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Abstract 

The SeaWinds scatterometer that flew on the ADEOS II satellite and continues on the 

QuikSCAT satellite determines ocean-surface wind vector by measuring radar 

backscatter from the ocean.  These radar cross-section measurements are hindered by 

the presence of rain over seas.  The deleterious effects of rain are attenuation of the 

surface signal and the addition of backscatter from rain to the received signal.  

AMSR, the scanning radiometer on ADEOS II, provided rain-rate estimates which 

can be used to determine attenuation rate and rain-backscatter intensity.  If one knows 

the rain-cell height, one can estimate the total attenuation and rain backscatter for 

each beam and correct for the effects of rain.  Unfortunately, no direct measurement 

of rain height was available on ADEOS II. 

 

The objective of this thesis is to determine a method to estimate rain-cell height for 

different seasons and oceanic regions.  Rain height from the Tropical Rainfall 

Measurement Mission (TRMM) precipitation radar (PR) was used in these studies.  

An initial investigation on using climatological rain-height estimates showed that they 

were crude and constrained only to tropical regions.  Also, an attempt to relate rain 

height to sea-surface temperature failed. 
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TRMM rain rate and rain height showed good correlation over various regions, 

seasons and rain types (stratiform and convective).  Due to the scatter of the measured 

data, numerous regression schemes were attempted to relate rain rate and rain height.  

Most of the schemes work well at lower rain rates, but they behave poorly at higher 

rain rates.  A Log-Linear Combined regression technique using a linear-log regression 

for low rain rates and a linear regression for high rates provides a consistent relation 

over all rain rates.  The seasonal effects on slopes and intercepts of the regression 

lines were also analyzed.  Finally, the thesis proposes a regression-based statistical 

model to predict slopes and intercepts for the regressions lines, which can be used to 

estimate rain height given a rain rate.  The estimated rain-cell height is necessary to 

correct for the rain effects in SeaWinds scatterometer measurements, since it is 

required to determine the total backscatter from the rain volume. 
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1 Introduction 

1.1 Need for Wind Data 

Wind stress is the signal largest source of momentum to the upper ocean, and winds 

drive oceanic motions on scales ranging from surface waves to basin-wave current 

systems.  Winds over the oceans regulate the crucial coupling between atmosphere 

and ocean that establishes and maintains global and regional climate. 

 

Knowledge of wind velocity over the ocean is of critical importance for 

understanding and predicting many oceanographic, meteorological, and climate 

phenomena.  Measurements of the surface wind velocity can be assimilated into 

regional and global numerical weather prediction systems, thereby extending and 

improving our ability to predict future weather patterns on many scales [1].  Other 

applications of wind vector measurements include the study of unusual climatological 

phenomena such as El Niño and hurricane monitoring [2]. 

 

Most ship-borne ocean surface wind vector measurements are geographically and 

phenomenologically biased.  Ship reports of wind velocity are also notoriously 
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inaccurate owing to untrained observers, poor instrumentation, badly placed 

anemometers, contamination owing to ship motion, and data transcription and 

transmission errors [3].  Only a satellite-borne instrument can acquire wind data with 

global coverage, high spatial resolution, and frequent sampling [4].  Both satellite 

altimeters and multi-channel microwave radiometers can be used to estimate all-

weather wind speed; however, these instruments do not measure wind direction.  

Wind direction is a crucial input to calculating air-sea momentum fluxes needed to 

understand atmospheric dynamics. 

 

The wind vector on the ocean-surface can be determined from the measurement of 

radar backscatter of the ocean by utilizing a space-borne scatterometer [5].  Satellite-

borne scatterometers are the only remote sensing systems able to provide accurate, 

frequent, high-resolution measurements of ocean surface wind speed and direction in 

both clear-sky and cloudy conditions [4].  The next section gives a brief description 

on the principle of scatterometry and how the ocean backscatter is used to measure 

wind vector. 
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1.2 Scatterometry for Wind vector 

measurements 

The scatterometer is a microwave radar sensor that measures the scattering or 

reflective property of surfaces and/or volumes.  Early radar observations of ships and 

aircraft over oceans were corrupted by "sea clutter" (noise), the backscatter for the 

surface.  Radar response was first related to wind in the 1960’s [6-9], based on 

measurements from aircraft, ships, and shore stations.  The first space-borne 

scatterometer flew as part of the Skylab missions in 1973 and 1974, demonstrating 

that space-borne scatterometer were indeed feasible [10]. 

 

Space-borne scatterometer transmit microwave pulses to the ocean surface and 

measure the backscattered power received at the instrument.  Since the atmospheric 

motions themselves do not substantially affect the radiation emitted and received by 

the radar, the scatterometers use an indirect technique to measure the wind vector 

over the ocean.  Wind stress over the ocean generates waves, leading to a rough sea 

surface.  Changes in the wind velocity cause changes in the surface roughness, which 

in turn modify the radar cross-section and hence the magnitude of backscattered 

power.  The empirical relation that describes the correlation between backscattered 

power and ocean near-surface wind conditions are given in [11].   
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Scatterometer measure the backscattered power, allowing estimation of the 

normalized radar cross-section ( oσ ) of the sea surface.  To extract the wind velocity 

from these measurements, the relationship between radar cross section and the near-

surface winds must be known.  The radar cross section oσ is calculated using the 

basic radar equation: 

 ( )
AGP

LPR

t

so
22

434
λ

π
σ =  ( 1.1 ) 

where R  is the slant range to the surface, tP  is the transmitted power, sP  is the 

received backscattered power, L  represents known system losses, G  is antenna gain, 

A  is the effective area of illumination, and λ is the wavelength of the transmitted 

radiation.  From each illumination location on the earth, the total received power is 

the sum of the backscattered power sP  and a contribution nP  resulting from 

instrument noise and the natural emissivity (at that frequency) from the earth-

atmosphere system, Unless the signal- to-noise ratio (SNR) is very large, the noise 

power nP  must be estimated and subtracted from the total received power )( nsP +  to 

determine sP  accurately; the radar equation can then be used to calculate oσ . 

 

The relationship between oσ and near-surface wind velocity is known as the 

geophysical model function.  A scatterometer model function describes the variation 

of oσ with wind speed, wind direction, and angle of incidence [12].  The geophysical 

model function can be written most generally as, 
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 ( )polfUfo ,,,....;|,| θφσ =  ( 1.2 ) 

where || U  is wind speed,φ  is the azimuth angle between the incident radiation and 

the wind vector, θ  is the incidence angle measured in the vertical plane, f and 

pol are the frequency and polarization respectively of the incident radiation.   

 

Estimation of wind velocity from a oσ  measurement involves inversion of the model 

function given by (1.2).  The model function defines the locus of wind speed and 

directions corresponding to each oσ  measurement.  In the case of noise-free 

measurements and perfect knowledge of the model functions, intersections of these 

loci define possible wind velocity solutions consistent with all oσ  measurements.  If 

only two collocated oσ  measurements from different radar geometries are available, 

up to four intersections of the loci exist, owing to the near-symmetric oscillatory 

nature of the model function with respect to direction, as shown in Figure 1-1 [4]. 

 

Figure 1-1 Loci of possible vector winds associated with co-located noise-free oσ measurements 
obtained from antennas pointed at various azimuth angles.  Heavy solid line: antenna angle at 
90° (v-pol); dashed line; angle at 90° (v-pol); light solid line: angle of 25° (v-pol); dotted line: 

angle of 25° (h-pol).  Arrows indicate solutions obtained using only the antenna at 0° and 90° [4]. 

φ  Wind direction (deg) 
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Each of these intersections represents a possible wind velocity solution, and is 

denoted in the scatterometer literature as an ambiguity.  Additional measurements 

from different geometries reduce the number of intersections and allow estimation of 

a unique wind velocity in the idealized case.  Hence, at least two, and preferably 

more, measurements of normalized radar cross-section of the same location, from 

different viewing angles must be obtained in the space-borne scatterometer.  These 

multiple, near-simultaneous oσ  measurements combined with the geophysical model 

function, will allow estimating the near-surface wind speed and direction over the ice-

free oceans. 

1.3 Spaceborne Scatterometer 

1.3.1 Brief History 

The first satellite scatterometer program after the Skylab experiment was the NASA 

(National Aeronautics and Space Administration) SEASAT scatterometer (SASS), a 

fan-beam instrument, operating at 14.6 GHz with two beams on each side of the flight 

track.  The European Space Agency’s ERS-1/2 Advanced Microwave Instrument 

(AMI) operating at 5.3 GHz, includes scatterometer modes with 3 fan-beam antennas 

and acquires oσ measurements in a single, 500 km wide swath (one side of flight 

track only) [13].  The second scatterometer launched flown by NASA was the 
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NSCAT (NASA scatterometer), which used six fan-beam antennas, three on each side 

to obtain multiple azimuth looks.  The design was an improvement over SASS 

because of the extra beam and over AMI because looking on both sides increased the 

swath width, allowing it to cover 90% of the Earth every two days.  Figure 1-2 shows 

the history and future of scatterometry missions. 

 
Figure 1-2 Scatterometer Spacecraft – Timeline 

1.3.2 SeaWinds Mission 

The third and most recent NASA scatterometer design is the Ku-band SeaWinds, 

operating on both the QuikSCAT satellite and the Japan’s ADEOS II (also known as 

Midori II) satellite [14].  ADEOS II was originally the only planned SeaWinds 

mission.  The unexpected short life of NSCAT and delay in the launch of ADEOS II 

prompted the development of QuikSCAT as a quick recovery mission.  The design of 

the SeaWinds instrument is fundamentally different from fan-beam satellite 
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scatterometers.  Rather than use multiple fan-beam antennas to create the 

measurement swath, it has only one antenna, a pencil-beam type, which it 

mechanically rotates about nadir.  The combination of rotation and inclination angle 

to the antenna gives it the advantage of a significant larger swath (see Figure 1-3) and 

no gap in the nadir region.  The rotating antenna has two feeds, creating two beams, 

an inner and outer, which provide four different azimuth- looks for ground locations 

[15, 16]. 

 
Figure 1-3 Coverage geometry for SeaWinds [15, 16] 

 

The functionality of the SeaWinds instrument and the associated data processing are 

beyond the scope of this thesis.  In the next section, the effect of rain on SeaWinds 

data is discussed in detail. 
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1.4 Rain effect on SeaWinds Data 

1.4.1 Rain types 

Precipitation has two main classifications: convective and stratiform [17].  

Convective precipitation regions are generally identified with intermittently strong 

vertical velocities, high rain rates (>5 mm/hr) and small intense cells (~1-10 km 

horizontal dimensions).  Stratiform precipitation areas are characterized by small 

vertical velocities, low rain rates (<5 mm/hr) and wide-spread (~100-km horizontal 

dimension) [18].  If they are high enough to contain frozen particles, they are 

bounded on the top by a layer of melting ice particles, the "bright band".  

1.4.2 Rain effects 

It is well known that microwave signals are scattered and absorbed by raindrops 

located within the signal path [19].  The amount of signal alteration depends on the 

frequency, polarization and angle of incidence of the microwave signal in addition to 

the amount of rain present in the path and the speed of the local wind field [20].  The 

higher frequency of  the SeaWinds instrument’s Ku-band pulse (~14GHz) suffers 

greater rain contamination than that of the ERS scatterometer’s C band (5.3 GHz) 

pulse.  The presence of rain affects the wind vector measurements in the three 

following ways. 
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1. The rain attenuates the radar signal as it travels to and from the earth’s 

surface.  This reduces the measured oσ . 

2. The radar signal is scattered by the volume of raindrops.  Some of this 

scattered power returns to the instrument.  This increases the measured oσ . 

3. The roughness of the sea surface is increased because of splashing due to 

raindrops.  This increases the measured oσ . An early study of rain effects on 

radar scattering from water surfaces can be found in [21] and [22] also 

describes similar effects. 

 

The energy backscattered by the rain can be a significant portion of the total 

backscattered power measured by the radar; indeed, for high rain rates and low wind 

speeds it can dominate the signal.  The effects of rain on QuikSCAT winds were 

found to be severe for low and moderate wind speeds (< 10m/s).  The wind retrieval 

processing does not account for these effects, and thus, the retrieved wind vectors will 

contain errors.  

