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Abstract

One of the main characteristics of any radar system in general, is the system’s
transmit signal. An ideal transmit signal has two main functions to perform. First, it
should be designed in such a way that most of the energy falls on the targets of
interest and not on the clutter or the targets that we are not concerned, and the second
function is to produce responses from dissimilar targets to be totally uncorrelated.
The main objective of this study was to devise an optimal space-time transmit
waveform that would produce responses from dissimilar targets to be as uncorrelated
as possible. In this effort, an Algorithm has been developed in such a way that it
comes up with a space-time transmit signal based on a given scenario of the radar
system. This transmit signal tries to minimize the maximum correlation between any
two targets in a target area. Having developed the Algorithm, its performance was
analyzed numerically by generating its inputs randomly from a Gaussian distribution.
A radar model was designed and the performance was also analyzed by giving inputs
to the Algorithm from the model. From the analysis, it was learnt that the
performance of the Algorithm largely depends on the given scenario of the radar
system. It has also been found that, as the dimensions of the transmit signal subspace
is increased, more flexibility was provided to the Algorithm to come up with the best
code possible. Hence, higher the total number of dimensions better is the ability of the
Algorithm to come up with the best code.

Therefore, in this thesis it has been proved that it is possible to develop a

gpace-time transmit signal, which aims to minimize the maximum correlation

Xi



between dissimilar targets in a target grid by the virtue of its spatial and temporal

properties.
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CHAPTER-1

1. Introduction

In general, the transmit signal is a very important factor of any radar system. Hence,
in order to have a very good estimate of the scattering coefficients of the targets, the
transmit signal has been used as a design parameter. In this study, Algorithms that
come up with a space-time transmit signal are developed for multi-static radar
systems. This transmit signal tries to make the responses from dissimilar targets, as
orthogonal as possible. Although the Algorithms can be used for any kind of radar, in
this study, they have been used for multi-static synthetic aperture radar systems.
Hence, in this chapter, firstly, we will look into the characteristics of Single aperture

radar and then will discuss Multi aperture Synthetic aperture radar system.

1.1 Synthetic Aperture Radar

Synthetic Aperture Radar is the most effective form of radar used in remote sensing
for imagery. It utilizes complex data processing techniques in order to achieve a
narrow beam. It forms its images in 2-Dimensions. One, Range direction, which is
also called the cross-track direction, is in the direction perpendicular to the direction
of propagation of the radar. Two, Azimuth direction also called the Along-Track
direction, is along the direction of the propagation of the radar. The range resolution
depends on the width of the pulse that is transmitted or in other words it depends on
the bandwidth of the radar. Thisis true for both, SAR radars as well as any other kind

of radars. The azimuth resolution depends on the beamwidth of the radar. Synthetic



aperture radar has much better azimuth resolution compared to other radars. This is
because, for a fine azimuth resolution, a radar needs to have a very big antenna and
for normal radars to have such a big antenna is physically impractical. As the
synthetic aperture radar synthesizes a large antenna it achieves a very narrow
beamwidth, hence a very fine azimuth resolution.

Single element synthetic aperture radar, as the name indicates, contains only
one aperture and functions by synthesizing a big radar antenna. It functions by
moving from one point to another either in air or space, and collects data all along its
journey. It processes the entire data collected as though there were a virtual antenna
whose length was equal to the distance of its journey. This feature of SAR helps in
achieving a very narrow beamwidth or a very fine azimuth resolution with
comparatively small antenna mounted on an aircraft or a satellite. A single aperture
synthetic aperture radar can either have a fine azimuth resolution or wider coverage
area. This is because, the single aperture radar can collect only BT number of
independent samples, where B being the bandwidth and T being the observation time
of the radar. In other words, it can only illuminate an area of BT target pixels. This

problem can be addressed by employing a multi-aperture radar.

1.2 Multi Element Synthetic Aperture Radar

A Multi-Aperture radar is a constellation of coherent receivers working as a
single radar system. In this system, we make use of spatial diversity technique by

using multiple transmit and multiple receive elements. Each element in this system is



located spatially at a different location thus receiving data at different angles of
arrival. Therefore, there are new spatial dimensions which are utilized to adequately
resolve the targets in the azimuth direction while covering a wider area. This gives a
possibility of having a cluster of coherent elements moving in the space coordinating
with each other acting as a single radar system.

The main advantage of a Multi-Aperture (Multi-Element) Synthetic Aperture
Radar over a Single Synthetic Aperture Radar systemis that it enables aradar to have
fine azimuth resolution simultaneously with a wider coverage area. If there are a tota
of N number of apertures in the radar system, then the multi-element radar system
collects atotal of NBT number of independent samples, hence there is an increase of
N times in the total number of independent samples received compared to single
aperture radar. This additional information is used to achieve wider coverage area and
finer azimuth resolution.

Another important point to note isthat the energy in the ambiguity function of
a single aperture synthetic aperture radar is constant, that is, energy cannot be
removed from the ambiguity function. However, for a space-time transmit signal, the
ambiguity function is not invariant. Thus, by proper design of the space-time transmit
signals; it is possible to minimize the energy in the ambiguity function, that is,

minimize the maximum correlation between any to targetsin atarget grid.



1.3. Motivation:

Having received the response signal from the targets, the received signal needs to be
processed in order to estimate the scattering characteristics of the targets. The most
common estimator used to process the received signal is the matched filter. For a
multi-aperture radar, the matched filter gives a very good estimate of the scattering
characteristics if the apertures are arranged in a well defined contiguous pattern, but
the estimate is not very good if the arrangement of the apertures is in a distributed
fashion. Asthe arrangement of a physical multi-aperture radar resembles a distributed
arrangement, a solution needs to be found out in order to have a good estimate of the
scattering characteristics using a distributed aperture array.

It will be shown in the future chapters that a good estimate can be achieved by
an estimator if the correlation between any two targets in atarget grid is zero. Asit is
impossible to achieve zero correlation between any two targets responses, efforts can
be made to minimize the correlation. The main am of this study is to design
algorithms that come up with optimal space-time transmit signals, that when
transmitted would produce the response signals from different targets to be as
orthogonal as possible.

The key idea behind coming up with such a code is to minimize the maximum
correlation present between dissimilar targets. We call this approach as the Mini-Max
solution. In this effort, an optimization criterion has been developed which acts as a
yard stick that measures the performance of our algorithms. The bound of the values

this criterion can assume, is a very important factor. Tighter the bound, lower is the



correlation between two targets. The derivation and analysis of the optimization

criterion is discussed in future chapters.

1.4 Outline of the Thesis

Having found the motivation and the reason for this study, several gquestions were
encountered in due course of the study. In the beginning, after developing the
optimization criteria, we wanted to know if there was any direct relation between the
criteria and the correlation coefficient. As the correlation coefficient is being
minimized by tightening the bound of the criterion, it is very important to realize the
relation between the criterion and the correlation coefficient. It was found that, by
tightening the bound of the criterion we are actually reducing the real part of the
complex correlation, thereby reducing the magnitude of the correlation. Hence, a
direct relation exists between the criterion and the correlation coefficient, only if the
imaginary part of the complex correlation becomes zero.

Having developed the algorithms, we wanted to see their performance initially
using numerical data. In course of this numerical analysis, we tried to study the
performance by varying the total number of independent measurements taken and
dimensions of the transmit signal. It was found that the performance of the algorithms
improved as we increased the total number of measurements and the dimensions of
the transmit signal. We also found that, apart from the total number of measurements
and the dimension of the transmit signal, the performance of the algorithms were also

depended on the given radar scenario. Another important question that arose was how



good the result is given by the algorithms, in general. That is, we needed a yard stick
to compare the performance of the transmit signal given by the algorithms. Thus, in
order to get an idea of the efficacy of the algorithms, we compared the results with a
randomly generated code and a code given by the Genetic Algorithm. Comparing the
performance of the transmit signal given by the algorithm to that of a randomly
generated code, we found that the transmit signal given by the algorithm performed
much better in terms of lowering the maximum correlation. The plots of this
comparison are shown in the subsequent chapters. When compared with the genetic
algorithm, the code given by the genetic algorithm performed slightly better than the
algorithm developed in this study. This shows that the algorithm may not come up
with the best possible code in all radar system scenarios.

After analyzing the performance of the algorithm using numerical inputs, we
then wanted to see how the algorithm would perform in conditions simulating real
radar scenario. In order to answer this question, a radar model was designed in which
the transmit signal was designed as a superposition of orthogonal basis functions. The
performance of the algorithms was analyzed using the inputs of the algorithm from
the radar model. It was found that as we increased the total number of basis functions,
more flexibility was provided to the algorithm to come up with a better code. The
[imit on number of basis functions that can be used has also been derived in this
study.

All the above experiments were performed using one transmit element. We

then wanted to see the performance by increasing the total number of transmit



elementsto 2, that is, including spatial dimensions to the transmit signal. It was found
that the transmit signal obtained for this scenario performed better than one transmit
element scenario in terms of reducing the maximum correlation between the targets.
A disadvantage of using multiple transmit element is that, the ambiguity function for
a multi transmit element space-time transmit signal does not remain invariant. Hence,
for a case having multiple transmit elements, the algorithm needs to be modified such

that it considers all the targetsin the target grid to come up with a code.



CHAPTER -2

2. Processing and Analysis of Multi-gtatic Radar System.

In this chapter, a linear multi-static radar system is considered and its received signal
is derived and processed. The derivation is based on the fact that for a linear radar
system, the received signal is just a delayed form of transmit signal modified by the
scattering coefficients of the targets. This chapter also explains the motivation behind
this study. It discusses the processing of the received signal such that correct
scattering estimates are obtained. It answers the question as to why we seek to have

the responses from two dissimilar targets orthogonal to each other.

2.1 Description and Analysis

A linear, multistatic radar model was considered in order to analyze the response
signal as shown in Fig 2.1. Let us assume there are a total of ‘Y’ apertures out of
which one aperture is acting as both a transmitter and a receiver and all the other
apertures act as only receivers. A total of 'm' measurements are taken, assuming
there are a total of 't' number of targets and we want to derive a transmit signal of
dimension 'n' which will minimize the maximum correlation between two dissimilar

targets.



Y - Receivers

LT7LT7LT, Transmitter
/L7

Target Responses

t - Targets

Fig 2.1: A multi-static radar system with ‘t" number of targets and their reflections.

When a signal is transmitted by a radar, it travels through the propagation medium
from the transmitter to the targets and gets scattered by the targets back to the
receiver traveling through the same propagation medium. Thus, the received signal is
just a delayed version of the transmit signal altered by the propagation medium and
the scattering characteristics of the target. Therefore, the received signal over an

illumination area of A can be represented in mathematical form as shown below [1].

r(t) = | [ v, (Oh(x,t,t")s(t')dt' dA+n(t) (3.1)

= [V, (%) p(%,)dA+n()



Where,

X = Represents the position vector of atarget.

S(t) = Describes the complex transmit signal.
¥, (X) -> Describes the complex scattering coefficient of the target surface.
h(x,t,t') > Represents a complex time-varying impulse response describing the
effects on the transmit signal when it travels from the transmitter to the receiver.

n(t) = Isthe complex noise.

In general, any signal that is constrained in bandwidth and time can be approximated

using its basis functions. Therefore, the transmit signal s(t) can be written in terms of

afiniteset of N discrete samplesas,

N
s(t) = > s(nT,)g(t-nT,) (2.2)
n=1
Where, s(nT,) are the discrete samples of the continuous transmit signal s(t) and
g(t)is the interpolation function that can be used to reconstruct the signal from its

discrete values.

Similarly, the continuous received signal, the complex noise and the scattering
coefficients can be described in to their respective discrete samples and are denoted
as,

Fo =1 (mry)

Vi =V, (%)AA

Hip = [0(X,mT, t)gt-nT,)dt'  (2.3)
S, =s(t,)

Ny, = N(MT,)

10



Representing a continuous signal in terms of its discrete samples enables us to

represent the received signal equation in linear algebra. Hence, substituting the

equation (2.3), we can write (2.1) as[3],

Where,

r :ZyiHis+n (2.4)

= Zyipi +n (2.5)

r=Py+n (2.6)
p, =H;s (2.7)

P=[piPoiPareeeeeeinn Pl

S=[S,,5,,5;,S10emn. s. I
(S | P4 0 O rl

Therefore, in the equation (2.6),P relates the scattering parameters y to the

measurement vector r . It can also be viewed as, P being a linear system through

which y passes, considering y asasignal.

2.2 Estimators:

The received signal or the measurement vector needs to be processed so that the

scattering characteristics of the targets can be estimated. There are different

estimators that can be used to estimate the scattering characteristics of atarget; one of

the estimators called linear estimators will be discussed in this report.

Linear estimator provides the most simple and efficient way of

estimating the scattering of a target. It estimates the scattering coefficient by taking

11



the dot product of the radar response and the estimate operator for each target. The
general equation for the linear estimator is given by

yo= W (2.8)
The most common and simplest form of linear estimator is the correlation filter or the

matched filter.

2.2.1 Matched filter

Any received radar signal contains signal, clutter and white noise. A matched filter is
used to increase the signal to noise ratio (SNR) at its output. It achieves the maximum
SNR by correlating the normalized response from a target with the response obtained

from the received signal. The normalized response from atarget pixel is given by,

(2.9)

Substituting the above equation into the linear estimator general equation (2.5) we

. pipj p.N
have, Vy=y+ 3 +—! (2.10)

[ 2 2
A

In this expression, the first term represents an error less estimate of the scattering of
the target, the second term represents the clutter energy which is the correlation
between the target of interest and the other targets, and the third term is a noise term.
It is obvious from the equation (2.10), that in order to get a close estimate of the
scattering of the targets, we need to have the clutter energy and the noise as low as

possible. Though, the matched filter minimizes the error due to noise, it is incapable
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to remove the effect on the estimate due to the clutter. Hence, other estimators are
considered to achieve a precise scattering estimate of the targets. We discuss about

two other filters as follows.

