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Introduction

• Over-provisioning primary method to satisfy growing 
demand
– Internet Service Providers (ISPs) and enterprises provision 

capacity more than average utilization
– lesser the utilization, greater the quality (delay, jitter, reliability)

• Not always true for
– customer access links
– ISP peering points
– results in congestion
– QoS needed primarily at these points



Introduction

• dynamic
– signaling required
– added complexity
– more efficient utilization
– avoiding request rejects
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QoS provisioning problem
• Static

– no signaling
– ease of management
– inefficient utilization



Related Work

• Integrated services or IntServ and RSVP
• Aggregating RSVP-based QoS requests
• Bandwidth Broker (BB) signaling



IntServ-RSVP signaling
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RESV (dest=R, src=S, Flowspec[64K,1000,64K,1500,64])



Related Work

Aggregating RSVP-based
QoS requests

PATH message
PATH for reserving 
aggregate rate

• forward individual PATH 
messages using a tunnel or new 
router alert option

• provider ingress reserves 
aggregate traffic volume in the 
core towards egress

• reduces state at ISP core, not at 
the edges
– still a considerable overhead



Bandwidth Broker (BB) Signaling

• ISPs negotiate only traffic aggregates requiring 
specific service quality

• Simple Inter-domain Bandwidth Broker Signaling 
(SIBBS)
– is lightweight since no multicast is considered
– granularity in address blocks (CIDR prefixes) rather than 

individual addresses
– request need not necessarily travel end-to-end



BB Signaling

RARs

Inter-domain Communication
Intra-domain Communication

SIBBS SIBBS



Architecture

• RSVP widely available in commercial routers
• adapts automatically to routing changes

– knowledge of routing table not necessary

• RSVP receiver proxy controlled by policy
• Creating classifiers based on source or destination 

address prefixes



Architecture - Case #1

• Provider egress router:
– sends RESV message 

depending on availability

PATH (dest=w, r=5MBps)

PATH (dest=z, r=3Mbps

RESV (dest=w, r=5Mbps

RESV (dest=z, r=3Mbps)

10%

• ingress routers only mark 
DSCP before forwarding 
packets to the core

– contains access list to fairly 
allocate traffic rate during 
high utilization periods



Architecture - Case #2

• In previous scheme, egress 
routers need to store 
reservation state

• suitable when
– signaling is not end-to-end
– ISP has good idea of traffic 

patterns

• Each provider ingress 
allocated certain portion 
of peer link bandwidth



Architecture

C1 wants ISP to reserve 
4% of peer link to C5
– dynamic signaling
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how to reserve on access
link to C5?

• Static
– security?

• dynamic



Implementation



Evaluation

• testbed13 is the 
customer edge
– sends PATH to request 

bandwidth (4MBps) to 
10.3.10.2

• egress (wintermute) sends 
RESV

• testbed17 is the provider 
ingress
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FE FE 10.3.10.0/24



RSVP dump at CE

17:01:37.718|  Snd Raw  PATH      10.3.10.2/0[17] 0=>eth0
PATH: Sess: 10.3.10.2/0[17]    R: 30000   PHOP: <testbed13.ittc.ku.edu LIH=0>

testbed13.ittc.ku.edu/0  T=[4M(15K) 4MB/s 64 1.5K]
Adspec( 1 hop 1.25MBW 0us 1500B, G={br!}, CL={br!})

17:01:55.259|  Rcv Raw  RESV      10.3.10.2/0[17] eth0<=0
RESV: Sess: 10.3.10.2/0[17]    R: 30000   NHOP: <testbed17.ittc.ku.edu LIH=0>
FF   testbed13.ittc.ku.edu/0   [CL T=[4M(15K) 4MB/s 64 1.5K] ]

17:01:55.290 >>>>>>>>>>  Internal STATE: <<<<<<< 66184 <<<<<<
FF Resv: Iface 0=>eth0 Nhop <testbed17.ittc.ku.edu LIH=0>  TTD 223684

Filter testbed13.ittc.ku.edu/0 Flowspec [CL T=[4M(15K) 4MB/s 64 1.5K] ]
Kernel reservation: Iface 0 (testbed13.ittc.ku.edu) Rhandle 0

