
Selecting Neural Network Topologies: A Hybrid Approach
Combining Genetic Algorithms and Neural Networks

By

Christopher M. Taylor

B.S. - Computer Science
Southwest Missouri State University, 1997

Submitted to the Department of Electrical Engineering and Computer
Science and the Faculty of the Graduate School of the University of Kansas
in partial fulfillment of the requirements for the degree of Master of Science

Dr. Arvin Agah

 (Committee Chair)

Dr. Nancy Kinnersley
 (Committee Member)

Dr. John Gauch

 (Committee Member)

Date of Acceptance

ii

Abstract

This work examines the use of genetic algorithms and neural networks to generate

neural network topologies. The data set consists of digital images of objects taken

from different angles. A successful neural network topology had been trained on this

data, so it was investigated whether the genetic algorithm could evolve a neural

network topology capable of learning the training data. The genetic algorithm is used

to evolve populations of neural network topologies. The neural network is trained

using each of the topologies, and the remaining error in training is used to provide a

fitness value for each of the topologies. Thus, the fitness function is the neural

network itself.

iii

Acknowledgements

This work would not have been possible without the support, encouragement, and

patience of several people who deserve recognition for their contributions.

The first person I would like to thank is, of course, my wife Kim Taylor. She has

sacrificed more for me than I can ever repay, leaving behind her family and friends in

the city where she had spent her entire life and following me in pursuit of my dream.

I quit a great job to be a full-time student, and she has valiantly supported us on her

salary. I’ll gladly spend the rest of my life paying it all back to her.

Next, I would like to thank Dr. Arvin Agah, my thesis chairperson and academic

advisor, for his tremendous patience and remarkable guidance. He has helped me

keep focus, and has encouraged me through the difficulties of research and

discovering that the results are very rarely what we would hope them to be.

Several professors have been instrumental in my success and helping me adjust from

corporate life to academic research. Just by giving me a job, Dr. Nancy Kinnersley

helped me tremendously and I’ll be forever grateful. Thank you to Dr. John Gauch

for helping me get my feet under me, and thank you Dr. Susan Gauch for giving me a

second chance.

Lastly, I thank all my wonderful friends and family for believing in me. A special

thank you goes to my father, Mike Taylor, who taught me that I can do anything if I

only try.

iv

Table of Contents

List of Figures... vi

List of Tables ... vii

Chapter 1 Introduction... 1

Chapter 2 Background and Related Work... 4

2.1 Neural Networks ... 4

2.1.1 The Structure of Neural Networks... 4

2.1.2 Training a Neural Network .. 6

2.1.3 Applications of Neural Networks .. 9

2.2 Genetic Algorithms... 10

2.2.1 How Genetic Algorithms Work... 10

2.2.2 Applications of Genetic Algorithms .. 13

2.3 Hybrid Systems – Combining Neural Networks and Genetic Algorithms....... 14

Chapter 3 Statement of Problem... 16

Chapter 4 Methodology.. 17

4.1 Setup ... 17

4.1.1 Capturing the Images ... 17

4.1.2 Capturing Sounds... 18

4.1.3 Preparing the Data.. 18

4.1.4 Gathering Inputs from Raw Data ... 19

4.1.5 Training File Format .. 20

v

4.2 The Artificial Neural Network.. 20

4.3 The Genetic Algorithm ... 21

4.4 Combining the Neural Network and the Genetic Algorithm............................ 23

4.5 Final Remarks on Methodology ... 255

Chapter 5 Results.. 26

5.1 Crossover and Mutation, 5 epochs.. 26

5.2 Crossover and Mutation, 20 epochs.. 28

5.3 Mutation only, 20 epochs.. 29

5.4 Discussion of Results.. 31

Chapter 6 Conclusion ... 35

6.1 Summary... 35

6.2 Contributions .. 35

6.3 Limitations .. 37

6.4 Future Work.. 38

References.. 39

vi

List of Figures

Figure 2.1. A neural network with 3 input neurons, one hidden layer with 4 hidden

neurons, and 3 output neurons. ………………………………………………….5

Figure 4.1. Example of results after the crossover operator is applied to two

sequences. ... 22

Figure 5.1. Results of evaluating each topology after 5 epochs. 27

Figure 5.2. Results of evaluating each topology after 20 epochs. 28

Figure 5.3. Results of topologies evolved using mutation only, evaluated after 20

epochs. .. 30

Figure 5.4. Comparison of the average population fitness from the three experiments.

... 32

vii

List of Tables

Table 5.1. Topologies with the highest fitness values from each experiment. 31

1

Chapter 1

Introduction

While artificial neural networks are typically robust enough that many

different topologies can be used to learn the same set of data, the topology chosen still

impacts the amount of time required to learn the data and the accuracy of the network

in classifying new data. Thus, choosing a good topology becomes a crucial task to

the success of the neural network.

The work that follows is an indirect result of another study. In the prior study,

two neural networks were being used to investigate the “dual modality effect” in

learning. The theory behind dual modality is that we rely on many different forms of

memory and learning. For example, if one were to recall watching a movie, one

would probably recall some scenes entirely while other scenes might be recalled only

by image or only by sound. Sight and sound are the two most common modalities.

By combining multiple modalities in learning, more data is encoded with the

memory, thus making it easier to recall and process. For example, when listening to a

lecture, if one’s mind were to wander, then that portion of the lecture is missed

completely and cannot be recalled. However, if there is a visual element to the

lecture, then perhaps the image can be recalled even if the words spoken could not.

The previous study hoped to test this concept using two neural networks: one

for sight and one for sound. Each network was to be trained on a set of four objects

(toys capable of making sounds). Each object made a different sound. Digital

pictures were taken of each object from different angles, and sounds were recorded

2

from each object. Only some of the angles would be used for training, and only some

of the sounds would be trained in the other network. Once both networks were

trained, they would be combined by a third network which would bring the pieces of

data together to be able to recognize the objects by sight, by sound, and by both. The

real test would be in determining how well the system could combine sight and sound

to recognize an object from an angle not seen before or with a sound not heard before

(i.e., captured from that orientation). In this manner, the dual modality concept could

be tested in computing systems, indicating that perhaps data should be encoded in

memory in multiple manners.