2.2.2 Maximum Likelihood Estimator:

The maximum likelihood estimator can be found by first forming the maximum
likelihood function of the equation (2.5). The maximum likelihood function is
obtained by taking the natural log of the conditional probability density function of

the measurement vector r as[3],

/20 P - Py)} (2.12)

L(r,y)=In[P(r/y)] =In ;exp[
e

Where, K isthe covariance matrix of the zero mean complex noise.

The value of y which maximizes the maximum likelihood function L (r,y)can be
found by taking the derivative of L(r,y)with respect to y and equating it to zero.
Hence, the value of y which maximizes L (r,y) isthe maximum likelihood estimate of
y denoted by 7., ke

For more information about maximum likelihood estimator, please refer to reference

[3]. The operator that performs the maximum likelihood estimation is given by,

W :P~1 :[P' P]-:I'PI (212)

max_like
and the estimated vector is give by,

?max_like = (Wmax_like)r (213)
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substituting (2.12) in (2.13), we get

Froce =1 +[P PPN (2.14)
Therefore, in the above equation, the second term is an error which is only due to
noise. Therefore, the maximum likelihood estimator completely suppresses the error

due to the clutter and performs very well in high SNR scenarios, but the performance

of thisfilter deteriorates for low SNR cases.

2.2.3 Minimum Mean Square Error Estimator

A Minimum Mean Squared Error Estimator comes up with an estimate of a signal

based on the minimum mean squared error criteria given by,

~ 2
vmse = B0 =T _ g (2.15)
oW

mmse

It can also be visualized as stated in the orthogonality principle, which states that the
error in estimation is orthogonal to each observation made. [3]
Again the derivation of the MMSE operator is beyond the scope of
this thesis. For further details please refer to reference [3].
The Minimum Mean Squared Error Estimator is given by [3],
Wone =K, P[PK 'P'+K '] (2.16)
Where, K and K, are noise covariance and scattering coefficient covariance

respectively.

14



From the above equation, it is very clear that as the covariance of the noise tends to
infinity, the magnitude of the minimum mean square error estimator approaches to
zero. It tries to maximize the Signal to Interference ratio (SIR) where Interference is
defined as sum of clutter and noise energy. Hence, in presence of high noise, it is
best to use the MM SE filter to the other two estimators. Though it has been proved in
the previous study that MMSE estimator performs much better than the matched
filter, the MMSE filter processing algorithms are more complex and expensive to
implement.

Another important point that is to be noted is that from all expressions of the
operators W, it can be realized that all the estimators would give us the same result if

the responses from different targets, i.e. the p; vectors were perfectly orthogonal to

each other. In other words for all targets i # |, p,'p; =0. Hence, as the MMSE

estimator is complex and expensive to implement, we could use the Matched filter
processing technique and still get good results if the responses from dissimilar targets
are orthogonal to each other.

Therefore, in order to have an accurate estimate of the scattering coefficients
of the targets from the received signal using a matched filter, we need the responses
from dissimilar targets to be as orthogonal as possible. Thus, the entire effort of this
study is to make the responses of dissimilar targets as orthogonal as possible to each

other.
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CHAPTER -3

3. The Optimization Criterion

In order to develop the Algorithms that generate the space-time transmit signals
which in turn make the responses from dissimilar targets as orthogonal as possible, a
mathematical criterion is needed such that the solution that satisfies the criterion is
the same solution that satisfies our requirements. In this chapter, the derivation and
analysis of such an optimization criterion is discussed. As the bound of the criterion is
being tightened in order to minimize the correlation coefficient between dissimilar
targets, a very important question that needs to be answered is how closely the

criterion relates to the correlation coefficient.

3.1 Analysis of the optimization criteria X

As discussed in the last chapter, we seek to minimize the correlation between
dissimilar targets such that the scattering coefficients of the targets are estimated
correctly. Apart from making the responses from two different targets as orthogonal
as possible, we also do not desire the energy in atarget response to be zero. Hence, a
criterion is needed whose solution when used as transmit signal, minimizes the
correlation between dissimilar targets. Such a criteriais derived as follows,

Thetotal energy in aradar response is given by,
Eroa = Zpi IZ:pi (31

Where, p, isthe response of the target ‘i’.
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Similarly, the sum of the energies of each target response is given as,
Eam = Zpi 'p, (3.2
When only two targets are considered, equation (3.1) and (3.2) can be written as,
Erga-2 =@+, ) +p;) (33)
=pipitep tpip e (34)

And Eamn =(@i'Pi *P;'P;) (3.5
From equation (3.4) it can be seen that the first two terms give the energy in an
individual target response, where as, the third and fourth terms give the correlation
between two dissimilar targets.

Hence, our objective is to minimize the correlation between two targets (third
and fourth termsin (3.4)) as much as possible. This requirement can be satisfied using

a criterion formed by taking the ratio of equations (3.4) and (3.5). We call this

criterion as the optimization criteriay , given by,

_(pi*p;)pi *p))
Pi'pi +p,'P))

(3.6)

From equation (2.7) we can write p, as,

p, =H;s

Substituting o in (3.6) we have,

S(H,+H,;)(H; +H)s
K , (3.7)
(H'H, +H 'H,)s

Defining two matrices, A and B as,

17



A=(H,+H ) (H +H;) (3.8)
B=(Hi'Hi+H,-'H,-) (39
Using the matrices A and B, (3.7) can also be written as,

X_S'AS
s Bs

(3.10)
Therefore, asolution s to the equation (3.10) that makes the values of y to be 1 isthe
same solution that ensures the responses from two dissimilar targets are totaly

uncorrelated. This can be proved mathematically as, when the responses from the

targetsi and j are totally uncorrelated, then,

PP =0 (313
Substituting (3.11) in (3.6), we get y =1.
The main advantage of using this criterion is that the matrices A and B are positive
definite matrices, which means eigen analysis can be used to derive a solution for y .
Expanding (3.6) we get,

_i'pitpipiteie o)
(pi'pi+p;'p))

(3.12)
A limit for y -values can be derived as follows.
If the target responses are normalized then,
pi'pi =p;'P; =1 (313
Substituting (3.13) in (3.6) we have,

r=1+Re(p;'p;) (314)
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Hence, the term p,'p; has @ maximum value of 1 when the two response vectors are
aligned in the same direction, and has a minimum value of -1, when the two vectors
are aligned in the opposite direction. Substituting these maximum and minimum
valuesof p;'p; in(3.14), we get the limit for x -values as,

O<y<2
Therefore, the values of y lie between 0 and 2.

From the equation (3.10) we have,

From the definition of B matrix in equation (3.9), we can clearly say that the matrix B
isaHermitian Matrix. That is, complex conjugate transpose of B is itself.
B'=B (3.15)
The B matrix can also be represented as,
B =B"B" (3.16)
Also, BB =| (3.17)
Multiplying the identity matrix with A in (3.10) we have,

_ SIAls
x—gﬁiﬁgﬂg- (3.18)

Substituting (3.16) and (3.17) in (3.18) we have,

B SI B]JZB—]JZAB—]JZB]JZS

<BR% (3.19)

X

We then represent sB'? as,
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s=B's (3.20)
Also, §'=(B%g) (3.21)

S'=sB™ (3.22)
as B isHermitian, (B*?)'=B"?

Substituting s in equation (3.19) we have,

X _ §|B—]J2AB—]J2"§ (323)
53

Normalizing s makes s's=1. Therefore, we are left with only the numerator of the

equation (3.23).

— = p-l2 -2z

x=S'B"AB s (3.24)

Let us define amatrix C which is given by,

C=B"AB™? (3.25)
Therefore substituting C in (3.23) we have,

=SCs (3.26)
s's

The C matrix is the most important matrix used in the development of the
Algorithms. It can be represented in terms of its Eigen values as well as Eigen
vectors. The eigen values can be considered as the values that y would assume when
the corresponding eigen vectors are used as solutionsto the criteria. The C matrix can

be represented in terms of its eigen values and eigen vectors as,
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N
C=>V,9, (3.27)

n=1
where, A arethe eigen values of the C matrix,
v, arethe eigen vectors of the C matrix.

and n isthe total number of dimensions in the C matrix.
The eigen values of the C matrix are a very important parameter. As was stated

before, they are the values y would assume when the corresponding eigen vectors are
used as solutions to they criteria. The eigen values assume a value between 0 and 2.
i.e., 0<A,=<2

The maximum and minimum values of A (A andA_ ) are considered to be a

bound of the y -values. The whole effort of Algorithms that have been developed will
be to tighten this bound as far as possible. That is, bringing the values A, and
A, 8scloseto 1 as possible. A valueof A or y equal to 1 has a solution which will
make the responses from two targets perfectly uncorrelated. So, seeking all the
A, values close to 1 would bring down the correlation proportionally.

There is a C matrix for every pair of targets. If C matrices are formed with a main
target of interest and more than one other targets, one at atime, say we have a total of
T targets including the target of interest, then there a total of (T-1) number of C

matrices and a total of N*(T-1) number of eigen values. Irrespective of the target pair

the eigen values belong to, we seek to make the maximum value of A ascloseto 1 as

possible indirectly bringing down the maximum correlation.
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A parameter that is used to decide the worst eigen values (i.e, A, andA ) is

described as,

6=[90~cos™(1-A,)

(3.28)
Where, 8 =90° = Responses from two targets are perfectly correlated. i.e., when the
eigen value A,=0or 2.

€ =0° > Responses from two targets are perfectly uncorrelated. i.e., when the
eigenvalue A, =1

Another parameter which gives us the correlation between two targetsis given by,
=711 (329

where ¢ isthe correlation coefficient between targetsi and .
p, and p; are the responses of targetsi and j respectively, given by,
p. =H.s (3.30)
The angle between the two response vectors from the correlation coefficient can also
be derived as, @=cos'(¢).
Hence we seek to minimize € or maximize¢, which indirectly means to tighten the

eigen value bound.

3.3 Relation between the correlation coefficient ¢ and X

An important point that needs to be taken note of, is the relation between the

correlation coefficient & andy, .
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From the equation (3.6) the y criteria can also be written as,

pilpj

7 =1-2R L (331
|Pi|2+‘l’j‘

Where, p;'p; gives usthe complex correlation between target ‘i’ and target ‘j'.

Hence, by seeking a y value close to 1, we are actualy minimizing the real part of the
complex correlation term (second term in the equation (3.26)). However, if the
imaginary part of the complex correlation is equal to 0, and|p;| = ‘pj ‘ then y can be

written as,

e

Therefore, a direct relation between y and & exists only when the imaginary part of
the complex correlation is zero and the responses from the two targets have equal
energy. Plotsthat justify the usage of the optimization criteria y to search for a better

transmit code are shown in Chapter-4 and Chapter -6.

3.3 Inverse of the B matrix

As stated before, a positive definite square matrix can be written in terms of its eigen

values and eigen vectors as,

B=Y udé, (333

where, . arethe eigen values of the B matrix,
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g, arethe eigen vectors of the B matrix.

and n isthetotal number of dimensionsin the B matrix.
In the same way the inverse of this B matrix can also be represented in terms of the

eigen values and eigen vectors of the B matrix as,

B1=y1 s (3.34)

n My

But, it is very important to note that, when the B matrix is a non full-ranked matrix,
only non-zero eigen values should be substituted in the above expression. This

method of inversion is called pseudo inversion. Hence, for anon full ranked B matrix,

The inverse istaken as,

B1=Y" 82 (4 >0 (339

1
Hy

Pseudo inversion of the B matrix is used after the first iteration in Algorithm-2.
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CHAPTER - 4

4. Description and Evaluation of Algorithm-1 and Algorithm-2

This chapter deals with the development, analysis and performance
comparison of Algorithm-1 and Algorithm-2. In this chapter, the performance of the
algorithms is evaluated based on randomly generated inputs. It addresses various
concerns about how the algorithms would perform if the total number of
measurements taken and the dimension of transmit signals are varied. It has also been
shown based on various experiments that the performance of the algorithms largely
depends on the radar scenario. Having, successfully developed the algorithm, a very
important question that was to be answered was, how good is the result given by the
Algorithm in general? This chapter answers the above question by comparing the
algorithm result with a randomly generated result and a result generated by the

Genetic Algorithm.

4.1 Algorithm 1(Collective Projection Algorithm)

Algorithm-1 is a basic Algorithm that was developed to achieve a transmit code that
will minimize the maximum correlation between two dissimilar targets. The main
idea behind this Algorithm is to tighten the bound of the eigen spectrum by projecting
orthogonal to all the (N-1) worst vectors present in the total subspace of al the C
matrices. In this Algorithm, eigen analysis is applied on the C matrices.

From equation (3.26) we have,
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n=1 4.2
where, A, arethe eigen values of the C matrix,

v, arethe eigen vectors of the C matrix,

And, n isthe total number of dimensions in the C matrix.

A C matrix with N dimensions can be represented in terms of N eigen values and N
eigen vectors. As, a C matrix is formed between the main target of interest and some
other target in the grid, atotal of (T-1) number of C matrices are formed, where T is
the total number of targets present. Hence, atotal of N*(T-1) number of eigen vectors
corresponding to (T-1) number of C matrices are present. Out of these N* (T-1) eigen
vectors, (N-1) worst eigen vectors corresponding to the (N-1) worst eigen values are
chosen based on the value of 8. These eigen vectors are named as “worst vectors’ for
the reason that, if these eigen vectors were used as solutions to (4.1), a value close to
0 or 2 is obtained which indicates a high correlation between the targets. The (N-1)
worgt vectors are eliminated by searching for a code in a subspace orthogonal to those
vectors. As the solution for the equation (4.1) is in s-squiggle(s) form, the (N-1)
worst vectors are initially converted into s-form, and then the orthogonal projection is

performed on them. If < is a vector that is orthogonal to (N-1) worst vectors, then, it
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is considered to be a better solution and gives us a y -value which is better than those

values obtained by using any of the (N-1) vectors as solutions. Thus, using s as a
solution, a better maximum correlation is achieved. The next worst eigen vector
which is the Nth worst eigen vector that has not been eliminated will give the
particular correlation coefficient value between two targets that can be considered as
a bound. This indicates that, the solution (<-vector) would not come up with a
correlation value greater than that obtained by using the Nth worst eigen vector.
Hence we use the s-vector as the transmit signal.

