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Abstract

The SeaWinds scatterometer that flew on the ADEOS |1 satellite and continues on the
QUIKSCAT satellite determines oceansurface wind vector by measuring radar
backscatter from the ocean. These radar cross-section measurements are hindered by
the presence of rain over seas. The deleterious effects of rain are attenuation of the
surface signal and the addition of backscatter from rain to the received signal.
AMSR, the scanning radiometer on ADEOS I, provided rain-rate estimates which
can be used to determine attenuation rate and rain-backscatter intensity. 1f one knows
the rain-cell height, one can estimate the total attenuation and rain backscatter for
each beam and correct for the effects of rain. Unfortunately, no direct measurement

of rain height was available on ADEOS II.

The objective of this thesis is to determine a method to estimate rain-cell height for
different seasons and oceanic regions. Rain height from the Tropical Rainfall
Measurement Mission (TRMM) precipitation radar (PR) was used in these studies.
Aninitial investigation on using climatological rain-height estimates showed that they
were crude and constrained only to tropical regions. Also, an attempt to relate rain

height to sea-surface temperature failed.



TRMM rain rate and rain height showed good correlation over various regions,
seasons and rain types (stratiform and convective). Due to the scatter of the measured
data, numerous regression schemes were attempted to relate rain rate and rain height.
Most of the schemes work well at lower rain rates, but they behave poorly at higher
rainrates. A Log-Linear Combined regression technique using a linear-log regression
for low rain rates and a linear regression for high rates provides a consistent relation
over al rain rates. The seasonal effects on slopes and intercepts of the regression
lines were also analyzed. Finally, the thesis proposes a regression-based statistical
model to predict slopes and intercepts for the regressions lines, which can be used to
estimate rain height given arain rate. The estimated rain-cell height is necessary to
correct for the rain effects in SeaWinds scatterometer measurements, since it is

required to determine the total backscatter from the rain volume.
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1 Introduction

1.1 Need for Wind Data

Wind stress is the signal largest source of momentum to the upper ocean, and winds
drive oceanic motions on scales ranging from surface waves to basin-wave current
systems. Winds over the oceans regulate the crucial coupling between atmosphere

and ocean that establishes and maintains global and regional climate.

Knowledge of wind velocity over the ocean is of critica importance for
understanding and predicting many oceanographic, meteorological, and climate
phenomena. Measurements of the surface wind velocity can be assmilated into
regional and global numerical weather prediction systems, thereby extending and
improving our ability to predict future weather patterns on many scales [1]. Other
applications of wind vector measurements include the study of unusual climatological

phenomena such as El Nifio and hurricane monitoring [2].

Most ship-borne ocean surface wind vector measurements are geographically and

phenomenologically biased. Ship reports of wind velocity are aso notoriously

1



inaccurate owing to untrained observers, poor instrumentation, badly placed
anemometers, contamination owing to ship motion, and data transcription and
transmission errors [3]. Only a satellite-borne instrument can acquire wind data with
global coverage, high spatial resolution, and frequent sampling [4]. Both satellite
altimeters and multi-channel microwave radiometers can be used to estimate all-
weather wind speed; however, these instruments do not measure wind direction.
Wind direction is a crucial input to calculating air-sea momentum fluxes needed to

understand atmospheric dynamics.

The wind vector on the oceansurface can be determined from the measurement of
radar backscatter of the ocean by utilizing a space-borne scatterometer [5]. Satellite-
borne scatterometers are the only remote sensing systems able to provide accurate,
frequent, high-resolution measurements of ocean surface wind speed and direction in
both clear-sky and cloudy conditions [4]. The next section gives a brief description
on the principle of scatterometry and how the ocean backscatter is used to measure

wind vector.



1.2 Scatterometry for Wind vector

measurements

The scatterometer is a microwave radar sensor that measures the scattering or
reflective property of surfaces and/or volumes. Early radar observations of ships and
aircraft over oceans were corrupted by "sea clutter" (noise), the backscatter for the
surface. Radar response was first related to wind in the 1960's B-9], based on
measurements from aircraft, ships, and shore stations. The first space-borne
scatterometer flew as part of the Skylab missions in 1973 and 1974, demonstrating

that space-borne scatterometer were indeed feasible [10].

Space-borne scatterometer tramsmit microwave pulses to the ocean surface and
measure the backscattered power received at the instrument. Since the atmospheric
motions themselves do not substantially affect the radiation emitted and received by
the radar, the scatterometers use an indirect technique to measure the wind vector
over the ocean. Wind stress over the ocean generates waves, leading to a rough sea
surface. Changes in the wind velocity cause changes in the surface roughness, which
in turn modify the radar cross-section and hence the magnitude of backscattered
power. The empirical relation that describes the correlation between backscattered

power and ocean near-surface wind conditions are given in [11].



Scatterometer measure the backscattered power, alowing estimation of the
normalized radar cross-section (s °) of the sea surface. To extract the wind velocity
from these measurements, the relationship between radar cross section and the near-
surface winds must be known. The radar cross section s °is cdculated using the

basic radar equation:

o_(4)R'LP,
S = pGAtA (+4)
t

where R is the dant range to the surface, R is the transmitted power, P, is the
received backscattered power, L represents known system losses, G is antenna gain,
A is the effective area of illumination, and | is the wavelength of the transmitted
radiation. From each illumination location on the earth, the total received power is

the sum of the backscattered power P, and a contribution P, resulting from

instrument noise and the natural emissivity (at that frequency) from the earth
atmosphere system, Unless the signa-to-noise ratio (SNR) is very large, the noise

power B, must be estimated and subtracted from the total received power P, to

s+n)

determine P, accurately; the radar equation can then be used to calculates °.

The relationship between s °and near-surface wind velocity is known as the
geophysical model function. A scatterometer model function describes the variation
of s ®with wind speed, wind direction, and angle of incidence [12]. The geophysica

model function can be written most generaly as,



s°=f(U |f,...q, f, pol) (1.2)

where |U | is wind speed,f is the azimuth angle between the incident radiation and
the wind vector, q is the incidence angle measured in the vertical plane, f and

pol are the frequency and polarization respectively of the incident radiation.

Estimation of wind velocity from a s © measurement involves inversion of the model
function given by (1.2). The mode function defines the locus of wind speed and
directions corresponding to each s ° measurement. In the case of noise-free
measurements and perfect knowledge of the model functions, intersections of these
loci define possible wind velocity solutions consistent with al s ° measurements. If
only two collocated s © measurements from different radar geometries are available,
up to four intersections of the loci exist, owing to the near-symmetric oscillatory

nature of the model function with respect to direction, as shown in Figure 1-1 [4].

| IR A AR A LA A AR LAl LA o L

0 60 !12{; 180 240 300 360
f Wind direction (deg)

Figure1-1 Loci of possible vector winds associated with colocated noisefree S ° measurements
obtained from antennas pointed at various azimuth angles. Heavy solid line: antenna angle at
90° (v-pol); dashed line; angle at 90° (v-pol); light solid line: angle of 25° (v-pol); dotted line:
angle of 25° (h-pol). Arrowsindicate solutions obtained using only the antenna at 0° and 90° [4].



Each of these intersections represents a possible wind velocity solution, and is
denoted in the scatterometer literature as an ambiguity. Additional measurements
from different geometries reduce the number of intersections and allow estimation of
a unique wind velocity in the idealized case. Hence, at least two, and preferably
more, measurements of normalized radar cross-section of the same location, from

different viewing angles must be obtained in the space-borne scatterometer. These
multiple, near-simultaneous s ° measurements combined with the geophysical model

function, will allow estimating the near-surface wind speed and direction over the ice-

free oceans.

1.3 Spaceborne Scatterometer

1.3.1 Brief History

The first satellite scatterometer program after the Skylab experiment was the NASA
(National Aeronautics and Space Administration) SEASAT scatterometer (SASS), a
fan-beam instrument, operating at 14.6 GHz with two beams on each side of the flight
track. The European Space Agency’s ERS-1/2 Advanced Microwave Instrument
(AMI) operating at 5.3 GHz, includes scatterometer modes with 3 fan-beam antennas
and acquires s ° measurements in a single, 500 km wide swath (one side of fight

track only) [13]. The second scatterometer launched flown by NASA was the



NSCAT (NASA scatterometer), which used six fan-beam antennas, three on each side
to obtain multiple azimuth looks. The design was an improvement over SASS
because of the extra beam and over AMI because looking on both sides increased the
swath width, allowing it to cover 90% of the Earth every two days. Figure 1-2 shows

the history and future of scatterometry missions.

1991 [ 1992 1993 | 1994 [ 1995 [ 1996 [ 1997 | 1998 [ 1999 | 2000 [ 2001 | 2002 [ 2005 | 2004 | 2005

ESA’s ERS-1 (C-Band)
| |

ESA’s ERS-2 (C-Band)

Japan's NIDORI'ADEOS-1 (Ku-Band)

1]

U.S. QUIKSCAT (~Ku-Band)

Japan’s ADEOS-2 (~Ku-Band)
I

ESA’s METOP (C-Band)

I:'D

Figure 1-2 Scatterometer Spacecraft — Timeline

1.3.2 SeaWinds Mission

The third and most recent NASA scatterometer design is the Ku-band Seawinds,
operating on both the QUIkSCAT satellite and the Japan’s ADEOS |1 (also known as
Midori 11) satellite [14]. ADEOS Il was originally the only planned SeaWinds
mission. The unexpected short life of NSCAT and delay in the launch of ADEQOS II
prompted the development of QUikSCAT as aquick recovery mission. The design of

the SeaWinds instrument is fundamentaly different from fanbeam satellite



scatterometers. Rather than use multiple fanbeam antennas to create the
measurement swath, it has only one antenna, a pencil-beam type, which it
mechanically rotates about nadir. The combination of rotation and inclination angle
to the antenna gives it the advantage of a significant larger swath (see Figure 1-3) and
no gap in the nadir region. The rotating antenna has two feeds, creating two beams,
an inner and outer, which provide four different azimuth-looks for ground locations
[15, 16].

-

SeaWinds <G it track

Figure 1-3 Coverage geometry for SeaWinds [15, 16]

The functionality of the Seawinds instrument and the associated data processing are
beyond the scope of this thesis. In the next section, the effect of rain on SeaWinds

datais discussed in detail .



1.4 Rain effect on SeaWinds Data

1.4.1 Raintypes

Precipitation has two main classfications: convective and dtratiform [17].
Convective precipitation regions are generally identified with intermittently strong
vertical velocities, high rain rates (>5 mm/hr) and small intense cells (~1-10 km
horizontal dimensions). Stratiform precipitation areas are characterized by small
vertical velocities, low rain rates (<5 mm/hr) and wide-spread (~100-km horizontal
dimension) [18]. If they are high enough to contain frozen particles, they are

bounded on the top by a layer of melting ice particles, the "bright band".

1.4.2 Rain effects

It is well known that microwave signals are scattered and absorbed by raindrops
located within the signal path [19]. The amount of signal alteration depends on the
frequency, polarization and angle of incidence of the microwave signal in addition to
the amount of rain present in the path and the speed of the local wind field [20]. The
higher frequency of the SeaWinds instrument’s Kuband pulse (~14GHz) suffers
greater rain contamination than that of the ERS scatterometer’s C band (5.3 GHz)
pulse. The presence of rain affects the wind vector measurements in the three

following ways.



1. The rain attenuates the radar signal as it travels to and from the earth’s
surface. This reduces the measureds °.

2. The radar signal is scattered by the volume of raindrops. Some of this
scattered power returns to the instrument. This increases the measureds °.

3. The roughness of the sea surface is increased because of splashing due to

raindrops. This increases the measureds °. An early study of rain effects on
radar scattering from water surfaces can be found in R1] and [22] aso

describes similar effects.

The energy backscattered by the rain can be a significant portion of the total
backscattered power measured by the radar; indeed, for high rain rates and low wind
speeds it can dominate the signal. The effects of rain on QUIkSCAT winds were
found to be severe for low and moderate wind speeds (< 10m/s). The wind retrieva
processing does not account for these effects, and thus, the retrieved wind vectors will

contain errors.