The training of the image network was successful on the first try.

Unfortunately, the sound network did not train on the first attempt. Nor on the

second attempt. Several different network topologies were selected and each failed to

learn the sound data. A great deal of time was invested in trying to identify a

structure that could be successfully trained with the sound data. Over twenty

different network topologies were tested, requiring significant amounts of time. All

twenty failed, and so that direction of the experiment was abandoned.

The study which follows is the result of the failures and frustrations from the

previous experiment. It should be noted that the failure of the first experiment could

be a result of the nature of the problem and associated data, i.e., it is possible that no

network topology is capable of learning from the specific set of data used for the first

experiment. Perhaps a network topology could be programmatically developed in

such a way as to guarantee the success of the network, assuming that a topology

3

capable of learning the data exists. A review of the literature showed that genetic

algorithms had been used in other studies to do this very thing.

4

Chapter 2

Background and Related Work

 This thesis combines neural networks with genetic algorithms in an effort to

find a better method of selecting neural network topologies. This chapter provides

background information on neural networks, genetic algorithms, and hybrid systems

like the one used here.

2.1 Neural Networks

Artificial Neural Networks (ANNs), are a method of artificial intelligence

based upon models posed by cognitive theory in psychology as to how biological

brains function. A brain is composed of neurons, cells that receive a stimulus which

triggers a response from the neuron. The response from the neuron can trigger other

neurons, which trigger other neurons, etc. Eventually, this chain of neural activation

results in some response from the body, such as recollection of a memory, identifying

a sound, movement of a muscle, etc.

2.1.1 The Structure of Neural Networks

The way ANNs are represented in a computer system is very similar. An

artificial neural network consists of several neurons, but they are divided into layers.

There is an “input” layer where the initial “stimulus” is received. These neurons are

connected to a layer of “hidden” neurons. This hidden layer can be connected to

either another hidden layer, or the “output” layer. There can be any number of hidden

layers between the input layer and the output layer, but typically the number of

5

hidden layers in any particular ANN is limited. Typically, a neuron of any layer is

connected to each other neuron in adjoining layers. Thus, each neuron in the input

layer is connected to each neuron in the first hidden layer. Each neuron of the first

hidden layer is also connected to each neuron in the next layer (either another hidden

layer, or the output layer). Each of these connections between neurons has a “weight”

associated with it, and each connection is treated individually – each connection can

have a unique weight associated with it. As the network “learns,” these weights are

adjusted to represent the strength of connections between neurons. Thus, the network

might determine that a particular connection is of no value, and give it a weight of

zero. To determine the output from any particular neuron, the neuron must first

 I0

 I1

 I2

 H0

 H1

 H2

 H3

 O0

 O1

 O2

Input
Layer

Hidden
Layer

Output
Layer

Figure 2.1. A neural network with 3 input neurons, one
hidden layer with 4 hidden neurons, and 3 output
neurons.

6

gather its input. For neurons in the input layer, this is trivial – the input is merely the

value given as input to the network. For each other neuron, however, this is more

complicated. The input for neurons not in the input layer is a function of the output

from each neuron in the previous layer, and the weight of the connection to that

neuron. Using Figure 2.1, the input to neuron H0 in the hidden layer is based upon

the output of each neuron in the input layer, multiplied by the connection between

that neuron and H0. To be more specific, suppose the output from neuron I2 is 0.35

and the weight of 0.11 exists for the connection between I2 and H0. Multiplying 0.35

x 0.11, results in an input of 0.0385 into H0 from I2. To get the total input to H0, the

input values from each connected neuron must be summed. Thus, the input to a

neuron j can be written as:

Σ(Oi * Wi,j) (1)

where Oi is the output from neuron i and Wi,j is the weight of the connection between

neuron i and neuron j. The total input to the neuron is then used to determine an

output value from the neuron. A sigmoid function is typically used for this, and the

output value from a neuron will be between 0 and 1. When a neuron is “inactive” its

output will be close to 0. When a neuron is triggered or “active” then its value will be

close to 1.

2.1.2 Training a Neural Network

In order to get a Neural Network to successfully learn a task, it must first be

trained. This requires that some training data be gathered. The training data must

7

include the inputs to each input neuron, and the anticipated result from each output

neuron. Thus, for Figure 2.1, each example in the training data must include 6

values: 3 for the inputs, and 3 for the outputs. Any number of examples can be

provided to the network. The more training examples, the better the network can

learn the data. There is a trade-off, however, between having a very accurate network

and one that is robust to new data. By providing large amounts of training data, a

network can train to be very accurate in its results, but will not be very successful at

dealing with new examples not included in training. On the other hand, by providing

fewer training examples, the network might be able to better handle new examples

that it has never seen before, but will likely suffer in the overall accuracy of its

results.

Once the training data has been obtained, the training process is relatively

simple. When the network is first created, these weights often have random or pre-

determined values and are unlikely to produce the expected outputs on the first

attempt. Training or “learning” in an ANN takes place by changing the connection

weights between neurons. The most common learning technique employed in neural

networks is called “back propagation.” Back propagation works by taking the input

values and pulsing the network to see what outputs are obtained based on the current

weights. The resulting outputs are then compared with the expected outputs indicated

in the training data. If the outputs are different then the weights are adjusted based

upon the amount of error involved and the “learning rate,” λ. The learning rate is

typically a value between 0.3 and 0.7 and represents the percentage of the error to be

8

used for adjusting the weights. A larger value for the learning rate means that the

weights receive greater adjustments, while a smaller value indicates that the weights

receive smaller adjustments. The learning rate is important because the neural

network is supposed to learn all of the examples in the training data and over-

adjusting the weights after each training example is used can cause the network to

“unlearn” some of the progress made with earlier training examples. Thus, by

reducing the λ the network can continue to learn new training examples without

counter acting prior progress. As the λ-value is decreased, so does the speed at which

the network learns. Setting a larger learning rate means the network will train faster,

but might reach a limit at which it cannot improve because changes in weight values

are interfering with learning.