The Flow chart of this Algorithm is as shown in Fig 4.1.
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Algorithm - 1

Generate the propagation matrices (H-
matrices) randomly or from the model.
There is an H-matrix for every target.

A 4

Compute A, B and C for the target of
interest(Target-1) and every other target
pair.
A=(Hy+Hj)(H +Hj)
B=(Hy'Hy +H'H;)

c =B Y2pg Y2

A 4

Each C matrix isN x N sized and we have a

total of (T-1) C matriceswhere T is the total

number of targets. Hence we have atota of

N*(T-1) eigen values and eigen vectors. We
choose (N-1) worst Eigen vectors based oné.

Convert the vectors which are in the
“squiggle” form to normal form.

W =B 2w

A 4

Find the orthogonal code to the (N-1) eigen
vectors. Such that,
W.s=0

Y
s-> Isthe Transmit Code

Fig 4.1: Flow Chart of Algorithm-1
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4.2 Performance of Algorithm-1

In order to analyze the performance of Algorithm-1, the propagation matrices (H-
matrices) are generated randomly. Since the H-matrices are complex matrices, both
the real and the imaginary parts of every single element of the matrix are generated
randomly from a Gaussian distribution with zero mean and variance one. The size of
H-matricesisM x N x T where, M is the total number of measurements taken, N isthe
dimension of the transmit code and T isthe total number of targets.

For analysis purpose we set M=100; N = 40 and T=10.

The results are as shown,

Alg-1 Eigen Value Spectrum Before the Projection
1 T T T

o < o o o o
4 o (=2] =~ o ({e]
T T T T T T

o
w
T

Number of Eigen values of C matirx

o
3]
T

o
-
T

0 0.5 _ 1 _ 1.9 2
02028 Eigen Values of C matrix 18121

Fig 4.2: Eigen spectrum befor e orthogonal projection.
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Fig 4.2 shows the spectrum of the eigen values of the C matrix before the orthogonal
projection in the subspace of (N-1) worst vectors. It is observed from the Fig 4.2 that
the eigen values are very loosely bound with a maximum value of 1.8121 and a
minimum value of 0.2028. It can also be noticed that the eigen values are well within

the values of 0 and 2.

Alg-1 Eigen value Sectrum after the Projection
1 T T T

Number of Eigen values of C matirx
e < o o o bt o o
(3% ] wr = (8] (o7} =~ [o=] w
T T T T T T T T

o
Py
T

=]
o

0.5 1 19 2

0.30675 Eigen Values of C matrix 1.6928

Fig 4.3: Eigen spectrum after the orthogonal projection.

Fig 4.3 shows the spectrum of the eigen values after the projection in the orthogonal
subspace. As can be seen from Fig 4.3, the worst eigen values have been eliminated
and the bound is tighter compared to the bound of the spectrum before the projection.

The maximum value in this spectrum is 1.6928, corresponding to a 8= 43.85 degrees
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and the minimum value is 0.30675 corresponding to &= 43.88 degrees. Though the
bound is not very tight, it is better than the bound before the projection. The Nth
worst eigen value that has not been eliminated is 0.30675. The corresponding eigen
vector gives us a correlation coefficient value of 0.6707 (¢=47.87 degrees) which
acts as a bound. Hence, any vector that is obtained by projecting orthogonal to the
subspace of the (N-1) number of worst vectors will give correlation values no greater
than 0.6707. Fig 4.4 shows the spectrum of y - values calculated using the transmit
code s given by the Algorithm. Aswe can see the y values are very close to 1 with

X =1.0969 and ., =0.8510. The y - values are well within the bound of 0.30675

set by the Nth worst vector. The maximum correlation coefficient obtained with the

transmit code is 0.1561.

% value spectrum obtained using the Transmit code given by Alg-1
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Fig 4.4: y - value spectrum obtained using the transmit code given by Algorithm-1
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A shortcoming of this Algorithm is that, it does not take into account the possibility
of two or more of the (N-1) worst eigen vectors being parallel to each other. The (N-
1) worst eigen vectors are picked and orthogonal projection performed on them
collectively. There is agood possibility of the worst vectors being highly correlated to
each other. Hence projecting orthogonal without taking into account the correlation
between the vectors would not help much.

Therefore, the above reason gave us the motivation to develop a new
Algorithm which takes into account the correlation between the worst vectors. The

new Algorithmis called Algorithm-2 and it will be analyzed in the next chapters.

4.3 Algorithm-2(Individual Projection Algorithm)

This Algorithm takes into account the correlation between the worst eigen vectors of
the C matrices. In this Algorithm, instead of projecting orthogonal to all the (N-1)
worgt vectors simultaneously and then finding the transmit code, the orthogonal
projection is done individually i.e, one worst vector after the other. It picks the first
worst eigen vector, and then searches for the next worgst eigen vector in the
orthogonal subspace of the first one. It again searches for the third worst eigen vector
in the subspace orthogonal to the second one. It continues this for (N-1) times
(iterations), where N being the total number of dimensions of the transmit signal.
After (N-1) iterations, only one dimension is left, which gives us the best transmit
signal. After each iteration, as we are projecting orthogonal to the worst eigen vector,

the resulting eigen spectrum of the C matrices will have a tightery bound than the
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bound before that particular iteration. If there are atotal of “T” targets, then after the
(N-1) iterations, we will have (T-1) number of eigen values corresponding to (T-1)
pairs of targets. Now the C matrix of each pair of targets has only one eigen value
associated with it. These eigen values are precisely the same values we would get if
the transmit code given by the Algorithm is used as a solution to the equation (4.1).
There is no eigen bound as there was in Alg-1, but an exact correlation value can be
derived between the targets by using the transmit code given by the Algorithm. As
this Algorithm makes sure that it projects orthogonal to all the (N-1) dimensions
unlike Algorithm-1, we expect it to perform better than Algorithm-1.

The flow chart of Algorithm-2 is shown in Fig 4.5.
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Algorithm-2

Generate the propagation matrices (H-
matrices) randomly or from the model.
There is an H-matrix for every target.

Update H-matrices

H=H*P,

A 4

Compute A, B and C for the target of
interest(Target-1) and every other target

pair.
A=(H, +H,)(H, +H))

B=(H,'H, +H,'H))
C=B™AB™

A 4

Each C matrix isN X N sized and we have a
total of (T-1) C matriceswhere T isthe total
number of targets. Hence we have atota of
N*(T-1) eigen values and eigen vectors. We

choose the first worst Eigen vector based oné.

say S

A\ 4
Convert to normal form,
s=B™*s

) ~ S
Normalizes, s=—

i

A 4

Construct Projection matrix,
P=1-&

\ 4

A

(N-1) times

Fig 4.5: Flow chart of Algorithm-2




4.4 Performance of Algorithm-2

The performance of Alg-2 has been evaluated by first generating the H-matrices
randomly. Both the real as well as the imaginary parts of the complex elements have
been generated from a Gaussian distribution with O mean and variance 1. The H-
matrices that are used for analysis of this Algorithm are exactly the same H-matrices
that were used for the analysis of Algorithm-1.

M =100; N=40and T = 10.

The results are as shown in the following figures.

Alg- 2 Eigen Value Spectrum Before the start of Iterations

Number of Eigen values of C matirx
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Fig 4.6: Eigen spectrum before the start of iterations.

The Fig 4.6 shows the spectrum of eigen values of the C matrices before any
iterations. As can be seen from the figure, the bound is quite loose with minimum
value = 0.2028 (&= 52.86 degrees) and maximum value = 1.8121( 6= 54.3 degrees).

From the & value it is decided that 1.8121 is the wors eigen value and the
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corresponding eigen vector is picked to search for a better code in its orthogonal
space. A projection matrix is then constructed using this eigen vector and the H-
matrices are updated. Now a new set of C matrices are formed between the main
target and all the other targets, and again a worst eigen vector is picked to form a
projection matrix to project orthogonal to that vector and the H-matrices are updated
once again. Thisprocessisrepeated (N-1) times.

Fig 4.7 histogram shows the eigen value spectrum after the first iteration.

Alg-2 Eigen Spectrum After the First Iteration
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Fig 4.7: Eigen Spectrum after thefirst iteration.

As can be seen from Fig 4.7, the worst eigen value has been brought closer to 1
compared to the values before the first iteration. In this new spectrum, again the worst
eigen vector is chosen based on the worst eigen value, which in this case is 1.7979
(6= 52.93 degrees) and a better code is searched for in the orthogonal space of its

corresponding eigen vector.
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The eigen value spectrum after Iteration = 27 isshownin Fig 4.8.
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Fig 4.8: Eigen spectrum after Iteration=27
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The eigen value spectrum after Iteration = 40 is shown in Fig 4.9.
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Fig 4.9: Eigen spectrum after Iteration=40
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Hence, the worst eigen value has been tightened from a value of 1.8121 (6 = 54.3
degrees) in the beginning, to a value of 1.0168 (6= 3.54 degrees) after (N-1)
iterations. The corresponding correlation coefficient value is 0.1386 corresponding to
¢ = 82.03 degrees. This means that the response from the most correlated target is at
an angle of 82.03 degrees to the response from the main target of interest. Hence we
have minimized the maximum correlation to 0.1386 (-17dB).

A plot that shows the convergence of bounds of the eigen values of the C
matrices with respect to the iteration number is shown in Fig 4.10. In order to

distinctly identify the curves, smaller values of M, N and T have been chosen.

M=20; N=6; T=8
Convergence of Eigen value bound for M=20; N=6; T=8
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Fig 4.10: Plot showing convergence of the y bound with respect to iteration number.

38



The above figure shows the convergence of the eigen value bound with respect to the
iteration number. From the figure it can be noted that, the bound has converged from
Iteration-1 to Iteration-6. The solid lines on top and bottom represent the maximum
and minimum eigen values after its corresponding iteration. The dashed lines in the
middle are the lines joining the worst eigen values of its respective C-matrix. That is,
each dashed line corresponds to one particular C matrix, and is a plot of worst eigen
values of that particular C matrix, over all the iterations. Hence, we observe that the
worst eigen value after the first iteration is from C5 matrix (i.e., the C matrix formed
between Target-1 which our target of interest and Target-6) and worst eigen value
after the second iteration is from C4 and so on. A list of all the iterations is given
below,

Iteration-1 - Worst eigen value picked from C5 (Target-1 and Target-6)

Iteration-2 = Worst eigen value picked from C4 (Target-1 and Target-5)

Iteration-3 = Worst eigen value picked from C1 (Target-1 and Target-2)

Iteration-4 - Worst eigen value picked from C5 (Target-1 and Target-6)

Iteration-5 = Worst eigen value picked from C3 (Target-1 and Target-4)

Iteration-6 = Worst eigen value picked from C3 (Target-1 and Target-4)

Therefore, the Eigen value bound has been converged from min = 0.2706 and max =

1.6647 to min = 0.8966 and max = 1.2452 in Fig 4.10.

39



4.5 Analysis of the optimization criterion X using numerically
generated input values.

As the optimization criterion y directly relates to the real part of the complex
correlation and not to the magnitude of the correlation, a very important question that
needs to be answered is, how acceptable is it to use yas a criterion to derive a
transmit signal that tries to minimize the correlation between dissimilar targets? A
plot between the correlation coefficient (¢) and [1-y| clearly answers the question.
The H-matrices are generated randomly and are used as inputs to Algorithm-2. The
correlation coefficient and [L-y| values are calculated using the transmit signal given
by the Algorithm. The plot is as shown in Fig 4.11.

M=100; N=40; T=10
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Fig 4.11: Plot showing the cor relation coefficient curve and [L-| curve.
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From Fig 4.11, it can be clearly seen that the correlation coefficient plot closely

follows the [1-y|plot. The value [1-y|gives us the absolute value of the real part of

the complex correlation and the correlation coefficient represents the magnitude of
the complex correlation. Hence, it can be seen from the plot that by reducing the real
part, in most cases we are reducing the magnitude of the complex correlation. Thus,

the optimization criterion y is an acceptable criterion that can be used to minimize the

correlation between dissimilar targets.

4.6 Comparison of Algorithm-1 to Algorithm-2

The performances of Algorithm-1 and Algorithm-2 have been compared for different
values of M, N and T. Both the Algorithms have been complied for 20 Monte Carlo
iterations. After each Monte-Carlo iteration, Algorithm-1 and Algorithm-2 give their

respective solutions using which they -values and the correlation values have been

calculated using equations (3.10) and (3.29) as,

£ = |pilpt|
|pi||pt|

S As
L= $Bs

Ay -value histogram and a maximum correlation coefficient value histogram are

plotted for al the 20 Monte-Carlo iterations collectively. Having plotted these
histograms for both the Algorithms, the performances have been compared in terms

of standard deviation of the y-values and mean of the maximum correlation
coefficient values. As the bound of y -values is of main interest, we considered the

standard deviation of the y -value distribution as a measure of performance of the
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Algorithms. The mean of y s in all the cases is approximately 1, hence, only the
standard deviation of the values will be discussed in this report. Thus, lower the
standard deviation tighter is the y- bound and better is the performance of the

Algorithm. Also, we intend the maximum correlation coefficient histogram to have a
mean as low as possible. Lower the mean, better is the performance of the Algorithm.

Fig 4.12 shows the different cases for which the comparisons are made.