1.4.3 Case Study

A case study onrainin QUIkSCAT scatterometer reveals that both cross-track vectors
(presence of wind vectors turned perpendicular to the satellite track) and higher winds
are found in the very heavy rain cell [23]. Figure 1-4 shows wind vectors over the

tropica storm Olga on March 2000 collocated with Special Sensor
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Microwave/lmager (SSM/I) rain rate values. The cross-track vectors can be found

over the precipitation region (dark gray) toward the west of the storm center.
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Figure 1-4 QuikSCAT wind vectors, shown aswind barbsin knots, are drawn over collocated

F14 SSM/I rain ratesfor tropical cyclone Olga. Higher wind speeds and cross track directions
occur in and near the higher rain rates[23].

Since the early stages of the QUIkSCAT Calibration/Validation effort, precipitation
has been clearly identified as a significant source of contamination. This can be
particularly troublesome, as many ocean meteorological events of prime interest,
namely tropical storms (like the one discussed above) and hurricanes, possess
abundant precipitation. Various rain flags have been applied to the QUIkSCAT winds
including the multidimensional histogram (MUDH) technique used in the Jet

Propulsion Lab (JPL) and National Oceanographic Atmospheric Administration
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(NOAA) products [24], the normalized objective function (NOF) technique
developed by Remote Sensing System (also reported in the JPL wind product) [25]
and others[26]. These flags were tuned using SSM/I rain rates. Most of the effort by
the research community is directed toward flagging rain-contaminated cells and only
a few attempts were made to model the effect of rain and correct wind vector

estimates [20, 27].

1.5 Need of Rain Height Estimation in

Correction

1.5.1 Correction for Atmospheric Attenuation

The Radar System and Remote Sensing Laboratory (RSL) at University of Kansas is
developing an algorithm to correct for the rain effect in the SeawWinds scatterometer
signal. This work began originally in connection with the Earth Observing System
(EOS) STIKSCAT program. The attenuation of the surface signal due to
precipitation can be corrected using radiometric brightness temperature. A
radiometer observing the same region as the scatterometer can provide estimates of
total attenuation because the observed brightness temperature depends on attenuation
through the rain and cloud. The Advanced Microwave Scanning Radiometer

(AMSR), which flew along with SeawWinds scatterometer in the ADEOS Il satellite,

12



could be used for this purpose, as they had overlapping coverage. Figure 1-5 shows

the rain effects on SeaWinds scatterometer and AM SR radiometer signals.

ADEOSII

SeaWinds AMSE
Scatterometer /\ Radiometer
‘ Radiometer
Measmrements

Wind Vector
©Measwrements

Fam
Attenuation

Backscatter
Addition

Rain-cell Height —

SeaWmds
Footprint -

AR A

Figure 1-5 Effect of Rain on Scatterometer and Radiometer data

13



A look-up table based method was devised to determine the radiometer-based
attenuation for the SeaWinds Scatterometer [28]. Simulation results on the
improvement of scatterometer measurements using radiometer-based atmospheric
attenuation correction are given in [29-30]. Another aternative for attenuation
correction is to determine the attenuation rate (K) using the AMSR rain rates (RR)
with an empirical relation valid for Ku-band frequencies. However, this approach
needs rain height to estimate total attenuation suffered by the scatterometer signal.
The Rain Height (RH) or Storm Height (SH) (these terms are used interchangeably
throughout this thesis) is the height of the effective storm top. The height of the rain
cell is aso an important input in correcting for volume scatter from rain, which is
discussed in the next sub-section. No direct measurement of rain heights was

available on the ADEQOS-I| satdllite.

1.5.2 Correction for Rain Volume Scattering

As discussed in the section 1.4, the most deleterious effect of the rain on the
scatterometer signal is the backscatter from the rain volume (precipitation echo). The
precipitation echo (the volume integral of backscatter) can be obtained from the rain-
backscatter intensity and rain volume. The rain-backscatter intensity can be obtained
from the AMSR rain rate using empirical relationships for different rain types
(stratiform or convective). Rain cell height is required to estimate the volume of the

rain cell above each Seawinds footprint.
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With the knowledge of rain cell height, one can estimate total attenuation and rain
backscatter for each scatterometer beam and correct for rain effect in the
scatterometer signal. However, the effective rain cell height was not available as an
output from any of the instrumentsin ADEOS |1 satellite; hence the estimation of rain

heights is essential.

1.6 Motivation for the thesis

A methodology to estimate rain cell height over oceans forms a motivation to this
thesis. This estimated rain cell height should be valid over different seasons and
regions of the globe. A study of rain-cell height statistics was carried out using the
Tropical Rainfall Measurement Mission (TRMM) Precipitation Radar (PR) rain
height products. But, this climatologica mean height provided a very crude estimate
of rain heights and is constrained only to tropical regions kecause of the orbit of
TRMM. Different parameters available in the ADEOS Il satellite were selected and
the consistency of their relation to rain heights was analyzed. A strong relationship
between rain height and rain rate was identified and reported in [31]. This thesis
focuses on anayzing different regresson schemes to evaluate the mathematical
relation between rain rate and rain height and developing a universal statistical- model

to predict rain height, given the rain rate over various season and oceanic regions.
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Chapter 2 gives an overview of the various methodologies adopted for rain height
estimation. Chapter 3 provides an extensive analysis on various regression schemes
that we tried to relate rain rate and rain heights. Chapter 4 elaborates on the seasonal
effects on the dopes and intercepts statistics for the selected regression scheme and
how it is accounted using Fourier analysis and the fina ‘regression-based statistical
model’ and its use in rain height estimation. A detailed description of the simulation

approach to validate the rain height estimated by the model is given in Chapter 5.
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2 Rain Height Estimation

2.1 What is Rain Height?

Rain height as used here is the height of the top of the rain column above the mean
sea level. Rain height is important for severa meteorological and climatological
applications, and it is aso useful in the design of satellite communication systems
affected by rain attenuation. Cloud height is also useful for atmospheric research
[32]. Cloud heights and types reveal the thermodynamic and hydrodynamic structure
of the atmosphere. Since clouds extend above the region where rain drops form, rain
height is less than cloud height. Cloud height, of course, may be measured when no

rain is present.

2.2 Rain height measurement using TRMM PR

Cloud top height can be estimated from various weather-satellite sensors using stereo
images [33-35]. It may aso be estimated using infrared (IR) images, since the
temperature of the top of the cloud is related to its height [36]. The details of cloud-

height estimation are beyond the scope of thisthesis.
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The first spaceborne precipitation radar (PR), an active microwave instrument aboard
the Tropical Rainfall Measuring Mission (TRMM) satellite, was designed to measure
rain and its vertical structures over the bothtropical oceans and continents. TRMM
PR directly observes the rain-top height inside cloud [37]. In the standard processing
of the PR data, each vertical profile of radar reflectivity is evaluated to detect the
surface and the backscatter from hydrometers (mostly rain because the instrument is
not sensitive enough to detect the weaker cloud echoes). When at least three
consecutive 250-m range bins (750 m) contain statistically significant hydrometer
echoes, the highest range bin is flagged and used to describe a ‘storm height’ above
the standard geoid. TRMM PR measures height of the first (highest altitude) echo for
the ‘rain-certain’ case and outputs it in level-2 data set (2A23) as ‘stormH’. The
level-2 products are instantaneous PR observations. The TRMM Science Data
Information System (TSDIS) aso produces level-3 (3A25) monthly averaged storm:
height products from level-2 products [38]. We use this level-3 storm height product
(stormHeightMean) extensively in this study. The details of the TRMM storm height
products are available in Appendix A. Figure 2-1 shows, as an example, the global

distribution of storm height observed by PR in July 1998.
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Figure2-1 TRMM PR Level 3 monthly averaged storm height for July 1998

In the following section, an expression for the total received power by the
scatterometer in the presence of rain is derived. Various inputs for the correction
algorithm to recover the actua surface scattering coefficient from the total received
power are analyzed. Since direct measurement of rain height was not available in

ADEOS Il satellite, the need for rain height estimation is emphasized.

2.3 Rain-Effects Correction Algorithm

The total power received by the scatterometer in the presence of rain is the sum of the
power received from the surface scattering and volume scattering.

The power received from the surface scattering is
P,=s A (21)
where s ] is the surface scattering coefficient or the normalized radar cross-section

(NRCS) and A isthe surface areathat can contribute to the signal.

The power received from volume scatter is
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P,=hV (2.2)
where h is the volume backscattering coefficient per unit volume and V s the

volume of the rain cell that contributes to the signal. Figure 2-2 shows the geometry

for volume calculation.

The volume backscattering coefficient of rain, when drops are small enough relative

to awavelength to permit use of the Rayleigh approximation is [19]

5
h=10°P |k |2z (2:3)

15
where | ,(cm) is the wavelength, | K, | is a function of the refractive index of water,

and Z (mm°m®) isthe reflectivity factor.

'
A \ rain cell volume(V")
oL V=Axh
slant height (sl)
rain height(h) sl =hxsec(6)
surface area(4,)

N 35 >

Figure2-2 Rain cell geometry over SeaWinds footprint (simplified from elliptical footprint)
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For the SeaWinds scatterometer, the backscattered power from a given footprint
arrives simultaneoudly for the rain volume and the surface scattering. The
backscattered power is also attenuated as a function of the distance through the rain

cell wolume (dant height ‘d’). Therefore the power received by the scatterometer is
given as,

P =s°A =Pt *+Px
S°A =s2At?+hVx (2.4)
s? =s % ? +hhx
where s ” is the measured equivalent scattering coefficient and t is the one-way

transmissivity of the atmosphere with a value smaller than one:

{ =@ 2K (25)
where K, is the attenuation constant and dis the dant height calculated

asd =h” sec(q). Theincidenceangleis q.
h isthe volume backscatter coefficient given by
s Pp° 2
h=10 |—4|kw| Z (2.6)

The factor |k,|* in (2.6) isafunction of the refractive index for water and varies from
0.89 t0 0.93 over a0 to 20 C range and a 1 to 10 cm wavelength range; | is the

wavelength expressed in meters; Z is the reflectivity factor evaluated using a common
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empirical Z-R relation, and is expressed in (mm®/ nT) x 108, The parameterx in

(2.4) is afactor to account for attenuation of the rain echo and is defined as [39]:
x:—QSI e «"dr (2.7)

Equation (2.4) completely models the rain effects in the total received power. The

correction algorithm tries to retrieve surface scattering coefficient (s ) from the total

received power. Hence the corrected normalized radar cross-section (NRCYS) is

derived by inverting the equation (2.4), noting that V=Ah:

o _Sro_(h'h' X) (28)

S Corrected — {2
The basis for the rain-effect correction algorithm is shown in equation (2.8). The
correction of surface scattering coefficient (s ) from rain effects requires the
following inputs:

I.  reflectivity factor (Z)

il.  attenuation constant (K, )

jii.  rain height (h)

The reflectivity factor and attenuation constant can be obtained using empirical
relationships with rain rate. The availability of rain rate from AMSR radiometer in
ADEOS Il made this approach possible for ADEOS-11, and presumably will do so for

future missiors. Rain height is the only parameter required to complete the rain
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effect correction algorithm. Since direct measurement of rain height was not
available on the ADEOS Il satellite (and presumably will not be on other
scatterometer satellites), estimation of rain height using other available parameters or

statistics is necessary.

Figure 2-3 shows the various inputs necessary to complete the rain-effect correction
algorithm. The rain-height parameter can be estimated using one of the following
methods:

i.  Estimation from ocean rain height statistics (essentially climatology)

ii.  Estimation from sea-surface temperature

iii.  Estimation from rain rate

The detailed description of these rain height estimation methods, data-processing

procedure and feasibility study are given in sections 2.4, 2.6, and 2.7.
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Figure 2-3 Methodologiesfor rain height estimation

2.4 Estimation using Climatological Rain

Height

The first approach, based on ocean rain-height statistics, requires meanrain-height
tables for every month in all the regions of the ocean. Conventiona statistics from
the weather services do not provide this information. The TRMM PR provides rain
height data throughout the region between 35°N and 35°S latitude starting in January
1998. This period includes El Nifio, La Nifia and neutral conditions in the South

Pacific, so even though it is short, it covers a good range of ocean characteristics. In
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this study we use monthly averaged level-3 rain- height data rather than the massive
instantaneous level-2 rain height data. We studied the various trends in level-3 rain
height data. A similar study on TRMM rain-height statistics is discussed in [40]. The
focus of our study is to determine the mean rain height over al oceanic regions,
which can be used in the rain-effect correction agorithm. In this section, the analysis

of TRMM rain-height statistics in the Pacific Ocean is reported.