Weights in a neural network are typically readjusted backwards – the weights

between the output layer and the adjacent hidden layer are adjusted first and the

weights between the input layer and the hidden layer connected to it are adjusted last.

Thus, the error is propagated backwards. Once the weights have been re-adjusted, the

next example in the training data is used and the weights again re-adjusted. Once

every example in the training data has been used to re-adjust the weights, the process

starts over again at the beginning, with the network again trying the first example in

the training data and seeing how close the outputs match to those it was supposed to

obtain. Each iteration through the training examples is called an “epoch.” The

network continues to train in this manner until a) the difference between the outputs

from the network and the expected outputs, i.e., the error, falls below a certain

9

threshold (indicating that the network has successfully learned the data) or b) a

maximum number of epochs have passed (indicating that the network failed to learn

the data in the number of epochs it was allowed).

2.1.3 Applications of Neural Networks

Neural networks are most typically used in “classification” problems. A

classification problem is one where a certain number of “classes” are identified.

Based on the input data, the ANN determines to which class the sample will most

likely belong. An example of a classification problem might be in determining if a

picture is of a male or a female – a two class problem. When using a neural network

for classification, the number of output nodes are usually determined by the number

of classes, with one output node per class. In this manner, the values of each output

node represent the likelihood of the sample falling into each of those classes, as

determined by the neural network. It should be noted, however, that this is not

probability – the ANN might indicate with absolute certainty that a given sample

belongs to multiple classes, or none at all. For example, using the male/female

classes mentioned earlier, the ANN might indicate that a particular photo is both male

and female, or neither. This would indicate that the network requires further

refinement in order to successfully classify the photo.

Neural networks have been used successfully in a large number of

applications. They have been used to successfully recognize handwritten (Lyon,

1996) or spoken (Hosom, 1999) words, allowing for dictation software and software

which can take handwritten text and convert it to electronic text. They have been

10

used to distinguish between the handwriting of different individuals, providing a

method for handwriting verification (Guyon). ANN’s have been used in face

recognition, allowing the network to distinguish between pictures of different people.

One such application is a crime fighting system used in Tampa (GAITS). Cameras

take pictures of people on the streets and compare them to a database of photos to

help police locate felons. With any classification problem, there is a potential for the

application of an artificial neural network.

More information on artificial neural networks, see Bart Kosko’s book

“Neural Networks and Fuzzy Systems” (1996).

2.2 Genetic Algorithms

Genetic algorithms (GAs) are based upon evolutionary principles of natural

selection, mutation, and survival of the fittest (Dulay). GAs are very different from

most computer programs, which have well-defined algorithms for coming up with

solutions to problems. The genetic algorithm approach is to generate a large number

of potential solutions and “evolve” a solution to the problem.

2.2.1 How Genetic Algorithms Work

 One of the big keys to a successful genetic algorithm is in the development of

a good “fitness function.” The fitness function is how each potential solution is

evaluated by the algorithm, and is in essence how the problem to be solved by the

algorithm is defined. For example, if the purpose of the genetic algorithm is to design

a car, then the fitness function will provide a means for evaluating the “fitness” of any

car design.

11

 When developing a genetic algorithm, one must decide how each solution will

be represented in the algorithm. For simplicity, a string of bits is most often used.

The bits can be used to represent any part of the solution. Taking the car example

mentioned above, some of the bits might represent the color of the car, others the size

of the wheels, and others the gas mileage of the car. It is the responsibility of the

fitness function to understand what the bits mean and how to use them to evaluate the

fitness of each potential solution.

 When the GA is first run, it generates an initial “population” of potential

solutions, which could be random. Each member of the population is then examined

and its fitness is evaluated and recorded. Once each member of the population has

been evaluated, then the next generation is produced from the current generation.

There are many ways of generating the next generation, but the two most popular

techniques involve “crossover” and “mutation.” In crossover, two members of the

population are chosen at random with higher probability given to the more fit

members of the population. These two members are then combined to produce two

offspring. This is usually performed by selecting a position in the bit sequence and

exchanging the two sequences after that position, which is called the crossover point.

 For example, given the following two members of a population:

11101010

10010100

12

 If these were crossed over at position 4, the resulting offspring would be:

11100100

10011010

 There are many ways to perform the crossover, but this example is one of the

simplest. The result is two new members in the next generation. In theory, these two

new members should be reasonably better fit because they likely came from fit

members in the previous population. Each member of the population is assigned a

biased probability of selection. Because of this increased probability of selection, the

most fit members of a population are more likely to be selected for crossover than

less fit members. However, there is always a possibility that a less fit member will be

selected instead.

 The crossover process continues until the size of the next generation is the

same as the population size of the previous generation. After crossover has taken

place, “mutation” is then applied to each member of the population. A typical

mutation function is to assign a probability for flipping each bit. Thus, if a 10% value

for mutation is assigned, then each bit of each member of the population has a 10%

chance of being flipped (a 0 becomes a 1, or a 1 becomes a 0). After mutation is

completed, each member of the new generation is evaluated for fitness and the

process repeats for another generation. This process of evolving new populations

continues until some criteria is met. The stopping criteria could be a) when the

overall fitness of the population reaches a certain value, b) when the overall fitness

13

over several generations fails to change more than a specified value, or c) after a

certain number of generations have passed.

 There are many different ways to perform crossover and mutation. There are

also many other “genetic operators” that have been used in GAs. Regardless of the

details, the overall process remains the same: generate an initial population, evaluate

the members of the population, generate a new population based upon the more fit

members of the previous generation, and repeat the process until a certain stop criteria

is achieved.