=10

Casge-1 Case-2 Case-3 Case-4

m=3000 1+ | X X X X
Case-5 Case-6 Case-7 Cage-8

m=1000 + X % b e x.
Case-9 Case-10 Case-11 Case-12

m=100 L e b e e

] ]

I T 1 T
n=4 n=8 n=20 n=40

Fig 4.12: Different casesthat Algorithm-1 and Algorithm -2 have been compared in.

The Algorithms have been compared for 12 different cases corresponding to different
values of M, N and T as shown in Fig 4.11. Showing the results of all the 12 cases
would be redundant to come to a conclusion, hence, the three most important cases
will be discussed, which are indicated by a square box, in Fig 4.12. The value of M
has been varied from 100 to 3000 and the value of N has been varied from 4 to 40,

whereas the value of T has been kept constant at 10.

42



4.6.1 Case—1: (M=3000; N=4; T=10)

Case -1
m=3000:t=10: n=4 A- ratio = std1/std2 = 1.06

Alg-1; m=3000; n=4; t=10; Stdev=0.012155; Mean=0.99912 Alg-2; m=3000; n=4; t=10; Stdev=0.011447; Mean=0.9996
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Fig 4.13: Comparison of Histograms of y and maximum Correlation coefficient values,
for Alg-1 and Alg-2 for casel
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The Fig 4.13 shows a comparison between the histograms of y-values as well as
maximum correlation coefficients for Alg-1 and Alg-2. The plots on the left side
show the histograms corresponding to Alg-1 and the plots on the right correspond to
Alg-2. As can be seen from Fig 4.13, there is not much improvement in the chi
standard deviation of Alg-2 from Alg-1. The ratio of the standard deviation of the

distribution of y of Alg-1 to Alg-2 is about 1. The mean of the maximum correlation

coefficient values for Alg-1is 1.061 times that of Alg-2.

4.6.2 Case — 6: (M=1000; N=8; T=10)

In this case, the value of M has been decreased from 3000 to 1000 and the value of N
has been increased from 4 to 8. The histograms of Alg-1 and Alg-2 are shown in Fig
4.14.

Again, in this case the ratio of the standard deviation of y values for Alg-1 to Alg-2
is not too high and isonly 1.11. And the mean of the maximum correlation of Alg-1

isamost same as that of Alg-2.
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4.6.3 Case — 12: (M=100; N=40; T=10)

In this case, the value of M has been decreased from 1000 to 100 and the value of N

has been increased from 8 to 40. The histograms of Alg-1 and Alg-2 are as shown in

Fig 4.15,
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The ratio of standard deviations of y values from Alg-1 to Alg-2 in this case is 1.33

and the ratio of mean of maximum correlation coefficient for Alg-1to Alg-2 is 1.165.

Summarizing all the above cases, a plot of the standard deviation values with

respect to the transmit signal dimension can be plotted for both Alg-1 and Alg-2. The

plot is as shown in Fig 4.16.
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Fig 4.16: Plots of standard deviation of y with respect to the transmit signal dimension
for Alg-1 and Alg-2. (m isthetotal number of measurements taken.)

The standard deviation values for Alg-1 are very close to that of Alg-2 for M=3000;

1000; 500. However, Alg-2 performs better than Alg-1 for M=100.
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Similarly a plot showing the mean of the maximum correlation coefficient values
with respect to the dimension of the transmit signal is as shown in Fig 4.17.
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Fig 4.17: Plot showing the mean of max correlation with respect to the transmit signal
dimension for Alg-1 and Alg-2.

Therefore, from the above cases it is very difficult to come to a precise conclusion
about the performance of the Algorithms. For H-matrices generated from single
Gaussian distribution, though there is an improvement in the standard deviation of
Alg-2 compared to Alg-1 for al cases, the improvement is not a very significant one.

Also, the means of the maximum correlation for Alg-2 are approximately equal to
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that of Alg-1. Therefore, we can say that for constant H-matrices (Matrices generated

from single Gaussian distribution) the performance of both the Algorithms in terms of

standard deviation of y values and mean of the maximum correlation values is very

similar.

The H-matrices whose elements have been generated from Gaussian

distributions of different means and different variances have been generated and the

performances of Algorithms have been analyzed in those cases as well.

4.7 H matrices generated from Gaussian distributions with
different Means and different Sandard Deviations

=M1 + N2

N=NT+ N2

Fig 4.18: Four blocks of the “Varying H-matrices’ with different mean and different

M1 x N1 M1 x N2
mean = 0.5 mearn = 1
stdder = 0.4 | stddev = 0.7
M2 % N1 M2 x N2
mearr = 0.2 mean = Q0
stclder = 0.1 stadev = I

standard deviations.
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Each element in this kind of H-matrices has been selected randomly from four
different Gaussian distributions having different means and different variances. A
single H matrix of MxN dimension has been divided into 4 blocks, so that the
elements in these blocks can be chosen from Gaussian distributions having different
means and different standard deviations. Both the real and imaginary parts have been
generated independent of each other and have been joined to form a complex element.
All the 4 blocks together make up a single H matrix. The division of the H-matrix

into different blocks is as shown in the Fig 4.18.

The elements in the first block have been picked randomly from a Gaussian
distribution of 0.5 mean and 0.4 standard deviation. The second, third and fourth
blocks have elements from Gaussian distributions with means 1, 0.2 and 0 and
standard deviations 0.7, 0.1, 1 respectively. All these four blocks have been joined to
form one single H-matrix of dimension M x N. Every target has a corresponding H-

matrix. These H-matrices for each target has been generated independently.

Therefore, using these new H-matrices as inputs to Algorithm-1 and

Algorithm-2, their performances have been analyzed in the same manner as in the

previous section.
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4.7.1 Case—1: (M=3000; N=4; T=10)

Case -1
m=3000;t=10; n=4 X- ratio = std1/std2 = 9.28
Alg-1 Alg-2

Alg-1; m=3000; n=4; t=10; Stdev=0.11423; Mean=0.75645 Alg-2; m=3000; n=4; t=10; Stdev=0.012374; Mean=0.99929
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Fig 4.19: Comparison of Histograms of y and Correlation for Alg-1 and Alg-2 for case-1

In this case, M=3000; N=4 and T=10, the standard deviation of the y valuesfor Alg-2

is 9.28 times that of Alg-1. The histograms are as shown in Fig 4.19. The ratio of the
means of the maximum correlation coefficients for Alg-1 to Alg-2 is 8.85. A
significant improvement compared to asimilar case of constant-H matrices. (Matrices

with generated from Gaussian distribution of constant mean constant variation).
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4.6.2 Case—2: (M=1000; N=8; T=10)
In this case, the value of M has been decreased from 3000 to 1000 and the value of N

increased from 4 to 8. The histograms of Alg-1 and Alg-2 are as shown in Fig 4.20,
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Fig 4.20: Comparison of Histograms of y and Correlation for Alg-1 and Alg-2 for
Case-6

The y standard deviation ratio of Alg-1to Alg-2 is 8.65. And the maximum

correlation coefficient mean ratio is5.1
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4.6.3 Case—12: (M=100; N=40; T=10)

Case -12
m=100; +=10; n=40 X- ratio = std1/std2 = 2.635
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Fig 4.21: Comparison of Histograms of y and Correlation for Alg-1 and Alg-2 for
case-12

In this case, the value of M has been decreased from 1000 to 100 and the value of N

has been increased from 8 to 40. The histograms of Alg-1 and Alg-2 are as shown in
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Fig 4.21. They standard deviation ratio of Alg-1to Alg-2 is 2.635, and the maximum

correlation mean ratio of Alg-1to Alg-2 is 1.276.

Plots summarizing all the above cases are as shown below,
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Fig 4:22: Plots of standard deviation of y with respect to the transmit signal dimension
for Alg-1 and Alg-2.

From the Fig 4.22, it has been observed that Alg-2 has much lower y standard

deviations than those of Alg-1, for lower transmit signal dimensions, however, both



the Algorithms give approximately the same standard deviations for large number of

measurements (M) and higher number of transmit signal dimensions (N).

Plots showing the variation in mean with respect to the transmit signal dimension is
as shown below.
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Fig 4:23: Plot showing the mean of max correlation with respect to the transmit signal
dimension for Alg-1 and Alg-2.

From Fig 4.23, it is very clear that Alg-2 provides much lower maximum correlations
than Alg-1 for low transmit signal dimensions, where as they give almost the same

results for higher number of measurements and higher transmit signal dimensions.
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Therefore, from all the above cases in this section, we conclude that, when

varying-H matrices (H-matrices generated from different Gaussian distribution) are

used, there is a significant improvement in the performance of Algorithm-2 compared

to Algorithm-1 in terms of standard deviation of y-values and means of the

maximum correlations coefficients for low transmit signal dimensions. However,

both the Algorithms give approximately same results when there are a high number of

measurements (M) and high number of transmit signal dimensions (N).

From all the cases in both the sections, that is, for constant H-matrices and varying-H

matrices, the conclusions made are as follows.

1)

2)

3)

Higher the total number of measurements (M) and higher the total number of
dimensions of the transmit signal (N), better is the performance of both the
Algorithms.

For H matrices generated from a single Gaussian distribution, it is very
difficult to say which Algorithm performs better, as, both the Algorithms give

approximately same results (Standard Deviations of y - values and Means of

the maximum correlation coefficients) for the same values of M, N and T.

For H matrices generated from different Gaussian distributions having
different means and different variances, there is a significant improvement in
the performance of Algorithm-2 compared to Algorithm-1 in terms of
standard deviation of y-values and means of the maximum correlation
coefficients for low transmit signal dimensions. However, both the

Algorithms give approximately same results when high number of
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measurements (M) and high number of transmit signal dimensions (N) are

used.
Hence, as the performance of Algorithm-2 is either same or better than that of
Algorithm-1 for all the cases that have been discussed, Algorithm-2 is considered as a
better and effective algorithm and will be used in all the future experiments in this
study. Therefore, it is very clear from the above discussion that the performance of
Algorithm-2 not only depends on the total number of measurements (M), the number
of dimensions of the transmit signal (N) and the total number of targets (T) but also
depends on the structure of the H-matrices. Now the only question that remains is, in
general, how useful is the solution given by Algorithm-2?

In order to answer this question, we compared the performance of the transmit
signal given by Algorithm-2 to the performance of solution given by Genetic
Algorithm and randomly generated codes. This comparison will be discussed in the

next section.

4.8 Comparison of Algorith-2 solution with Genetic Algorithm
Solution and Randomly Generated Solutions

4.8.1 Genetic Algorithm:

Genetic Algorithm is a process in which, the best solution is derived by first
considering a group of possible solutions. Then out of this group, a group of fit
solutions is selected and are combined or mutated to come up with a new generation
of better solutions. The fitness of a solution is decided by how well the solution

satisfies the given criteria of the problem. After the mutation, a new group of fit
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solutions is selected out of the second generation of solutions using the criteria to
come up with a third generation of more fit solutions. This process is continued till
there is no more improvement in the criteria and the fittest of the last generation
solutions is considered to be the best solution [11].

In our case, the criteria that was used by the genetic Algorithm was,

_ |pllpt|2

'Bt - 2 2
|p1| |pt|

where t0{2,34........ T}

where, p, =H;s

And we seek a solution s that minimizes the largest value in the set of values of
B, (Mini-Max solution). The varying—H matrices were generated with M=100; N=8
and T=10 in order to be used by the Genetic Algorithm. The set of S, value that the

Genetic Algorithm came up with using its best solution are as shown in Table-1

T B Target-6 | 0.0002

Target-2 | 0.0001 | | Target-7 0.0002

Target-3 | 0.0000 | | Ta@9et-8 | 0.0002

Target-4 | 0.0002 | | 1a9e-9 | 0.0000

Table-1: Table showing the set of S, values obtained using the code given by

Genetic Algorithm.
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The maximum g, value in the above table is 0.0011 corresponding to target-5.
Therefore the genetic Algorithm can minimize the maximum correlation energy

between p, and p,to 0.0011. That is-30 dB.

4.8.3 Randomly Generated Codes
A randomly generated code is used to compute the set of S, -values. The S, -values

obtained using a randomly generated code is shown in Table-2,

Random Code -1 Random Code -2 Random Code -3
T A T B T B
Target-2 0.1249 Target-2 | 0.1041 Target-2 | 0.1662

Target-3 0.0791 Target-3 0.0275 Target-3 | 0.1387

Target-4 0.0691 Target-4 0.0162 Target-4 | 0.1202

Target-5 0.0317 Target-5 0.0610 Target-5 | 0.1119

Target-6 | 0.0472 Target-6 | 0.0481 || Target-6 | 0.1716

Target-7 0.1318 Target-7 0.0259 Target-7 | 0.1957

Target-8 | 0.0612 Target-8 | 0.0479 || Target-8 | 0.1459

Target-9 0.0788 Target-9 0.0317 Target-9 | 0.2026

Target-10 0.0573 Target-10 0.0080 || Target-10 | 0.1178

Table-2: Table showing the set of 3, values obtained using three randomly

generated codes.
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The maximum g, value given by Random code-1, Random code-2 and Random

code-3 are 0.1318 (-8.6dB), 0.1041 (-9.8dB) and 0.2026(-7dB) respectively.

4.8.3 Algorithm -2:

In order to compare the results of the Genetic Algorithm and Algorithm-2, same set
of H-matrices were used as inputs to Algorithm-2 as were used for the Genetic

Algorithm. The set of S values that the Algorithm solution came up with are as

shown in Table-3.

T B

Target-6 | 0.0003

Target-3| 0.0021 | Target-8 | 0.0019

Target-4 | 0.0092 | ["Tager-9 | 0.0057

Target-5 | 0.0041 | T5rger-10 | 0.0124

Table-3: Table showing the set of S, values obtained using the code given by
Algorithm-2.
The maximum S, value in this case is 0.0175, that is, -17.56dB, corresponding to

target-7.
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Max S,

Random Codes -9dB -10dB -7dB
Algorithm-2 Code -18dB
Genetic Algorithm -30dB
Code

Table-3: Table showing Max [, values obtained using 3 randomly generated codes,
Algorithm-2 Code, and Genetic Algorithm Code.