1.4.3 Case Study  

A case study on rain in QuikSCAT scatterometer reveals that both cross-track vectors 

(presence of wind vectors turned perpendicular to the satellite track) and higher winds 

are found in the very heavy rain cell [23].  Figure 1-4 shows wind vectors over the 

tropical storm Olga on March 2000 collocated with Special Sensor 
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Microwave/Imager (SSM/I) rain rate values.  The cross-track vectors can be found 

over the precipitation region (dark gray) toward the west of the storm center.  

 
Figure 1-4 QuikSCAT wind vectors, shown as wind barbs in knots, are drawn over collocated 
F14 SSM/I rain rates for tropical cyclone Olga.  Higher wind speeds and cross track directions 

occur in and near the higher rain rates [23]. 

 

Since the early stages of the QuikSCAT Calibration/Validation effort, precipitation 

has been clearly identified as a significant source of contamination.  This can be 

particularly troublesome, as many ocean meteorological events of prime interest, 

namely tropical storms (like the one discussed above) and hurricanes, possess 

abundant precipitation.  Various rain flags have been applied to the QuikSCAT winds 

including the multidimensional histogram (MUDH) technique used in the Jet 

Propulsion Lab (JPL) and National Oceanographic Atmospheric Administration 
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(NOAA) products [24], the normalized objective function (NOF) technique 

developed by Remote Sensing System (also reported in the JPL wind product) [25] 

and others [26].  These flags were tuned using SSM/I rain rates.  Most of the effort by 

the research community is directed toward flagging rain-contaminated cells and only 

a few attempts were made to model the effect of rain and correct wind vector 

estimates [20, 27]. 

1.5 Need of Rain Height Estimation in 

Correction 

1.5.1 Correction for Atmospheric Attenuation 

The Radar System and Remote Sensing Laboratory (RSL) at University of Kansas is 

developing an algorithm to correct for the rain effect in the SeaWinds scatterometer 

signal.  This work began originally in connection with the Earth Observing System 

(EOS) STIKSCAT program.  The attenuation of the surface signal due to 

precipitation can be corrected using radiometric brightness temperature.  A 

radiometer observing the same region as the scatterometer can provide estimates of 

total attenuation because the observed brightness temperature depends on attenuation 

through the rain and cloud.  The Advanced Microwave Scanning Radiometer 

(AMSR), which flew along with SeaWinds scatterometer in the ADEOS II satellite, 
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could be used for this purpose, as they had overlapping coverage.  Figure 1-5 shows 

the rain effects on SeaWinds scatterometer and AMSR radiometer signals. 

 

Figure 1-5 Effect of Rain on Scatterometer and Radiometer data  
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A look-up table based method was devised to determine the radiometer-based 

attenuation for the SeaWinds Scatterometer [28].  Simulation results on the 

improvement of scatterometer measurements using radiometer-based atmospheric 

attenuation correction are given in [29-30].  Another alternative for attenuation 

correction is to determine the attenuation rate (K) using the AMSR rain rates (RR) 

with an empirical relation valid for Ku-band frequencies.  However, this approach 

needs rain height to estimate total attenuation suffered by the scatterometer signal.  

The Rain Height (RH) or Storm Height (SH) (these terms are used interchangeably 

throughout this thesis) is the height of the effective storm top.  The height of the rain 

cell is also an important input in correcting for volume scatter from rain, which is 

discussed in the next sub-section.  No direct measurement of rain heights was 

available on the ADEOS-II satellite. 

1.5.2 Correction for Rain Volume Scattering 

As discussed in the section 1.4, the most deleterious effect of the rain on the 

scatterometer signal is the backscatter from the rain volume (precipitation echo).  The 

precipitation echo (the volume integral of backscatter) can be obtained from the rain-

backscatter intensity and rain volume.  The rain-backscatter intensity can be obtained 

from the AMSR rain rate using empirical rela tionships for different rain types 

(stratiform or convective). Rain cell height is required to estimate the volume of the 

rain cell above each SeaWinds footprint. 
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With the knowledge of rain cell height, one can estimate total attenuation and rain 

backscatter for each scatterometer beam and correct for rain effect in the 

scatterometer signal.  However, the effective rain cell height was not available as an 

output from any of the instruments in ADEOS II satellite; hence the estimation of rain 

heights is essential.   

1.6 Motivation for the thesis 

A methodology to estimate rain cell height over oceans forms a motivation to this 

thesis.  This estimated rain cell height should be valid over different seasons and 

regions of the globe.   A study of rain-cell height statistics was carried out using the 

Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) rain-

height products.  But, this climatological mean height provided a very crude estimate 

of rain heights and is constrained only to tropical regions because of the orbit of 

TRMM.  Different parameters available in the ADEOS II satellite were selected and 

the consistency of their relation to rain heights was analyzed.  A strong relationship 

between rain height and rain rate was identified and reported in [31].  This thesis 

focuses on analyzing different regression schemes to evaluate the mathematical 

relation between rain rate and rain height and developing a universal statistical-model 

to predict rain height, given the rain rate over various season and oceanic regions.   
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Chapter 2 gives an overview of the various methodologies adopted for rain height 

estimation.  Chapter 3 provides an extensive analysis on various regression schemes 

that we tried to relate rain rate and rain heights.  Chapter 4 elaborates on the seasonal 

effects on the slopes and intercepts statistics for the selected regression scheme and 

how it is accounted using Fourier analysis and the final ‘regression-based statistical 

model’ and its use in rain height estimation.  A detailed description of the simulation 

approach to validate the rain height estimated by the model is given in Chapter 5. 
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2 Rain Height Estimation 

2.1 What is Rain Height? 

Rain height as used here is the height of the top of the rain column above the mean 

sea level.  Rain height is important for several meteorological and climatological 

applications, and it is also useful in the design of satellite communication systems 

affected by rain attenuation.   Cloud height is also useful for atmospheric research 

[32].  Cloud heights and types reveal the thermodynamic and hydrodynamic structure 

of the atmosphere. Since clouds extend above the region where rain drops form, rain 

height is less than cloud height.  Cloud height, of course, may be measured when no 

rain is present. 

2.2 Rain height measurement using TRMM PR 

Cloud top height can be estimated from various weather-satellite sensors using stereo 

images [33-35].  It may also be estimated using infrared (IR) images, since the 

temperature of the top of the cloud is related to its height [36]. The details of cloud-

height estimation are beyond the scope of this thesis.   
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The first spaceborne precipitation radar (PR), an active microwave instrument aboard 

the Tropical Rainfall Measuring Mission (TRMM) satellite, was designed to measure 

rain and its vertical structures over the both tropical oceans and continents.  TRMM 

PR directly observes the rain-top height inside cloud [37].  In the standard processing 

of the PR data, each vertical profile of radar reflectivity is evaluated to detect the 

surface and the backscatter from hydrometers (mostly rain because the instrument is 

not sensitive enough to detect the weaker cloud echoes).  When at least three 

consecutive 250-m range bins (750 m) contain statistically significant hydrometer 

echoes, the highest range bin is flagged and used to describe a ‘storm height’ above 

the standard geoid.  TRMM PR measures height of the first (highest altitude) echo for 

the ‘rain-certain’ case and outputs it in level-2 data set (2A23) as ‘stormH’.  The 

level-2 products are instantaneous PR observations.  The TRMM Science Data 

Information System (TSDIS) also produces level-3 (3A25) monthly averaged storm-

height products from level-2 products [38].  We use this level-3 storm height product 

(stormHeightMean) extensively in this study.  The details of the TRMM storm height 

products are available in Appendix A.  Figure 2-1 shows, as an example, the global 

distribution of storm height observed by PR in July 1998. 
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Figure 2-1 TRMM PR Level 3 monthly averaged storm height for July 1998 

 

In the following section, an expression for the total received power by the 

scatterometer in the presence of rain is derived.  Various inputs for the correction 

algorithm to recover the actual sur face scattering coefficient from the total received 

power are analyzed.  Since direct measurement of rain height was not available in 

ADEOS II satellite, the need for rain height estimation is emphasized. 

2.3 Rain-Effects Correction Algorithm 

The total power received by the scatterometer in the presence of rain is the sum of the 

power received from the surface scattering and volume scattering. 

The power received from the surface scattering is  

 
r

o
ss AP σ=  ( 2.1 ) 

where o
sσ  is the surface scattering coefficient or the normalized radar cross-section 

(NRCS) and rA  is the surface area that can contribute to the signal. 

The power received from volume scatter is  
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 VPv η=  ( 2.2 ) 

where η  is the volume backscattering coefficient per unit volume and V  is the 

volume of the rain cell that contributes to the signal.  Figure 2-2 shows the geometry 

for volume calculation.   

 

The volume backscattering coefficient of rain, when drops are small enough relative 

to a wavelength to permit use of the Rayleigh approximation is [19] 
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where 0λ (cm) is the wavelength, || wK  is a function of the refractive index of water, 

and Z (mm6m-3) is the reflectivity factor. 

 
 

Figure 2-2 Rain cell geometry over SeaWinds footprint (simplified from elliptical footprint) 
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For the SeaWinds scatterometer, the backscattered power from a given footprint 

arrives simultaneously for the rain volume and the surface scattering.  The 

backscattered power is also attenuated as a function of the distance through the rain 

cell volume (slant height ‘sl’).  Therefore the power received by the scatterometer is 

given as, 

 ξτσ vsr
o
rr PPAP +== 2

 

ξητσσ VAA r
o
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o
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ξητσσ ho
s

o
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( 2.4 ) 

where o
rσ  is the measured equivalent scattering coefficient and τ  is the one-way 

transmissivity of the atmosphere with a value smaller than one: 

 slKere 2−=τ  ( 2.5 ) 

where erK is the attenuation constant and sl is the slant height calculated 

as )sec(θ×= hsl .  The incidence angle is θ . 

η is the volume backscatter coefficient given by 
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The factor 
2

wk  in (2.6) is a function of the refractive index for water and varies from 

0.89 to 0.93 over a 0 to 20
º
 C range and a 1 to 10 cm wavelength range; λ is the 

wavelength expressed in meters; Z is the reflectivity factor evaluated using a common 
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empirical Z-R relation, and is expressed in (mm6 / m3) x 10-18.   The parameterξ  in 

(2.4) is a factor to account for attenuation of the rain echo and is defined as [39]: 

 
∫ −=

sl rK dre
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21
ξ  ( 2.7 ) 

Equation (2.4) completely models the rain effects in the total received power.  The 

correction algorithm tries to retrieve surface scattering coefficient ( o
sσ ) from the total 

received power.  Hence the corrected normalized radar cross-section (NRCS) is 

derived by inverting the equation (2.4), noting that V=Arh: 
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The basis for the rain-effect correction algorithm is shown in equation (2.8).  The 

correction of surface scattering coefficient ( o
sσ ) from rain effects requires the 

following inputs: 

i. reflectivity factor ( Z ) 

ii. attenuation constant ( erK ) 

iii. rain height ( h ) 

 

The reflectivity factor and attenuation constant can be obtained using empirical 

relationships with rain rate.  The availability of rain rate from AMSR radiometer in 

ADEOS II made this approach possible for ADEOS-II, and presumably will do so for 

future missions.  Rain height is the only parameter required to complete the rain-
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effect correction algorithm.  Since direct measurement of rain height was not 

available on the ADEOS II satellite (and presumably will not be on other 

scatterometer satellites), estimation of rain height using other available parameters or 

statistics is necessary. 

 

Figure 2-3 shows the various inputs necessary to complete the rain-effect correction 

algorithm.  The rain-height parameter can be estimated using one of the following 

methods: 

i. Estimation from ocean rain height statistics (essentially climatology) 

ii. Estimation from sea-surface temperature 

iii. Estimation from rain rate 

 

The detailed description of these rain height estimation methods, data-processing 

procedure and feasibility study are given in sections 2.4, 2.6, and 2.7. 
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Figure 2-3 Methodologies for rain height estimation 

2.4 Estimation using Climatological Rain 

Height 

The first approach, based on ocean rain-height statistics, requires mean-rain-height 

tables for every month in all the regions of the ocean.  Conventional statistics from 

the weather services do not provide this information.  The TRMM PR provides rain-

height data throughout the region between 35°N and 35°S latitude starting in January 

1998.  This period includes El Niño, La Niña and neutral conditions in the South 

Pacific, so even though it is short, it covers a good range of ocean characteristics.  In 
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this study we use monthly averaged level-3 rain- height data rather than the massive 

instantaneous level-2 rain height data.  We studied the various trends in level-3 rain 

height data.  A similar study on TRMM rain-height statistics is discussed in [40].  The 

focus of our study is to determine the mean rain height over all oceanic regions, 

which can be used in the rain-effect correction algorithm.  In this section, the analysis 

of TRMM rain-height statistics in the Pacific Ocean is reported. 