2.2.2 Applications of Genetic Algorithms

 Genetic algorithms are very powerful search tools. By “search” it is meant

that GAs are capable of pouring through a large number of potential solutions to find

good solutions. Scheduling has been an area where genetic algorithms have proven

very useful. The GA searches the space of potential schedules and finds those

schedules which are most effective and maximize the desired criteria (such as

minimizing idle time). For example, GAs are used by some airlines to schedule their

flights (Dulay). An application of a GA to a financial problem (tactical asset

allocation and international equity strategies) resulted in an 82% improvement in

portfolio value over a passive benchmark model, and a 48% improvement over a non-

GA model used to improve the passive benchmark (Dulay). GAs have also been

applied to problems such as protein motif discovery through multiple sequence

alignment and many other problems (Mendez, et. al.).

14

 For more information on genetic algorithms, can be found in David

Goldberg’s book “Genetic Algorithms in Search, Optimization, and Machine

Learning.” (Goldberg, 1989)

2.3 Hybrid Systems – Combining Neural Networks and
Genetic Algorithms

 There have been several systems developed that combine neural networks

with genetic algorithms in various ways. These generally fall into three categories:

(1) using a GA to determine the structure of a neural network, (2) using a GA to

calculate the weights of a neural network, and (3) using a GA to both determine the

structure and the weights of a neural network.

 In the first category, a genetic algorithm is used in an attempt to find a good

structure for a neural network. The process involves the GA evolving several

structures and using the neural network as the fitness function to determine the fitness

level of each structure. This technique can help eliminate the guess-work in deciding

upon the structure of a neural network that can successfully be trained on the data.

In the second category, the genetic algorithm is used to evolve the weights of

the network rather than using back propagation or some other technique for training

connection weights. This can potentially result in quicker training of the network.

The third category uses the GA to generate not only the structure, but also the

connection weights in the GA. For each structure in the population, another GA

evolves weights. Using the evolved weights, the GA sets a fitness value for that

network structure. Thus, two GAs are implemented with one running inside the

15

other. The neural network is the final result of both GAs, with one having determined

the structure, and the other having determined the weights of the connections in the

network.

16

Chapter 3

Statement of Problem

In a series of previous experiments involving artificial neural networks, a

great deal of difficulty was encountered in trying to find a structure for the network

which could quickly and accurately learn to identify four objects based upon the

sounds they made. A previous set of experiments had already successfully classified

the objects based upon image data. After several failed attempts where the structure

for the network was “guessed” by the investigator, research into more reliable ways

of obtaining network structures was performed.

One of the more intriguing possibilities was that of combining a neural

network with a genetic algorithm. The genetic algorithm would create a population

of potential structures for the neural network. The neural network would then briefly

try each of the structures and report on the success of each. Using these values from

the neural network, the genetic algorithm would then evolve a new population for the

network to try. After several generations, a population of several “good” structures

should result and could then be used to completely train the neural network.

The work that follows in this thesis shows the results of such an experiment.

Using the same data from the successfully imaging experiments mentioned earlier as

a benchmark, a new effort was undertaken to see if the concept of combining genetic

algorithm with the neural network could produce results as good or better than the

already successful network.

17

Chapter 4

Methodology

In order to use both image and sound data, four objects were selected that

could produce sound. The objects were a toy duck which played music, a toy truck

which made sounds like the engine was running, a race car toy which made sounds

when it was moved, and a fire engine toy which made sounds when moved. For the

rest of this thesis, the objects will be referred to as “Duck,” “Truck,” “Racecar,” and

“Fireman.” Details into the methods employed and the reasons for choosing each are

included in this chapter.

4.1 Setup

Setting up the experiment was an involved process. The four objects had to

be imaged from many different angles, and the sounds from the objects had to be

recorded. Then this data had to be converted from raw data into something that could

be provided to the neural network as inputs.

4.1.1 Capturing the Images

In order to capture the images and sounds, a Logitech QuickCam was used.

An “angle mat” was created by drawing long, intersecting lines on a sheet of paper.

Each line was separated by five degrees. For each object, a center line was drawn on

it in pencil so that each object could be set properly to any desired angle on the “angle

mat.” Images of all the objects were recorded every fifteen degrees. All images were

18

captured at the same time of day to ensure that lighting conditions were as controlled

as possible.

4.1.2 Capturing Sounds

Using the microphone from the webcam, each sound from each object was

recorded. The duck played three different songs, so each song was recorded. The

racecar and the fireman each made multiple sounds, so each of those were recorded.

The truck was the only object which made the same sound every time. More

accurately, the duck would play music and quack with the song (for example, one of

the songs was “Old MacDonald”). The truck sounded like the engine was running

and it would periodically make a sound like the horn honking. The racecar and the

fireman each made multiple different sounds. Care was taken in recording the sounds

to ensure that there was as little ambient noise as possible.

4.1.3 Preparing the Data

For the image data, no real manipulation of the data needed to occur.

However, the sound data required quite a bit of manipulation to be converted to

useful data. Sounds were encoded in a .WAV format. The sounds were examined

and trimmed in order to eliminate noise and empty space at the beginning and ends of

the files. Because each of the objects made multiple sounds, with the exception of the

duck, one sound from each of the objects was selected. Trying to train on multiple

sounds for each object would have added a great deal of complexity to the problem.

Then each file was broken into 10 pieces. Since each sound had a different length,

19

these pieces were not the same size. Each of the 10 pieces from the duck sound were

the same size, but they were different sizes from the 10 pieces from the truck sound.

In order for the sounds and images to be used in the neural network, the files had to

be converted to raw data. To achieve this, a program was written that would take

each byte of the file and normalize the value between zero and one before writing the

resulting value out to a text file (a byte of 00000000 would equal zero, and a byte of

11111111 would equal one). In this manner, each byte of data was converted to a

value between zero and one and placed within an easy-to-read text file. From there, it

was easy to gather any number of desired inputs from any location in any file.

4.1.4 Gathering Inputs from Raw Data

Another program was written to gather data from the text files created using

the processes described in section 4.1.3. The program asked for a number of bytes to

be drawn from each file and used to create a training file for the neural network.

