q=11; J=2): 
 
The total number of slow-time functions P is set to 11 and the total number of fast-

time functions Q is also set to 11.  

The Ambiguity (Correlation) plots obtained by using the transmit code generated by 

the Algorithm are as shown in Fig 6.23 and Fig 6.24. 
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Fig 6.23: Total Ambiguity plot along the Cross Track axis for  P=11; Q=11. 

 

This is the final case that will be analyzed for two transmit elements. As explained 

before, the maximum values that could be assigned are P=11 and Q=11. The 

maximum total ambiguity obtained for this case is -28dB.  

 

This was the best result which was achieved in terms of reducing the 

maximum correlation using two transmit elements. It is the maximum correlation of 

the main target of interest with all the other targets that our algorithm worked on.  

The two dimensional image of the entire grid is as shown below. 
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Fig 6.24: A 2-D plot of the correlation of the target of interest and all the targets in the 
gr id   (2-D ambiguity plot) for  P=11; Q=11. 

 

The observations made from the two dimensional plot are, 

1) The correlation of the target of interest with any other target is not invariant when 

the target of interest is changed. That is, the correlation value of the target of interest 

and some other target at certain resolution cells away will not be exactly same as the 

correlation between a different target of interest and another target which is same 

resolution cells away.  

2) The 2-D total ambiguity plot is rotationally symmetric, which is according to one 

of the properties of the ambiguity function that states that [2], 

                      ),(),( *
dRdR fTfT −−= χχ

                 (6.3)
 

Therefore,                     
22

),(),( dRdR fTfT −−= χχ             (6.4) 
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Where, RT  is the time delay and df is the Doppler frequency. 

6.3 Comparison of P=11; Q=11 and J=2 case with Standard 
Code (P=1; Q=1) and Three random codes. 
 

The lowest maximum correlation that has been achieved for J=2 is -28dB. In order to 

see the efficacy of the Algorithm, the result is compared with the maximum 

correlations obtained using a standard code i.e., a code with P=1; Q=1 and J=1, and 

also with 3 different random codes which are complex vectors in which each element 

is generated randomly from a Gaussian distribution of mean 0 and variance 1. 

6.3.1 Standard Code (P=1; Q=1) 

 

Fig 6.25: Total Ambiguity plot along the Cross Track axis for  P=1; Q=1. 

 

Fig 6.25 shows the total ambiguity plot for a standard case. And the maximum 

Correlation = -9dB. 
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6.3.2 Random Code-1 

 

Fig 6.26: Total Ambiguity plot along the Cross Track using random code-1. 

Fig 6.26 shows the total ambiguity using a Random Code 1. And the maximum 

Correlation = -20dB 

6.3.3 Random Code-2 

 

Fig 6.27: Total Ambiguity plot along the Cross Track using random code-2. 

Fig 6.27 shows the total ambiguity using a Random Code 2. And the maximum 

Correlation = -23dB 
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6.3.4 Random Code - 3 

 

Fig 6.28: Total Ambiguity plot along the Cross Track using random code-2. 

Fig 6.28 shows the total ambiguity using a Random Code 1. And the maximum 

Correlation = -23dB 

6.3.5 Transmit Code given by the Algorithm 

 

Fig 6.29: Total Ambiguity plot along the Cross Track using best transmit code. 

Fig 6.29 shows the total ambiguity using a Random Code 1. And the maximum 

Correlation = -23dB 
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Hence from the results, it can be seen that the maximum correlation obtained by using 

the transmit code generated by the Algorithm is 19dB better than the standard 

transmit code, and is better by 8dB, 5dB and 5dB than Random code-1, Random 

code-2 and Random code-3 respectively. 

6.4 Analysis of the Optimization Criterion with inputs from 
the Radar model. 
 
It has already been shown that the optimization criterion is a justifiable criterion to 

derive a transmit signal that would minimize the maximum correlation between 

dissimilar targets. In this section a similar analysis is done with inputs from the radar 

model. The transmit signal that was obtained for P=11; Q=11 and J=2 case is used to 

compute the correlation coefficient values and −1 values and the plot is as shown.  

 

Fig 6.30: Plot showing the cor relation coefficient curve and −1  curve. 
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From Fig 6.30 it can be seen that even for the physical radar case, the optimization 

criterion is a good criterion that can be used to search for the best possible code.  