Therefore, Algorithm-2 code is better than a Random Code-1, Random code-2 and
Random code-3 by 8.96dB, 7.76dB and 11.56dB respectively and the Genetic
Algorithm performs better than Algorithm-2 code by 12dB in terms of the maximum

B, value. Though the genetic Algorithm is better than Algorithm-2, there is no

mathematical basis for the functioning of it. Also, the genetic Algorithm takes a huge
amount of time to come up with the best solution. For this particular case, it took
about 12 hours to come up with the best code, whereas Algorithm-2 gave us the best
solution in less than 30 seconds. Therefore, though the genetic Algorithm is better by
12 dB compared to Algorithm-2, it cannot be used in situations where processing time

is an important factor.

4.8.3 Comparison with Random Codes:

The performance of the solution given by Algorithm-2 has been compared with codes

generated randomly, for different cases of M, N and T. This comparison tells us
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whether our Algorithm is actually working as we intended or is giving some random
solution. Every element in the random code is generated from a Gaussian distribution
of O mean and variance 1.

The comparison will be done on the same cases as was done in the previous sections.

4.8.1.1 Case—1: (M=3000; N=4; T=10)

The histograms given by the random code and Algorithm-2 code are as shown in Fig
4.23. The y histogram obtained by using the random code has a very loose bound.
Not a singley -value is equal to 1. Also, the maximum correlation coefficient

histogram has very high values. On the other hand, the histogram given by Alg-2
code is very tightly bound and has its mean at 1. The correlation histogram has very
low maximum correlation coefficient values. Hence it is very clear from the Fig 4.24

that Alg-2 performs much better than a Random code for this case.
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Case -1

m=3000:1=10; n=4 A- ratio = std3/std2 = 11.59
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4.8.1.2 Case—6: (M=1000; N=8; T=10)
In this case, the value of M has been decreased from 3000 to 1000 and the value of N

has been increased from 4 to 8. The histograms of Alg-2 and Random Code are as

shown in Fig 4.25.
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Again in terms of the tightness of the y bound and the maximum correlation

coefficient values, solution given by Alg-2 is much better than a randomly picked

code.

4.8.1.3 Case—3: (M=100: N=40; T=10)
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In this case, the value of M has been decreased from 1000 to 100 and the value of N
has been increased from 8 to 40. The histograms of Alg-2 and Random Code are as
shown in Fig 4.26. In this case also, Alg-2 solution is better than a random code.
Therefore from the above cases it can be concluded that Algorithm-2 gives us
a much better solution than a randomly generated code, irrespective of M, Nand T

values.
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CHAPTER -5

5. Simulation of a Radar Model

The results shown previously for the performance of the Algorithms were obtained
using the propagation matrices (H-matrices) generated randomly from Gaussian
distributions. In order to evaluate the performance of Algorithm-2 with results
obtained using the propagation matrices that closely resemble the actual physical
conditions that the transmit signal would undergo; a physical radar model has been
designed that completely represents a side looking Synthetic Aperture Radar model.
The different parts of the radar model are, the space-time transmit signal, the
target set and the space-time receive measurements. Each one of them will be

discussed in the next few sections.

5.1 Transmit Sgnal Model

The transmit signal in our model is represented as a set of complex valued samples
lying in a multi-dimensional space. This multi-dimensional space consists of temporal
subspace as well as spatial subspace. Consequently, the complex valued samples of
the transmit signal will have atemporal component as well as a spatial component.

The temporal component of the samples is denoted in time and frequency, thus the

total number of dimensions in temporal subspace given by Z,is2.

Let K be the total number of transmit temporal samples. These are the transmit

samples transmitted at different times and at different frequencies but, by the same
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transmit element. Therefore, the temporal position vector of the k-th transmit sample
isgiven in time and frequency as,

Z =[t.w]" (51
Similarly, the spatial component of the samples are represented in 3 dimensions, i.e,
X, Y, and Z directions, hence the total number of dimensions in transmit spatial
subspace given by Z_ is 3.
Let J be the total number of samples in the spatial subspace. In other words, the
number of samples in the spatial subspace is equal to the number of transmit elements
used in the radar model. Each transmit element transmits a sample at a particular time
and at a particular frequency, hence, we can have multiple samples transmitted at the
same time and at the same frequency but by different transmit elements (differing
gpatially). Thus, the total number of transmit spatial samples at a given time is equal
to the total number transmit elements used in the model.
The gpatial position vector of the j-th transmit sample given in 3 coordinate axes is
defined as, Z; =[x,y,,.7,1" (5.2)
Combining both temporal and spatial subspaces, there are a total of
Z =27 +Zdimensions, i.e, 5inthetota subspace.
Hence, the total number of spatial and temporal samples is given by N = JK , that is,
all the samples transmitted at different times and at different frequencies by different

transmit elements.
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The overall position vector of the jk-th sample defined in the combined space of
temporal and spatial is given by,

Zy =[x, 2.0 @]" (5.3)
Where, z,, defines the complete position of atransmit sample in both spatial subspace

as well asthe temporal subspace.
The value of the jk-th complex valued sample can be denoted with respect to its
position vector as,
S(Z;) =Sy

All the complex values are arranged into a single complex vector of size N (J*K) x 1
as,

s=[(S”)",(s3)",(S5) e (s (5.4)
Similarly, the position vectors can be written with ‘n’ asitsindex as, z, = z,.

Where, the mapping of n, j and k is given by,

n=(kJ+j)—-J
Where, 1<j<J and1<sk<K
Hence, 1<nsN=JK

The description of the transmit signal discussed before, as a set of complex
samples is given in a general form. In our radar model, the transmit signal has been
defined as a weighted superposition of a set of wide time width and wide bandwidth
orthonormal basis functions. It is then described in terms of a set of complex valued

samples obtained by sampling the windowed fourier transformation of every single
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pulse. This design of transmit signal as a superposition of different basis functions is
as follows.

In general, areal valued transmit signal can be described as,
v,(t) = Re{S(t)e”"*'} (5.5
where, S(t) = Complex function constructed as a weighted superposition of complex
basis functions ¢/, (t) .
P-> An odd integer number indicating the total number of slow time
functions and pisits index.
Q> Anodd integer number indicating the total number of fast time functions
and qisitsindex.
«w, = Real valued carrier frequency in radians given by, («w, = 27f,)
f.=> Carrier frequency in (Hz).

The complex basis functions ¢, (t) are given by,
W) =s, ()Y f (t-uT)e™ (56)

where, T -> Signal repetition interval (sec). (T, =1/ f,)
f, = Signal Repetition Frequency (Hz).

U = An odd integer indicating total number of pulses transmitted.
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s, (t) > One of the P slow-time functions, each with a narrow bandwidth and

time width T. Each s (t) function is denoted by integer p, which

P-1 P-1
ranges from, —( > ]s ps( )

2

f,(t) > One of the Q fast-time functions, each with a narrow time width and

awide bandwidth B. Each f,(t) function is denoted by g, which

ranges from, - (QZ_ 1) <g< (QZ_ 1)

A train of U pulses can be denoted by > f_(t —uT,)e’®™ . Each pulse in the pulse

train is described by the fast-time function f,(t) . Hence, there is an entire pulse train
for every fast-time function f_(t).
The pulses are represented by u, where uisan odd integer, ranging from
U —1] [U —1)
- s<u<
( 2 2

The complex function S(t) isgiven by,

S =Y Syl e® (57)
St)=33S,s,MY f,(t-uT,)e™ (58)

where, S, are the complex weights of the basis functions.
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All the fast-time basis functions are derived from a main function called the mother
function g, (t) . Each fast-time function f,(t) isaslightly time delayed version of the
mother function.

i.e f,(t) =g, (t-71,)e Where, 7, <<T, (5.9)
Where, 7, is defined as the time delay used to generate the fast-time basis functions.
Similarly, the slow-time functions are also derived from the mother-function g (t) .

Each slow-time function is a frequency shifted version of the main mother-function.
As it is a frequency shifted function, the mother function and the slow-time basis

function are represented in frequency domain as, G,(«w) and S, (w) respectively [13].

The slow-time basis function is given as,

S, (W) =G(w-w,) where, w,<<w, (510)
Where, w, isthe frequency shift used to generate the slow-time basis functions,

Substituting the above equations of fast-time and slow-time basis functions and
taking awindowed fourier transformation, the equation of our transmit signal (5.8) is

transformed as,

S(UT,, ) = . g, (uT,)e"“P™ D S,,G; (w)e ' e (@ (511)
p q

The windowed fourier transform of S(t) is now sampled. After windowing, if the
frequency spectrum is sampled at Nyquist rate, then there will be an overall of 2BT
samples which is much higher than the time-bandwidth product of the windowed

signal, BT,. Hence, the signal needs to be shifted back to uT, so that the spectrum
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can be sampled with higher spacing. This shifting is performed by multiplying the
frequency spectrum by e'““™ . Therefore, the Nyquist spacing for the shifted version

of the windowed transmit signal isw,, however, it was chosen to oversample the
spectrum with a spacing of w, /2 between the samples, so that more of the signal can
be seen in the time-domain. Hence, there is a total of w=Vv(w,/2) number of
frequency samples where, ‘v’ is an integer value that varies from
V-1 V-1
- <v<
2=

Therefore, there are an overall of UV number of complex transmit samples.

Thus, s(uT,, w) can be denoted as s,, and isgiven by,

we)Tq

jua) TO VC()O _j(ﬂ_
Suv = z gs(UTo)e P Z Squf (T)e z (512)
p q
A new term, ¢! has been defined as,
5= 0,(UT e G, (0 je 12
(5.13)

Substituting the above termin (5.12) we have,

Sw =D WNS, (5.14)
p q

Where, s, are the total number of temporal-samples of the transmit signal and
S, ae the complex weights of PQ number of basis functions. Hence, the complex

temporal samples have been successfully written in terms of complex weights of the

basis functions defined earlier in this chapter. Now, the Algorithm that has been
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developed in this study needs to find the best possible “weights’ for the basis
functions which will give us the lowest possible correlation between the target of
interest and some other target in atarget grid.

Reindexing, the samples can be denoted with a single index using the mappings as,

P.q — P, g, indices are mapped tor by, :(pQ+Q)+[P(?2+1)

Range of p, g, and r are given as,

Similarly, u,v - k: p, g, indices are mapped to r by, k = (uV +v)+(UV +1)

Range of p, g, and r are given as,

1<k<K=UV

Therefore, the equation (5.14) can be written in areindexed form as,

S = 2 WS, (5.15)

where, s, isaset of K samples and can be written in a vector form as,
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S' =[S,,S,,Syreererermens s ] (5.16)

and ¢, isamatrix of K x Rsize give as,

Wy Yo WY o e Y]
Wy Yo Wy o o o Y
Wy Wy Wy o o .o Wgpg
y=| (5.18)
i Yo Wks Ui |

The superscript ‘t" indicates the temporal subspace.

Using the above representation of the samples, the model equation (5.15) can be

written as,

s =yS'  (5.19)

Equation (5.19) gives us one vector of s', corresponding to one transmit element. As

a space-time transmit signal is being defined, more than one transmit element are to

be considered. Let us say there is a total of ‘J number of transmit elements.

Therefore the model equation (5.15) will change to,
Sik = Z[//kr Sjr (5.20)

st = ySt
V= (5.21)
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Which defines the transmit sample vector for a specific transmit element j.

Including the spatial dimension in our model equation (5.15) we have,

Si = zwkr SrS

& = Zwkrl s (5.22)
Where, Sy = [Sycs S r Syp rerererermrenenes S, 0T
S VIR = s, I
A matrix, DY isdefined suchthat DY =y, |,
Therefore, equation (5.22) is transformed into,
ss=>DIST (5.3
Another matrix, F, isdefined such that,
F. =[D%,DY% e DY
Therefore substituting F, in equation (5.23) we have,
sS=FS (524
Finally the model equation (5.24) can be written as,
s=FS (5.25)
Where, F=[F,Fynenn. Fl
S=[(S)7,(S,) L (Sy) e SONN
S=[(S)T,(SY),(SL) v S
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5.2 Target Model

A total of N, number of targets lying on the ground was considered to define the

target model. These targets lie in a 'Y dimensional space. Each target has a position

vector associated with it and is given by y,. The complex scattering coefficient of
each target is given by y;, hence there are N, number of scattering values given by the

¥ Vector as,

e 70 70 7 Wl (529

Therefore, the entire target model can be described by the position vectors of the
targets as well as the complex scattering values.
The arrangement of the target system used in the model will be discussed in the future

sections. The above description only gives a general overview of atarget system.

5.3 Recelver Measurements

The receiver measurements are described in the same way as the transmit signal. The
receive measurements in this model are represented as a set of complex valued
samples lying in a multi-dimensional space. This multi-dimensional subspace consists
of temporal subspace and spatial subspace. Consequently, the received complex
valued samples will have atemporal component as well as a spatial component.

The temporal component of the samples is denoted in time and frequency, therefore,

the total number of dimensions in temporal subspace given by X, is2.
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Let K' be the total number of receive temporal samples. These are the receive
samples received at different times and at different frequencies but by the same
receive element.

Therefore, the tempora position vector of the k'-th receive sample is given in time
and frequency as, X =[t.,w.]"  (5.30)

Similarly, the spatial component of the samples are represented in 3 dimensions, i.e,
X, Y, and Z directions, hence the total number of dimensions in receive spatial
subspace given by X, is3.