These inputs were drawn from the center of the file. Thus, if 50 bytes were

requested, the program would take the middle 50 bytes from each file and create a

training set for the neural network, with each input file being used as a separate

training example. Thus, if 50 byte sets were requested and there were 20 files, then

20 training examples of 50 bytes each would be created and merged into a single

training set.

20

4.1.5 Training File Format

The training set was written as an ASCII text file with one training example

per line and each value separated by a space. The last four values of each example

would indicate which output should be turned on for that example. The outputs, in

respective order, correlated to Duck, Fireman, Racecar, and Truck. The

corresponding output value would be set to 1 and the others to 0. Thus, if a training

example would result in being identified as the Duck, the values 1 0 0 0 would be

appended to the end of the example. If an example corresponded to the Racecar, then

the values 0 0 1 0 would be appended to the end of the example.

4.2 The Artificial Neural Network

The ANN was written in Visual Basic 6.0 (Microsoft), as Visual Basic

provided a quick and easy way of building objects, as well as a graphical user

interface that could be used to monitor the progress of the network and adjust values,

if needed. Each neuron of the network was built as an object. The network was fully

scalable, within the physical memory limitations of the PC. It supported any number

of hidden layers, with any number of nodes in each layer. The training rate,

maximum number of epochs, and error tolerance could all be modified from the

Graphical User Interface (GUI). The current average error of learning is also

displayed on the GUI and updated with each new epoch. The ANN program can be

initiated in several ways. A network structure can be specified through the GUI and

then a training set can be loaded. The program can also be passed several different

structures via a text file. The latter method was implemented in order to allow the

21

neural network and the genetic algorithm to run concurrently without user-

intervention.

The neural network has successfully learned several non-trivial classification

problems. These include XOR and radar signature identification of aircraft, in which

the network was trained to distinguish between two classes of aircraft based upon

radar signals received at various angles. More importantly, the network had

previously learned the image data for the four objects using a network of 300 inputs,

10 hidden nodes, and 4 outputs. Thus a known solution existed for the problem.

4.3 The Genetic Algorithm

The GA was implemented in C++ and was run under the Cygwin shell for

Windows. The constraints on the GA were that each ANN structure could have a

maximum of 5 layers: one input layer, three hidden layers, and one output layer. The

input layer was fixed at 50 inputs and the output layer was fixed at 4 outputs. Each

structure could have from zero to three hidden layers, with a maximum of 64 (26)

nodes per layer. Each hidden layer was represented with 6 bits for a total of 18 bits

per structure. Any layer which did not have at least one node in it was ignored.

Thus, a bit stream resulting in values of 13 0 15 would be translated as only two

hidden layers, with 13 nodes in the first layer and 15 nodes in the second layer. The

algorithm used a population size of 100.

When evolving the population of possible solutions, the GA used two simple

operators: crossover and mutation. The algorithm also used a “survival of the fittest”

concept to preserve the most fit solutions from the previous generation. Thus, for

22

each new generation, one half of the population actually consisted of “surviving”

members from the previous population. This was done by assigning a value to each

member of the population in proportion to that member’s contribution to the overall

fitness of the population. More fit members were given larger values than less fit

members. Then 50 members were drawn from the population based upon these

weighted values. More fit members would have a higher likelihood of being moved

to in the next generation. The rest of the next generation was obtained by combining

the “survivors” that resulted from the selection just described. The theory behind this

choice is that the survivors would be the most fit members of the previous generation

and should result in reasonably fit “offspring.” In order to obtain offspring, two of

the survivors were selected at random and then the “crossover” operator was applied.

The crossover operator randomly selected a position in the 18 bit sequence. Each bit

from that position to the end of the sequence was then switched between the two

sequences, potentially resulting in two new sequences. For example, given the two

18 bit sequences show in Figure 4.1, the crossover operator chooses bit 6 for the

crossover. The results would be as shown:

 010110101010101101 010111011010101010

010101011010101010 010100101010101101

Figure 4.1. Example of results after the crossover operator is applied to two sequences.

Once the crossover operator had obtained two new offspring, each bit of the sequence

would be tested for “mutation.” Each bit was given a 10% chance of mutation. If a

mutation occurred, the bit was flipped -- a 1 became a 0 and vice-versa.

23

This genetic algorithm implementation has been used successfully in a

previous problem involving multiple sequence alignments of proteins. In the multiple

sequence alignment problem, a series of proteins were examined to determine if they

shared any similar subsequences. Similar subsequences can be exact matches, but

typically contain amino acids that are commonly substituted for each other.

Similarity scores were determined using the BLOSUM62 substitution matrix.

Alignment of the sequences involves inserting “gaps” into sequences so that the

similar subsequences are aligned with each other.

4.4 Combining the Neural Network and the Genetic
Algorithm

in order to eliminate the need for constant user interaction in the process and

thus improve overall performance and speed, it was necessary that both the NN and

GA programs run concurrently. This was implemented through a file-passing

protocol.

The neural network would wait until a file called “ga.done” was created. If

the file was not present, then the neural network would look again in 30 seconds.

Once the “ga.done” file was found, it was deleted and the file “ga.txt” was loaded.

The “ga.txt” file contained the path to the training set to be used by the neural

network, the number of epochs to train each network in the file, the number of

networks contained in the file, and the structure of each network. The neural network

would then create a copy of the file as “ga.#.txt” where # was the current generation

in the genetic algorithm. Thus, “ga.1.txt” would be the structures output from the

24

first generation of the genetic algorithm. In this manner, each generation of structures

could be saved for future reference. The neural network would then attempt to train

using each structure in the file and the specified training set for the number of epochs

specified in the file. After the last epoch, the ANN would write the fitness result

(calculated as 1 – error) of the network to a file called “nn.txt” and then attempt the

next structure in the file. After the last structure had been attempted, the ANN copied

the “nn.txt” file to “nn.#.txt” for archival purposes as described earlier. Then the

neural network would write a file called “nn.txt.go” and then go back into wait mode.

Upon start up, the genetic algorithm created an initial population of structures

and then wrote out the “ga.txt” file. When the file was completed, the file “ga.done”

was written, which activated the neural network and placed the GA into wait mode.