6.5 Energy in the Response vector for J=2; P=11; Q=11 case 
 
Fig 6.31 shows the energy in the response vector for every single target on the grid 

for two transmit element case with P=11 and Q=11. 

 

Fig 6.31: The energy in the response vector for  every single target in the target gr id 
shown in dB scale. 

It is very important to learn about the energy in a response vector of a target as, there 

is a possibility of two vectors being totally uncorrelated to each other when one of the 

vectors has zero energy. A response vector with zero energy is not desired, as the 

main effort of this study is to make two vectors with finite energy, as orthogonal as 

possible to each other. The Fig 6.31 proves that no target has a response vector with 
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zero energy, confirming our efforts of minimizing the correlation of the response 

vectors were in the right direction. The reason for the diagonal pattern in the 

distribution of the energy in the target grid, is the position of the transmit elements. In 

this particular case, two transmit elements taken such that they are placed diagonally 

to the target area perpendicular to the energy diagonals as seen in the plot.  This way 

of placing the transmit elements causes an energy pattern as shown in the figure. 

6.6 Comparison of Convergence of bound for J=1; J=2 and 
different values of P and Q. 
 

 

Fig 6.32: Plot showing the convergence of χ with for  one and two transmit elements 
respectively. 
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In Fig 6.32, the blue curves represent the convergence corresponding to one transmit 

element and the red curves represent the convergence corresponding to two transmit 

elements. It is noticed that after every iteration, the bound is either equal to or lesser 

than the  bound in the previous iteration. The functioning of the Algorithm for 

different values of P and Q can be seen clearly from Fig 6.31. Smaller the dimension 

of the transmit signal, lesser is the number of Stinker codes (Bad codes) and hence 

easier it is for the Algorithm to search for the best code as it does not have to 

eliminate too many stinker codes. Whereas, if the dimension of the transmit signal is 

very high, there will be higher number of stinker codes and hence the Algorithm 

needs to work hard to come up with the best code as it needs to eliminate a large 

number of stinker codes. This can be seen for the case of P=7; Q=7; and J=2. The red 

curve for P=7; Q=7; and J=2 is flat for about 30 iterations, which means that there are 

a lot of stinker codes that the Algorithm is trying to project orthogonal to. Hence, by 

increasing the dimension of the transmit signal, there is an increase not only in the 

possibility of coming up with the best code, but also the total number of stinker 

codes. 
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6.7 Comparison of Maximum Correlation Coefficient values for 
J=1; J=2 with respect to total Iteration Number.  

 

Fig 6.33: Plot showing the improvement of maximum cor relation with increase in total 
number of basis functions. 

 

From Fig 6.33, it is evident that, as the total number of basis functions is increased, 

that is, as the values of P and Q are increased, the maximum correlation between two 

targets is reduced relatively. As discussed before, this is explained as, by increasing 

the total number of basis functions, more flexibility is provided in the design of the 

transmit code which indirectly increases the subspace in which the Algorithm can 

search for the best code. By adding a transmit element to the radar system, a spatial 

dimension is introduced to the transmit signal thereby increasing the total subspace in 

which the Algorithm can search for a best code. 
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6.8 Relation between Rank of C matrix ( cR ) and the number of 
Transmit Elements (J) 
 
It has been observed from the above cases that the rank of C matrix is, in someway, 

related to the total number of transmit elements used in a radar system. It has been 

observed that the rank of the C matrix is less than or equal to twice the total number 

of basis functions used. That is, rank of C matrix, PQRc 2≤  and the size of the C 

matrix is given by WxW  where, PQW =  

• For one transmit element, that is, J=1; the rank of the C matrix is equal toPQ  

and it is a full ranked matrix as WRc = , which means that there are no zero 

valued eigen values. 

• For two transmit elements, that is J=2, the rank of the C matrix is equal to 

PQ2 , and again it is a full ranked matrix as WRc = , which means that all the 

eigen values of the C matrix are non-zero values. 

• Now, for transmit elements greater than 2, that is, J>2, it has been observed 

that the rank of the C matrix was PQ2  and it was not a full ranked matrix 

as WRc ≠ . That is, it has zero valued eigen values. This indicates that when 

the number of transmit elements are increased beyond 2; we have eigen 

vectors that put no energy on the targets of consideration. 