2.4.1 Data processing 

 
Figure 2-4 Data processing involved in TRMM Level 3 rain height statistical study 

 

The TRMM level-3 monthly averaged rain heights are provided at spacing of 0.5° in 

latitude and longitude (refer to Appendix A).  This data set includes many points with 

null values, indicating no rain during the month.  These null points are removed 

before processing the data.  Some unrealistic heights (some are even greater than 9 

km) are ignored in the processing.  We used a land mask which includes major 

continents and islands.  Islands in major groups are combined to single areas and 

some widely dispersed small islands are ignored in this land mask that is used to 

exclude the land areas from our analysis  We used a 3x3 median filter to remove 

spurious points, mostly those that have excessive heights. The results were then 
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analyzed using various statistical routines to understand the trends in rain-height data.  

For simplification in data manipulation, we used only the data sets for January and 

July months for stratiform and convective rain types were analyzed separately.   

2.5 Pacific Rain Height Statistics 

 
Figure 2-5 Pacific Ocean common regions.  Black areas not on continents are island groups.  The 
regions are relatively small because different months showed different boundaries for obviously 

uniform regions. 
 

The Pacific oceanic region is divided into six homogenous rain height regions to 

account for variation in regional ocean climate.  The common regions were obtained 

by comparing monthly rain-height maps.  These common regions allow month-to-

month comparison of rain-height distribution.  Figure 2-5 shows the selected regions 

for the Pacific Ocean.  After processing the raw rain-height data, histogram plots 

were generated for each selected region.  Figure 2-6 shows the rain height histograms 
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for a few regions. Each histogram shows data from the months July 1998, July 1999, 

and July 2000.  The smooth curves are based on 6th-order polynomial regression.  A 

3-point moving average window was used to smooth the fits.  

 
(a)      (b) 

   

 
(c)       (d) 

Figure 2-6 Rain height histogram for the selected common regions  
(a) NW Pacific, (b) NE Pacific, (c) SE Pacific, (d) SW Pacific. 

 

Similar histograms were generated for all regions, seasons and rain types.  To 

investigate the usability of mean rain-height values in the rain-effect correction 

algorithm, the mean rain heights were estimated for each common region and 

tabulated.  Figure 2-7 shows the mean rain-height values of the common regions over 
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the Pacific Ocean for stratiform rain.  Similar mean rain-height values for convective 

rain types are shown in Figure 2-8. 

 
Figure 2-7 Mean pacific stratiform rain heights for the selected common regions 

 

 

 
Figure 2-8 Mean pacific convective rain heights for the selected common regions 
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The graphs of mean rain-height values show variation in different months and 

common regions.  For a given region, the standard deviations are typically less than 2 

km. Hence the mean rain-height values for a given common region and month can be 

used in the rain-effect correction algorithm.  Note the seasonal effects. 

 

A major drawback of this approach is the limited latitude coverage of TRMM (± 35°).  

Hence, mean rain-height tables cannot be developed for higher latitudes.  In addition, 

this approach provides only a statistical measure of rain height.  The other approaches 

can give a better measure of the rain height, if a strong relationship exists between 

storm height and the parameter (either sea-surface temperature or rain rate) used to 

estimate the rain height. 

2.6 Estimation using Sea-surface Temperature 

The second approach tried was to use the measurement of sea-surface temperature 

(SST) to estimate the rain height.  Researchers have shown a strong relationship 

between seasonal precipitation patterns and sea-surface temperature over ocean [41].  

Various independent research studies also illustrate the association of sea-surface 

temperature with the regional monsoon system [42, 43].  This strong relationship 

provides a motivation to compare the sea-surface temperature and rain-height data 

and study the feasibility of estimating rain height using SST.  Global sea-surface-

temperature products have been produced operationally from National Oceanic and 
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Atmospheric Administration (NOAA) satellite Advanced Very High Resolution 

Radiometer (AVHRR) data since 1979 [44-45].  These sea -surface-temperature data 

were compared with TRMM level-3 rain height data in this study.  The details of the 

products are given in Appendix A.  NOAA satellite measurements of SST are 

available from the Physical Oceanography Archive Center of the Jet Propulsion 

Laboratory (JPL).  The JPL products of monthly global (2048x1024 pixels) 18 

kilometer gridded multi-channel sea-surface temperature for January 1998 are shown 

in Figure 2-9.   

 
Figure 2-9 Multi -channel sea-surface temperature data derived from the daytime NOAA 

AVHRR for January 1998.  Scales represent temperature in C° 
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2.6.1 Data Processing 

The resolutions of AVHRR SST and TRMM level-3 rain-height data are different.  

Also the TRMM rain height products are available only from 35°N to 35°S latitude.  

Hence the sea-surface temperature data were trimmed and interpolated to have one-

to-one point correspondence with the rain-height data.  The land and null points in 

both data sets were removed.  To account for climatological variations in the different 

oceanic regions, the entire ocean was divided into 8 regions.  The selected regions are 

Indian north, Indian south, Atlantic north, Atlantic southeast, Atlantic southwest, 

Pacific northeast, Pacific northwest, Pacific south.  In the Pacific Ocean during 

January, one must separate the inter-tropical convergence zone (ITCZ) region and the 

equatorial region just south of it from other parts of the sea because of the different 

conditions that prevail in these special areas.  The sea-surface temperature and rain-

height data from each region were correlated and analyzed using various statistical 

routines.  The results of these statistical routines help to understand the relation 

between sea-surface temperature and rain height. 

 

Figure 2-10 Data processing involved in the study of sea-surface temperature and rain height 
relationship 
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2.6.2 Relation between SST and RH 

The processed SST and rain height data from each region were correlated and their 

correlation coefficients were tabulated.  Table 2-1 shows the correlation coefficient 

values generated for all the eight regions and four different months.   

Region Jan 1998 Jul 1998 Jan 1999 Jul 1999 

Indian North 0.57 0.51 0.67 0.35 

Indian South 0.45 0.55 0.72 0.58 

Atlantic North -0.41 0.42 -0.35 -0.35 

Atlantic South - Eastern 0.66 0.29 0.73 0.50 

Atlantic South - Western -0.00 0.08 0.39 0.51 

Pacific North - Eastern -0.70 0.21 -0.38 -0.48 

Pacific North - Western -0.65 -0.06 0.36 0.02 

Pacific South 0.55 0.24 0.60 0.58 

Table 2-1 Relationship between sea-surface temperature and rain height illustrated using 
correlation coefficient generated for various regions and months 

 

The correlation coefficient values from the Table 2-1 show large variation and 

absence of consistent values over different seasons for the same region.  To illustrate 

this relationship between SST and rain height, the data plots of Atlantic northern 

region are shown for two different months in Figure 2-11.   For January 1998 the 

correlation coefficient is -0.42 and for July 1998 the correlation coefficient is +0.42.   
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(a)     (b) 

Figure 2-11 SST and Stratiform storm height data from Atlantic Northern region (a) for 
January 1998 (b) for July 1998. 

 

We concluded that this approach of estimating rain height using sea-surface 

temperature is not promising because the correlations between sea-surface 

temperature and rain height differ widely in the northern and southern hemispheres 

and in the eastern and western parts of the oceanic basins.  Although some regions 

show high positive correlations with SST, others sometimes correlate negatively, so 

the SST based rain-height estimation approach cannot be used throughout the world’s 

oceans.   
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2.7 Estimation using Rain Rate 

The three-dimensional structure of rain has been studied for more than half a century. 

Ground-based radars have been used to characterize the structure of rain for small to 

meso-scales for decades.  More recently airborne and spaceborne sensors have 

provided information for large to global scales.  Researchers have developed models 

to associate vertical rain-structure statistics with rain rate using regional ocean data 

[46].  The availability of AMSR rain rate in ADEOS-II satellite would have  helped in 

estimation of rain height, and one can expect similar rain-rate measurements in future 

wind-vector scatterometer satellites.  However, one can only estimate rain height 

using rain rate if a strong relation exists between them over all regions and seasons.  

In this section, we investigate the statistical relations between TRMM rain rate and 

TRMM rain height and discuss the feasibility of estimating rain height using rain rate. 

 

For our study we compared TRMM 'path-averaged' rain rate and TRMM rain height.  

The details of the 'path-averaged' rain rates are available in Appendix A. TRMM also 

provides rain-rate products at fixed altitudes separated by 2 km, but the path-averaged 

rain-rate product is more appropriate since the attenuation and backscatter throughout 

the rain columns affect the radar behavior.  To account for varying meteorological 

conditions, the ocean is subdivided into eight regions as shown in Figure 2-12. 
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Figure 2-12 Selected regions for RR vs. RH analysis 

2.7.1 Data processing 

 

Figure 2-13 Block diagram of data processing steps in rain rate and rain height statistical 
analysis 

 

The TRMM Science Data Information System (TSDIS) provides TRMM level-3 rain-

height and rain-rate products separately for stratiform and convective rain.  TSDIS 

also uses an “other" category for rain data that cannot be classified as either stratiform 

or convective.  We ignore the "other" rain in this analysis.   The initial data 

processing includes masking of land and null points.  Extraneous rain height points 

over ocean can be removed using median filtering, but this median filtering operation 

affects the one-to-one correspondence of rain rate and rain height data.  Hence all 

points above a threshold rain height (10 km) are omitted.  The results of statistical 
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analysis for stratiform rain type are given in the subsection 2.7.2 and for convective 

rain type in 2.7.3. 

2.7.2 Relation between RR and RH – Stratiform rain 

 
Figure 2-14 Data plots of stratiform rain rate and rain height for Atlantic North region during 

Jan99.  Scales of rain rate data is in mm/hr and rain height data in km. 
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Figure 2-14 is an example that shows maps for stratiform rain rate and rain height in 

the north Atlantic region (Jan 99).  Note that the ‘null’ (no rain during the month) 

points and ‘land’ points are masked, as we are concerned only with the relationship 

between rain rate and rain height over the oceans.  To analyze the possibility of 

estimating rain height from rain rate, we correlated rain height with rain rate over 

different regions on a quarterly basis for 4 years (Jan98 – Jan 02).  Figure 2-15 shows 

the correlation-coefficient values for the selected oceanic regions.   

 
   (a)            (b) 

 

 
(c) 

Figure 2-15 Result of correlation between stratiform 'path averaged' rain rate and stratiform 
rain height over the selected regions (a) for Atlantic (b) for Indian (c) for Pacific Ocean. 

 

The correlation coefficient values are always positive and mostly exceed 0.6 for all 

regions prior to September 2001.  Similar results were obtained by combining data 

over the entire northern and southern hemispheres.  This shows that a generalized 

statistical model to relate rain rate and rain height can be developed for each 
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hemisphere.  The notable exception is in the data since September 2001, where 

correlations are quite low in most regions for stratiform rain (note the dip in the 

correlation values after Sep 2001 in Figure 2-15).  This is probably due to the increase 

in the orbit height of TRMM by 100 km in August 2001.  The details of the TRMM 

orbit change are given in [47, 48].  The report [49] from the NASDA (National Space 

Development Agency of Japan) PR team shows the impact of orbit change in TRMM 

PR data, which suggests possible degradation of the observed echo-top height 

because of reduction in received power.  The change of orbit resulted in abnormal 

presence of a large number of high (physically impossible) rain-height values for light 

stratiform rain.  Figure 1-16 shows this abnormality in stratiform rain data using a 

mesh plot over the south Atlantic region.  The amplitude of the plot represents rain 

height in km and the color represents rain rate in mm/hr for the months October 2000 

(before the orbit change) and October 2001 (after the orbit change). 

 

 
(a)       (b) 

Figure 2-16 Abnormal stratiform rain data showing mapping of high RH for low RR over 
Atlantic south region (a) for October 2000 – before orbit change and (b) for October 2001 – after 

orbit change. 