Filter testbed13.ittc.ku.edu/0 Flowspec [CL T=[4M(15K) 4MB/s 64 1.5K] ]



RSVP dump at egress

17:01:37.719|  Rcv Raw  PATH      10.3.10.2/0[17] eth0<=0
PATH: Sess: 10.3.10.2/0[17]    R: 30000   PHOP: <testbed17.ittc.ku.edu/0 LIH=0>

FF Resv: Iface 5=>eth2 <10.3.10.2 LIH=5>  TTD 219739
Filter testbed13.ittc.ku.edu/0 Flowspec [CL T=[4M(15K) 4MB/s 64 1.5K] ]

Kernel reservation: Iface 5 (10.3.10.1) Rhandle 0
Filter testbed13.ittc.ku.edu/0 Flowspec [CL T=[4M(15K) 4MB/s 64 1.5K] ]

17:01:54.745|  Snd Raw  RESV      10.3.10.2/0[17] 0=>eth0
RESV: Sess: 10.3.10.2/0[17]    R: 30000   NHOP: <wintermute.ittc.ku.edu LIH=0>
FF   testbed13.ittc.ku.edu/0    [CL T=[4M(15K) 4MB/s 64 1.5K] ]



Observations

• Time taken to complete reservation : 17s 541ms
• Time taken for router to process PATH and send 

RESV ~ 17s
– almost all the time taken at the router that sends RESV

• Path State Block (PSB) requires 200 bytes
• Reservation State Block (RSB) requires 124 to 

192 bytes
– if reservation is modified, old state is also stored



Evaluation

• Scalability
– edge nodes deal only with traffic aggregates

• Management complexity
– Access lists at the edges for policy and admission 

control

– state information include PSB and RSB corresponding 
to each request and reservation

• O (N) where N is number of customer flows



Evaluation...

• Management complexity
– state information reduced if ingress routers decide to 

permit or deny request
– no single point of failure
– Inter-provider Interaction not essential due to receiver 

proxy 



Access link

• Simplicity Vs Fairness

Service
users

C1 ISPAccess

• Receiver proxy for 
host enabled 
reservations

– if hosts unaware of 
reserved rate, fairness 
cannot be guaranteed



Access link (Fairness)

• Class 1
– 10Mbps, 8 MTU sized burst
– UDP (tb10 & tb20)

• Class 2
– 20Mbps, 50 MTU burst
– TCP (tb23 & tb24)

• Class 3
– 70Mbps, no constraints
– TCP (tb18) and all out of 

profile packets from other 
classes
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Fairness Results

Class 1(b=3125, t=10ms), Class 2 (b=12500, w=12500), 
Class 3 (b=28750, w=32000)

Class 1(b=3125, t=10ms), Class 2 (b=12500, w=12500) 
and (b=32500, w=32500), Class3 (b=28750, w=32000)



Peering points

• Class 1
– 10Mbps, 8 MTU sized burst
– NetSpec UDP burst (tb20)

• Class 2
– 20Mbps, 50 MTU burst
– NetSpec TCP full (tb23)

• Class 3
– 70Mbps, no constraints
– NetSpec TCP full (tb18)



Evaluation

Class1(b=3125, t=10ms),  Class2 (b=22500, 
w=22500), class3 (b=28750, w=32000) 

Class3 (b=38750, w=42000)

Class 3 (b=48750, w=52000)



Observations

• The overall performance degraded due to packet 
classification and queuing
– may not be a problem with specialized router hardware

• Traffic used to test Class 2 is TCP, hence 
throughput reduced due to TCP back-off
– due to two priority levels and WRR mechanism of CBQ
– increasing share to 40Mbps but rate limiting to 20Mbps 

solved the problem



Conclusions

• QoS techniques needed at high utilization points 
of network
– access and peering points
– no guarantees on delay and jitter
– introduce QoS at originating and receiving access 

points; if not effective, reserve at peer links

• End-to-end dynamic negotiation easier if domains 
travel not more than 2 transit AS



Future Work

• Measurement and analysis at a ‘real’ access and 
peer links

• Implementation supports traffic control using 
CBQ
– could be extended to support WFQ in Linux



Questions ?