2.4.1 Data processing

TRMM Level 3 ) 3x3 —
Rain Height [ Null p(rmt Y Lzm(l' L »  Median | bf:ltl.s?l(‘:ll
Data removal Mask Filtering Routines

Figure2-4 Data processing involved in TRMM Level 3 rain height statistical study

The TRMM level-3 monthly averaged rain heights are provided at spacing of 0.5° in
latitude and longitude (refer to Appendix A). This data set includes many points with
null values, indicating no rain during the month. These null points are removed
before processing the data.  Some unrealistic heights (some are even greater than 9
km) are ignored in the processing. We used a land mask which includes major
continents and islands. Idlands in major groups are combined to single areas and
some widely dispersed small idands are ignored in this land mask that is used to
exclude the land areas from our analysis We used a 3x3 median filter to remove

spurious points, mostly those that have excessive heights. The results were then
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analyzed using various statistical routines to understand the trends in rain-height data.
For simplification in data manipulation, we used only the data sets for January and

July months for stratiform and convective rain types were analyzed separately.

2.5 Pacific Rain Height Statistics

Latitude

Figure 2-5 Pacific Ocean common regions. Black areas not on continentsareisland groups. The
regions are relatively small because different months showed different boundaries for obviously
uniform regions.

The Pacific oceanic region is divided into six homogenous rain height regions to
account for variation in regional ocean climate. The common regions were obtained
by comparing monthly rain-height maps. These common regions allow monthto-
month comparison of rain-height distribution. Figure 2-5 shows the selected regions
for the Pacific Ocean. After processing the raw rain-height data, histogram plots

were generated for each selected region. Figure 2-6 shows the rain height histograms
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for a few regions. Each histogram shows data from the months July 1998, July 1999,
and July 2000. The smooth curves are based on 6th-order polynomial regression. A

3-point moving average window was used to smooth the fits.
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Figure 2-6 Rain height histogram for the selected common regions
(a) NW Pacific, (b) NE Pacific, (c) SE Pacific, (d) SW Pacific.

Similar histograms were generated for al regions, seasons and rain types. To
investigate the usability of mean rain-height values in the rain-effect correction
algorithm, the mean rain heights were estimated for each common region and

tabulated. Figure 2-7 shows the mean rain-height values of the common regions over
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the Pacific Ocean for dtratiform rain. Similar mean rain-height values for convective

rain types are shown in Figure 2-8.
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Figure 2-8 Mean pacific convective rain heights for the selected common regions
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The graphs of mean rain-height values show variation in different months and
common regions. For agiven region, the standard deviations are typically less than2
km. Hence the mean rain-height values for a given common region and month can be

used in the rain-effect correction algorithm. Note the seasonal effects.

A major drawback of this approach is the limited latitude coverage of TRMM (zx 35°).
Hence, mean rain-height tables cannot be developed for higher latitudes. In addition,
this approach provides only a statistical measure of rain height. The other approaches
can give a better measure of the rain height, if a strong relationship exists between
storm height and the parameter (either sea-surface temperature or rain rate) used o

estimate the rain height.

2.6 Estimation using Sea-surface Temperature

The second approach tried was to use the measurement of sea-surface temperature
(SST) to estimate the rain height. Researchers have shown a strong relationship
between seasonal precipitaion patterns and sea-surface temperature over ocean [41].
Various independent research studies also illustrate the association of sea-surface
temperature with the regional monsoon system [42, 43]. This strong relationship
provides a motivation to compare the sea-surface temperature and rain-height data
and study the feasibility of estimating rain height using SST. Global sea-surface-

temperature products have been produced operationally from National Oceanic and
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Atmospheric Administration (NOAA) satellite Advanced Very High Resolution
Radiometer (AVHRR) data since 1979 [44-45]. These sea -surface-temperature data
were compared with TRMM level-3 rain height data in this study. The details of the
products are given in Appendix A. NOAA satdlite measurements of SST are
available from the Physical Oceanography Archive Center of the Jet Propulsion
Laboratory (JPL). The JPL products of monthly global (2048x1024 pixels) 18
kilometer gridded multi-channel sea-surface temperature for January 1998 are shown

in Figure 2-9.

Latitude

=150 =100 =50 0 a0 100 150

0 5 10 15 20

Figure 2-9 Multi -channel sea-surface temperature data derived from the daytime NOAA
AVHRR for January 1998. Scalesrepresent temperaturein C°
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2.6.1 Data Processing

The resolutions of AVHRR SST and TRMM level-3 rain-height data are different.
Also the TRMM rain height products are available only from 35°N to 35°S latitude.
Hence the sea-surface temperature data were trimmed and interpolated to have one-
to-one point correspondence with the rain-height data. The land and null points in
both data sets were removed. To account for climatological variations in the different
oceanic regions, the entire ocean was divided into 8 regions. The selected regions are
Indian north, Indian south, Atlantic north, Atlantic southeast, Atlantic southwest,

Pacific northeast, Pacific northwest, Pacific south. In the Pacific Ocean during
January, one must separate the inter-tropical convergence zone (ITCZ) region and the
equatorial region just south of it from other parts of the sea because of the different
conditions that prevail in these special areas. The sea-surface temperature and rain-
height data from each region were correlated and analyzed using various statistical

routines. The results of these statistical routines help to understand the relation

between sea-surface temperature and rain height.

Sea Surface Trim & interpolation to
Temperature | match rain height >
AVHRR data dataset resolution
Region Statistical
Selection »  Routines
TRMM Level-3 || Null points Land .
Rain Height data Removal mask Lo

Figure 2-10 Data processing involved in the study of sea-surface temperature and rain height
relationship
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2.6.2 Relation between SST and RH

The processed SST and rain height data from each region were correlated and their
correlation coefficients were tabulated. Table 2-1 shows the correlation coefficient

values generated for al the eight regions and four different months.

Region Jan 1998 | Jul 1998 | Jan 1999 | Jul 1999
Indian North 0.57 051 0.67 0.35
Indian South 0.45 0.55 0.72 0.58
Atlantic North -0.41 042 -0.35 -0.35
Atlantic South - Eastern 0.66 0.29 0.73 0.50
Atlantic South - Western -0.00 0.08 0.39 0.51
Pecific North - Eastern -0.70 0.21 -0.38 -0.48
Pacific North - Western -0.65 -0.06 0.36 0.02
Pacific South 0.55 0.24 0.60 0.58

Table 2-1 Relationship between sea-surface temperature and rain height illustrated using
correlation coefficient generated for variousregions and months

The correlation coefficient values from the Table 2-1 show large variation and
absence of consistent values over different seasons for the same region. To illustrate
this relationship between SST and rain height, the data plots of Atlantic northern
region are shown for two different months in Figure 2-11. For January 1998 the

correlation coefficient is-0.42 and for July 1998 the correlation coefficient is +0.42.
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Figure2-11 SST and Stratiform storm height data from Atlantic Northern region (a) for

January 1998 (b) for July 1998.

We concluded that this approach of estimating rain height using sea-surface

temperature is not promising because the correlations between sea-surface

temperature and rain height differ widely in the northern and southern hemispheres

and in the eastern and western parts of the oceanic basins. Although some regions

show high positive correlations with SST, others sometimes correlate negatively, so

the SST based rain-height estimation approach cannot be used throughout the world's

oceans.
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2.7 Estimation using Rain Rate

The three-dimensional structure of rain has been studied for more than half a century.
Ground-based radars have been used to characterize the structure of rain for small to
meso-scales for decades. More recently arborne and spaceborne sensors have
provided information for large to global scales. Researchers have developed models
to associate vertical rain-structure statistics with rain rate using regiona ocean data
[46]. The availability of AMSR rain rate in ADEOS-I1 satellite would have helped in
estimation of rain height, and one can expect similar rain-rate measurements in future
wind-vector scatterometer satellites. However, one can only estimate ain height
using rain rate if a strong relation exists between them over all regions and seasons.
In this section, we investigate the statistical relations between TRMM rain rate and

TRMM rain height and discuss the feasibility of estimating rain height using rain rate.

For our study we compared TRMM 'pathraveraged' rain rate and TRMM rain height.
The details of the 'path-averaged' rain rates are available in Appendix A. TRMM also
provides rain-rate products at fixed altitudes separated by 2 km, but the path-averaged
rain-rate product is more appropriate since the attenuation and backscatter throughout
the rain columns affect the radar behavior. To account for varying meteorological

conditions, the ocean is subdivided into eight regions as shown in Figure 2-12.
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Figure2-13 Block diagram of data processing stepsin rain rate and rain height statistical

analysis

The TRMM Science Data Information System (TSDIS) provides TRMM level-3 rain

height and rain-rate products separately for stratiform and convective rain. TSDIS

also uses an “other" category for rain data that cannot be classified as either stratiform

or convective.

We ignore the "other” rain in this anayss.

The initial data

processing includes masking of land and null points. Extraneous rain height points

over ocean can be removed using median filtering, but this median filtering operation

affects the one-to-one correspondence of rain rate and rain height data. Hence all

points above a threshold rain height (10 km) are omitted. The results of statistical
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analysis for stratiform rain type are given in the subsection 2.7.2 and for convective

rain typein 2.7.3.

2.7.2 Relation between RR and RH — Stratiform rain

Stratiform Rain Data - Atlantic Northern Hemisphere - Jan99
Correlation Coefficient = 0.6809
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Figure2-14 Data plots of stratiform rain rate and rain height for Atlantic North region during
Jan99. Scalesof rain ratedataisin mm/hr and rain height datain km.
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Figure 2-14 isan example that shows maps for stratiform rain rate and rain height in
the north Atlantic region (Jan 99). Note that the ‘null’ (no rain during the month)
points and ‘land’ points are masked, as we are concerned only with the relationship
between rain rate and rain height over the oceans. To analyze the possibility of
estimating rain height from rain rate, we correlated rain height with rain rate over
different regions on a quarterly basis for 4 years (Jan98 — Jan 02). Figure 2-15 shows

the correlation-coefficient values for the selected oceanic regions.
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Figure 2-15 Result of correlation between stratiform 'path averaged' rain rate and stratiform
rain height over the selected regions (a) for Atlantic (b) for Indian (c) for Pacific Ocean.

The correlation coefficient values are always positive and mostly exceed 0.6 for al
regions prior to September 2001. Similar results were obtained by combining data
over the entire northern and southern hemispheres. This shows that a generalized

statistical model to relate rain rate and rain height can be developed for each
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hemisphere. The notable exception is in the data since September 2001, where
correlations are quite low in most regions for stratiform rain (note the dip in the
correlation values after Sep 2001 in Figure 2-15). Thisis probably due to the increase
in the orbit height of TRMM by 100 km in August 2001. The details of the TRMM
orbit change are given in [47, 48]. The report [49] from the NASDA (Nationa Space
Development Agency of Japan) PR team shows the impact of orbit changein TRMM
PR data, which suggests possible degradation of the observed echo-top height
because of reduction in received power. The change of orbit resulted in abnormal
presence of alarge number of high (physically impossible) rain-height values for light
stratiform rain. Figure 1-16 shows this abnormality in stratiform rain data using a
mesh plot over the south Atlantic region. The amplitude of the plot represents rain
height in km and the color represents rain rate in mm/hr for the months October 2000

(before the orbit change) and October 2001 (after the orbit change).
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Figure 2-16 Abnormal stratiform rain data showing mapping of high RH for low RR over
Atlantic south region (a) for October 2000— before orbit change and (b) for October 2001 — after
orbit change.
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This abnormality in stratiform rain data is reported in [50]. This physicaly
impossible set of points greatly reduces the correlation coefficient. The correlation
coefficients improve dramatically with the removal of points with rain rate lessthan
0.5 mm/hr. Figure 2-17 shows improvement in the correlation coefficient values after
the removal of points with rain rate less than 0.5 mm/hr. Since these light rain rates
(below 0.5 mm/hr) do not significartly degrade the Seawinds instrument
measurement, this abnormal behavior does not affect our analysis. Hence, the
stratiform rain data for rain rate less than 0.5 mm/hr have to be removed before

analyzing the statistical relation between rain rate and rain height.
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Figure 2-17 Result of correlation between stratiform 'path averaged' rain rate and stratiform
rain height over the selected regionswith rain ratesless than 0.5 mm/hr removed (a) for Atlantic
Ocean (b) for Indian Ocean (c) for Pacific Ocean.
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2.7.3 Relation between RR and RH — Convective rain

Convective Rain Data - Atlantic Northern Hemisphere - Jan99
Cormrelation Coefficient = 0.7938
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Figure 2-18 Data plots of Convective rain rate and rain height for Atlantic North region during
Jan99. Scalesof rain ratedataisin mm/hr and rain height datain km.