 

Abnormal mapping of 
high RH for low RR 
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This abnormality in stratiform rain data is reported in [50].  This physically 

impossible set of points greatly reduces the correlation coefficient.  The correlation 

coefficients improve dramatically with the removal of points with rain rate less than 

0.5 mm/hr.  Figure 2-17 shows improvement in the correlation coefficient values after 

the removal of points with rain rate less than 0.5 mm/hr.  Since these light rain rates 

(below 0.5 mm/hr) do not significantly degrade the SeaWinds instrument 

measurement, this abnormal behavior does not affect our analysis.  Hence, the 

stratiform rain data for rain rate less than 0.5 mm/hr have to be removed before 

analyzing the statistical relation between rain rate and rain height. 

  
(a)       (b) 

 

 
(c) 

Figure 2-17 Result of correlation between stratiform 'path averaged' rain rate and stratiform 
rain height over the selected regions with rain rates less than 0.5 mm/hr remove d (a) for Atlantic 

Ocean (b) for Indian Ocean (c) for Pacific Ocean. 
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2.7.3 Relation between RR and RH – Convective rain 

 
Figure 2-18 Data plots of Convective rain rate and rain height for Atlantic North region during 

Jan99.  Scales of rain rate data is in mm/hr and rain height data in km. 

 

The processed convective rain-rate and rain-height data are shown in Figure 2-18 for 

the north Atlantic region during January 1999.  In general, convective rain rates 

(stronger signal) are higher than those for stratiform rain.  This can be understood by 
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comparing the rain rate scales in Figure 2-14 (stratiform) and Figure 2-18 

(convective). Figure 2-19 shows the correlation between convective rain rate and rain 

height.  The correlation coefficient values are high for all periods with the convective 

rain, so there is little question about their utility.  Presumably this is because the 

stronger convective signals are not significantly affected by the weak-signal noise 

that affects the stratiform data. 

 
(a)      (b) 

 

 
(c) 

Figure 2-19 Result of correlation between convective 'path averaged' rain rate and convective 
rain height over the selected regions (a) for Atlantic (b) for Indian (c) for Pacific Ocean. 

 

The strong correlation between rate and height over the ocean demonstrates the 

feasibility of estimating rain height using rain rate.  The next chapter provides details 

of regression analysis to model the statistical relation between rain rate and rain 

height over all rain types and regions. 
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3 Regression Analysis 

Regression analysis can also be used to identify the mathematical dependency of one 

random variable to another random variable [51].  This mathematical relationship (or 

the model) can be used to estimate the dependent variable for any given instance of 

the independent random variable.  In our study, the mathematical dependence of rain 

height to rain rate is analyzed using regression analysis.  The regression model will 

help to estimating the unknown rain-height parameter for each rain-rate value 

obtained from the AMSR radiometer.  TRMM level-3 monthly averaged rain-rate and 

rain-height products are used in this regression analysis and in the development of the 

mathematical model. The next section provides the various scatter plots to visualize 

the dependency of rain rate to rain height. 

3.1 RR vs. RH Scatter 

Plotting individual data points in the xy plane produces a scatter plot.  Scatter plots 

are used to visually identify relationships between the paired data.  Figure 3-1 shows 

the scatter plots for the Atlantic northern hemisphere region for stratiform and 

convective rain types.  From Figure 3-1, one can observe that the stronger convective 

rain requires a higher rain-rate scale (0-16 mm/hr) than the stratiform rain (0-5 
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mm/hr).  The number of valid data points for stratiform rain in a region is much larger 

than for the sparsely occurring convective rains for the same region. 

 
(a)      (b) 

 
Figure 3-1 RR vs. RH scatter plot of Atlantic northern region data in January 1998 for  

(a) Stratiform rain and (b) Convective rain  

3.1.1 Abnormal data removal 

Stratiform rain scatter shows an abnormal spread of rain-height values for lower rain 

rates.  Refer to Figure 3-1 (a), where the rain-height values are spread from 1 km to 

18 km for rain rates less than 0.5 mm/hr.  This abnormality was greater after the 

TRMM orbit change in August 2001 (similar effects are discussed in section 2.6).  

This huge spread of rain-height values for light stratiform rain is not physically 

possible and it affects the correlation between rain-rate vs. rain-height scatter, 

reducing it.  To remove these spurious points, we initially attempted to trim the data 

set with the following conditions: 

1. Remove data pairs with rain rate less then 0.5 mm/hr 

2. Remove data pairs with rain height greater than 10 km 
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Figure 3-2 shows the scatter plot of stratiform Atlantic northern region data for 

January 1998 with points corresponding to RR < 0.5 mm/hr and RH > 10 km 

removed.   

 
Figure 3-2 RR vs. RH scatter plot of stratiform Atlantic northern region data in January 1998 

with points corresponding to RR < 0.5 mm/hr and RH > 10 Km removed 
 

 

TRMM level-3 high-resolution statistics provide stratiform and convective rain-count 

products.  The details of the rain-count products are given in Appendix A.  The rain 

count represents the number of valid rain observation available in each 0.5 x 0.5 

degree grid for a month.  The average of these rain observations is presented as the 

monthly averaged rain-rate and rain-height values in the TRMM level-3 data set.  

Figure 3-3 shows the histogram of rain count data for the Atlantic northern region for 

a sample month. 
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Figure 3-3 Histogram of rain count for stratiform Atlantic northern region (January 1998) 

 

A larger rain count represents a statistically significant monthly averaged rain datum.  

Hence, this rain-count information can be used to remove the spurious points.  Most 

of the spurious points have rain counts less than 10 for stratiform rain.  This rain-

count threshold (less than 10) was determined after experimenting with various rain 

count removal thresholds and their effects on the data set.  For convective rain, this 

abnormal spread of rain-height values for lower rain rates is not present (the TRMM 

algorithm requires a signal >40 dBZ for convective classification).  However, a rain-

count removal threshold of less than 2 was set to remove any spurious points present 

in the convective data.  Figure 3-4 shows the scatter plot of Atlantic north for January 

1998 with the spurious points removed based on rain count. 
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(a) 

 
(b) 

Figure 3-4 RR vs. RH scatter plot of Atlantic northern region data in January 1998 with 
spurious point removed based on rain count  

(a) Stratiform rain – rain count < 10 (b) Convective rain – rain count < 2 
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The data-processing steps in rain-rate vs. rain-height regression analysis are shown in 

Figure 3-5.  A similar block diagram of the data processing steps can be found in 

Figure 2-13. Note the replacement of ‘RH > 10km omission’ block in Figure 2-13 

with the ‘Rain count omission’ block in the modified data processing steps shown 

below. 

 

 
Figure 3-5 Data processing steps involved in rain-rate vs. rain-height regression analysis  

3.1.2 Hemispherical and Regional Scatter 

Rain-rate vs. rain-height scatter exhibit similar trends for data based on individual 

regions and the entire hemisphere.  To illustrate this, Figure 3-6 shows the scatter plot 

for stratiform rain in the southern hemisphere and all four regions in it (Indian south, 

Atlantic south, Pacific southeast, Pacific southwest).  Consistent trends in scatter were 

also observed for all sections of the northern hemisphere and during all seasons.  The 

convective rain data also show similar trends in rain-rate vs. rain-height scatter. 
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(a) Indian South     (b) Atlantic South 

 

 
(c) Pacific South East    (d) Pacific South West 

 

 
(e) Southern Hemisphere 

 
Figure 3-6 Comparison of hemispherical and regional RR vs. RH scatter in January 1998 (a) 

Indian South (b) Atlantic South (c) Pacific South East (d) Pacific South West (e) Southern 
Hemisphere 
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3.2 Objective of Regression Methods 

The rain-rate vs. rain-height scatter plots exhibit two different trends for different 

rain-rate regimes.  For lighter rain, the RH vs. RR relation is steep.  However, for 

higher rain rates, the scatter almost saturates.  Figure 3-7 shows these trends for 

typical stratiform rain data.  The blue strip represents the steeper RR vs. RH scatter 

and red strip represents the almost flat RR vs. RH scatter.  It can also be observed that 

the scatter is more concentrated for lower rain rates and it is widely spread for higher 

rain rates.  The convective rain data also exhibits similar trends in the rain-rate vs. 

rain-height scatter.  The objective of the regression method is to fit these trends with 

regression curves and make them consistent over all regions, seasons and rain types. 

 
Figure 3-7 Two different trends exhibited in rain-rate vs. rain-height scatter – the blue strip 
represents steeper relation for lower rain rates and the red strip represents flat relation for 

higher rain rates 
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Listed below are a few important aspects that need to be considered in the selection of 

the appropriate regression scheme: 

1. Regression scheme should give a good fit to the scatter, and be consistent over 

all rain rates. 

2. A typical RR vs. RH scatter shows a concentration of large number of scatter 

points over the lower rain-rate section compared to few widely-spread points 

for higher rain rates.  Hence it is important to get a good fit in the lower rain-

rate section.  

3. A smooth transition from one trend to another has to be achieved in the 

regression curves to maintain consistency. 

4. A regression scheme should be selected such that the distribution of estimated 

rain height is consistent with the original rain-height distribution. 

5. Identification of a universal regression scheme that applies to various regions, 

seasons and rain types is important because, for simplicity, one should have a 

single regression model for the final prediction of storm height from rain 

rates. 

6. The model should allow linear extrapolation of the regression curves to higher 

rain rates; this is more important than finding the best function that reduces 

total mean-squared error for the available data. 

The next section provides a summary of the all the regression methods investigated 

and the reasons for selection or rejection of each method in the final regression 

analysis. 
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3.3 Regression methods 

Standard linear regression schemes have to be modified to satisfy the criterions 

mentioned in section 3.2.  Higher order polynomial regression schemes are omitted in 

our study, because they are very poor in extending the functional relationship (by 

extrapolation) beyond the scope of available data.  The technical information about 

the regression methods used in this study can be found in [51-55].  After analyzing 

various regression schemes, the ‘Log-Linear Combined’ regression scheme is finally 

selected as the best regression schemes.  This regression scheme fits log (RR) vs. RH 

in the lower rain-rate section and RR vs. RH in the higher rain-rate section. 

3.3.1 Multi-Linear RH vs. RR Regression 

3.3.1.1 Linear Regression 

The simplest functional relationship between two variables is linear.  The most 

common method for fitting a straight line is the method of least squares.  This method 

calculates the best- fitting line for the observed data by minimizing the sum of the 

squares of the vertical deviations from each data point to the line.  Figure 3-8 shows 

the single line fit for the RR vs. RH scatter of stratiform Atlantic northern hemisphere 

data in January 1998.  Clearly the single straight line fit is not suited for the multi-

trend rain-rate vs. rain-height scatter and it produces a very high standard error of 

estimate (2.5 km for this example).  Also, the extrapolated regression line will result 
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in unrealistic rain heights for higher rain rates.  Hence, multiple regression lines have 

to be used to achieve a good fit to this type of scatter. 

 
Figure 3-8 Linear least square fit for stratiform Atlantic north data in Jan 1998 

3.3.1.2 Bilinear Regression 

In bilinear regression, two straight lines, one for higher and another for lower rain-

rate sections are regressed to get better fit over all rain rates.  A break point must be 

selected to separate the scatter. After analyzing the trend in numerous scatter plots, a 

break point rain rate of 1.5 mm/hr was selected for stratiform rain and one of 4mm/hr 

for convective rain. An objective function of bilinear regression was devised to 

minimize the sum of the squares of vertical deviation from each point to the line fit 

for both the rain-rate sections.  Additional constraints were introduced in the 

objective function to make the ends of the regression lines meet.  The derivation of 

the bilinear regression scheme is given in Appendix B.  The unknown slopes and 
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intercepts of the regression lines are found for a given set of scattered data and a 

break point.  Figure 3-9 shows the bilinear regression lines for RR vs. RH scatter of 

stratiform rain data over the Atlantic northern region in January 1998.   

 
Figure 3-9 Bilinear fit for RR vs. RH scatter of stratiform Atlantic north data i n January 1998 

 

Bilinear regression provides a good fit for higher rain-rate sections.  However, the fit 

is very poor for the lower rain-rate section.  As discussed in section 3.2, it is very 

important to achieve good regression fit for lower rain rates, as more points are 

concentrated there. 
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3.3.1.3 Trilinear Regression 

Some rain-rate vs. rain-height scatter plots exhibit three different trends along the rain 

rate.  This type of scatter is most commonly found in TRMM level-3 2-km stratiform 

rain-rate vs. rain-height data.  Trilinear regression attempts to fit these points with 

three regression lines, which are joined together to maintain consistency.  Figure 3-10 

shows the trilinear fit for RR vs. RH scatter of stratiform rain data over the Atlantic 

northern region in January 1998.  As with bilinear regression, trilinear regression 

lines also fit poorly for the lower rain-rate section.  The convective RR vs. RH scatter 

never shows trilinear trends.  Hence the trilinear regression methods were not 

selected, because we were trying to develop a universal regression scheme that is 

valid for all seasons, regions and rain types. 