The GA would continuously look for the file “nn.txt.go” which indicated the ANN

had finished evaluating the structures. Once the file was found, the GA deleted it and

loaded the file “nn.txt” which contained the fitness values for each member of the

population. Using these fitness values, the GA would then generate a new population

based upon the procedures described in earlier sections. The resulting population

would be written to “ga.txt” and then the file “ga.done” would be created. This

would again activate the neural network and place the GA into wait mode. This

process would continue until a desired number of generations had been produced by

the genetic algorithm. The number of generations was passed as a command-line

argument to the genetic algorithm.

25

4.5 Final Remarks on Methodology

Although difficulties in learning the sound data were what led to this

experiment, the image data was chosen because a neural network had successfully

learned the data. The goal of this experiment was to validate the concept before using

it to find a structure for learning the sound data. The previously successful network

only contained a single hidden layer with only 10 nodes. This would indicate that the

number of inputs provided enough data to nearly stand alone, and would not be of

sufficient difficulty to prove the concept of combining the GA with the ANN. If a

guess at a trivial neural network topology was sufficient to successfully learn the data,

then the problem would need to be more complicated in order to truly test if the GA

would show improvement over random guesses. To make the problem more difficult,

the number of inputs was reduced from 300 to 50. By using fewer inputs, less

information would be provided to the network, thus making successful classification a

more difficult task. Furthermore, by restricting the number of inputs, the amount of

time required to run the ANN for all 100 structures in each generation was

significantly reduced.

26

Chapter 5

Results

5.1 Crossover and Mutation, 5 epochs

In the first experiment, each ANN structure was trained for only 5 epochs.

From the results, the average fitness seemed to peak around generation 40. For each

generation, the best fit member of the population remained the same, with the

exception of generation 94, where a sudden spike occurred and then vanished in the

next generation. This spike had a fitness score of 0.427, while the best fit member of

each other generation only had a 0.378 fitness score. It is also worth noting that this

popular member vanished at generation 13, but promptly reappeared in the following

generation. The average fitness did not show much improvement after the first 25

generations or so. Figure 5.1 shows the most fit member at each generation, and the

average fitness of each generation.

27

5 epochs

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

1 10 19 28 37 46 55 64 73 82 91 10

Generation

Fi
tn

es
s

Average Fitness
Best Fit

Figure 5.1. Results of evaluating each topology after 5 epochs.

The well-conserved “best fit” member of the population, as well as the

“spike,” were both run through the neural network to see if they could successfully

learn the training data. Both structures failed. They would continue to show

improvement up to a certain limit, at which point both of the structures ceased to

show any improvement in learning, regardless of the number of epochs they were

allowed to run. The spike had a structure of 50-44-23-12-4, which was 50 inputs, 44

neurons in the first hidden layer, 23 neurons in the second hidden layer, 12 neurons in

the third hidden layer, and 4 output neurons. The better conserved member had a

structure of 50-56-49-13-4. Both networks trained to an error of approximately 0.75,

which is unacceptable (75% error rate).

28

5.2 Crossover and Mutation, 20 epochs

For the second experiment, each structure was trained longer in the neural

network in order to evaluate its fitness. Rather than the 5 epochs used in the first

experiment, each structure was trained for 20 epochs before a fitness value was given.

This time, only 22 generations were run. This was done to save time, and because

observations from the prior experiment showed little change after generation 20. This

is further justified by the graph of the average fitness. Figure 5.2 shows very little

change after the first few generations as the average hovers around the 0.30 mark for

each generation following the first one. There appears to be no real benefit from

letting the algorithm continue to run.

20 epochs

0
0.05

0.1
0.15

0.2
0.25

0.3
0.35

0.4
0.45

1 3 5 7 9 11 13 15 17 19 21 23

Generation

Fi
tn

es
s

Average Fitness
Best Fit

Figure 5.2. Results of evaluating each topology after 20 epochs.

29

As was observed in the first experiment, the best fit member from the first

generation is well conserved through each generation. However, unlike the first

experiment, there was no improvement upon the best fit member after the first

generation.

The best fit member from this experiment had a fitness value of 0.402 and a

structure of 50-44-26-17-4. This structure was run through the neural network and

also failed to learn the data regardless of the number of epochs it was allowed to train.

As in the first experiment, the network obtained an error of 0.75 and then failed to

improve.

5.3 Mutation only, 20 epochs

After obtaining the results of the first two experiments, further research was

done to see what results have been reported in similar studies. A paper by Garcia-

Pedrajas et. al. (2004) suggested that the standard crossover operator when used in

conjunction with a neural network is actually just a mutation. This is because of the

permutations possible in how the network is encoded within the genetic algorithm.

Taking note of this, and the fact that in both of the previous experiments the best fit

member from the first generation was carried through each generation, a third

experiment was conducted that used only the mutation operator, without crossover.

When creating the next generation, it was populated entirely using the weighted

probability method mentioned previously. Thus, the next generation would be

populated with the more fit members from the previous generation. The mutation

operator was then applied to each member of the population. The result from this

30

method, in theory, should be a population of fit members which have been tweaked

slightly from generation to generation. As in the previous experiment, each structure

was trained for 20 epochs in the neural network before its fitness value was

determined.

Mutation only, 20 epochs

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 3 5 7 9 11 13 15 17 19 21

Generation

Fi
tn

es
s

Average Fitness
Best Fit

Figure 5.3. Results of topologies evolved using mutation only, evaluated after 20 epochs.

Just as in the previous experiment, the best fit member of the first generation

was preserved through the entire algorithm, despite the mutation factor. In fact, the

frequency with which it occurred in each generation grew dramatically, reaching 27%

by the last generation. However, this applies only to the value of the best fit member

and not the actual structure itself. Several similar structures resulted in the same

fitness value. Examination of these structures showed an overwhelming preference

for either 16 or 17 neurons in the final hidden layer. This feature was present in 68%

31

of the final population. It is also worth noting that the best fit structure from the

previous experiment had the same fitness value as the best fit member from this

experiment, 0.402, and had 17 neurons in its last hidden layer.