The processed convective rain-rate and rain-height data are shown in Figure 2-18 for

the north Atlantic region during January 1999. In general, convective rain rates

(stronger signal) are higher than those for stratiform rain. This can be understood by
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comparing the rain rate scales in Figure 2-14 (stratiform) and Figure 2-18
(convective). Figure 2-19 shows the correlation between convective rain rate and rain
height. The correlation coefficient values are high for all periods with the convective
rain, so there is little question about their utility. Presumably this is because the
stronger convective signals are not significantly affected by the weak-signal noise

that affects the stratiform data.
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Figure 2-19 Result of correlation between convective '‘path averaged' rain rate and convective
rain height over the selected regions (a) for Atlantic (b) for Indian (c) for Pacific Ocean.

The strong correlation between rate and height over the ocean demonstrates the
feasibility of estimating rain height using rain rate. The next chapter provides details
of regression analysis to model the statistical relation between rain rate and rain

height over al rain types and regions.
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3 Regression Analysis

Regression analysis can aso be used to identify the mathematical dependency of one
random variable to another random variable [51]. This mathematical relationship (or
the model) can be used to estimate the dependent variable for any given instance of
the independent random variable. In our study, the mathematical dependence of rain
height to rain rate is analyzed using regression analysis. The regresson model will
help to estimating the unknown rain-height parameter for each rain-rate vaue
obtained from the AMSRradiometer. TRMM level-3 monthly averaged rain-rate and
rain-height products are used in this regression analysis and in the development of the
mathematical model. The next section provides the various scatter plots to visualize

the dependency of rain rate to rain height.

3.1 RRvs. RH Scatter

Plotting individual data points in the xy plane produces a scatter plot. Scatter plots
are used to visually identify relationships between the paired data. Figure 3-1 shows
the scatter plots for the Atlantic northern hemisphere region for stratiform and
convective rain types. From Figure 3-1, one can observe that the stronger convective

rain requires a higher rain-rate scale (0-16 mm/hr) than the stratiform rain (0-5
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mm/hr). The number of valid data points for stratiform rain in aregion is much larger

than for the sparsely occurring convective rains for the same region.

Storm Height (km)
Storm Height (km)

0 1 2 3 4 5 o 2 4 6 8 10 12 14 16
Stratiform (Path-av) Rain Rate (mmhr) Convective (Path-av) Rain Rate (mm/hr)

(@) (b)

Figure3-1 RR vs. RH scatter plot of Atlantic northern region datain January 1998 for
(a) Stratiform rain and (b) Convectiverain

3.1.1 Abnormal data removal

Stratiform rain scatter shows an abnormal spread of rain-height values for lower rain
rates. Refer to Figure 3-1 (a), where the rain-height values are spread from 1 km to
18 km for rain rates less than 0.5 mm/hr. This abnormality was greater after the
TRMM orbit change in August 2001 (similar effects are discussed in section 2.6).
This huge spread of rain-height values for light stratiform rain is not physicaly
possible and it affects the correlation between rain-rate vs. rain-height scatter,
reducing it. To remove these spurious points, we initialy attempted to trim the data
set with the following conditions:
1. Remove data pairs with rain rate less then 0.5 mm/hr

2. Remove data pairs with rain height greater than 10 km
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Figure 3-2 shows the scatter plot of stratiform Atlantic northern region data for
January 1998 with points corresponding to RR < 0.5 mm/hr and RH > 10 km

removed.

10 ! ! T

Storm Height (km)

1 1 L I I I 1 1 I
0 05 1 15 2 25 3 3.5 4 4.5

Stratiform (Path-av) Rain Rate (mm/hr)
Figure 3-2 RR vs. RH scatter plot of stratiform Atlantic northern region data in January 1998
with points corresponding to RR < 0.5 mm/hr and RH > 10 Km removed

TRMM level-3 high-resolution statistics provide stratiform and convective rain-count
products. The details of the rain-count products are given in Appendix A. The rain
count represents the number of valid rain observation available in each 0.5 x 0.5
degree grid for a month. The average of these rain observations is presented as the
monthly averaged rain-rate and rain-height values in the TRMM level-3 data set.
Figure 3-3 shows the histogram of rain count data for the Atlantic northern region for

a sample month.
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Figure 3-3 Histogram of rain count for stratiform Atlantic northern region (January 1998)

A larger rain count represents a statistically significant monthly averaged rain datum.
Hence, this rain-count information can be used to remove the spurious points. Most
of the spurious points have rain counts less than 10 for stratiform rain. This rain-
count threshold (less than 10) was determined after experimenting with various rain
count removal thresholds and their effects on the data set. For convective rain, this
abnormal spread of rain-height values for lower rain rates is not present (the TRMM
algorithm requires a signal >40 dBZ for convective classification). However, arain
count removal threshold of less than 2 was set to remove any spurious points present
in the convective data. Figure 3-4 shows the scatter plot of Atlantic north for January

1998 with the spurious points removed based on rain count.
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Figure 3-4 RR vs. RH scatter plot of Atlantic northern region datain January 1998 with
spurious point removed based on rain count
(a) Stratiform rain —rain count < 10 (b) Convectiverain —rain count < 2
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The data-processing steps in rain-rate vs. rain-height regression analysis are shown in
Figure 3-5. A similar block diagram of the data processing steps can be found in
Figure 2-13. Note the replacement of ‘RH > 10km omission’ block in Figure 213

with the ‘Rain count omission’ block in the modified data processing steps shown

below.
TRMM Land & Rain count
Lev<_a|-3 —»  Null pt. Omission >
R‘fi'n removal
Height For stratiform Region Regression
Rcount < 10 Selection [ 7| Anaysis

TRMM Land and

Levet3 [ Null pt. For convective
Rain Rate removal Rcount < 2

Figure 3-5 Data processing stepsinvolved in rainrate vs. rain-height regression analysis

3.1.2 Hemispherical and Regional Scatter

Rainrate vs. rain-height scatter exhibit smilar trends for data based on individua

regions and the entire hemisphere. To illustrate this, Figure 3-6 shows the scatter plot
for stratiform rain in the southern hemisphere and al four regions in it (Indian south,
Atlantic south, Pacific southeast, Pacific southwest). Consistent trends in scatter were
also observed for all sections of the northern hemisphere and during all seasons. The

convective rain data also show similar trends in rain-rate vs. rain-height scatter.
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Figure 3-6 Comparison of hemispherical and regional RR vs. RH scatter in January 1998 (a)
Indian South (b) Atlantic South (c) Pacific South East (d) Pacific South West (e) Southern

Hemisphere
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3.2 Objective of Regression Methods

The rain-rate vs. rain-height scatter plots exhibit two different trends for different
rain-rate regimes. For lighter rain, the RH \s. RR relation is steep. However, for
higher rain rates, the scatter amost saturates. Figure 3-7 shows these trends for
typical stratiform rain data. The blue strip represents the steeper RR vs. RH scatter
and red strip represents the almost flat RR vs. RH scatter. It can aso be observed that
the scatter is more concentrated for lower rain rates and it is widely spread for higher
rain rates. The convective rain data aso exhibits similar trends in the rain-rate vs.
rain-height scatter. The objective of the regression method is to fit these trends with

regression curves and make them consistent over all regions, seasons and rain types.

1 u i : N - - = = i

Storm Height (km)
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Figure 3-7 Two different trends exhibited in rainrate vs. rain-height scatter —the bluestrip
represents steeper relation for lower rain ratesand thered strip representsflat relation for
higher rain rates
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Listed below are a few important aspects that need to be considered in the selection of

the appropriate regression scheme:

1.

Regression scheme should give a good fit to the scatter, and be consistent over
all rain rates.

A typical RR vs. RH scatter shows a concentration of large number of scatter
points over the lower rain-rate section compared to few widely-spread points
for higher rain rates. Hence it is important to get a good fit in the lower rain-
rate section.

A smooth transition from one trend b another has to be achieved in the
regression curves to maintain consistency.

A regression scheme should be selected such that the distribution of estimated
rain height is consistent with the original rain-height distribution.

Identification of a universal regression scheme that applies to various regions,
seasons and rain types is important because, for simplicity, one should have a
single regression model for the final prediction of storm height from rain
rates.

The model should allow linear extrapolation of the regression curves to higher
rain rates; this is more important than finding the best function that reduces

total mean-squared error for the available data.

The next section provides a summary of the all the regression methods investigated

and the reasons for selection or rgection of each method in the final regression

analysis.
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3.3 Regression methods

Standard linear regression schemes have to be modified to satisfy the criterions
mentioned in section 3.2. Higher order polynomial regression schemes are omitted in
our study, because they are very poor in extending the functiona relationship (by
extrapolation) beyond the scope of available data. The technical information about
the regression methods used in this study can be found in [51-55]. After analyzing
various regression schemes, the ‘Log-Linear Combined’ regression scheme is finally
selected as the best regression schemes. This regression scheme fits log (RR) vs. RH

in the lower rain-rate section and RR vs. RH in the higher rain-rate section.

3.3.1 Multi-Linear RH vs. RR Regression

3311 Linear Regression

The smplest functiona relationship between two variables is linear. The most
common method for fitting a straight line is the method of least squares. This method
calculates the best-fitting line for the observed data by minimizing the sum of the
sguares of the vertical deviations from each data point to the line. Figure 3-8 shows
the single line fit for the RR vs. RH scatter of stratiform Atlantic northern hemisphere
data in January 1998. Clearly the single straight line fit is not suited for the multi-
trend rain-rate vs. rain-height scatter and it produces a very high standard error of

estimate (2.5 km for this example). Also, the extrapolated regression line will result
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in unrealigtic rain heights for higher rain rates. Hence, multiple regression lines have

to be used to achieve a good fit to this type of scatter.
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Figure 3-8 Linear least squarefit for stratiform Atlantic north data in Jan 1998

3.3.1.2 Bilinear Regression

In bilinear regression, two straight lines, one for higher and another for lower rain-
rate sections are regressed to get better fit over all rain rates. A break point must be
selected to separate the scatter. After analyzing the trend in numerous scatter plots, a
break point rain rate of 1.5 mm/hr was selected for stratiform rain and one of 4mm/hr
for convective rain. An objective function of bilinear regression was devised to
minimize the sum of the sguares of vertical deviation from each point to the line fit
for both the rainrate sections. Additional constraints were introduced in the
objective function to make the ends of the regression lines meet. The derivation of

the bilinear regression scheme is given in Appendix B. The unknown slopes and
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intercepts of the regression lines are found for a given set of scattered data and a
break point. Figure 3-9 shows the bilinear regression lines for RR vs. RH scatter of

stratiform rain data over the Atlantic northern region in January 1998.
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Figure 3-9 Bilinear fit for RR vs. RH scatter of stratiform Atlantic north data i n January 1998

Bilinear regression provides a good fit for higher rain-rate sections. However, the fit
is very poor for the lower rain-rate section. As discussed in section 3.2, it is very

important to achieve good regression fit for lower rain rates, as more points are

concentrated there.
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3313 Trilinear Regression