 
Figure 3-10 Trilinear fit for RR vs. RH scatter of stratiform Atlantic north data in January 1998 
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3.3.1.4 Orthogonal Regression 

Ordinary linear regression was derived on the assumption that the values on the x axis 

are known exactly, with all random variation in the y direction. Often the uncertainty 

in the (x, y) data lies with both coordinates.  Examples where this is the case includes 

situations where both x and y are observed quantities having random variations 

(TRMM rain rate and rain-height parameter are such quantities).  In these cases, 

orthogonal regression can be the best way to determine the linear relationships 

between x and y.  In orthogonal regressions, the sum of the squared perpendicular 

distance from the data points to the fit line is minimized.  For orthogonal regression to 

work well both the x and y numerical scales should be similar or they should be 

adjusted to agree with the variance in the separate directions  

 

Bilinear orthogonal regression should be used to capture the dual trend present in the 

rain-rate vs. rain-height scatter.   This requires the objective function to reduce the 

squared perpendicular distance between data points and fit line in both of the rain-rate 

sections and also to make the lines to meet a point.  It can be shown that the objective 

function of the bilinear orthogonal regression with additional constraints cannot be 

solved in closed form and this scheme was not further analyzed in our regression 

study.  Figure 3-11 shows the two different orthogonal regression fits for the two 

selected rain-rate sections.  The orthogonal regression fails to capture the relatively 

flat trend in the scatter for higher rain rates. 
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Figure 3-11 Orthogonal regression fits for rain-rate vs. rain-height scatter 

3.3.2 Weighted Regression 

The TRMM level-3 high-resolution statistics provide stratiform and convective rain-

count products.  The rain count is the number of valid rain observations used to 

produce the monthly average for a grid point.  A (RR, RH) data pair with very high 

rain count represents a statistically significant pair.  Figure 3-12 shows the stratiform 

rain-rate vs. rain-height scatter over the Atlantic north region.  The data points in the 

scatter are color coded and weighted with corresponding rain count values.  

Typically, the regression schemes should provide lesser weight to the numerous dark 

blue points (low rain count) found near lower rain rates than the dark red points (high 

rain count). Rain-count data should be used in the regression schemes to provide a 

better fit to the RR vs. RH scatter. Appendix B derives the weighted bilinear 
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regression, which is a modification to the bilinear regression schemes with the rain-

count information used in the objective function.   

 
Figure 3-12 Stratiform Atlantic northern region rain-rate vs. rain-height scatter.  The rain count 

data is used to weight and color -code the scatter points. 

3.3.3 Log (RR) vs. RH Regression 

In this regression scheme, we attempted to fit the dual trend present in rain-rate vs. 

rain-height scatter by using the logarithm of rain rate in the linear regression instead 

of rain rate itself.  Figure 3-13 shows the log (rain rate) vs. rain-height scatter of 

Atlantic north region in January 1998.  This scatter is fit with linear and orthogonal 
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single regression lines.  This regression schemes failed to fit many convective scatter 

cases, producing very high standard error of estimate.   

 
(a)      (b)  

Figure 3-13 Log (rain rate) vs. rain-height scatter of Atlantic north region in January 1998 with 
two kinds of regression fits (a) Linear regression (b) Orthogonal regression. 

3.3.4 Combined Linear – RR vs. RH (for lower RR) 

and RH vs. RR (for higher RR) Regression 

In bilinear regression, the two lines tend to influence each other, because of the 

additional constraints applied to make the lines to meet at a point.  Figure 3-14 shows 

two different bilinear regression fits.  The first uses rain rate as an independent 

variable and rain height as a dependent variable (RR vs. RH regression fit shown in 

blue dotted line).  The second does the opposite by using RH as the independent 

variable (RH vs. RR regression fit shown as red dotted line).  From the figure, the 

influence of the upper regression line on the lower line for RR vs. RH bilinear 

regression scheme (blue dotted line) can be easily identified.  The figure also shows a 
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linear RR vs. RH regression for rain rate less than 1.5 mm/hr (blue solid line) and 

linear RH vs. RR regression fit based on data for rain rate greater than 1.5 mm/hr (red 

solid line).    

 
 

Figure 3-14  Comparison of Bilinear RR vs. RH (Blue dashed), Bilinear RH vs. RR (Red dashed) 
and Linear RR vs. RH (Blue Solid) and Linear RH vs. RR (Red Solid) regression fit in 

Stratiform Atlantic northern region scatter for January 1998 data. 

 

Figure 3-14 shows the two linear regression lines extended to all rain-rate values.  

The linear RR vs. RH regression line and linear RH vs. RR regression line seem to fit 

the data for lower and higher rain-rate sections respectively.  These linear regression 

lines forms the ‘Combined Linear – RR vs. RH (for lower RR) and RH vs. RR (for 
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higher RR)’ regression scheme.  The break points for ‘combined linear’ regression 

fits are determined by extending the regression lines.  A rain-rate threshold (1.5 

mm/hr for this case) is selected to separate the data into lower and higher rain-rate 

sections, which are regressed with two different linear regression fits.  The concept of 

‘Combined Linear’ regression is shown in Figure 3-15. 

 
Figure 3-15 Conceptual figure of ‘Combined Linear – RR vs. RH (for lower RR) and RH vs. RR 

(for higher RR)’ regression scheme 

 

The combined linear regression schemes always have sharp transitions between the 

lower and higher regression lines.  The nature of estimated rain height, which is 

obtained from rain rate using the combined linear regression, is affected by this sharp 

transition.  Figure 3-16 compares the histogram of measured rain height and the 

estimated rain height obtained from TRMM rain-rate data for stratiform Atlantic 

north region in January 1998.  The sharp transition in regression lines shows as a 

cluster of estimated rain-height values near 5 km in the figure.  Another drawback of 

the combined linear regression scheme is the failure of the RR vs. RH regression line 

to capture the almost logarithmic trend exhibited by the RR vs. RH scatter for lower 

rain-rate sections. 
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(a)      (b) 

Figure 3-16 Histogram of measured rain height (a) and estimated rain height (b) from rain rate 
using combined linear regression scheme 

3.3.5 Log-Linear Combined – Log (RR) vs. RH (for 

lower RR) and RR vs. RH (for higher RR) 

The ‘Log-Linear Combined’ regression scheme is a modification to the ‘Combined 

Linear’ regression schemes discussed in the previous section.  In the lower rain-rate 

section, a straight- line regression is made between log (rain rate) and rain height to 

capture the logarithmic trend.  The higher rain-rate scatter is fit with a linear 

regression between rain rate and rain height.  Figure 3-17 shows the conceptual figure 

of ‘Log-Linear Combined’ regression scheme. 
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Figure 3-17 Conceptual figure of ‘Log-Linear Combined’ – log (RR) vs. RH (for lower RR) and 

RR vs. RH (for higher RR) regression scheme 

 

The ‘Log-Linear Combined’ regression was selected as the best scheme for 

developing the final model, which relates rain rate and rain height over all seasons, 

regions and rain type.  This scheme satisfies the criteria for a regression scheme 

enumerated in the section 2.3.  Figure 3-18 shows the ‘Log-Linear Combined’ 

regression fit over the Atlantic north region for stratiform and convective rains.  The 

distribution of the estimated rain height using ‘Log-Linear Combined' regression 

scheme is comparable with the actual rain-height distributions. 
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(a) 

 
 

(b) 

Figure 3-18 ‘Log-Linear Combined’ regression fit for RR vs. RH scatter of Atlantic northern 
region in January 1998 (a) for stratiform rain and (b) for convective rain. 
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3.4 Statistical Significance 

Different statistical measures are available to evaluate the degree of confidence that 

the true RR vs. RH relationship is close to the regression-based relationship. 

3.4.1 Standard Error and Goodness of fit 

The regression scheme seeks to minimize the sum of the squared errors of prediction. 

The square root of the average squared error of prediction is used as a measure of the 

accuracy of prediction. This measure is called the standard error of the estimate and is 

designated as σest [56].  The formula for standard error of estimate is: 

 ( )
N

RHRH est
est

∑ −
=

2

σ  ( 3.1 ) 

where RH is the measured rain-height value from TRMM and RHest is the estimated 

rain height using the regression scheme.  N  is the total number of (RR, RH) points.  

Another common statistic associated with regression analysis is the goodness of fit 

parameter (R2).  Goodness of fit is equal to one minus the ratio of the sum of squared 

estimated errors to the sum of squared deviations about the mean of the dependent 

variable [57].  The formula for goodness of fit is  
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where  µRH is the mean of the TRMM rain-height data. 
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The sum of squared deviations about its mean is a measure of the total variation of the 

dependent variable.  The sum of squared deviations about the regression line is a 

measure of the extent to which the regression fails to explain the dependent variable.  

Hence, the R2 statistic is a measure of the extent to which the total variation of the 

dependent variable is explained by the regression scheme.  High values of R2 suggest 

that the model is good for predictive and forecasting purposes.  Table 3-1 shows the 

standard error of estimate and goodness of fit statistics for important regression 

schemes investigated in our study.    The 'Log-Linear Combined' regression scheme 

shows low standard error of estimate of 0.87 km for Atlantic northern region in 

January 1998.  Similar results were obtained for other regions and seasons.  The 

goodness of fit parameter is also tabulated for various regression schemes. 

Regression schemes Standard Error of 
Estimate  (Km) 

Goodness of fit 
R2 

Linear Regression 2.5 0.40 

Bilinear Regression 1.3 0.52 

Weighted Bilinear Regression 1.2 0.55 
Log (RR) vs. RH regression 1.4 0.60 

‘Combined Linear’ regression 0.93 0.89 

‘Log-Linear Combined’ regression 0.87 0.93 

Table 3-1 Standard Error of estimate and goodness of fit parameters of various regression 
schemes analyzed for RR vs. RH scatter for Atlantic northern region in January 1998 

 

To visualize the accuracy of our regression fit over all rain-rate values, the following 

exercise was carried out for the Atlantic northern hemisphere rain data (January 

1998).  The data were segmented into five groups based on rain rate.  Figure 3-19 (a) 

shows the segments in the RR vs. RH scatter.  In each segment, standard error of 
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height estimate are calculated and plotted along the mean rain rate value in each 

segment.  Figure 3-19 (b) shows the standard error in rain height vs. rain rate plot 

along with the histograms of the estimated rain height in each segment.  This figure 

shows that the standard error in rain-height estimate is consistently low (< 1 km) for 

all rain-rate values.  Hence the 'Log-Linear regression model can be used to estimate 

rain height for all values of rain rate. 

 
(a) 

 
(b) 

Figure 3-19 Segmented standard error in height (km) .  (a) Segments in the RR vs. RH scatter  
(b) Histogram of estimated rain-height data and the standard error in height in each segment vs. 

mean rain-rate plot. 
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3.4.2 T-test 

Hypothesis testing is a procedure for determining if an assertion about a characteristic 

of a population is reasonable [56].  Paired t-test is usually used to compare paired sets 

of X and Y data and determine if they differ from each other in a significant way [57].  

In this section, the paired t-test is used to find the closeness of the original TRMM 

rain height to that of the estimated rain height obtained from the regression model.  

The null hypothesis or the original assertion in this case is that the means of the two 

rain height (original and estimated) data are equal.  The paired t-test determines the 

probability that a given hypothesis is true.  The alternative hypothesis is that the 

means of the two data sets are not equal.   