5.4 Discussion of Results

In each experiment, one of the population members obtained by a random

selection in the first generation was maintained throughout each generation of the

algorithm. In the first experiment, where only 5 epochs were used for evaluation,

there were two generations which were exceptions. In generation 13, the best fit

member vanished but then promptly returned in the following generation. In

generation 94, a better fit member was found, but it vanished in the next generation,

despite the weighted probability of it being selected to remain.

Table 5.1 summarizes the best fit members obtained from each experiment,

including the “spike” obtained in the first experiment.

Experiment Best Fitness Value Structure of Network

W/selection, 5 epochs 0.378 50-56-49-13-4

(spike at generation 94) 0.427 50-44-23-12-4

W/selection, 20 epochs 0.402 50-44-26-17-4

Mutation only, 20 epochs 0.402 50-53-17-4

Table 5.1. Topologies with the highest fitness values from each experiment.

Figure 5.4 shows the average fitness of each generation from all three

experiments. The graph only includes the first 22 generations of the first experiment.

32

Average NN Fitness

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1 3 5 7 9 11 13 15 17 19 21

Generation

A
ve

ra
ge

 F
itn

e mutation only

w/crossover, 5
epochs
w/crossover, 20
epochs

Figure 5.4. Comparison of the average population fitness from the three experiments.

From Figure 5.4, it appears that the experiment using only 5 epochs failed to

produce results comparable to the other two experiments. However, from Figure 5.1,

one can see that the results of the experiment do reach the same levels as the other

two after about 10 generations. This seems intuitive. After all, the longer a network

is trained, the more accurate the results should be from the network, thus resulting in

higher fitness values. Thus from the first experiment, one can observe that the

genetic algorithm is indeed improving the overall fitness of the population. However,

it failed to result in a better overall structure, and took significantly more time to run

than the other two experiments. The second and third experiments, where the

networks were trained longer before given a fitness score, show that the genetic

33

algorithm appears to provide very little, if any, improvement. The curves in Figure

5.4 are fairly level for both of these experiments, indicating that all of the

improvements occurred in the first few generations. In none of the three experiments

did the genetic algorithm appear to improve the best structure, which was the entire

purpose of these experiments.

The structures produced from the three experiments, as shown in Table 5.1,

provide some interesting results. First of all, in each of the structures, the number of

nodes in the last hidden layer is between 12 and 17 neurons. When combined with

the results from experiment 3, where 68% of the final population had 16 or 17

neurons in the last hidden layer, this seems to indicate that perhaps there is some ideal

ratio between the number of output nodes and the number of neurons in the preceding

layer. It is also interesting to note that each of the structures also has a “wedge”

shape in that from the first hidden layer to the output layer the number of neurons in

each layer decreases.

It is also worth noting that the best structure from the third experiment only

had two hidden layers, while the best structures from the other experiments all had

three hidden layers. This is especially interesting in that the fitness score for this

network structure was the same as the best structure from the second experiment

which had three layers. Both structure have 17 nodes in the last hidden layer. This

would seem to indicate that the number of nodes in the last hidden layer is more

important than the number of layers in the structure.

34

To further compare the results of these structure, three structures “guessed” at

were also trained in the neural network to see how they compared to the structures

resulting from the previous three experiments. None of the “guess” structures were

successful in learning the data, either. The three structures were 50-10-4, 50-30-4,

and 50-15-15-4.

35

Chapter 6

Conclusion

6.1 Summary

In each of the three experiments, the best fit structure from the first generation

was carried consistently throughout following generations. This indicates that the

genetic algorithm did not improve upon the best “guess” from the first generation.

The genetic algorithm implementation used for these experiments had previously

been used to solve a non-trivial problem, thus making it unlikely that the results

observed were due to a problem with the GA implementation. Furthermore, the

experiment using only mutation yielded results equivalent to the two experiments

which included crossover. While the genetic algorithm improved the overall fitness

of the population, it failed to improve upon the best fit member, which came from the

initial random population of the first generation.

6.2 Contributions

After the surprising results of these experiments, further research into similar

experiments was conducted to see what results had been obtained by other

researchers. Fiszelew et al. (ND) compared neural network structures resulting from

this hybrid method to the results of random neural network structures. The error rate

after training showed only a 2% difference, indicating little improvement with the

hybrid method. However, when the two were compared in classification accuracy,

the hybrid structure was 10% more accurate in classifications, i.e., 85% accuracy

36

compared with 75% accuracy from the randomly selected structure. In a paper by

Optiz and Shavlik (1997), genetic algorithms were used to find neural network

topologies. The results showed up to a 33% improvement in error rates using the

genetic algorithm when compared to other optimization methods. However, in the

experiment showing the most significant improvement in test-set error, the standard

neural network had an error of 7.83% while the network topology derived from the

genetic algorithm had an error of 4.08%. Comparatively, this is a significant

improvement, but in terms of actual difference the genetic algorithm method reduced

the error in the test-set by less than 4%. Furthermore, they reported that the process

took 4 CPU days to finish. With a difference of less than 4% resulting after 4 CPU

days, the gain in performance does not justify the time required to achieve the

improvement.

From the findings reported by Fiszelew et al., Optiz and Shavlik, and the

experiments reported in this thesis, the benefit of employing a genetic algorithm to

obtain an improved neural network topology is arguable. The only observable benefit

would be in the accuracy of the network when classifying previously unseen data.

While the 10% improvement reported by Fiszelew et al. is nice, the benefit was still

less than half of the inaccuracy rate, and showed only a 2% improvement in learning

the training set. Optiz and Shavlik showed only a 4% difference between the error

rates of the generated topology and the standard one, requiring 4 CPU days for the

GA process to run.

37

In conclusion, it would appear that using a genetic algorithm to obtain a neural

network topology has little benefit when compared to the amount of time required to

implement such a system and then allow the system to run and evolve a topology.