Some rain-rate vs. rain-height scatter plots exhibit three different trends along the rain
rate. Thistype of scatter is most commonly found in TRMM level-3 2-km stratiform
rain-rate vs. rain-height data. Trilinear regression attempts to fit these points with
three regression lines, which are joined together to maintain consistency. Figure 3-10
shows the trilinear fit for RR vs. RH scatter of stratiform rain data over the Atlantic
northern region in January 1998. As with bilinear regression, trilinear regression
lines also fit poorly for the lower rain-rate section. The convective RR vs. RH scatter
never shows trilinear trends. Hence the trilinear regression methods were not
selected, because we were trying to develop a universal regression scheme that is

valid for all seasons, regions and rain types.
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Figure3-10 Trilinear fit for RR vs. RH scatter of stratiform Atlantic north datain January 1998



3314 Orthogonal Regression

Ordinary linear regression was derived on the assumption that the values on the x axis
are known exactly, with al random variation in the y direction. Often the uncertainty
inthe (X, y) data lies with both coordinates. Examples where thisis the case includes
situations where both x and y are observed quantities having random variations
(TRMM rain rate and rain-height parameter are such quantities). In these cases,
orthogonal regression can be the best way to determine the linear relationships
between x and y. In orthogonal regressions, the sum of the squared perpendicular
distance from the data points to the fit line is minimized. For orthogonal regression to
work well both the x and y numerical scales should be similar or they should be

adjusted to agree with the variance in the separate directions

Bilinear orthogonal regression should be used to capture the dual trend present in the
rain-rate vs. rain-height scatter. This requires the objective function to reduce the
squared perpendicular distance between data points and fit line in both of the rain-rate
sections and also to make the lines to meet apoint. It can be shown that the objective
function of the bilinear orthogonal regression with additional constraints cannot be
solved in closed form and this scheme was not further analyzed in our regression
study. Figure 3-11 shows the two different orthogonal regression fits for the two
selected rain-rate sections. The orthogona regression fails to capture the relatively

flat trend in the scatter for higher rain rates.
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Figure 3-11 Orthogonal regression fitsfor rain-rate vs. rain-height scatter

3.3.2 Weighted Regression

The TRMM leve-3 high-resolution statistics provide stratiform and convective rain-
count products. The rain count is the number of valid rain observations used to
produce the monthly average for a grid point. A (RR, RH) data pair with very high
rain count represents a statistically significant pair. Figure 3-12 shows the stratiform
rain-rate vs. rain-height scatter over the Atlantic north region. The data points in the
scatter are color coded and weighted with corresponding rain count values.
Typically, the regression schemes should provide lesser weight to the numerous dark
blue points (low rain count) found near lower rain rates than the dark red points (high
rain count). Rain-count data should be used in the regression schemes to provide a

better fit to the RR vs. RH scatter. Appendix B derives the weighted bilinear
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regression, which is a modification to the bilinear regression schemes with the rain-

count information used in the objective function.
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Figure 3-12 Stratiform Atlantic northern region rain-rate vs. rain-height scatter. Therain count
dataisused to weight and color -code the scatter points.

3.3.3 Log (RR) vs. RH Regression

In this regression scheme, we attempted to fit the dual trend present in rain-rate vs.
rain-height scatter by using the logarithm of rain rate in the linear regression instead
of ran rate itself. Figure 3-13 shows the log (rain rate) vs. rain-height scatter of

Atlantic north region in January 1998. This scatter is fit with linear and orthogonal
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single regression lines. This regression schemes failed to fit many convective scatter
cases, producing very high standard error of estimate.
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Figure3-13 Log (rain rate) vs. rain-height scatter of Atlantic north region in January 1998 with
two kinds of regression fits (a) Linear regression (b) Orthogonal regression.

3.3.4 Combined Linear — RR vs. RH (for lower RR)

and RH vs. RR (for higher RR) Regression

In bilinear regression, the two lines tend to influence each other, because of the
additional constraints applied to make the lines to meet at a point. Figure 3-14 shows
two different bilinear regression fits. The first uses rain rate as an independent
variable and rain height as a dependent variable (RR vs. RH regression fit shown in
blue dotted line). The second does the opposite by using RH as the independent
variable (RH vs. RR regression fit shown as red dotted line). From the figure, the
influence of the upper regression line on the lower line for RR vs. RH hilinear

regression scheme (blue dotted line) can be easily identified. The figure also shows a
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linear RR vs. RH regression for rain rate less than 1.5 mm/hr (blue solid line) and

linear RH vs. RR regression fit based on data for rain rate greater than 1.5 mm/hr (red

solid line).
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Figure3-14 Comparison of Bilinear RR vs. RH (Blue dashed), Bilinear RH vs. RR (Red dashed)
and Linear RR vs. RH (Blue Solid) and Linear RH vs. RR (Red Solid) regression fit in
Stratiform Atlantic northern region scatter for January 1998 data.

Figure 3-14 shows the two linear regression lines extended to al rain-rate values.
The linear RR vs. RH regression line and linear RH vs. RR regression line seem to fit
the data for lower and higher rain-rate sections respectively. These linear regression

lines forms the ‘Combined Linear — RR vs. RH (for lower RR) and RH vs. RR (for
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higher RR)’ regression scheme. The break points for ‘combined linear’ regression
fits are determined by extending the regression lines. A rainrate threshold (1.5
mm/hr for this case) is selected to separate the data into lower and higher rain-rate
sections, which are regressed with two different linear regression fits. The concept of

‘Combined Linear’ regression is shown in Figure 3-15.
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Figure 3-15 Conceptual figure of ‘Combined Linear — RR vs. RH (for lower RR) and RH vs. RR
(for higher RR)’ regression scheme

The combined linear regression schemes aways have sharp transitions between the
lower and higher regression lines. The nature of estimated rain height, which is
obtained from rain rate using the combined linear regression, is affected by this sharp
trangition. Figure 3-16 compares the histogram of measured rain height and the
estimated rain height obtained from TRMM rain-rate data for stratiform Atlantic
north region in January 1998. The sharp transition in regression lines shows as a
cluster of estimated rain-height values near 5 km in the figure. Another drawback of
the combined linear regression scheme is the failure of the RR vs. RH regression line
to capture the almost logarithmic trend exhibited by the RR vs. RH scatter for lower

rain-rate sections.
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Figure 3-16 Histogram of measured rain height (a) and estimated rain height (b) from rain rate
using combined linear regression scheme

3.3.5 Log-Linear Combined — Log (RR) vs. RH (for

lower RR) and RR vs. RH (for higher RR)

The ‘Log-Linear Combined’ regression scheme is a modification to the *Combined
Linear’ regression schemes discussed in the previous section. In the lower rain-rate
section, a straight-line regression is made between log (rain rate) and rain height to
capture the logarithmic trend. The higher rainrate scatter is fit with a linear
regression between rain rate and rain height. Figure 3-17 shows the conceptual figure

of ‘Log Linear Combined’ regression scheme.
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Figure 3-17 Conceptual figure of ‘Log-Linear Combined’ —log (RR) vs. RH (for lower RR) and
RR vs. RH (for higher RR) regression scheme

The ‘LogLinear Combined regression was selected as the best scheme for
developing the fina model, which relates rain rate and rain height over all seasons,
regions and rain type. This scheme satisfies the criteria for a regression scheme
enumerated in the section 2.3. Figure 3-18 shows the ‘Log Linear Combined’
regression fit over the Atlantic north region for stratiform and convective rains. The
distribution of the estimated rain height using ‘LogLinear Combined' regression

scheme is comparable with the actual rain-height distributions.
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Figure3-18 ‘Log-Linear Combined’ regression fit for RR vs. RH scatter of Atlantic northern
region in January 1998 (a) for stratiform rain and (b) for convectiverain.
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3.4 Statistical Significance

Different statistical measures are available to evaluate the degree of confidence that

the true RR vs. RH relationship is close to the regression-based relationship.

3.4.1 Standard Error and Goodness of fit

The regression scheme seeks to minimize the sum of the squared errors of prediction.
The square root of the average squared error of prediction is used as a measure of the
accuracy of prediction. This measure is called the standard error of the estimate and is

designated as Se¢ [56]. The formula for standard error of estimate is:

_\/é.(RH-RHeﬂ)Z (3.1)

Seq = :
N

where RH is the measured rain-height value from TRMM and RHe is the estimated

rain height using the regression scheme. N is the total number of (RR, RH) points.

Another common statistic associated with regression anaysis is the goodness of fit

parameter (R?). Goodness of fit is equal to one minus the ratio of the sum of squared

estimated errors to the sum of squared deviations about the mean of the dependent

variable [57]. The formulafor goodness of fit is

a(RH-RH)
é. (RH - mRH)2

R? = 1- (3.2)

where nky isthe mean of the TRMM rain-height data.
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The sum of squared deviations about its mean is a measure of the total variation of the
dependent variable. The sum of squared deviations about the regression line is a
measure of the extent to which the regression fails to explain the dependent variable.
Hence, the R statistic is a measure of the extent to which the total variation of the
dependent variable is explained by the regression scheme. High values of R? suggest
that the modd is good for predictive and forecasting purposes. Table 3-1 shows the
standard error of estimate and goodness of fit statistics for important regression
schemes investigated in our study. The 'Log-Linear Combined' regression scheme
shows low standard error of estimate of 0.87 km for Atlantic northern region in
January 1998. Similar results were obtained for other regions and seasons. The

goodness of fit parameter is also tabulated for various regression schemes.

Regression schemes Stan(_:Jard Error of Goodnegs of fit
Estimate (Km) R

Linear Regression 25 0.40
Bilinear Regression 1.3 0.52
Weighted Bilinear Regression 1.2 0.55
Log (RR) vs. RH regression 14 0.60
‘Combined Linear’ regression 0.93 0.89
‘Log-Linear Combined’ regression 0.87 0.93

Table 3-1 Standard Error of estimate and goodness of fit parameters of variousregression
schemes analyzed for RR vs. RH scatter for Atlantic northern region in January 1998

To visualize the accuracy of our regression fit over all rain-rate values, the following
exercise was carried out for the Atlantic northern hemisphere rain data (January
1998). The data were segmented into five groups based on rain rate. Figure 3-19 (a)
shows the segments in the RR vs. RH scatter. In each segment, standard error of
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height estimate are calculated and plotted along the mean rain rate value in each
segment. Figure 3-19 (b) shows the standard error in rain height vs. rain rate plot
along with the histograms of the estimated rain height in each segment. This figure
shows that the standard error in rain-height estimate is consistently low (< 1 km) for
al rain-rate values. Hence the 'LogLinear regression model can be used to estimate

rain height for all values of rain rate.
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Figure 3-19 Segmented standard error in height (km). (a) Segmentsin the RR vs. RH scatter
(b) Histogram of estimated rain-height data and the standard error in height in each segment vs.
mean rain-rate plot.
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3.4.2 T-test

Hypothesis testing is a procedure for determining if an assertion about a characteristic
of apopulation is reasonable [56]. Paired t-test is usually used to compare paired sets
of X and Y data and determine if they differ from each other in a significant way [57].
In this section, the paired t-test is used to find the closeness of the original TRMM

rain height to that of the estimated rain height obtained from the regression model.

The null hypothesis or the original assertion in this case is that the means of the two
rain height (original and estimated) data are equal. The paired t-test determines the
probability that a given hypothesis is true. The aternative hypothesis is that the

means of the two data sets are not equal.

The t-test takes an additional input parameter known as the significance level (a),
which is defined as the degree of certainty required to rgject the null hypothesis in
favor of the alternative. After analyzing the data based on tstatistics, the t-test
produces a result to either “rgject the null hypothesis’ or “do not rgject the null
hypothesis’. One should note that “do not regject the null hypothesis’ result cannot be
concluded that the null hypothesis is true. 1t means that one does not have sufficient
evidence to rgiect the null hypothesis. T-test also produces an output known as p-
value. The p-value is the probability of observing the given sample result under the
assumption that the null hypothesis is true [57]. Small values of p in comparison to

the significance level (a), cast doubt on the validity of the null hypothesis.
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The two-sided ttest was performed on the actua rain-height and predicted rain
height values for stratiform rain data over Indian southern region. A significance
level of a= 0.05 was chosen for the test. Figure 3-20 shows the stratiform rain-rate
and height maps over Indian southern hemisphere. The rain-rate data from this region
is used to predict rain-height values with the aid of the ‘LogLinear Combined’
regression scheme. The predicted stratiform rain-height map is also shown in Figure
3-20. Thetwo-sided t-test, which compares the actual and predicted rain- height, does
not have sufficient evidence to rgject the null hypothesis (Note the null hypothesis is
the assumption that the means of actual and predicted rain-height data are equal).
The p-value for this ttest over Indian southern hemisphere is given as 0.9284.