 

The t-test takes an additional input parameter known as the significance level (α), 

which is defined as the degree of certainty required to reject the null hypothesis in 

favor of the alternative.  After analyzing the data based on t-statistics, the t-test 

produces a result to either “reject the null hypothesis” or “do not reject the null 

hypothesis”.  One should note that “do not reject the null hypothesis” result cannot be 

concluded that the null hypothesis is true.  It means that one does not have sufficient 

evidence to reject the null hypothesis.  T-test also produces an output known as p-

value.  The p-value is the probability of observing the given sample result under the 

assumption that the null hypothesis is true [57].  Small values of p in comparison to 

the significance level (α), cast doubt on the validity of the null hypothesis.   
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The two-sided t-test was performed on the actual rain-height and predicted rain-

height values for stratiform rain data over Indian southern region.  A significance 

level of α= 0.05 was chosen for the test.  Figure 3-20 shows the  stratiform rain-rate 

and height maps over Indian southern hemisphere.  The rain-rate data from this region 

is used to predict rain-height values with the aid of the ‘Log-Linear Combined’ 

regression scheme.  The predicted stratiform rain-height map is also shown in Figure 

3-20.  The two-sided t-test, which compares the actual and predicted rain-height, does 

not have sufficient evidence to reject the null hypothesis (Note the null hypothesis is 

the assumption that the means of actual and predicted rain-height data are equal).  

The p-value for this t-test over Indian southern hemisphere is given as 0.9284.  

Higher p-value implies higher probability for the null hypothesis to be true.   

 

Figure 3-20 Two-sided T-test result based on stratiform Indian southern hemisphere region data.  
The null points in the data are shown in pink color 
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The actual rain-rate, rain-height and predicted rain-height maps for convective Indian 

southern hemisphere data are shown in Figure 3-21.  The two-sided t-test over actual 

and predicted rain-height for convective rain data show result against the rejection of 

null hypothesis.  The p-value for this convective rain case is 0.3772.  If the t-test is 

repeated for the same convective rain case with a significance level of 0.1, then the p-

value shows as 0.7425.  The low p-value for the 0.05 significance level is mainly due 

by the few wide-spread convective points observed for higher rain-rates.  In general 

comparison to the stratiform rain case, a lower p-value suggests lesser confidence in 

rain-height prediction from convective rain-rates using the regression model. 

 
Figure 3-21 Two-sided T-test result based on convective Indian southern hemisphere region data 
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3.4.3 Comparison between Region and Hemispherical 

scatter based rain height prediction 

In this section, the rain height is predicted from rain rate using the Log-Linear 

Combined regression lines over different regions.  This predicted rain-height is 

compared with the measured TRMM rain-height from the same region.  Similar to the 

previous section, we used the t-test between these rain-height values.  Table 3-2 

shows the p-value results of the hypothesis t-test with a significance level of 0.05 for 

stratiform rain data.  The stratiform rain data produce very high p-values for all 

regions.  The table also shows higher confidence in the northern and southern 

hemisphere scatter based rain-height prediction compared to regional data based rain-

height prediction.  This result is very significant, as one can omit the regional data 

based analysis for the rest of the statistical model development.  

Region p-value  

Indian north 0.80 

Atlantic north 0.91 

Pacific northeast 0.78 

Pacific northwest 0.75 

Northern Hemisphere  0.90 

Indian south 0.93 

Atlantic south 0.92 

Pacific southeast 0.89 

Pacific southwest 0.85 

Southern Hemisphere  0.94 

Table 3-2 T-test results comparing the measured and predicted rain-height values over different 
regions for stratiform rain case with a significance level of 0.05. 
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Table 3-3 shows the p-value results of the t-test with a significance level of 0.1 for 

convective rain data.  For the convective case with use of the entire-hemisphere data 

produced higher p-values than use of regional prediction.  Rain data from January 

1998 were used in all of the hypothesis tests. 

Region p-value  

Indian north 0.73 

Atlantic north 0.75 

Pacific northeast 0.77 

Pacific northwest 0.69 

Northern Hemisphere  0.75 

Indian south 0.74 

Atlantic south 0.72 

Pacific southeast 0.69 

Pacific southwest 0.70 

Southern Hemisphere  0.79 

Table 3-3 T-test results comparing the measured and predicted rain-height values over different 
regions for convective rain case with a significance level of 0.1. 
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4 Regression-based Statistical 

Model 

Chapter 3 describes various regression schemes to investigate the relationship 

between rain-rate and rain-height.  The Log-Linear Combined regression, which 

satisfies the criteria for estimating rain-height from rain-rate, was selected as the 

universal regression method; valid over various regions, seasons and rain types.  We 

started with Log-Linear Combined regression fits for specific months and regions.  

Generalization of trends exhibited by the regression parameters is required to extend 

this regression-based relationship to the future. 

 

This chapter analyzes the seasonal trends in the slope and intercept statistics of the 

Log-Linear Combined regression scheme for the monthly rain data extending over 

four years (1998 – 2001).  We used Fourier analysis and synthesis to capture the 

seasonal trends in slope and intercept statistics and to predict them for any future 

season.  We developed a generalized statistical model to estimate rain height given 

rain rate in any region and season.  Rain-height estimation using a statistical model 

based on data for the entire northern and southern hemispheres is as effective as 

models based on regional data. The final output of this thesis is a regression-based 
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statistical model, which is used to estimate rain-height for a given rain-rate, month, 

region and rain type.   

4.1 Slope and Intercept Statistics 

The slopes and intercepts of the Log-Linear Combined regression lines were tabulated 

for all months over 4 years (1998-2001).  Table 4-1 shows the structure of the slope-

and- intercept statistics table.  We generated similar tables for all eight oceanic regions 

and hemispherical sections.  Using these tables, rain height can be estimated given a 

rain rate, region and a month in these four years. 

Statistics Jan98 Feb98 Mar98 Apr98 … Dec01 Jan02 
Slope (m1) 

Log(RR) vs. RH  
    …   

Intercept (c1) 
Log(RR) vs. RH      …   

Slope (m2) 
RR vs. RH      …   

Intercept (c2) 
RR vs. RH      …   

Table 4-1 Format of the slope and intercept statistics table 

4.1.1 Seasonal trend 

Figure 4-1 is a plot of the slope statistics of Log (RR) vs. RH regression line 

developed for lower rain-rate sections (plot of row 1 of the slope and intercept 

statistics table).  This figure is for convective rain data with all regions in each 

hemisphere combined.  A sinusoidal seasonal trend is apparent.  Similar seasonal 
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trends were found in slope and intercept statistics over all regional and hemispherical 

sections. Figure 4-1 shows that the northern and southern hemisphere slope curves are 

approximately 180° out of phase.  Note a minimum occurs in February 1998 for the 

northern hemisphere, whereas a maximum occurs in the same month for the southern 

hemisphere.  We need to model the seasonal trends to predict the slopes and 

intercepts of the Log-Linear Combined regression method for any future month. 

Jan98 Jul98 Jan99 Jul99 Jan00 Jul00 Jan01 Jul01 Jan02
1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Jan98 Jul98 Jan99 Jul99 Jan00 Jul00 Jan01 Jul01 Jan02
0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

 
(a)      (b) 

Figure 4-1 Seasonal trend in values of slopes based on Log-Linear Combined regression fits.  The 
slopes of the lower rain-rate bin regression lines (Log (RR) vs. RH regression) are shown for (a) 

Convective entire southern Hemisphere (b) Convective entire northern hemisphere 

4.1.1 Mean value substitution 

A simple method to generalize the seasonal trend of the slope and intercept statistics 

is to substitute with their mean values over all seasons.  To validate this approach, we 

attempted to estimate the 95% confidence interval of each slope and intercept 

estimates.  Wide confidence intervals will allow the use of mean slope or intercept 
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values for all regions.  The slope confidence interval calculations require an estimate 

of the standard error of slope, which is calcula ted as shown below,  

 

∑ −
=

RR

est
slope RR µ

σ
σ  ( 4.1 ) 

where RR designates the measured rain-rate values from TRMM, µRR is the mean of 

the TRMM rain-rate data and σest. is the standard error of the estimates shown in 

equation (3.1). 

 

The confidence interval (C.I.) for the slopes can be estimated as follows, 

 ( )tmIC slopeσ±=..  ( 4.2 ) 

where m is the estimated slope of the regression line, σslope is the standard error in 

slope estimates and t is the t-value for a two-tailed test given a desired α-level (95% 

or α = 0.05).  The confidence interval provides a range in which the 95% of true 

population slope is likely to fall.  Figure 4-2 shows the two slope statistics of the Log-

Linear Combined regression scheme for the stratiform southern hemisphere data.  

Each slope estimate was plotted with its 95% confidence interval.  The confidence 

interval is narrow for all slope estimates in this example.  Similar results were found 

for slope and intercept estimates for all regions and rain types.  Hence it is reasonable 

to analyze the sinusoidal trend exhibited by the slope and intercept statistics.   
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Figure 4-2 Value of slopes based on Log-Linear Combined regression scheme for stratiform 
southern hemisphere data shown with the 95% confidence interval.  The blue line shows the 
intercept of the Log(RR) vs. RH regression fits (for lower RR bin).  The green line shows the 

intercepts of the RR vs. RH regression fits (for higher RR bin). 

4.2 Fourier analysis 

Fourier analysis is a method of describing periodic waveforms in terms of 

trigonometric functions [58].  The slope and intercept statistics show sinusoidal trends 

in time with approximately one year as the period of each cycle.  The wave function 

(usually amplitude, frequency, or phase versus time) can be expressed as a Fourier 

series, uniquely defined by the Fourier coefficients.  If these coefficients are 

represented by a0, a1, a2, a3... aN, ... and b1, b2, b3... bN ... , then the Fourier series 

x(t) is given as:  

 [ ]∑
=

++=
N

k
kk tkbtka

a
tx

1
00

0 )sin()cos(
2

)( ωω  ( 4.3 ) 

where t denotes time and ω0 is the fundamental angular frequency.   
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The spectrum of a discrete sequence can be obtained using Fast-Fourier 

Transformation (FFT).  Figure 4-3 shows the FFT spectrum magnitude and phase plot 

of the slope curves for the northern-hemisphere convective-rain data.  The DC, 

fundamental and harmonic components are shown in red.  Equation (4.4) shows the 

magnitude and phase of the selected Fourier coefficients. 

 { }),(.....,),,(),,(),,(, 33220 harNharNharharharharfunfun aaaaa φφφφ  ( 4.4 ) 

where ak represents the magnitude and kφ  represents the phase of the Fourier 

coeffic ients. 

 
Figure 4-3 FFT spectrum magnitude and phase plot of the slopes statistics curve for convective 

northern hemisphere data.  The DC, fundamental and harmonic components are marked. 
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4.3 Fourier Synthesis 

Fourier synthesis is a method of reconstructing a signal with a specific, desired 

periodic waveform [58].  After analyzing various slope and intercept statistics, we 

concluded that the use of DC, fundamental and two harmonics (N=3) is sufficient to 

regenerate the basic sinusoidal trend, as shown in (4.5): 

 

)2cos(

)2cos()2cos()(

333

2220

harharhar

harharharfunfunfun
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φπ

φπφπ

++

++++=)
 ( 4.5 ) 

where funf  is the fundamental  frequency and 2harf , 3harf  are harmonic frequencies. 

 
Figure 4-4 Values of slope based on Log(RR) vs. RH regression fits to the measured northern-

hemisphere convective rain data.  The red line shows the measured data, and the blue line is the 
Fourier-synthesized (regenerated) curve from the fundamental and two harmonic components. 
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Figure 4-4 compares the lower rain-rate bin regression line for convective rain in the 

northern hemisphere with the s3elected Fourier-series fit. The red line represents the 

measured slope statistics curve )(tx .  Magnitude and phase of the Fourier coefficients 

were obtained by analysis of )(tx .  The Fourier synthesized curve is the blue line in 

the figure.  Using these Fourier coefficients, the slopes and intercepts of Log-Linear 

Combined regression scheme can be predicted for any given month in the future.  

 

An example of the intercept statistics for stratiform data from the southern 

hemisphere is in Figure 4-5.  The shaded region corresponds to the 95% confidence 

bound. The intercept statistics were Fourier analyzed and appear in the figure as blue 

(lower RR bin) and green (higher RR bin) lines.  Most of the synthesized curves fall 

within the 95% confidence bound of the measured intercept values.  Hence this 

method allows good prediction of slopes and intercepts. 