Let ‘I’ be the total number of receive samples in the spatial subspace. In other words
the number of samples in the spatial subspace is equal to the number of receive
elements used in the radar model. Each receive element receives a sample at a
particular time and at a particular frequency, hence we can have multiple samples
received at the same time and at the same frequency but by different receive elements
(differ spatially). Therefore, the overall spatial samples is equal to the total number of
receive elements used in the model.

Thus, the spatial position vector of the i-th transmit sample given in 3 coordinate
axes is defined as, X°=[x,Y,,z]" (5.31)

Combining both temporal and spatial subspaces, there are a total of X = X, + X,

dimensions, i.e., 5 in the combined subspace.
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Hence, the total number of spatial and temporal samples is given by M = IK', that is,
al the samples received at different times, at different frequencies by different
receive elements.
The overall position vector of the ik -th sample defined in the combined space of
temporal and spatial subspaces is given by,

X =[%,¥,2,t, @] (5.31)
Where, X, .defines the complete position of a receive sample in both spatial subspace

aswell as the temporal subspace.
The value of the ik’ -th complex valued sample can be denoted with respect to its

position vector as,

r(Xie) = e
The complex values are arranged into a single complex vector of size M(I*K’) x 1 as,
r=[r) 00 () s '] (5.32

Similarly, the position vectors can also be written with ‘m’ as their index as,

X, =X_.

Where, the mapping of m, i and k' is given by,

m=(k'l +i)-1
where, 1<i<| and 1<k'sK'
hence, 1<m<sM =IK'

79



5.4 Modd Equations

From Chapter-2, Equation (2.4) gives the relation between the received signal vector

r to the transmit signal vector sand the scattering value vector y as,
r=> yHs+n (5.33)
t

Where, nisan M dimensional complex vector representing random noise.
The most important part of the above relation is the propagation matrix, H, which of

the dimension M x N. In order to derive the propagation matrix, the following

parameters are to be discussed first.

?9 -> Thisisafrequency matrix which accounts for the change of phase with respect
to the transmitter position, temporal frequency and time. Basically it accounts for the
change in phase of the transmit signal as it travels from transmitter to the target. It has

adimension of Y x Z.

?(p% This is also a frequency matrix which accounts for the change in phase of the
signal from the target to the receiver. It'sa 'Y x X dimension vector.

g; (k',k:t) > It's a complex weighting function that relates the temporal samples of

the transmit signal to the temporal receive samples for a given target ‘t'. We will be
discussing more about the kind of weighting function used in the model in the future

section.

80



g;, (j,t) = It's again a complex weighting function that weights the spatial transmit

samples. It can be viewed as a transmit antenna pattern that corresponds to beam
shaping or antenna tapering characteristic.
g, (i,t) > A complex weighting function that weights the spatial receive samples. It

can be viewed as a receive antenna pattern that corresponds to beam shaping or
antenna tapering characteristic.

The H, matrix is described asan M x N dimensional matrix given by,

T_T _ o
_esT=sT o 1=ss T.=t =t
xm Ky %t e-JytTKZZS’e-JytT(K¢+K9)Zn

H™ =g,(mn:t)e (5.34)

Separating the above expression into temporal and spatial parts using various

mappings described above as,

T=T _
—ixS S'y = T1755S
Xm Ky %t _-it Kgzn _t

H™ = g3, j :t)e gl (k' k:t)e ™ K8 (5 35)
Where,
g,(mn:t)y=g:(k,i;k,j:t)=g:(,j:t)g; (k' k:t) (5.36)
Therefore the temporal part isgiven by aK’ x K matrix as,
HE = HY, = g (K ke ™ 979 (5.37)
and the spatial part is given as a matrix of | x J dimension as,

T=.T _
osTzst o =g
~ixm Kg Wt —JytTngﬁ

HY =H} =g:(,]:t)e (5.38)
The combined H, matrix can be written as,

H,=H!OH® (539
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(where, [0 denotes a Kronecker product)
Hence from the equation (2.7) we know that the response vector of target ‘t’ is given
by,

Py =H.s (5.40)

Also, using the transmit signal model equation, in which the transmit signal has been
described to be aweighted superposition of orthonormal basis functions. Hence from
equation (5.25) we have,

s=FS (541)
Where, s is an N dimensional vector containing the transmit signal space-time
samples and S is a W- dimensional transmit weight vector that gives the weights for
the transmit signal basis functions.
Substituting s in the above equation we have,

=H,FS
Pemm™ (542
p. =H/S
Where, H'=HF=H (yOl,) (543
Hence, the propagation matrices i.e., H, matrices, that give the relation between the

response vectors and the transmit signal samples, have been converted to H, ' matrices

that relate the response vectors to the weight vector of the basis functions of the

transmit signal.
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5.5 Default values used in the Radar Model

Let us consider aradar system which isflying at an altitude ‘b’ with avelocity ‘v’ in

the x-direction. Let the radar be looking at atarget grid of N, xN,, and the center of

thetarget islocated at X = 0; y =Y,. The radar setup is as shown in Fig 5.1.

z
D D 1 D v\ Multistatic Radar System
-

L[]~

Target Area

vV <

Fig 5.1: Multistatic Synthetic Aperture Radar System

» Transmit temporal position vectors— The transmit temporal position vector has

been defined to be in atwo dimensional space of time and frequency as,
St — T
Zk _[tk’wk] (544)
As discussed before, the frequency domain of a single pulse of the transmit signal

is sampled at arate of (w,/2), hence there are a total of V frequency samples
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spaced w), /2 apart and atotal of U samples in the time domain spaced T, distance
apart. Therefore, the transmit element position vector can be written as,
Z, =[uT,,v(w,/2)]"  (5.45)

Where, the mapping of k, u, and v are given as,

k= (Vv +v)+(UV +1)

Receive Temporal Position vectors — Similar to the transmit temporal position
vectors, the received position vectors aso lie in a two dimensional space of time
and frequency and is given by,
% =[te.@ )" (5.46)

A receive window of duration —T,<t<T, has been used for the complex
weighting function defined by g;(k',k:t) that weights the receive samples
accordingly. The frequency spectrum of this window has been sampled using the
Nyquiste criteria, resulting in frequency samples placed «) distance apart.
Therefore, there are atotal of V' receive frequency samples and atotal of U’ time

samples corresponding to U’ received pulses. Hence, the receive position vector

can be defined as,

X, =[uT, V] (5.47)

oo {0022, o2

Uu'v'+l

k':(u'V'+v')+( ) 1<k'sK'=U'V'



Now, we define relations between, the total number of transmit pulses U, the total
number of receive pulses U’, the total number of transmit frequency samples V
and the total number of receive frequency samplesV' as,

U'=U +2 -- The model has been designed in such a way that the receiver
receives two pulses more than the number of pulses actually transmitted.

- +
V':VT]' or V':V 1

-- Based on the sampling rates of windowed transmit

signal spectrum and response signal spectrum, it is very clear that the total
number of receive frequency samples are approximately half of the total number

of transmitted frequency samples.

Target Position vectors— The target position vector have been defined to bein a
four dimensional subspace. In those four dimensions, three dimensions
correspond to X, Y, and Z directions, where, the targetslie in the X-Y plane and Z
corresponds to the height of the targets. The other dimension corresponds to the

velocity of the target. The target position vectors have been defined as,

yt = [nxAX! nyAy! Zt !Vt ]T (548)

- - N, -1 N, -1
Where, — N, 1)snxs(NX 1] and —| <n, |2
2 2 2 Y 2

Where, N, and N, arethetotal number of targetsin X and Y axis respectively.

The mapping of n,,n and t isshown as,
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N N, +1

t= (any +ny)+[Ty] Where, 1<t < NxNy
Temporal Complex Weighting function — The temporal complex function has
been defined as a function that weights and relates transmit temporal samples to

receive temporal samples.

It can also be seen as areceive window that has a time width of =T <t<T_, and

windows the receive pulse. This weighting function is such that for targets below
the center target in a target grid, it includes energy not only from a particular
receive pulse corresponding to a particular transmit pulse; it also includes the
energy from the pulse transmitted before that particular pulse. Similarly for
targets above the center target, it includes energy from a particular pulse as well
as energy from the pulse transmitted after the particular pulse. This weighting is

function as,
g (k' k:t) =gy (u',v;u,ving,ny)

on (U, V;u,vin,n) =

1.sin[ n(2\/—v))

2
V.sin[ n(2\/—v))
Vv

[O(u™-u) +e"""(u-u~-1)]= for —n, >0

1.9n

N\

T1(2/'~V) J

|

o(u-u)= for-n, =0 (5.49)

N

V.sn

<

2
(n(Z\/—v
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1.sin( n(2v'—v)j
2

(2v'-V) j
Vv

[o(u'-u) +e"™d(u'~u +1)] = for —n, <0

V.sin(

where, J(t) =1 for u=0 and o(t) =0for u#0

] =1/2 for 2v'=v (5.50)

") o
n(2v'—v)j for 2v'Zv  (5.5])

» Spatial complex weighting function — As stated before, the spatial complex

functions weight the spatial receive samples. This function has been set as 1 inthe

model, which means there are no weights attached to the spatial samples.
On (L) =0 (j,1) =1

. ?g and ?¢ - The frequency matrices Ko and ?4» are defined as,

-1 0 o —V 0
Ty
K, =<2 ° & ® ° ar| 63
o ~hY. Y2 o ch
R R W.R,
o 0 o0 0 -1

Separating the spatial part and the temporal part we have,
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D »

Il
o ‘oe

-1
RO
K¢=?°
0
L
-1
R,
= w.| 0
KSs=2¢
’ C
0
| 0

(For more information on the derivation of these frequency matrices, please refer the

reference [3])

» Target Spacing — Targets are spaced one resolution cell apart in the model.

o |08

kel
I
o ‘oe

(5.53)

The resolution in the Doppler direction is given by [14],

R
2UT M,
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And the resolution in the range directions is given by,

cR,
Ay = . 5.55
y 2BY, (5.55)

(The description of the Radar Model has been taken from references [14])

5.6 Numerical Values for the Model

The numerical values of the various parameters used in the model have been derived
by applying several constraints on to the model. One such constraint is that the
resolutions along the along-track axis and the cross-track axis have been made equal.

From this constraint we can derive expressions for bandwidth B and total time width

NN, Vf,
B= |-~ Y ° (556
BY,
N,N.Y,
and T= | XYe (5.57)
JEYR

Where, S isthe ratio of total number of targets to the product of time and bandwidth

T as,

and isgiven as,

p="N (5
BT '

The expressions for U and V have can also be derived from the above constraint as,

U = (5.579)

=
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2N
and v="1Y (5.60)

JB

From the discussion in previous sections, we know that,

T0 = l
U (5.61)

Also, the fast time function delay hasbeen set as, 7, :% (5.62)

And the slow-time function frequency shift is defined as, w,= Zn(?pj (5.63)

Since the total number of samples received, must be greater than the total number of
targets, to have an unambiguous image, we can say that the total number of receive

elements must be greater than 5. i.e.,

N, N

| > (= I;Ty (5.64)

A term 17 has been defined, which gives the ratio of the beam width of the radar to

the spatial resolution. This term helps in defining the spatial extent of the receive

elements, givenby L, . n= AA);S (5.65)

where, Axisthe main beam width given by,

_ CR,
= (560)

Cc—X

S

Therefore, the spatial extent of the receive elementsis given by,

L =R (5.67)
f.7AX

C
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Numerical Values:
Following are the numerical values that have been given as inputs to the Algorithm.
These values resemble closely the parameters of alow-orbit radar would have.
The values of Sand /7 are assumed as,
=42
n=5
Nx =Ny =31

Therefore, the derived values are,

B=3.123X10°Hz

T =7.327X107"s

T, =4.844X10°s
U=15

V=31

f =2.065X10"Hz
delx = dely = 679.3m
L, =2.286m

Using all the numerical values mentioned in this section as inputs to the Algorithm,
the complex propagation matrices (H' -matrices) are obtained for every single target
in the target grid.

Hence, theseH' - matrices are used as inputs to our Algorithm to derive an
optimal space-time signal. The performance of Algorithm-2 with the new model will

be analyzed in the subsequent chapters.
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CHAPTER -6

6. Analysis of Algorithm-2 using the Radar M odel

A radar model has been designed as discussed in the previous chapter. This chapter
evaluates the performance of Algorithm-2 using inputs to the algorithm from the
radar model. It answers various questions on the performance of the Algorithm based
on the variation of the total number of basis functions. It has been found that as the
total number of basis functions are increased, the chances of the Algorithm coming up
with a best code also increases. This poses a question as to how far can the total
number of basis functions can be increased? An upper limit on the total number of
basis functions is also derived in this chapter. It has also been shown that as the total
number of transmit elements are increased from 1 to 2, the performance of the
algorithm improves, but the ambiguity plot seizes to remain invariant. Also, a
comparison of the final code given by the Algorithm with a randomly generated code
has been done, which gives us an idea about the efficacy of the final result given by

the Algorithm.

6.1 Performance Analysis of Algorithm-2 with the Radar Model

Having designed the model, the numerical values discussed in the previous chapter
have been used as inputs to the model. A 31 x 31 grid i.e., N,=31 and N =31, has
been chosen for the analysis of the algorithm performance as it closely resembles a

practical physical model. Also, having a bigger grid would require huge amount of

processing time and system memory. Thus, substituting the numerical values, the H'
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matrices are generated for every single target on the grid. These H' matrices are then
used as inputs to the Algorithm. Ideally, all the H'- matrices corresponding to all the
targets should be used as inputs to the algorithm. But based on observations made on
the performance of the model, only the H' matrices corresponding to the targets on
the Cross-Track Axis are used.

The observations made were,

1) The Ambiguity function for a standard transmit signal is symmetric about
along track and cross track axis. Hence, the targets lying only in one quadrant
can be considered rather than all the four quadrants of the grid. This would
speed up the process of finding the best code.

2) The Ambiguity function of a space-time signal transmitted using one transmit
element is invariant of the target of interest. That is no matter which target we
consider asthe target of interest in the grid, we would get the same ambiguity
pattern with respect to that particular target.