However, it is possible that the results obtained in these experiments were skewed

because too few input neurons were used. The benefit in training is miniscule, and

the benefit in accuracy could be merely coincidental. One could save considerable

time and effort by generating several random topologies and testing each for a few

epochs before selecting one to go forward with. Several different topologies are

capable of learning the same data, and even the same topology can learn the data

differently if random starting weights, or a different learning rate, are assigned. Thus,

there can be several potentially successful topologies for any given data set.

6.3 Limitations

Limiting the number of inputs to 50 appears to have made the problem too

complicated to be solved with a neural network. Unfortunately, this means that none

of the topologies were able to learn the data, and so no comparisons in accuracy could

be made. Furthermore, the constraints placed upon the network topologies might

have been too restrictive. It is possible, but unlikely, that a topology with more

layers, or more nodes in each layer, might have been able to successfully learn the

training set. The constraints on number of inputs were chosen because a simple

topology was successful with 300 inputs. The other constraints on topology were

chosen so that the evaluations performed by the neural network would proceed faster.

38

Observations regarding the resulting topologies from the genetic algorithm

showed that almost all of the topologies used all three hidden layers. There were very

few topologies with only two hidden layers, and none that had only one layer. This

seems to indicate that genetic algorithm needed another operator, perhaps another

form of mutation, that would remove a layer from a given topology. This would

provide more variation in the population and expand the search space significantly.

Another possible limitation could be that all four of the objects used for

training contained the color yellow in significant amounts. If the inputs drawn from

the images corresponded to the yellow areas of each object, this could make training

on the images nearly impossible.

6.4 Future Work

A follow up study should take careful precautions to ensure that the data being

learned by the neural networks can, in fact, by learned. It should begin by allowing a

large number of inputs, evolving networks, training them, and then comparing the

accuracy of each. Then the number of inputs should be reduced and followed with

another round. In this manner, the accuracy of random topologies versus that of the

evolved topologies can be compared and analyzed with fewer and fewer inputs.

While this process would be very time consuming, it should be able to definitively

answer the question as to whether or not evolving a topology is worth the amount of

time required to do so. In order to perform a truly exhaustive comparison, this should

be repeated with data sets from different domains.

39

References

Dale, N., Weems, C., and Headington, M. (2002) Programming and Problem
Solving with C++. Third Edition. Jones and Bartlett.

Dulay, Narankar. Genetic Algorithms. Surprise 96 Journal on-line.
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/tcw2/report.html#Application
Downloaded on April 24, 2005 at 5:21pm.

Fiszelew, A., Britos, P., Perichisky, G., and Garcia-Martinez, R Automatic
Generation of Neural Networks based on Genetic Algorithms.
http://www.presidentekennedy.br/resi/edicao02/artigo01.pdf. Downloaded on March
6, 2005 at 9:23 pm.

GAITS: Global Analytic Information Technology Services. Biometrics Overview:
GAITS Portal Control System (PCS). GAITS corporate web site
http://www.gaits.com/biometrics_face.asp. Downloaded on April 24, 2005 at
4:05pm.

Garcia-Pedrajas, N., Ortiz-Boyer, D., Hervas-Martinez, C. (2004) An alternative
approach for neural network evolution with a genetic algorithm: Crossover by
combinatorial optimization. University of Granda, Soft Computing and Intelligent
Information Systems research group.
http://sci2s.ugr.es/keel/publicaciones/uco/articulos/sax2005.pdf. Downloaded on
March 6, 2005 at 10:45pm.

Goldberg, D. Genetic Algorithms in Search, Optimization, and Machine Learning.
(1989) Addison-Wesley.

Grobstein, Paul. (1994) Variability in Brain Function and Behavior. In V.S.
Ramachandran (Ed.), The Encyclopedia of Human Behavior, vol. 4. pp. 447-458.
http://serendip.brynmawr.edu/bb/EncyHumBehav.html
Downloaded on October 6, 2003 at 6:16pm.

Guan, Ying-Hua. Reexamining the modality effect from the perspective of Baddeley’s
working memory model.
http://www.iwm-kmrc.de/workshops/visualization/guan.pdf
Downloaded on October 9, 2003 at 5:09pm.

40

Guyon, I., Bromley, J., Mati, N., Schenkel, M., and Weissman, H. Penactive: A
Neural Net System for Recognizing On-Line Handwriting.
http://sherry.ifi.unizh.ch/513647.html
Downloaded on May 25, 2005 at 5:54pm.

Hosom, John-Paul, et. al. (1999) Training Neural Networks for Speech Recognition.
Center for Spoken Language Understanding. Oregon Graduate Institute of Science
and Technology.
http://cslu.cse.ogi.edu/tutordemos/nnet_training/tutorial.html
Downloaded on October 12, 2003 at 12:15pm.

Kosko, Bart. (1996) Neural Networks and Fuzzy Systems. Prentice Hall.

Lyon, Richard F. and Yaeger, Larry S. (1996) On-Line Hand-Printing Recognition
with Neural Networks. Fifth International Conference on Microelectronics for Neural
Networks and Fuzzy Systems. IEEE Computer Society Press.

Mendez, J., Falcon, A., Lorenzo, J. A Procedure for Biological Sensitive Pattern
Matching in Protein Sequences. Intelligent Systems Institute. University Las Palmas
de Gran Canaria, Spain.
http://www.iusiani.ulpgc.es/images/publicaciones/matching.pdf
Downloaded on August 30, 2004 at 12:00pm.

Mount, David W. (2004) Bioinformatics: Sequence and Genome Analysis. Second
Edition. Cold Spring Harbor Laboratory Press.

Optiz, D. W. and Shavlik, Jude W. (1997) Connectionist Theory Refinement:
Genetically Searching the Space of Network Topologies. Journal of Artificial
Intelligence Research, vol 6, pp. 177-209.

Pal, Sankar K. and Mitra, Sushmita. (1992) Multilayer Perceptron, Fuzzy Sets, and
Classification. IEEE Transactions on Neural Networks, vol. 3, no. 5, pp. 683-697.