 
Figure 4-5  Intercept curves of the Log-Linear Combined regression scheme for stratiform rain in 

the southern hemisphere.  The blue and green lines show the synthesized intercept values from 
the Log (RR) vs. RH regression and RR vs. RH regression respectively.  The shaded region 

represents the 95% confidence interval about the measured values. 
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4.4 Table of Fourier coefficients  

Table 4-2 Format of the Fourier Coefficients Table 

Fourier coefficients generated from the Fourier analysis of the slope and intercept 

statistics are tabulated in the format shown in Table 4-2.  The Fourier-coefficient 

tables can be developed for the regional rain data or the data for the entire 

hemisphere.  The disadvantage of using the region-data based Fourier coefficient 

tables is that one has to maintain a separate table for each oceanic region.  Section 

3.4.3 compares the estimated rain height based on regression fits to the regional RR 

vs. RH measurements and those for entire hemispheres.  The difference between these 

rain-height estimates was found to be statistically insignificant, which makes the 

region-based Fourier-coefficient tables unnecessary.   

 

Fundamental 
Frequency 

Second 
Harmonic 

Third 
Harmonic Final Table DC 

Mag Phase Mag Phase Mag Phase 
Slope (m1) 

Log(RR) vs. RH         

Intercept (c1) 
Log(RR) vs. RH         

Slope (m2) 
RR vs. RH         

Intercept (c2) 
RR vs. RH         
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Since the hemispherical tables are used for all of our subsequent analysis, only four 

Fourier-coefficient tables are required in the regression based statistical model.  They 

are: 

1. Stratiform Northern Hemisphere 

2. Stratiform Southern Hemisphere 

3. Convective Northern Hemisphere 

4. Convective Southern Hemisphere 

4.5 Rain-height estimation using Regression-

based Statistical Model 

The regression-based statistical model is a complete algorithm for estimating rain 

height given a rain rate over any hemisphere, season and rain type.  Figure 4-6 shows 

the flowchart of the final algorithm.  In the flowchart, the solid arrows indicate the 

logical flow and dashed arrows show the inputs to each block.   

 

For a given rain type and hemisphere, a Fourier coefficient table is selected.  Fourier 

synthesis provides slopes and intercepts (m1, m2, c1, c2) for a given month for the RH 

vs. RR curves.  The slope and intercept values of the two regression lines are used to 

find the breakpoint rain-rate (BP).  Breakpoint rain rate splits the RR vs. RH scatter 

into two rain-rate sections where the regression lines meet.  The input rain-rate from 
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AMSR is classified into one of the two rain-rate sections.  The formula used to 

estimate rain-height is based on this classification.   

 

For the lower rain-rate section, the rain-height is estimated as follows: 

 BPRRforcRRmRH est <+×= 11 )log(  ( 4.6 ) 

Similarly for the higher rain-rate section, the rain height estimation formula is: 

 BPRRforcRRmRH est >+×= 22  ( 4.7 ) 

 

For each measured rain-rate from AMSR, rain height is estimated using the 

regression-based statistical model as shown in Figure 4-6 and used in the rain-effect 

correction algorithm.  The next chapter validates this regression-based statistical 

model in estimating rain heights. 
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Figure 4-6 Flowchart to estimate rain-height using the regression-based statistical model 
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5 Validation of Statistical Model 

Chapter 4 describes the regression-based statistical model, which is used to estimate 

rain height from rain rate for a given hemisphere, month and rain type.  Rain-height is 

an important parameter in the rain effect correction algorithm discussed in section 

2.3.  This algorithm attempts to correct for rain attenuation and backscatter effects on 

SeaWinds signal.  It is important to validate the regression-based statistical model if 

we are to use it in the rain effect correction algorithm. 

5.1 Comparison of RH Estimates from 

Regional Regression lines and the 

Statistical model  

Section 3.4 compares the rain-height estimates obtained from regional Log-Linear 

Combined regression fits and the measured TRMM rain-height values.  Hypothesis 

tests revealed high confidence in these estimates.  The regression-based statistical 

model uses the Fourier coefficient table and predicts the slopes and intercepts of the 

Log-Linear Combined regression fits.  These predicted slopes and intercepts are used 

in the statistical model to estimate rain-height from rain rate.   
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In this section, we compare the rain-height estimates obtained from the Log-Linear 

Combined regression fits with the rain height estimates derived from the statistical 

model, using the stratiform North-Atlantic rain data for January 2002.  Note that only 

the rain data from January 1998 to December 2001 were used in the development of 

the statistical model.  Hence, the slopes and intercepts for January 2002 were 

predicted by the Fourier coefficient tables and the statistical model estimated rain 

height.  A Log-Linear Combined regression fit of the stratiform data for the North- 

Atlantic region RR vs. RH scatter was also performed.  The slopes and intercepts 

from these regression lines were used to obtain other rain-height estimates.  This 

exercise compares both the rain-height estimates to allow visualizing the accuracy of 

the regression-based statistical model in rain-height estimation. 

 

Figure 5-1 shows the distribution of the rain-height estimates obtained using two 

different methods.  The black histogram is the distribution of the measured TRMM 

rain-height values in the North-Atlantic region for January 2002.  The regression lines 

on the scatter plot shown in the Figure 5-1 also indicate the close correspondence of 

the statistical model and the region-based regression fits. The blue histogram 

represents the distribution of the rain-height estimates obtained using the regression 

lines for TRMM measurements over the entire northern hemisphere.  The red 

histogram represents their distribution obtained using the statistical model.  This 

comparison highlights the effectiveness of the statistical model. 
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Figure 5-1 Comparison of distribution of rain-height estimates obtained from the Log-Linear 

Combined regression fits and from the statistical model. 

  

From Figure 5-1, the closeness of estimated rain-height distributions obtained from 

two different methods is apparent.  The Kolmogorov-Smirnov (ks-test) goodness-of-

fit hypothesis test was used to compare these estimated rain-height distributions.  In 

this test, the null hypothesis assumes that the cumulative distribution functions of 

both the rain-height estimates are the same.   In the stratiform North-Atlantic case 

(January 2002), the ks-test suggests ‘not to reject the null-hypothesis’ and it provides 

a very high confidence in the result with a p-value of 0.92.  Similar to the T-test 

comparison made in the section 3.4.2, the measured rain-height was compared with 
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the estimated rain-height values obtained with both the methods.  The  null hypothesis 

for the T-test assumes the rain-height populations to have the same mean.  The T-test 

result on measured and estimated rain-height suggests ‘not to reject the null 

hypotheses’ with very high p-values as shown in Table 5-1.  Similar results were 

obtained in the hypothesis testing using rain data from other regions and rain types. 

Hypothesis T-test Comparison p-value  

Measured rain-height and the estimated rain-height obtained from 
regression fits in the regional RR vs. RH scatter. 

0.952 

Measured rain-height and the rain-height estimates obtained from 
the statistical model. 0.945 

Table 5-1 T-test results comparing the measured rain height and the estimate d rain height 

Another statistical parameter that can be used to compare the rain-height estimates 

obtained using the two methods is the mean absolute error between the measured and 

the estimated rain-height values in a region.   

 
Figure 5-2 Comparison of mean absolute error in rain-height estimates obtained from the Log-

Linear Combined regression fits and from the statistical model. 
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Figure 5-2 shows the mean absolute error in rain-height estimates for the stratiform 

North-Atlantic rain data in all quarters (months of January, April, July, October) over 

four years (1998 – 2001).  The mean absolute errors in rain-height estimates are 

below 1 km for all seasons.  The hypothesis testing and mean-absolute-error 

comparison show the accuracy of the regression-based statistical model in estimating 

rain-height from measured rain rates. 

 

This estimated rain-height values are used in the rain-effect correction algorithm to 

correct for the rain attenuation and backscatter effects on the normalized radar 

backscattering coefficient (σ s
o ) measured by the SeaWinds scatterometer.  A 

simulation approach developed to find the impact of the estimated rain-height in the 

surface scattering coefficient correction process is discussed in the next section. 

5.2 Simulation procedure 

Rain-height estimates from the regression-based statistical model will be in error 

compared to the actual rain-height values.  These errors are particularly great for 

higher rain rates due to the large spread of the data points around the regression lines.  

If these rain-height estimates are used in the rain-effect correction algorithm, they 

will affect the corrected surface scattering coefficient (σ s
o ).  Simulations were 

performed to determine the nature of these errors in the normalized radar cross-

section coefficient.   
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The simulation approach can be divided into two parts.  The first part is the ‘forward 

simulation’, which estimates the received scattering coefficient (σ r
o ) as measured by 

the SeaWinds instrument.  The estimation of received scattering coefficient (or the 

measured equivalent scattering coefficient as shown in equation (2.4)) is necessary, 

because the data from ADEOS II SeaWinds instrument were not available during the 

time of this study.  The forward simulation models the rain effects on the SeaWinds 

received signal with the use of measured TRMM rain-height values.  The rain heights 

obtained from TRMM are referred as measured heights ( measuredh ) in this simulation.   

 

The second part, known as the ‘reverse simulation’, tries to correct rain effects to 

obtain an estimated surface scattering coefficient (σ s corrected
o

− ).  The estimated rain-

height from the regression-based statistical model is used in the reverse simulation to 

model the effects of rain.  These rain-height estimates are denoted as estimated 

heights ( estimatedh ) in this simulation. Modeling of rain effects is similar in the forward 

and the reverse simulations except for the use of measured and estimated rain heights.  

Comparing the corrected surface scattering coefficient from the simulations and the 

actual surface scattering coefficient shows the impact of rain-height estimates in the 

rain-effect correction algorithm.  A detailed description of this simulation approach 

for stratiform fully filled rain cells is in [27].  For fully filled rain cells, one assumes 

that uniform stratiform rain is present throughout the SeaWinds footprint. 
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5.2.1 Forward Simulation 

The forward simulation estimates the received normalized radar cross-section using 

 
measuredmeasuredmeasureder

o
s

o
r hSLK ξησσ ××+××−×= )2exp(~~  ( 5.1 ) 

 

Equation (5.1) is similar to equation (2.4).  To estimate the received scattering 

coefficient, we must estimate the other parameters of the equation.  For the 

simulation, the surface values ~σ s
o  are modeled by the standard QuikSCAT 

geophysical model function (GH table).  The model function provides surface 

scattering coefficient ~σ s
o  for a given wind speed, wind direction and polarization. 

The attenuation constant K er was estimated for the simulations using empirical K-R 

relations. The final relation relating attenuation and rain rate was produced using the 

ITU tables and the linear and log interpolation formulas shown in [38]. The K-R 

relations used for horizontal and vertical polarization are: 

 For Horizontal Polarization:   Ker = 0.0262 R 1.1858  dB/km 

For Vertical Polarization:  Ker = 0.0262 R 1.1644 dB/km 
( 5.2 ) 

 

It must be noted that the values for the attenuation Ker in (5.2) are expressed in dB/km 

and need to be converted to Np/m for performing the simulations.  The measured 

TRMM rain-height is used for measuredh  and is modified to get slant height 

measuredSL values. 
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The volume backscatter coefficient is calculated as shown in (2.6).  The reflectivity 

factor Z in (2.6) is estimated using empirical Z-R relations:   

 

 For Stratiform Rain:  Z = 300 R 1.49 

 For Convective Rain: Z = 150 R 1.55  
( 5.3 ) 

 

The measured TRMM rain-rates are used to estimate Z values.  The factor that 

accounts for the attenuation of the rain echo ξmeasured is calculated as shown in 

equation (2.7).  Again, measured rain-heights are used in this calculation.  The 

estimated received scattering coefficient ~σ r
o  is passed to the reverse simulation, where 

the rain effects are corrected with the use of rain-height estimates from statistical 

model. 

5.2.2 Reverse Simulation 

The reverse simulation is intended to correct for rain-effects in the estimated received 

scattering coefficient ~σ r
o .  The corrected surface scattering coefficient ~σ s corrected

o
−  is 

evaluated using 

 

)2exp(
)(~

estimateder

estimated
o
ro

correcteds SLK
h

××−
××−

=−

ξησ
σ  ( 5.4 ) 
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Equation (5.4) is very similar to equation (2.8).   The difference between the forward 

and reverse simulation is in the rain-height values used.  In reverse simulation, the 

estimated rain-heights from the regression-based statistical model are used.  If the 

estimated height from the statistical model were perfect then the corrected surface 

scattering coefficients would be equal to those obtained using the QuikSCAT 

geophysical model functions.  Clearly, this is not generally the case and thus, by 

evaluating the difference between ~σ s
o  and ~σ s corrected

o
− , we can quantify the error in the 

correction process due to the incorrect estimates of height obtained from the 

regression-based statistical model. Figure 5-3 shows the flowchart of the complete 

simulation process. 
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Figure 5-3 Flowchart showing the simulation approach to evaluate the impact of estimated rain-

height (using statistical model) in the rain-effect correction algorithm. 
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5.3 Simulation Results 

The simulation approach developed in the previous section will help to evaluate the 

impact of erroneous rain-height estimates on the correction process.  In this section, 

simulation steps shown in Figure 5-3 were performed for every pair of TRMM 

measured rain-rate and rain-height values in a given region.  The resulting scattering 

coefficients (~σ s
o , ~σ r

o and ~σ s corrected
o

− ) are plotted in a figure vs. rain-rate.  To obtain a 

greater understanding of these errors in terms of magnitude and variability, we 

performed these simulations for different combinations of wind speed, wind direction 

and polarization. 