Higher p- value implies higher probability for the null hypothesis to be true.
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Figure 3-20 Two-sided T -test result based on stratiform Indian southern hemisphere region data.
The null pointsin the data are shown in pink color
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The actual rain-rate, rain-height and predicted rain-height maps for convective Indian
southern hemisphere data are shown in Figure 3-21. The two-sided t-test over actual
and predicted rain- height for convective rain data show result against the rejection of
null hypothesis. The p-value for this convective rain case is 0.3772. If the t-test is
repeated for the same convective rain case with a significance level of 0.1, then the p-
value shows as 0.7425. The low p-value for the 0.05 significance level is mainly due
by the few wide-spread convective points observed for higher rain-rates. In genera
comparison to the stratiform rain case, a lower p-value suggests lesser confidence in

rain-height prediction from convective rain-rates using the regression model.
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Figure 3-21 Two-sided T-test result based on convective Indian southern hemisphere region data
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3.4.3 Comparison between Region and Hemispherical

scatter based rain height prediction

In this section, the rain height is predicted from rain rate using the Log-Linear
Combined regression lines over different regions. This predicted rain-height is
compared with the measured TRMM rain-height from the same region. Similar to the
previous section, we used the ttest between these rain-height values. Table 3-2
shows the p-value results of the hypothesis t-test with a significance level of 0.05 for
stratiform rain data. The stratiform rain data produce very high pvaues for all
regions. The table aso shows higher confidence in the northern and southern
hemisphere scatter based rain-height prediction compared to regional data based rain-
height prediction. This result is very significant, as one can omit the regional data

based analysis for the rest of the statistical model development.

Region p-value
Indian north 0.80
Atlantic north 0.91
Pacific northeast 0.78
Pacific northwest 0.75
Northern Hemisphere 0.90
Indian south 0.93
Atlantic south 0.92
Pacific southeast 0.89
Pacific southwest 0.85
Southern Hemisphere 0.94

Table 3-2 T-test results comparing the measur ed and predicted rain-height values over different
regionsfor stratiform rain case with a significance level of 0.05.
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Table 3-3 shows the p-value results of the t-test with a significance level of 0.1 for
convective rain data. For the convective case with use of the entire-hemisphere data
produced higher p-values than use of regional prediction Rain data from January

1998 were used in al of the hypothesis tests.

Region p-value
Indian north 0.73
Atlantic north 0.75
Pacific northeast 0.77
Pacific northwest 0.69
Northern Hemisphere 0.75
Indian south 0.74
Atlantic south 0.72
Pacific southeast 0.69
Pacific southwest 0.70
Southern Hemisphere 0.79

Table 3-3 T-test results comparing the measured and predicted rain-height values over different
regionsfor convectiverain case with a significance level of 0.1.
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4 Regression-based Statistical

Model

Chapter 3 describes various regresson schemes to investigate the relationship
between rainrate and rain-height. The Log-Linear Combined regression, which
satisfies the criteria for estimating rain-height from rain-rate, was selected as the
universal regression method; valid over various regions, seasons and rain types. We
started with Log-Linear Combined regression fits for specific months and regions.
Generalization of trends exhibited by the regression parameters is required to extend

this regression-based relationship to the future.

This chapter analyzes the seasonal trends in the slope and intercept statistics of the
LogLinear Combined regression scheme for the monthly rain data extending over
four years (1998 — 2001). We used Fourier analysis and synthesis to capture the
seasona trends in dlope and intercept statistics and to predict them for any future
season. We developed a generalized statistical model to estimate rain height given
rain rate in any region and season. Rain-height estimation using a statistical model
based on data for the entire northern and southern hemispheres is as effective as

models based on regiona data. The fina output of this thesis is a regression-based
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statistical model, which is used to estimate rain-height for a given rain-rate, month,

region and rain type.

4.1 Slope and Intercept Statistics

The slopes and intercepts of the Log-Linear Combined regression lines were tabul ated
for al months over 4 years (1998-2001). Table 4-1 shows the structure of the slope-
and- intercept statistics table. We generated similar tables for all eight oceanic regions
and hemispherical sections. Using these tables, rain height can be estimated given a

rain rate, region and a month in these four years.

Statistics Jan98 | Feb98 | Mar98 | Apr98 DecOl1 | Jan02

Sope (ml)
Log(RR) vs. RH

Intercept (cl)
Log(RR) vs. RH

Sope (M2)
RRvs. RH

Intercept (c2)
RRvs. RH

Table4-1 Format of the slope and inter cept statisticstable

4.1.1 Seasonal trend

Figure 4-1 is a plot of the sdope statistics of Log (RR) vs. RH regression line
developed for lower rainrate sections (plot of row 1 of the slope and intercept
statistics table). This figure is for convective rain data with al regions in each

hemisphere combined. A sinusoidal seasonal trend is apparent. Similar seasonal
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trends were found in dope and intercept statistics over all regional and hemispherical
sections. Figure 4-1 shows that the northern and southern hemisphere slope curves are
approximately 180° out of phase. Note a minimum occurs in February 1998 for the
northern hemisphere, whereas a maximum occurs in the same month for the southern
hemisphere. We need to model the seasona trends to predict the slopes and

intercepts of the Log-Linear Combined regression method for any future month.
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Figure4-1 Seasonal trend in values of slopes based on Log-Linear Combined regression fits. The
slopes of thelower rain-rate bin regression lines (Log (RR) vs. RH regression) are shown for (a)
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4.1.1 Mean value substitution

A simple method to generalize the seasonal trend of the slope and intercept statistics
is to substitute with their mean values over al seasons. To validate this approach, we
attempted to estimate the 95% confidence interval of each slope and intercept

estimates. Wide confidence intervals will alow the use of mean slope or intercept

74



values for al regions. The dope confidence interval calculations require an estimate

of the standard error of dope, which is calculated as shown below,

S
S sope = O+ESt (41)
P aRR' Mg

where RR designates the measured rain-rate values from TRMM, nkris the mean of
the TRMM rain-rate dataand s . IS the standard error of the estimates shown in

equation (3.1).

The confidence interval (C.I.) for the slopes can be estimated as follows,

Cl.=mzs o (t) (42)
where m is the estimated slope of the regression line, sgope IS the standard error in
dope estimates and t is the t-value for a two-tailed test given a desired a-level (95%
or a = 0.05). The confidence interval provides a range in which the 95% of true
population dopeis likely to fall. Figure 4-2 shows the two slope statistics of the Log-
Linear Combined regression scheme for the stratiform southern hemisphere data
Each dope estimate was plotted with its 95% confidence interval. The confidence
interval is narrow for all slope estimates in this example. Similar results were found
for slope and intercept estimates for all regions and rain types. Hence it is reasonable

to analyze the sinusoidal trend exhibited by the slope and intercept statistics.
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Figure4-2 Value of slopes based on Log-Linear Combined regression schemefor stratiform

southern hemisphere data shown with the 95% confidenceinterval. The blue line showsthe
intercept of the Log(RR) vs. RH regression fits (for lower RR bin). The green line showsthe
inter cepts of the RR vs. RH regression fits (for higher RR bin).

4.2 Fourier analysis

Fourier analysis is a method of describing periodic waveforms in terms of
trigonometric functions [58]. The slope and intercept statistics show sinusoidal trends
in time with approximately one year as the period of each cycle. The wave function
(usually amplitude, frequency, or phase versus time) can be expressed as a Fourier
series, uniquely defined by the Fourier coefficients. If these coefficients are
represented by a0, al, a2, a3... aN, ... and bl, b2, b3... bN ... , then the Fourier series

X(t) isgiven as.
a, ¢
X(t) ="+ la cos(kwit) +b, sin( kwit)] (43)
k=1
where t denotes time and wy is the fundamental angular frequency.
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The spectrum of a discrete sequence can be obtained using Fast-Fourier
Transformation (FFT). Figure 4-3 shows the FFT spectrum magnitude and phase plot
of the dope curves for the northern-hemisphere convective-rain data. The DC,
fundamental and harmonic components are shown in red. Equation (4.4) shows the
magnitude and phase of the selected Fourier coefficients.

{80, (AT ) (B o a2 )s @ ara)svves B e} (44)
where ay represents the magnitude and f , represents the phase of the Fourier
coefficients.
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Figure4-3 FFT spectrum magnitude and phase plot of the slopes statistics curve for convective
northern hemisphere data. The DC, fundamental and har monic components are marked.
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4.3 Fourier Synthesis

Fourier synthesis is a method of reconstructing a signa with a specific, desired
periodic waveform [58]. After analyzing various slope and intercept statistics, we
concluded that the use of DC, fundamental and two harmonics (N=3) is sufficient to
regenerate the basic sinusoidal trend, as shown in (4.5):

)ﬁ((t) = a‘0 + a'fun COS(pr funt + f fun) + a'har2 COS(pr har2t + f har2)
(45)
+ g3 COS(2Pf st +F 1y 5)

where f,, isthe fundamental frequency and f,,,, f,,. a@e harmonic frequencies.
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Figure 4-4 Values of slope based on Log(RR) vs. RH regression fits to the measured northern-
hemisphere convectiverain data. Thered line showsthe measured data, and the bluelineisthe
Fourier-synthesized (regenerated) curve from the fundamental and two har monic components.
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Figure 4-4 compares the lower rain-rate bin regression line for convective rain in the
northern hemisphere with the s3elected Fourier-series fit. The red line represents the
measured slope statistics curve x (t) . Magnitude and phase of the Fourier coefficients
were obtained by analysis of x(t) . The Fourier synthesized curve is the blue line in

the figure. Using these Fourier coefficients, the slopes and intercepts of Log-Linear

Combined regression scheme can be predicted for any given month in the future.

An example of the intercept dtatistics for dratiform data from the southern
hemisphere is in Figure 4-5. The shaded region corresponds to the 95% confidence
bound. The intercept statistics were Fourier analyzed and appear in the figure as blue
(lower RR bin) and green (higher RR bin) lines. Most of the synthesized curves fall
within the 95% confidence bound of the measured intercept values. Hence this

method allows good prediction of slopes and intercepts.
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Figure4-5 Intercept cur ves of the Log-Linear Combined regression schemefor stratiform rainin
the southern hemisphere. Theblue and green lines show the synthesized inter cept values from
theLog (RR) vs. RH regression and RR vs. RH regression respectively. The shaded region
representsthe 95% confidence interval about the measured values.
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4.4 Table of Fourier coefficients

Final Table

DC

Fundamental
Frequency

Second
Harmonic

Third
Harmonic

Mag | Phase

Mag | Phase

Mag | Phase

Sope (ml)
Log(RR) vs. RH

Intercept (cl)
Log(RR) vs. RH

Sope (m2)
RR vs. RH

Intercept (c2)
RRvs. RH

Table4-2 Format of the Fourier Coefficients Table

Fourier coefficients generated from the Fourier analysis of the slope and intercept

statistics are tabulated in the format shown in Table 4-2. The Fourier-coefficient

tables can be developed for the regional rain data or the data for the entire

hemisphere. The disadvantage of using the region-data based Fourier coefficient

tables is that one has to maintain a separate table for each oceanic region. Section

3.4.3 compares the estimated rain height based on regression fits to the regional RR

vs. RH measurements and those for entire hemispheres. The difference between these

rain-height estimates was found to be satigtically insignificant, which makes the

region-based Fourier-coefficient tables unnecessary.
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Since the hemispherical tables are used for all of our subsequent analysis, only four
Fourier-coefficient tables are required in the regression based statistical model. They
are:

1. Stratiform Northern Hemisphere

2. Stratiform Southern Hemisphere

3. Convective Northern Hemisphere

4. Convective Southern Hemisphere

4.5 Rain-height estimation using Regression-

based Statistical Model

The regression-based statistical model is a complete algorithm for estimating rain
height given arain rate over any hemisphere, season and rain type. Figure 4-6 shows
the flowchart of the final agorithm. In the flowchart, the solid arrows indicate the

logical flow and dashed arrows show the inputs to each block.