3) The model has an error in generating the H' matrices for the targets aong the
Along Track Axis.

Hence, in view of the above observations, only the targets along the cross-track axis
in the grid have been considered. For these targets, the performance of the algorithm
for different values of P and Q has been analyzed.

For al the following cases shown in the next few sections, the total number of
transmit elementsused is 1 i.e., J=1 and the total number of receive elements used are

15i.e, I1=15. The total number of Ps and Qs are varied over the several cases shown.
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6.1.1 Case-1(P=1; Q=1; J=1):

The total number of slow-time functions ‘P’ is set to 1 and the total number of fast-
time functions‘Q’ isalso set to 1.

The Ambiguity (Correlation) plots obtained using the transmit code generated by the

Algorithm are as shown in Fig 6.1

Cross-Track Axis

Correlation Coeff square in db

—Temp
| —— Spatial

i i i |
0 20 40 60 80 100
Resolution cells along the Cross-track -—->

Fig 6.1: Spatial, Total and Temporal Ambiguity plot along the Cross Track axisfor P=1;
Q=1

The green plot in Fig 6.1 indicates the Temporal ambiguity plot which conveys by
how much the maximum correlation is reduced when only the temporal aspect of the

transmit signal is considered. Since P and Q are equal to 1, the algorithm does not
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have much freedom to find the best code. Hence, the maximum temporal ambiguity is
down only by 1dB. The black plot shows the spatial ambiguity plot along the cross-
track axis. Furthermore, when the temporal and spatial plots are added in dB, the total
ambiguity pattern is obtained in dB which is indicated by the red curve in the figure.
From Fig 6.1 we can see that the total maximum correlation has been lowered by

9dB.

¢ Total - P=1; Q=1; J=1
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Fig 6.2: A 2-D plot of the correlation of thetarget of interest and all thetargetsin the
grid (2-D ambiguity plot) for P=1; Q=1.

Fig 6.2 shows the correlation of the main target of interest with all other targetsin the
grid, obtained using the transmit signal given by the Algorithm. The targets in the
rectangular box are the targets on which the algorithm has worked and the target in

the circle is the target of interest. Red color in the above plot, indicates a very high
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correlation, where as the dark blue color indicates very low correlation. The bright
spots along the corners and the center of the grid indicate Doppler and Range
ambiguities. An ideal two dimensional plot should have a red spot on the target of
interest, which indicates a high correlation of the target with itself and dark blue color

everywhere else.

6.1.2 Case 2 (P=3; Q=3; J=1):

In this case, the total number of slow-time functions, P is set to 3 and the total
number of fast-time functions, Q isalso set to 3.

The Ambiguity (Correlation) plot obtained by using the transmit code generated by

the Algorithm is as shown in Fig 6.3.

Cross-Track Axis

Correlation Coeff square in db

—Total
—Temp | |
— Spatial

y i | ‘ ;
600 20 40 60 80 100
Resolution cells along the Cross-track —>

Fig 6.3: Spatial, Total and Temporal Ambiguity plot along the Cross Track axis for
P=3; Q=3.
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As can be seen from the fig. 6.3, the total ambiguity plot has a maximum total
correlation of -10dB which indicates that there has not been much of an improvement
when compared to a case of P=1 and Q=1. Improvement will be noticed as P and Q

further increased. The 2-D plot of this case is as shownin Fig 6.4.

«10°' Total Ambiguity P=3; Q=3; J=1

Pat

<15

b E o (N

-02

-04

-06

-08

Fig 6.4: A 2-D plot of the correlation of thetarget of interest and all thetargetsin the
grid (2-D ambiguity plot) for P=3; Q=3.

6.1.3 Case 3 (P=5; Q=5; J=1):
The total number of slow-time functions, P is set to 5 and the total number of fast-
time functions, Q isalso set to 5.

The Ambiguity (Correlation) plots obtained by using the transmit code generated by

the Algorithm are as shown in Fig 6.5 and Fig 6.6.
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Fig 6.5: Spatial, Total and Temporal Ambiguity plot along the Cross Track axis for
P=5; Q=5.

Y axis ——---—--m

Fig 6.6: A 2-D plot of the correlation of thetarget of interest and all thetargetsin the
grid (2-D ambiguity plot) for P=5; Q=5.
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In this case, the maximum total ambiguity is about -12dB which shows an
improvement of 3dB when compared to the case where P=1; Q=1 and an

improvement of 2dB when compared to the case of P=3; Q=3.

6.1.4 Case 4 (P=7; Q=7; J=1):

The total number of slow-time functions, P is set to 7 and the total number of fast-
time functions, Q isalso setto 7.

The Ambiguity (Correlation) plots obtained by using the transmit code generated by

the Algorithm are as shown in Fig 6.7 and Fig 6.8..

Cross-Track Axis

O T T T ]
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Correlation Coeff square in db

4 1 | i |
SO0 20 40 60 80 100
Resolution cells along the Cross-track --->

Fig 6.7: Spatial, Total and Temporal Ambiguity plot along the Cross Track axis for
P=7; Q=7.
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Fig 6.8: A 2-D plot of the correlation of thetarget of interest and all thetargetsin the
grid (2-D ambiguity plot) for P=7; Q=7.

In this case the total maximum ambiguity is about -16dB. There is a considerable
improvement when compared to the previous cases. This is attributed to the increased
dimension of the transmit signal which is given by, J*P*Q. In this case, the transmit
signal has a dimension of 49, hence the algorithm has a subspace having 49
dimensions to search for the best code, compared to the previous cases, case-1, case-

2, and case-3 where the dimensions were 1, 9 and 25 respectively.
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6.1.5 Case 5 (P=9; Q=9; J=1):
The total number of slow-time functions, P is set to 9 and the total number of fast-
time functions, Q isalso set to 9.

The Ambiguity (Correlation) plots obtained by using the transmit code generated by

the Algorithm are as shown in Fig 6.9.

Cross-Track Axis
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Fig 6.9: Spatial, Total and Temporal Ambiguity plot along the Cross Track axis for
P=9; Q=9

In this case there is not much of an improvement in the total maximum ambiguity as

compared to a case where P=7 and Q=7. It is equal to -15dB.
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4 Total Ambiguity, P=9, Q=9; J=1

Fig 6.10: A 2-D plot of the correlation of the target of interest and all the targetsin the
grid (2-D ambiguity plot) for P=9; Q=9.

6.1.6 Case 6 (P=11; Q=11,; J=1):

The total number of slow-time functions, P is set to 11 and the total number of fast-
time functions Q, isalso set to 11.

The Ambiguity (Correlation) plots obtained by using the transmit code generated by

the Algorithm are as shown in Fig 6.11 and Fig 6.12.
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Fig 6.11: Spatial, Total and Temporal Ambiguity plot along the Cross Track axis for
P=11; Q=11.

. P=11; Q=11; J=1
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Fig 6.12: A 2-D plot of the correlation of the target of interest and all the targetsin the
grid (2-D ambiguity plot) for P=11; Q=11.

103



Thisis the final case that will be discussed for one transmit element. There is
a limit on how much the values of P and Q can be increased. This limit will be
discussed later in this section. The maximum values that could be assigned to P and Q
were P=11 and Q=11. The maximum total ambiguity for this case is -16dB. An
improvement of 7dB as compared to the standard transmit signal (P=1; Q=1 and J=1)
IS observed.

Hence from the all the cases discussed, it is clear that as the total number of
basis functions is increased, the maximum correlation drops by a grest extent. This is
because, as the total number of basis functions is increased, that is, as the total
number of slow-time and fast-time functions are increased, the Algorithm achieves
more flexibility to come up with a better code. In other words, more the number of
basis functions, bigger is the subspace in which the Algorithm can search for the best
code, hence the possibility of coming up with the best possible code improves.

The limit on the number of Psand Qs is discussed as follows.
As discussed before, the fast time functions are a time shifted form of the mother

functiong, (t). The shift intime isgiven as, 7, where,
I, <<T,
Where, T, isthe pulse repetition time.

When more than one fast time functions are considered, in order to differentiate
between two consecutive pulses, the duration of total number of fast time functions

should not exceed the pulse repetition time.
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i.e., Q Z-q << To
6.1)

Hence, the total number of fast time functions (Q) should be selected in such a way
that the combined duration should not exceed the pulse repetition time.

TO

Ly

Q<
Similarly, a limit can be defined for slow-time functions as well. Asit is known, the
slow-time functions are a frequency shifted version of the mother functionG; (w) .
The frequency shift is defined as w, where,
W, << W,
where, @, isthe pulse repetition frequency.
Hence the frequency extent of the total number of slow-time functions should not

exceed the pulse repetition frequency. Therefore a limit on the number of P's used

can be set,

P<«<® (62
w

p

6.2 Analysis of the Algorithmwith 2 Transmit Elements (J = 2)

Having analyzed the Algorithm for all the cases with 1 transmit element (J=1), the
Algorithm has been analyzed for 2 transmit elements that is J=2. By doing this, a
gpatial dimension has been included to the transmit signal. Hence, there are two

transmit elements at different spatial position vectors.
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Same cases of P and Q will be considered as were considered for 1 transmit element.

6.2.1 Casel (P=1, Q=1,; J=2):

The total number of slow-time functions ‘P’ is set to 1 and the total number of fast-
time functions‘Q’ isalso set to 1.

The Ambiguity (Correlation) plot obtained using the transmit code generated by the
Algorithmis as shown in Fig 6.13. Only the total ambiguity plot along the cross-track

axis will be shown, as the temporal ambiguity plot cannot be plotted for J=2 unlike

J=1 cases.

Cross-Track Axis

-20+ N
-40+ ﬂ ” .
50+ , i
_60 i i L L

20 40 60 80 1

00

Correlation Coeff square in db
W
o

Resolutions along the Cross-Track Axis ---->

Fig 6.13: Total Ambiguity plot along the Cross Track axisfor P=1; Q=1.
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¢ Total Ambiguity P=1; Q=1; J=2

b | P—

Fig 6.14: A 2-D plot of the correlation of the target of interest and all thetargetsin the
grid (2-D ambiguity plot) for P=1; Q=1.

From the ambiguity plot it is noticed that the maximum total correlation is about -
9dB. More improvement can be seen as the number of P's and number of Q's is
increased. The 2-D plot for this particular case is as shown Fig 6.14.

Here again, similar to J=1 2-D plots, red color indicates high correlation and dark
blue color indicates a very low correlation between the target of interest and the other

target.

6.2.2 Case 2 (P=3; Q=3; J=2):
The total number of slow-time functions, P is set to 3 and the total number of fast-

time functions, Q isalso set to 3.
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The Ambiguity (Correlation) plots obtained by using the transmit code generated by

the Algorithm are as shown in Fig 6.15 and Fig 6.16.

Cross-Track Axis
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Fig 6.15: Total Ambiguity plot along the Cross Track axis for P=3; Q=3.

«10° Total Ambiguity P=3; Q=3; J=2
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Fig 6.16: A 2-D plot of the correlation of the target of interest and all the targetsin the
grid (2-D ambiguity plot) for P=3; Q=3.
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The total ambiguity plot has a maximum total correlation of -11dB. This is an

improvement of 2-dB when compared to the previous case.

6.2.3 Case 3 (P=5; Q=5; J=2):

The total number of slow-time functions P is set to 5 and the total number of fast-time
functions Q isalso set to 5.

The Ambiguity (Correlation) plots obtained by using the transmit code generated by
the Algorithm are as shown in Fig 6.17 and Fig 6.18..

Cross-Track Axis
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Fig 6.17: Total Ambiguity plot along the Cross Track axis for P=5; Q=5.
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In this case, the maximum total ambiguity is about -19dB which is an improvement of
8dB as compared to the case where P=5; Q=5 and an improvement of 10dB as

compared P=3; Q=3 case.

x10* Total Ambiguity P=5; Q=5; J=2

p 1| [SS—

Fig 6.18: A 2-D plot of the correlation of the target of interest and all the targetsin the
grid (2-D ambiguity plot) for P=5; Q=5.

6.2.4 Case4 (P=7;, Q=7; J=2):
The tota number of slow-time functions P is set to 7 and the total number of fast-time
functionsQ isalso set to 7.

The Ambiguity (Correlation) plots obtained by using the transmit code generated by

the Algorithm are as shown in Fig 6.19 and Fig 6.20.

110



Cross-Track Axis

0 \ T T T T

Correlation Coeff square in db

i 1 I L
0 20 40 60 &80 100
Resolutions along the Cross-Track Axis -—>

Fig 6.19: Total Ambiguity plot along the Cross Track axisfor P=7; Q=7.
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Fig 6.20: A 2-D plot of the correlation of the target of interest and all the targetsin the
grid (2-D ambiguity plot) for P=7; Q=7.
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In this case the tota maximum ambiguity is about -24dB. A considerable

improvement is observed when compared to the previous cases.

6.2.5 Case 5 (P=9; Q=9; J=2):

The total number of slow-time functions P is set to 9 and the total number of fast-time
functions Q isalso set to 9.
The Ambiguity (Correlation) plots obtained by using the transmit code generated by

the Algorithm are as shown in Fig 6.21 and Fig 6.22.
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Fig 6.21: Total Ambiguity plot along the Cross Track axis for P=9; Q=9

In this case there is a not much improvement in the total maximum ambiguity

compared to a case where P=7 and Q=7. It is again equal to -24dB.
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Fig 6.22: A 2-D plot of the correlation of the target of interest and all the targetsin the
grid (2-D ambiguity plot) for P=9; Q=9.

6.2.6 Case 6 (P=11; Q=11,; J=2):

The total number of slow-time functions P is set to 11 and the total number of fast-
time functions Q isalso set to 11.