 

Figure 5-4 shows the simulation results for stratiform rain from the North-Atlantic 

region for wind speed of 10 m/s, wind direction of 0 degrees (upwind), and horizontal 

polarization.  In this figure, the actual surface scattering coefficient ~σ s
o  obtained from 

the GH table is shown as the black line.  The blue dashed line represents the received 

normalized radar cross-section~σ r
o  from the forward simulation.  Correction of the 

received scattering coefficient for rain attenuation and backscatter results in the 

surface scattering coefficient ~σ s corrected
o

−  (shown as red and green lines in the figure).  

The difference between the two is that the green line comes from correction using the 

statistical model developed for this specific region and the red line comes from 

correction using the statistical model developed for the entire northern hemisphere.  

Figure 5-5 shows similar results on rain data from the North-Atlantic region for the 
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same wind speed (10 m/s) and polarization (horizontal), but for a wind direction of 90 

degrees (crosswind).   

 
Figure 5-4 Simulation results for Atlantic north region data at WS = 10 m/s and WD = 0 degree 

 
Figure 5-5 Simulation results for Atlantic north region data at WS = 10 m/s and WD = 90 degree 
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The errors in the corrected surface scattering coefficient are greater at higher rain 

rates.  These larger errors result from errors in the regression model due to larger 

spreads of the data points from the estimated regression lines.  

 

The simulation results show that the errors between the corrected and true ~σ s
o  values 

were greater at lower wind speeds than at higher wind speeds.  The lower errors at 

higher wind speeds result from stronger surface signals (high ~σ s
o  values) found for 

high wind speeds.  Our simulations showed similar error estimates for horizontal and 

vertical polarizations so the regression-based statistical model is applicable for both 

polarizations.  We also observed that the error increases as the look direction 

approaches crosswind because of the weaker surface signals with that look direction. 

Similar results were obtained for many different regions, polarizations, wind speeds, 

and wind directions for both stratiform and convective rains. 

 

In all of these figures, the corrected scattering signals obtained from the statistical 

model developed from regional (green line) and hemispherical (red line) data are very 

close to each other.  This emphasizes the point that use of data for an entire 

hemisphere is sufficient in estimating rain-heights for all oceanic regions.  Thus, our 

final rain-effect correction algorithm need not be applied on a regional basis 

(longitude regions), resulting in simplification of the computational load on the 

correction procedure. 
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The regression-based statistical model was found to be effective for rain-height 

estimation for most cases.  Hence the rain-height estimates from this model can be 

used in the correction algorithm.  Sometimes the errors in corrected surface scattering 

coefficient become intolerable.  Typically, these errors occur for cases where the 

backscatter from the rain is two or three times greater than the surface signal.  In 

these cases, meaningful correction of the surface signal is not possible.  Therefore, 

rain flags to discard the data points must be set when the rain rate exceeds a 

threshold. Estimation of the rain-rate threshold for stratiform rain data is discussed in 

[59].  The details of this rain-rate threshold estimation procedure are beyond the 

scope of this thesis. 
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6 Conclusion 

Measurements of ocean scattering by the SeaWinds on ADEOS II satellite were 

corrupted by the presence of rain, and the same will be true for all other Ku-band 

scatterometers.  The Radar Systems and Remote Sensing Laboratory at the University 

of Kansas has developed an algorithm that corrects the received signal using rain-rate 

and rain-height estimates.  Rain- effect corrections are possible up to a rain-rate 

threshold that depends on the surface wind speed and direction.  Above the threshold, 

one must discard the data by setting a rain flag.  The AMSR radiometer on ADEOS II 

could provide the rain-rate estimates.  However, no measurement of rain-cell height 

was available on ADEOS II.  Although ADEOS-II failed, the methods for correction 

will be useful in future satellites carrying both wind-vector scatterometers and 

microwave radiometers. 

 

This study evaluated numerous methods to estimate rain height using the data that 

were available from ADEOS II.  The use of climatological height was not promising, 

since climatology provides only very crude height estimates, and also the climatology 

for rain at sea is not well known outside the tropics.  An attempt to relate rain height 

to sea-surface temperature also failed, as they correlate well in some oceanic regions 

but very poorly in others.  A method to estimate rain-height from rain-rate was finally 
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adopted, since TRMM rain rate and rain height showed good correlation.  Due to the 

scatter of measurements, standard linear-regression methods cannot be applied to 

relate rain-rate and rain-height. After analyzing numerous regression schemes, the 

Log-Linear Combined regression technique using a linear- log regression for low rain 

rates and a linear regression for high rates was selected.  Hypothesis testing and other 

statistical-based analyses showed that rain-height estimates obtained using the Log-

Linear Combined regression scheme provide reasonable accuracy. 

 

To apply this regression-based relationship for all seasons, the slope and intercept 

statistics were Fourier analyzed to capture the seasonal trends.  Finally, we proposed 

the regression-based statistical model, which predicts slopes and intercepts of 

regression lines and estimates the rain height from rain rate for a given hemisphere, 

season, and rain type.  Statistical hypothesis testing showed that rain-height estimates 

derived from the regression-based statistical model provide reasonable accuracy.  A 

simulation procedure was developed and implemented in this thesis to analyze the 

impact of rain-height estimates in correcting the normalized radar cross-section 

coefficients. 

 

Simulation results showed good rain-effect correction for surface scattering 

coefficient for lower rain-rates.  These results validate the use of regression-based 

statistical model for rain-height estimation in the rain effect correction algorithm for 

many situations.  However, for some high rain-rates and other wind conditions, 
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correction is not possible.  For these cases, rain-rate thresholds have to be introduced 

in the correction algorithm to set rain flags.  Threshold estimation procedure will be 

the subject of continuing study to complete the rain effect correction algorithm.   

 

This study concentrated only on stratiform rain, which is assumed to fill the footprints 

of SeaWinds and AMSR.  A similar study is necessary for convective rain which 

usually fills the footprints only partially.   

 

In this simulation, the only errors analyzed are those due to height estimates from rain 

rates.  Both correction and simulation are subject to other errors, such as those in the 

rain-rate estimates from AMSR, attenuation estimates from AMSR, errors in the Ker-

R and Z-R empirical formulas used in the simulation, and threshold estimation. The 

sizes of these errors can be estimated by separate studies. 
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Appendix A 

Data Products 

The first spaceborne precipitation radar (PR), an active microwave instrument aboard 

the Tropical Rainfall Measuring Mission (TRMM) satellite, was designed to measure 

rain and its vertical structures over the vast tropical oceans and continents.  The PR’s 

sensitivity has exceeded expectations, allowing routine detection of rain-fall 

intensities as low as 0.5 mm h-1 [37].  The PR operates at a wavelength of 2.2 cm, 

allowing penetration of even the heaviest obscuring cloud layers and detection of 

underlying precipitation.  This, combined with a vertical resolution of 250 m, makes 

the PR an effective platform for investigating shallow precipitation [40]. 

 

TRMM 

The Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) is the 

first spaceborne rain radar and the only instrument on TRMM that can directly 

observe vertical distributions of rain.  The frequency of TRMM PR is 13.8 GHz.  The 

PR can achieve quantitative rainfall estimation over land as well as ocean.  The 

precipitation radar provides statistics on rain rate and rain height (storm height) in 
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different oceanic regions on a monthly basis from January 1998.  TRMM coverage 

extends only for ±35° latitude. 

 

TRMM Precipitation-Radar Algorithms 

The TRMM PR, standard algorithms were developed by the TRMM science team.  

They are classified into Level 1 (1B21, 1C21,), Level 2 (2A21, 2A23, 2A25) and 

Level 3 (3A25, 3A26) [60].  Level 1 and Level 2 products are data observed in each 

cell.  Level 3 data give the monthly statistical values of rain parameters in 0.5° x 0.5° 

grid boxes required by the TRMM mission.  The data products used in our analysis 

are 2A25 and 3A25.  The algorithm 2A25 retrieves profiles of radar reflectivity 

factor, Z, with rain-attenuation correction and rain rate for each radar beam.  The 

algorithm 3A25 gives the space-time averages of accumulations of 1C21, 2A21, 

2A23, and 2A25 products. 

 

3A25 Data Products – for Rain Rate, Height and Count 

The algorithm 3A25 provides space-time statistics over a month from the level 1 & 

level 2 PR output products.  Four types of statistics are calculated. 

1. Probability of occurrence 

2. Mean and Standard Deviation 

3. Histogram 

4. Correlation Coefficient 
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The standard space scale is a 5° x 5° latitude x longitude cell.  A subset of the 

product, however, is also produced over 0.5° x 0.5° cells.  The relevant products are: 

 

1. Rain Rates (millimeter/hour; 4-byte real) 

StratRainMean2 (148,720,4) –  mean Stratiform rain rates at 4 levels  

(2Km, 4Km, 6Km, & Path-Averaged) 

ConvRainMean2 (148,720,4) –  mean Convective rain rates at 4 levels  

(2Km, 4Km, 6Km, & Path-Averaged) 

 

2. Rain Counts (unitless; 4-byte integer) 

StratRainPix2 (148,720,4) –  Stratiform rain counts at 4 levels  

(2Km, 4Km, 6Km, & Path-Averaged) 

ConvRainPix2 (148,720,4) –  Convective rain counts at 4 levels  

(2Km, 4Km, 6Km, & Path-Averaged) 

3. Storm Height (meters; 4-byte real) 

stormHeightMean (148,720,3) –  mean of storm height for stratiform, convective 

and all types. 

The path-averaged rain rates are used in our studies.  They are calculated by summing 

the rain rate values from the storm top (first gate where rain is detected) to the last 

gate (gate nearest to the surface uncontaminated by the surface cluster) and divided 

by the number of gates in the interval. 
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Sea Surface Temperature (SST) Data Product 

The multi-channel Sea Surface Temperature (MCSST) data set is derived from the 

NOAA advanced very high-resolution radiometer (AVHRR).  These data sets are 

available throughout the globe at 0.35° x 0.35° grid resolution.  The data sets must be 

decimated and trimmed to match the rain-height data set in our analysis. 
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Appendix B 

Bilinear Regression 

Let us consider X and Y to be the two datasets to be regressed.  X can be assumed as 

the independent variable from which the dependent Y is to be determined.  When the 

scatter exhibits two different trends, bilinear regression can be used.  In bilinear 

regression, a breakpoint (say x0) is considered in the independent variable X.  For 

values of X less than x0, a linear regression line is fitted and for values greater than 

x0, another linear regression line is fitted.  These two regression lines are made to 

meet at a point to maintain consistency. 

 

The objective function for bilinear regression is given as, 

∑∑
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where, m1, c1 are the slope and intercept of the line for lower values of X and m2, c2 

are the slope and intercept of the line for higher values of X.  To maintain 

consistency, the regression lines have to be made to meet at a point.  Hence, an 

additional criterion must be introduced in the objective function to force the 

regression lines to meet at a point. 
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Where λ is the Lagrange multiplier and x0 is the break point between the two 

regression lines.  The slopes and intercepts of the regression lines are the unknown 

parameters to be determined.  We obtain the partial derivative of the objective 

function with respect to each of the unknown parameters (m1, m2, c1, c2) and equate it 

to zero. 
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Solving these equations gives the unknown parameters.  The final solution in the form 

of a matrix is given as 
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Weighted Bilinear Regression 

For weighted bilinear regression, each point in the scatter is provided with a 

weighting factor.  Let ni be the weighting factor to be considered in the regression.  

The objective function for weighted bilinear regression is modified as follow: 
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The objective function S should be partially differentiated with respect to the 

unknown parameters and equated to zero.  
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The final solution in matrix form is given as, 
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