For a given rain type and hemisphere, a Fourier coefficient table is selected. Fourier
synthesis provides slopes and intercepts (my, My, ¢, &) for a given month for the RH
vS. RR curves. The dope and intercept values of the two regression lines are used to
find the breakpoint rain-rate (BP). Breakpoint rain rate splits the RR vs. RH scatter

into two rain-rate sections where the regression lines meet. The input rain-rate from
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AMSR is classified into one of the two rain-rate sections. The formula used to

estimate rain-height is based on this classification.

For the lower rain-rate section, the rain-height is estimated as follows:
RH ,=m  log(RR) +¢ for RR<BP (4.6)
Similarly for the higher rain-rate section, the rain height estimation formulais:

RH . =m,” RR+c, for RR >BP (4.7)

For each measured rainrate from AMSR, rain height is estimated using the
regression-based statistical model as shown in Figure 4-6 and used in the rain-effect
correction algorithm. The next chapter validates this regression-based statistical

model in estimating rain heights.
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Figure4-6 Flowchart to estimate rain-height using the regression-based statistical model
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5 Validation of Statistical Model

Chapter 4 describes the regression-based statistical model, which is used to estimate
rain height from rain rate for a given hemisphere, month and rain type. Rain-height is
an important parameter in the rain effect correction algorithm discussed in section
2.3. Thisagorithm attempts to correct for rain attenuation and backscatter effects on
SeaWinds signal. It is important to validate the regression-based statistical model if

we are to use it in the rain effect correction algorithm.

5.1 Comparison of RH Estimates from
Regional Regression lines and the

Statistical model

Section 3.4 compares the rain-height estimates obtained from regiona Log-Linear
Combined regression fits and the measured TRMM rain-height values. Hypothesis
tests revealed high confidence in these estimates. The regression-based statistical
model uses the Fourier coefficient table and predicts the slopes and intercepts of the
Log-Linear Combined regression fits. These predicted slopes and intercepts are used

in the statistical model to estimate rain-height from rain rate.
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In this section, we compare the rain-height estimates obtained from the Log-Linear
Combined regression fits with the rain height estimates derived from the statistical
model, using the stratiform North-Atlantic rain data for January 2002. Note that only
the rain data from January 1998 to December 2001 were used in the development of
the statistica model. Hence, the slopes and intercepts for January 2002 were
predicted by the Fourier coefficient tables and the statistical model estimated rain
height. A Log-Linear Combined regression fit of the stratiform data for the North
Atlantic region RR vs. RH scatter was also performed. The slopes and intercepts
from these regression lines were used to obtain other rain-height estimates. This
exercise compares both the rain-height estimates to alow visualizing the accuracy of

the regression-based statistical model in rain-height estimation.

Figure 5-1 shows the distribution of the rain-height estimates obtained using two
different methods. The black histogram is the distribution of the measured TRMM
rain-height values in the North-Atlantic region for January 2002. The regression lines
on the scatter plot shown in the Figure 5-1 also indicate the close correspondence of
the satistical model and the regionbased regression fits. The blue histogram
represents the distribution of the rain-height estimates obtained using the regression
lines for TRMM measurements over the entire northern hemisphere. The red
histogram represents their distribution obtained using the statistical model. This

comparison highlights the effectiveness of the statistical model.
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Figure5-1 Comparison of distribution of rain-height estimates obtained from the Log-Linear
Combined regression fitsand from the statistical model.

From Figure 5-1, the closeness of estimated rain-height distributions obtained from
two different methods is apparent. The KolmogorowSmirnov (ks-test) goodness-of-
fit hypothesis test was used to compare these estimated rain-height distributions. In
this test, the null hypothesis assumes that the cumulative distribution functions of
both the rain-height estimates are the same. In the stratiform North-Atlantic case
(January 2002), the ks-test suggests ‘not to reject the null-hypothesis' and it provides
a very high confidence in the result with a pvalue of 0.92. Similar to the T-test

comparison made in the section 3.4.2, the measured rain-height was compared with
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the estimated rain-height values obtained with both the methods. The null hypothesis
for the T-test assumes the rain-height populations to have the same mean. The T-test
result on measured and estimated rain-height suggests ‘not to reject the null
hypotheses with very high pvaues as shown in Table 5-1. Similar results were

obtained in the hypothesis testing using rain data from other regions and rain types.

Hypothesis T-test Comparison p-value
Measured rain-height and the estimated rain- height obtained from 0.952
regression fits in the regional RR vs. RH scatter. ]
Measured rain-height and the rain- height estimates obtained from 0.945

the statistical modd!.

Table5-1 T-test results comparing the measured rain height and the estimated rain height

Another statistical parameter that can be used to compare the rain-height estimates
obtained using the two methods is the mean absolute error between the measured and

the estimated rain-height values in a region.
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Figure5-2 Comparison of mean absolute error in rainheight estimates obtained from the Log-
Linear Combined regression fitsand from the statistical model.
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Figure 5-2 shows the mean absolute error in rain-height estimates for the stratiform
North-Atlantic rain datain al quarters (months of January, April, July, October) over
four years (1998 — 2001). The mean absolute errors in rain-height estimates are
below 1 km for al seasons. The hypothesis testing and mean-absolute-error
comparison show the accuracy of the regression-based statistical model in estimating

rain-height from measured rain rates.

This estimated rain-height values are used in the rain-effect correction algorithm to
correct for the rain attenuation and backscatter effects on the normalized radar
backscattering coefficient (s?) measured by the SeaWinds scatterometer. A
simulation approach developed to find the impact of the estimated rain-height in the

surface scattering coefficient correction process is discussed in the next section.

5.2 Simulation procedure

Rain-height estimates from the regression-based statistical model will be in error
compared to the actual rain-height values. These erors are particularly great for
higher rain rates due to the large spread of the data points around the regression lines.
If these rain-height estimates are used in the rain-effect correction algorithm, they
will affect the corrected surface scattering coefficient (s?). Simulations were
performed to determine the nature of these errors in the normalized radar cross-
section coefficient.
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The ssimulation approach can be divided into two parts. The first part is the ‘forward
simulation’, which estimates the received scattering coefficient (s ;) as measured by
the SeaWinds instrument. The estimation of received scattering coefficient (or the
measured equivalent scattering coefficient as shown in equation (2.4)) is necessary,
because the data from ADEOS Il SeaWinds instrument were not available during the
time of this study. The forward simulation models the rain effects on the SeaWinds
received signal with the use of measured TRMM rain-height values. The rain heights

obtained from TRMM are referred as measured heights (..., ) IN this Simulation.

The second part, known as the ‘reverse smulation’, tries to correct rain effects to
obtain an estimated surface scattering coefficient (S 2 . eceq)- The estimated rain-
height from the regression-based statistical model is used in the reverse simulation to
model the effects of rain. These rain-height estimates are denoted as estimated
heights (N maeq) 1N this simulation. Modeling of rain effects is similar in the forward
and the reverse simulations except for the use of measured and estimated rain heights.
Comparing the corrected surface scattering coefficient from the simulations and the
actual surface scattering coefficient shows the impact of rain-height estimates in the
rain-effect correction algorithm. A detailed description of this smulation approach
for stratiform fully filled rain cellsisin [27]. For fully filled rain cells, one assumes

that uniform stratiform rain is present throughout the Seawinds footprint.
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5.2.1 Forward Simulation

The forward simulation estimates the recelved normalized radar cross-section using

s’ =s exp(-2" K, &L +h”h (5.1)

,
measured ) measured X measur ed

Equation (5.1) is similar to equation (2.4). To estimate the received scattering

coefficient, we must estimate the other parameters of the equation. For the
simulation, the surface values S? are modeled by the standard QUIkSCAT
geophysical model function (GH table). The model function provides surface

scattering coefficient 2 for a given wind speed, wind direction and polarization.

The attenuation constant K, was estimated for the simulations using empirical K-R
relations. The final relation relating attenuation and rain rate was produced using the
ITU tables and the linear and log interpolation formulas shown in [38]. The K-R
relations used for horizontal and vertical polarization are:

For Horizontal Polarization: Ke = 0.0262 R 1% dB/km

(5.2)
For Vertical Polarization: Ke = 0.0262 R 1% dB/km

It must be noted that the values for the attenuation Ke in (5.2) are expressed in dB/km

and need to be converted to Np/m for performing the simulations. The measured

TRMM rain-height is used for h . .4 ad is modified to get dant height

L, coureq VAIUES.,
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The volume backscatter coefficient is calculated as shown in (2.6). The reflectivity

factor Z in (2.6) is estimated using empirical Z-R relations:

For Stratiform Rain: Z= 300 R *4°
(5.3)
For Convective Rain: Z= 150 R +*°

The measured TRMM rainrates are used to estimate Z values. The factor that

accounts for the attenuation of the rain echO Xpeasureq 1S Calculated as shown in

equation (2.7). Again, measured rain-heights are used in this calculation. The
estimated received scattering coefficient S is passed to the reverse simulation, where

the rain effects are corrected with the use of rain-height estimates from statistical

modd.

5.2.2 Reverse Simulation

The reverse ssimulation is intended to correct for rain-effects in the estimated received

scattering coefficientsSy. The corrected surface scattering coefficient S°2 4 IS

S - correcte

evaluated using

) — S%ro_ (h, hestimated, X)

s-corrected exp(- 27 Ka ’ S—estimated)

(5.4)
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Equation (5.4) is very similar to equation (2.8). The difference between the forward
and reverse simulation is in the rain-height values used. In reverse simulation, the
estimated rain-heights from the regression-based statistical model are used. If the
estimated height from the statistical model were perfect then the corrected surface
scattering coefficients would be equal to those obtained using the QUIKSCAT

geophysica model functions. Clearly, this is not generally the case and thus, by

o
s-corrected !

evauating the difference between S'7 ands we can quantify the error in the
correction process due to the incorrect estimates of height obtained from the
regression-based statistical model. Figure 5-3 shows the flowchart of the complete

simulation process.
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Figure5-3 Flowchart showing the simulation approach to evaluate the impact of estimated rain-
height (using statistical model) in therain-effect correction algorithm.
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5.3 Simulation Results

The ssimulation approach developed in the previous section will help to evaluate the
impact of erroneous rain-height estimates on the correction process. In this section,
simulation steps shown in Figure 5-3 were performed for every pair of TRMM
measured rain-rate and rain-height values in a given region. The resulting scattering
coefficients (S2, S;adS? ., ..eq ) &€ plotted in a figure vs. rainrate. To obtain a
greater understanding of these errors in terms of magnitude and variability, we

performed these simulations for different combinations of wind speed, wind direction

and polarization.

Figure 5-4 shows the simulation results for stratiform rain from the North-Atlantic
region for wind speed of 10 m/s, wind direction of O degrees (upwind), and horizontal
polarization. In thisfigure, the actual surface scattering coefficient S'2 obtained from
the GH table is shown as the black line. The blue dashed line represents the received
normalized radar cross-sections? from the forward simulation. Correction of the
received scattering coefficient for rain attenuation and backscatter results in the
surface scattering coefficient S2 ., .eq (Shown as red and green lines in the figure).
The difference between the two is that the green line comes from correction using the
statistical model developed for this specific region and the red line comes from

correction using the statistical model developed for the entire northern hemisphere.

Figure 5-5 shows similar results on rain data from the North-Atlantic region for the
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same wind speed (10 m/s) and polarization (horizontal), but for awind direction of 90

degrees (crosswind).

'1 u = T T T T T
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Figure5-4 Simulation resultsfor Atlantic north region data at WS =10 m/sand WD = 0 degree
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Figure5-5 Simulation results for Atlantic north region data at WS = 10 m/sand WD = 90 degree
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The errors in the corrected surface scattering coefficient are greater at higher rain
rates. These larger errors result from errors in the regresson model due to larger

spreads of the data points from the estimated regression lines.