The Ambiguity (Correlation) plots obtained by using the transmit code generated by

the Algorithm are as shown in Fig 6.23 and Fig 6.24.
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Fig 6.23: Total Ambiguity plot along the Cross Track axis for P=11; Q=11.

This is the final case that will be analyzed for two transmit elements. As explained
before, the maximum values that could be assigned are P=11 and Q=11. The

maximum total ambiguity obtained for this case is -28dB.

This was the best result which was achieved in terms of reducing the
maximum correlation using two transmit elements. It is the maximum correlation of
the main target of interest with all the other targetsthat our algorithm worked on.

The two dimensional image of the entire grid is as shown below.
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Fig 6.24: A 2-D plot of the correlation of the target of interest and all the targetsin the
grid (2-D ambiguity plot) for P=11; Q=11.

The observations made from the two dimensional plot are,

1) The correlation of the target of interest with any other target is not invariant when
the target of interest is changed. That is, the correlation value of the target of interest
and some other target a certain resolution cells away will not be exactly same as the
correlation between a different target of interest and another target which is same
resolution cells away.

2) The 2-D total ambiguity plot is rotationally symmetric, which is according to one

of the properties of the ambiguity function that states that [2],
X(TFU fd) :X* (_TR7_ fd) (6.3)

Therefore, X(Te, £0) =X (=To=fy)

|2

(6.4)
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Where, TR is the time delay and fd isthe Doppler frequency.

6.3 Comparison of P=11; Q=11 and J=2 case with Sandard
Code (P=1; Q=1) and Three random codes.

The lowest maximum correlation that has been achieved for J=2 is -28dB. In order to
see the efficacy of the Algorithm, the result is compared with the maximum
correlations obtained using a standard code i.e., a code with P=1; Q=1 and J=1, and
also with 3 different random codes which are complex vectors in which each element

is generated randomly from a Gaussian distribution of mean 0 and variance 1.

6.3.1 Sandard Code (P=1; Q=1)
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Fig 6.25: Total Ambiguity plot along the Cross Track axisfor P=1; Q=1.

Fig 6.25 shows the total ambiguity plot for a standard case. And the maximum
Correlation = -9dB.
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6.3.2 Random Code-1
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Fig 6.26: Total Ambiguity plot along the Cross Track using random code-1.
Fig 6.26 shows the tota ambiguity using a Random Code 1. And the maximum

Correlation = -20dB

6.3.3 Random Code-2
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Fig 6.27: Total Ambiguity plot along the Cross Track using random code-2.
Fig 6.27 shows the tota ambiguity using a Random Code 2. And the maximum

Correlation = -23dB
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6.3.4 Random Code - 3
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Fig 6.28: Total Ambiguity plot along the Cross Track using random code-2.
Fig 6.28 shows the tota ambiguity using a Random Code 1. And the maximum

Correlation = -23dB

6.3.5 Transmit Code given by the Algorithm
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Fig 6.29: Total Ambiguity plot along the Cross Track using best transmit code.
Fig 6.29 shows the tota ambiguity using a Random Code 1. And the maximum

Correlation = -23dB
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Hence from the results, it can be seen that the maximum correlation obtained by using
the transmit code generated by the Algorithm is 19dB better than the standard
transmit code, and is better by 8dB, 5dB and 5dB than Random code-1, Random

code-2 and Random code-3 respectively.

6.4 Analysis of the Optimization Criterion X with inputs from
the Radar moddl.

It has already been shown that the optimization criterion is a justifiable criterion to
derive a transmit signal that would minimize the maximum correlation between
dissimilar targets. In this section a similar analysis is done with inputs from the radar

model. The transmit signal that was obtained for P=11; Q=11 and J=2 case is used to

compute the correlation coefficient values and [1-y|values and the plot is as shown.
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Fig 6.30: Plot showing the cor relation coefficient curve and [L-| curve.
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From Fig 6.30 it can be seen that even for the physical radar case, the optimization

criterion isagood criterion that can be used to search for the best possible code.

6.5 Energy in the Response vector for J=2; P=11; Q=11 case

Fig 6.31 shows the energy in the response vector for every single target on the grid

for two transmit element case with P=11 and Q=11.

Y axis

Fig 6.31: The energy in theresponse vector for every singletarget in thetarget grid
shown in dB scale.

It is very important to learn about the energy in a response vector of atarget as, there
is apossibility of two vectors being totally uncorrelated to each other when one of the
vectors has zero energy. A response vector with zero energy is not desired, as the
main effort of this study is to make two vectors with finite energy, as orthogonal as

possible to each other. The Fig 6.31 proves that no target has a response vector with
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zero energy, confirming our efforts of minimizing the correlation of the response
vectors were in the right direction. The reason for the diagonal pattern in the
distribution of the energy in the target grid, isthe position of the transmit elements. In
this particular case, two transmit elements taken such that they are placed diagonally
to the target area perpendicular to the energy diagonals as seen in the plot. This way

of placing the transmit elements causes an energy pattern as shown in the figure.

6.6 Comparison of Convergence of % bound for J=1; J=2 and
different values of P and Q.

Convergence of Chi for different values of P and Q
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Fig 6.32: Plot showing the convergence of x with for one and two transmit elements
respectively.
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In Fig 6.32, the blue curves represent the convergence corresponding to one transmit
element and the red curves represent the convergence corresponding to two transmit
elements. It is noticed that after every iteration, the y bound is either equal to or lesser
than the yx bound in the previous iteration. The functioning of the Algorithm for
different values of P and Q can be seen clearly from Fig 6.31. Smaller the dimension
of the transmit signal, lesser is the number of Stinker codes (Bad codes) and hence
easier it is for the Algorithm to search for the best code as it does not have to
eliminate too many stinker codes. Whereas, if the dimension of the transmit signal is
very high, there will be higher number of stinker codes and hence the Algorithm
needs to work hard to come up with the best code as it needs to eliminate a large
number of stinker codes. This can be seen for the case of P=7; Q=7; and J=2. Thered
curve for P=7; Q=7; and J=2 isflat for about 30 iterations, which means that there are
alot of stinker codes that the Algorithm is trying to project orthogonal to. Hence, by
increasing the dimension of the transmit signal, there is an increase not only in the
possibility of coming up with the best code, but also the total number of stinker

codes.
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6.7 Comparison of Maximum Correlation Coefficient values for
J=1; J=2 with respect to total Iteration Number.

Maximum Correlation in dB Vs Iteration Number
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Fig 6.33: Plot showing the improvement of maximum correlation with increasein total
number of basis functions.

From Fig 6.33, it is evident that, as the total number of basis functions is increased,
that is, as the values of P and Q are increased, the maximum correlation between two
targets is reduced relatively. As discussed before, this is explained as, by increasing
the total number of basis functions, more flexibility is provided in the design of the
transmit code which indirectly increases the subspace in which the Algorithm can
search for the best code. By adding a transmit element to the radar system, a spatial
dimension is introduced to the transmit signal thereby increasing the total subspace in

which the Algorithm can search for a best code.
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6.8 Relation between Rank of C matrix (R;) and the number of
Transmit Elements (J)

It has been observed from the above cases that the rank of C matrix is, in someway,
related to the total number of transmit elements used in a radar system. It has been
observed that the rank of the C matrix is less than or equal to twice the total number

of basis functions used. That is, rank of C matrix, R. <2PQ and the size of the C

matrix is given by WKW where, W = PQ
» For one transmit element, that is, J=1; the rank of the C matrix is equal to PQ
and it is a full ranked matrix asR, =W, which means that there are no zero

valued eigen values.

» For two transmit elements, that is J=2, the rank of the C matrix is equal to
2PQ, and again it isa full ranked matrix asR, =W, which means that all the
eigen values of the C matrix are non-zero values.

* Now, for transmit elements greater than 2, that is, J>2, it has been observed
that the rank of the C matrix was 2PQ and it was not a full ranked matrix
asR. #W. That is, it has zero valued eigen values. This indicates that when
the number of transmit elements are increased beyond 2; we have eigen
vectorsthat put no energy on the targets of consideration.

Hence from the above observations, it is very clear that there is arelation between the

rank of the C matrix R; and the total number of transmit elements used in the radar
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system. Mathematical derivation of this relation is beyond the scope of this thesis and

is left as a future work.
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CHAPTER -7
7.1 Conclusions

It has been proved by various experiments and cases conducted in this study that it is
possible to come up with a space-time transmit signal that could reduce the maximum
correlation between targetsin atarget grid. An Algorithm that works to come up with
this kind of transmit signal has been developed and its performance has been
analyzed numerically. A mathematical Synthetic Aperture Radar model has been
developed and the performance of the Algorithm has also been analyzed under the
simulated conditions of a physical radar model. It has been learnt from the numerical
experiments that the performance of Algorithm-2 not only depends on the total
number of independent measurements taken (M), the dimension of the transmit signal
(N), but also depends on the structure of the H-matrices. Having developed
Algorithm-2, we wanted to see the improvement of the new algorithm compared to
Algorithm-1. It has been found that Algorithm-2 shows a considerable improvement
when a certain kind of H-matrices (varying-H matrices) are used as inputs. The
performance of both the Algorithms improve as the total number of measurements
and the dimensions of the transmit signal are increased. In order to have a general
idea about the efficacy of the transmit signal given by Algorithm-2, we compared its
performance with a randomly generated code and a code given by the genetic
algorithm. It has been found that the result of Algorithm-2 performs far better than a

randomly generated code in terms of the standard deviation of the y values and the

mean of the correlation coefficient values, but the result given by the Genetic
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algorithm performs slightly better than the code given by Algorithm-2. From this we
can conclude that Algorithm-2 may not always give a best possible code for a given
radar scenario.

Using the inputs to the Algorithm from the simulated radar model, it has been
found that the performance of Algorithm-2 improves tremendously as the total
number of basis functions is increased. This is because, as we increase the total
number of basis function, more flexibility is provided to the algorithm to search for a
better code. An upper limit on the total number of basis functions that can be used has
also been derived in this study. The performance of Algorintm-2 has been analyzed
by increasing the total number of transmit elements from 1 to 2. It has been found that
the performance of the Algorithm improves considerably as we move from one
transmit element to two transmit elements, but the ambiguity function seizes to be
invariant.

The ambiguity functions have been analyzed in detail for one transmit element
case and a two transmit element case, and it has been concluded that when only one
transmit element is used, the ambiguity function is totaly invariant and it is
rotationally symmetric. Where as, when two transmit elements are used, it has been
found that the ambiguity function seizes to be invariant, that is, it changes its pattern
from one target to another. It ill remains to be rotationally symmetric conforming to

the symmetry property of the ambiguity function [2].
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Hence, it has been shown in this study that a Space-time transmit signal can

be developed for a multi-static radar system that exploits the spatial and temporal

characteristics to reduce the maximum correlation between targetsin atarget area

7.2 Suggested Future Work

Following are some of the suggestions for the future work on this topic.

1)

2)

3)

4)

All the experiments in this thesis have been performed on the cross-track axis.
That is to say, the Algorithm works only on the cross track axis targets. The
Algorithm needs to work on the along track axis targets also, in order to
obtain a clear picture about the performance of the Algorithm in physical
conditions.

As we increased the number of transmit elements from 2 to 3, it was observed
that the C matrix does not continue to be a full ranked matrix. Hence this
Algorithm needs to be modified suitably in order to handle a case of 3>2.

We observed arelation between the total number of transmit elements and the
rank of the C matrix. A clear understanding of the performance of the radar
model for >>2 will be achieved if a mathematical relation can be derived
between the total number of transmit elements and the rank of the C matrix.
As we observed that the ambiguity function for a radar scenario having two
transmit elements, seizes to be invariant, the transmit signal given by the

Algorithm cannot be used to in order to observe the entire target grid. Hence
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5)

the Algorithm needs to be modified accordingly in order to deal with such a
scenario.

Finally, the Algorithm takes immense amount of time in order to come up
with the best code for a target grid of 31 X 31. The Algorithm needs to be
optimized with respect to the total processing time it takes to generate the

code so that the Algorithm can used on much larger grids.

129



References

[1] Microwave Remote Sensing Active and Passive Vol || — Radar Remote
Sensing and Surface Scattering and Emission Theory by Fawaz T. Ulaby,
Richard K. Moore, Adrian K. Fung -1982.

[2] Introduction to Radar Systems — Third Edition by, Merrill I. Skolnik. Tata
McGraw Hill - 2001

[3] “SAR and MTI Processing of Sparse Satellite Clusters’ by Nathan A.
Goodman Doctoral Thesis, The University of Kansas.

[4] “Design of Space-Time Transmit Codes for Optimizing Multistatic Radar
Performance” by Sih Chung Lin. MS Thesis, The University of Kansas.

[5] “Space-Time Radar Transmission, Target, and Measurement Model” — Rev.
E, August 2004 by James Stiles.

[6] “Transmit Signal Model” —— Rev. E, August 2004 by James Stiles.

[7] Synthetic Aperture Radar — http://www.sandia.gov/RADAR/whatis.html

[8] Spotlight Synthetic Aperture Radar —Signal Processing Algorithms by, Walter
G. Carrara, Ron S. Goodman, Ronald M. Majweski

[9] “Performance and Processing of SAR satellite Clusters’ by Jim Stiles, Nathan
Goodman and Sih Chung Lin, The University of Kansas, RSL.

[10] “Resolution and Synthetic Aperture Characterization of Sparse Radar

Arrays’ by Nathan A. Goodman, James M. Stiles, The University of Kansas.

130



[11] “Finding an Upper Bound for the Transmit Code Problem Using Genetic
Algorithms® by Fernando Palacios Soto, MS Project, The University of

Kansas.

[12] “ Space-Time Radar Transmission, Target, and Measurement Model” Jim

Stiles, Rev E. — August 6, 2004

[13] “Transmit Signal Model” Jim Stiles, Rev. E, August 2, 2004.

[14] “Determination of Numerical Model Parameters’ Jim Stiles, Rev A, July 8,

2004.

131