Hence from the above observations, it is very clear that there is a relation between the 

rank of the C matrix Rc and the total number of transmit elements used in the radar 
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system. Mathematical derivation of this relation is beyond the scope of this thesis and 

is left as a future work. 
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CHAPTER - 7 

7.1 Conclusions 
 
It has been proved by various experiments and cases conducted in this study that it is 

possible to come up with a space-time transmit signal that could reduce the maximum 

correlation between targets in a target grid. An Algorithm that works to come up with 

this kind of transmit signal has been developed and its performance has been 

analyzed numerically. A mathematical Synthetic Aperture Radar model has been 

developed and the performance of the Algorithm has also been analyzed under the 

simulated conditions of a physical radar model. It has been learnt from the numerical 

experiments that the performance of Algorithm-2 not only depends on the total 

number of independent measurements taken (M), the dimension of the transmit signal 

(N), but also depends on the structure of the H-matrices. Having developed 

Algorithm-2, we wanted to see the improvement of the new algorithm compared to 

Algorithm-1. It has been found that Algorithm-2 shows a considerable improvement 

when a certain kind of H-matrices (varying-H matrices) are used as inputs. The 

performance of both the Algorithms improve as the total number of measurements 

and the dimensions of the transmit signal are increased. In order to have a general 

idea about the efficacy of the transmit signal given by Algorithm-2, we compared its 

performance with a randomly generated code and a code given by the genetic 

algorithm. It has been found that the result of Algorithm-2 performs far better than a 

randomly generated code in terms of the standard deviation of the values and the 

mean of the correlation coefficient values, but the result given by the Genetic 
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algorithm performs slightly better than the code given by Algorithm-2. From this we 

can conclude that Algorithm-2 may not always give a best possible code for a given 

radar scenario. 

 Using the inputs to the Algorithm from the simulated radar model, it has been 

found that the performance of Algorithm-2 improves tremendously as the total 

number of basis functions is increased. This is because, as we increase the total 

number of basis function, more flexibility is provided to the algorithm to search for a 

better code. An upper limit on the total number of basis functions that can be used has 

also been derived in this study. The performance of Algorihtm-2 has been analyzed 

by increasing the total number of transmit elements from 1 to 2. It has been found that 

the performance of the Algorithm improves considerably as we move from one 

transmit element to two transmit elements, but the ambiguity function seizes to be 

invariant.  

 The ambiguity functions have been analyzed in detail for one transmit element 

case and a two transmit element case, and it has been concluded that when only one 

transmit element is used, the ambiguity function is totally invariant and it is 

rotationally symmetric. Where as, when two transmit elements are used, it has been 

found that the ambiguity function seizes to be invariant, that is, it changes its pattern 

from one target to another. It still remains to be rotationally symmetric conforming to 

the symmetry property of the ambiguity function [2].  
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Hence, it has been shown in this study that a Space-time transmit signal can 

be developed for a multi-static radar system that exploits the spatial and temporal 

characteristics to reduce the maximum correlation between targets in a target area. 

7.2 Suggested Future Work 
 
Following are some of the suggestions for the future work on this topic. 

1) All the experiments in this thesis have been performed on the cross-track axis. 

That is to say, the Algorithm works only on the cross track axis targets. The 

Algorithm needs to work on the along track axis targets also, in order to 

obtain a clear picture about the performance of the Algorithm in physical 

conditions. 

2) As we increased the number of transmit elements from 2 to 3, it was observed 

that the C matrix does not continue to be a full ranked matrix. Hence this 

Algorithm needs to be modified suitably in order to handle a case of J>2. 

3) We observed a relation between the total number of transmit elements and the 

rank of the C matrix. A clear understanding of the performance of the radar 

model for J>2 will be achieved if a mathematical relation can be derived 

between the total number of transmit elements and the rank of the C matrix. 

4) As we observed that the ambiguity function for a radar scenario having two 

transmit elements, seizes to be invariant, the transmit signal given by the 

Algorithm cannot be used to in order to observe the entire target grid. Hence 
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the Algorithm needs to be modified accordingly in order to deal with such a 

scenario. 

5) Finally, the Algorithm takes immense amount of time in order to come up 

with the best code for a target grid of 31 X 31. The Algorithm needs to be 

optimized with respect to the total processing time it takes to generate the 

code so that the Algorithm can used on much larger grids. 
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