The simulation results show that the errors between the corrected and true S'J values
were greater at lower wind speeds than at higher wind speeds. The lower errors at
higher wind speeds result from stronger surface signals (high S values) found for
high wind speeds. Our simulations showed similar error estimates for horizontal and
vertical polarizations so the regression-based statistical model is applicable for both
polarizations. We aso observed that the error increases as the look direction
approaches crosswind because of the weaker surface signals with that look direction.
Similar results were obtained for many different regions, polarizations, wind speeds,

and wind directions for both stratiform and convective rains.

In al of these figures, the corrected scattering signals obtained from the statistical
model developed from regional (green line) and hemispherical (red line) data are very
close to each other. This emphasizes the point that use of data for an entire
hemisphere is sufficient in estimating rain-heights for all oceanic regions. Thus, our
fina rain-effect correction algorithm need not be applied on a regiona bass
(longitude regions), resulting in simplification of the computational load on the

correction procedure.
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The regression-based statistical model was found to be effective for rain-height
estimation for most cases. Hence the rain-height estimates from this model can be
used in the correction algorithm. Sometimes the errors in corrected surface scattering
coefficient become intolerable. Typically, these errors occur for cases where the
backscatter from the rain is two or three times greater than the surface signal. In
these cases, meaningful correction of the surface signal is not possible. Therefore,
rain flags to discard the data points must be set when the rain rate exceeds a
thresnold. Estimation of the rain-rate threshold for stratiform rain data is discussed in
[59]. The details of this rain-rate threshold estimation procedure are beyond the

scope of thisthesis.

97



6 Conclusion

Measurements of ocean scattering by the SeaWinds on ADEOS Il satellite were
corrupted by the presence of rain, and the same will be true for all other Kuband
scatterometers. The Radar Systems and Remote Sensing Laboratory at the University
of Kansas has developed an algorithm that corrects the received signal using rain-rate
and rain-height estimates. Rain effect corrections are possible up to a rain-rate
threshold that depends on the surface wind speed and direction. Above the threshold,
one must discard the data by setting arain flag. The AMSR radiometer on ADEOS |
could provide the rain-rate estimates. However, no measurement of rain-cell height
was available on ADEOS 1. Although ADEOS-II failed, the methods for correction
will be useful in future satellites carrying both wind-vector scatterometers and

microwave radiometers.

This study evaluated numerous methods to estimate rain height using the data that
were available from ADEOS Il. The use of climatological height was not promising,
since climatology provides only very crude height estimates, and also the climatology
for rain at seais not well known outside the tropics. An attempt to relate rain height
to sea-surface temperature also failed, as they correlate well in some oceanic regions

but very poorly in others. A method to estimate rain- height from rain-rate was finally
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adopted, since TRMM rain rate and rain height showed good correlation. Due to the
scatter of measurements, standard linear-regression methods cannot be applied to
relate rainrate and rain-height. After analyzing numerous regression schemes, the
Log-Linear Combined regression technique using a linear-log regression for low rain
rates and a linear regression for high rates was selected. Hypothesis testing and other
statistical-based analyses showed that rain-height estimates obtained using the Log-

Linear Combined regression scheme provide reasonable accuracy.

To apply this regressionbased relationship for all seasons, the dope and intercept
statistics were Fourier analyzed to capture the seasonal trends. Finally, we proposed
the regression-based statistical model, which predicts slopes and intercepts of
regression lines and estimates the rain height from rain rate for a given hemisphere,
season, and rain type. Statistical hypothesis testing showed that rain-height estimates
derived from the regression-based statistical model provide reasonable accuracy. A
simulation procedure was developed and implemented in this thesis to analyze the
impact of rain-height estimates in correcting the normalized radar cross section

coefficients.

Simulation results showed good rain-effect correction for surface scattering
coefficient for lower rain-rates. These results validate the use of regression-based
statistical model for rain-height estimation in the rain effect correction algorithm for

many sSituations. However, for some high rainrates and other wind conditions,
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correction is not possible. For these cases, rain-rate thresholds have to be introduced
in the correction algorithm to set rain flags. Threshold estimation procedure will be

the subject of continuing study to complete the rain effect correction algorithm.

This study concentrated only on stratiform rain, which is assumed to fill the footprints
of SeaWinds and AMSR. A similar study is necessary for convective rain which

usually fills the footprints only partially.

In this simulation, the only errors analyzed are those due to height estimates from rain
rates. Both correction and simulation are subject to other errors, such as those in the
rain-rate estimates from AMSR, attenuation estimates from AMSR, errors in the Ke-
Rand Z-R empirica formulas used in the simulation, and threshold estimation. The

sizes of these errors can be estimated by separate studies.
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Appendix A

Data Products

The first spaceborne precipitation radar (PR), an active microwave instrument aboard
the Tropical Rainfall Measuring Mission (TRMM) satellite, was designed to measure
rain and its vertical structures over the vast tropical oceans and continents. The PR’s
sensitivity has exceeded expectations, alowing routine detection of rain-fall
intensities as low as 0.5 mm h' [37]. The PR operates at a wavelength of 2.2 cm,
allowing penetration of even the heaviest obscuring cloud layers and detection of
underlying precipitation. This, combined with a vertical resolution of 250 m, makes

the PR an effective platform for investigating shallow precipitation [40].

TRMM

The Tropical Rainfall Measuring Mission (TRMM) precipitation radar (PR) & the
first spaceborne rain radar and the only instrument on TRMM that can directly
observe vertical distributions of rain. The frequency of TRMM PR is 13.8 GHz. The
PR can achieve quantitative rainfall estimation over land as well as ocean. The

precipitation radar provides statistics on rain rate and rain height (storm height) in
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different oceanic regions on a monthly basis from January 1998. TRMM coverage

extends only for £35° latitude.

TRMM Precipitation-Radar Algorithms

The TRMM PR, standard algorithms were developed by the TRMM science team.
They are classified into Level 1 (1B21, 1C21,), Level 2 (2A21, 2A23, 2A25) and
Level 3 (3A25, 3A26) [60]. Level 1 and Level 2 products are data observed in each
cell. Level 3 data give the monthly statistical values of rain parametersin 0.5° x 0.5°
grid boxes required by the TRMM mission. The data products used in our analysis
are 2A25 and 3A25. The algorithm 2A25 retrieves profiles of radar reflectivity
factor, Z, with rain-attenuation correction and rain rate for each radar beam. The
algorithm 3A25 gives the space-time averages of accumulations of 1C21, 2A21,

2A23, and 2A 25 products.

3A25 Data Products—for Rain Rate, Height and Count

The agorithm 3A25 provides space-time statistics over a month from the level 1 &
level 2 PR output products. Four types of statistics are calcul ated.

1. Probability of occurrence

2. Mean and Standard Deviation

3. Histogram

4. Correlation Coefficient
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The standard space scale is a 5 x 5° latitude x longitude cell. A subset of the

product, however, is also produced over 0.5° x 0.5° cells. The relevant products are:

1. Rain Rates (millimeter/hour; 4-byte real)

StratRainMean2 (148,720,4) — mean Stratiform rain rates at 4 levels
(2Km, 4Km, 6Km, & Path-Averaged)

ConvRainMean?2 (148,720,4) — mean Convective rain rates at 4 levels

(2Km, 4Km, 6Km, & Path-Averaged)

2. Rain Counts (unitless; 4-byte integer)
StratRainPix2 (148,720,4) — Stratiform rain counts at 4 levels
(2Km, 4Km, 6Km, & Path-Averaged)
ConvRainPix2 (148,720,4) — Convectiverain counts at 4 levels
(2Km, 4Km, 6Km, & Path-Averaged)
3. Storm Height (meters; 4-byte real)
stormHeightMean (148,720,3) — mean of storm height for stratiform, convective
and all types.
The path-averaged rain rates are used in our studies. They are calculated by summing
the rain rate values from the storm top (first gate where rain is detected) to the last
gate (gate nearest to the surface uncontaminated by the surface cluster) and divided

by the number of gatesin the interval.
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Sea Surface Temperature (SST) Data Product

The multi-channel Sea Surface Temperature (MCSST) data set is derived from the
NOAA advanced very high-resolution radiometer (AVHRR). These data sets are
available throughout the globe at 0.35° x 0.35° grid resolution. The data sets must be

decimated and trimmed to match the rain-height data set in our analysis.
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Appendix B

Bilinear Regression

Let usconsider X and Y to be the two datasets to be regressed. X can be assumed as
the independent variable from which the dependent Y is to be determined. When the
scatter exhibits two different trends, bilinear regression can be used. In bilinear
regression, a breakpoint (say ») is considered in the independent variable X. For
values of X less than X, a linear regression line is fitted and for values greater than
Xo, another linear regression line is fitted. These two regression lines are made to

meet at a point to maintain consistency.

The objective function for bilinear regression is given as,

S(mumz’cl’cz): é. (Yi -G - rn.I.Xi)2+ é. (yj - G- mZXj)2

i=X<x i=X>%

where, my, ¢; are the dope and intercept of the line for lower values of X and my, c;
are the dope and intercept of the line for higher values of X. To maintain
consistency, the regression lines have to be made to meet at a point. Hence, an
additional criterion must be introduced in the objective function to force the

regression lines to meet at a point.
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S(My,M,,C,6,)= A (¥i- & - mx)2+ A (Y- Co- mx)?+l (c,- ¢, +(m - my)X,)

=X <% j=X>%
Where | is the Lagrange multiplier and X is the break point between the two
regression lines. The dopes and intercepts of the regression lines are the unknown
parameters to be determined. We obtain the partial derivative of the objective

function with respect to each of the unknown parameters (m;, mp, c1, ¢2) and equate it

to zero.
%L%:éxfyi-cl- mx; ) x +| x, =0
1;”82 :-2j§>£yj - Cy - MX;) X, - 1%,=0
%:-Zi:éxgyi-q-mxi)ﬂ =0
%:-Zj:éxgyj - C - mX;) -1 =0

Solving these equations gives the unknown parameters. The final solution in the form

of amatrix is given as

, O [ N , O <

gal O ax 0 ¥ 4y ¢eayy
éCll] A>é<>q) i=g<<x0 U §x<x0 L,J
~ S 2 o)
é. 0 gax 0 ax 0 Y &gxyd
é- 2] g><<x0 X <X l,J §X<x0 l;J
~ o o u - e 2o u
emi=g 0 41 0 Ax -%y gdavy
e u 2 X >X, X>X, . X X>x, -
I S SV F S
A € a X aX 20 éead XY
8l H & X>% X>%, G &%

8% % % -% 0@ e 0 g
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Weighted Bilinear Regression

For weighted bilinear regression, each point in the scatter is provided with a
weighting factor. Let n; be the weighting factor to be considered in the regression.

The objective function for weighted bilinear regression is modified as follow:

S(mumzicl’cz): é. ni(yi -G - rn.LXi)2+ é. nj(yj - C,- mzxj)z"'l (Cl' C, +(ml' mz)xo)

iI=X <%y i=X>Xo

The objective function S should be partially differentiated with respect to the

unknown parameters and equated to zero.

S o
—— =2 n (Y, - ¢, - mx)x +l x,=0
o ifxi% (i - ¢, - mX;) %o

s
=-2 énj(yj -C,- mzxj)xj- I x,=0

ﬂ 2 J=X>Xg

ﬂS__ o o _
ﬂ_Cl_ Zani(yi G nlxi)” 0

i=X<x

1S
E:-Z énj(yj- C,- mx;) -1 =0

J=X>x

The final solution in matrix form is given as,

, O [¢] < , O N
ean 0 a niX 0 »% U eany u
écl L‘,I g ())(<xo i:(§(<><0 , H ? ())(<xo l_,]
é. U éa N, X 0 a NiX 0 A i ea nxy\
€20 gxn K -
grnl.H:é 0 an 0 anx -7 a ANy g
A X>Xg X >Xo - A X>X, ,
gy © Q Q 2 U €g U
AI ~ e 0 anﬂﬁ 0 aniXi 'X%U éea nxyiu
el H & X>% X>% 0 &% G
8 % - % % -% 0 & 0 ¢

115



