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Abstract 
 
This work examines the use of genetic algorithms and neural networks to generate 

neural network topologies.  The data set consists of digital images of objects taken 

from different angles.  A successful neural network topology had been trained on this 

data, so it was investigated whether the genetic algorithm could evolve a neural 

network topology capable of learning the training data.  The genetic algorithm is used 

to evolve populations of neural network topologies.  The neural network is trained 

using each of the topologies, and the remaining error in training is used to provide a 

fitness value for each of the topologies.  Thus, the fitness function is the neural 

network itself. 
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Chapter 1 
 

Introduction 
 

While artificial neural networks are typically robust enough that many 

different topologies can be used to learn the same set of data, the topology chosen still 

impacts the amount of time required to learn the data and the accuracy of the network 

in classifying new data.  Thus, choosing a good topology becomes a crucial task to 

the success of the neural network. 

The work that follows is an indirect result of another study.  In the prior study, 

two neural networks were being used to investigate the “dual modality effect” in 

learning.  The theory behind dual modality is that we rely on many different forms of 

memory and learning.  For example, if one were to recall watching a movie, one 

would probably recall some scenes entirely while other scenes might be recalled only 

by image or only by sound.  Sight and sound are the two most common modalities.  

By combining multiple modalities in learning, more data is encoded with the 

memory, thus making it easier to recall and process.  For example, when listening to a 

lecture, if one’s mind were to wander, then that portion of the lecture is missed 

completely and cannot be recalled.  However, if there is a visual element to the 

lecture, then perhaps the image can be recalled even if the words spoken could not. 

The previous study hoped to test this concept using two neural networks: one 

for sight and one for sound.  Each network was to be trained on a set of four objects 

(toys capable of making sounds).  Each object made a different sound.  Digital 

pictures were taken of each object from different angles, and sounds were recorded 
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from each object.  Only some of the angles would be used for training, and only some 

of the sounds would be trained in the other network.  Once both networks were 

trained, they would be combined by a third network which would bring the pieces of 

data together to be able to recognize the objects by sight, by sound, and by both.  The 

real test would be in determining how well the system could combine sight and sound 

to recognize an object from an angle not seen before or with a sound not heard before 

(i.e., captured from that orientation).  In this manner, the dual modality concept could 

be tested in computing systems, indicating that perhaps data should be encoded in 

memory in multiple manners. 

The training of the image network was successful on the first try.  

Unfortunately, the sound network did not train on the first attempt.  Nor on the 

second attempt.  Several different network topologies were selected and each failed to 

learn the sound data.  A great deal of time was invested in trying to identify a 

structure that could be successfully trained with the sound data.  Over twenty 

different network topologies were tested, requiring significant amounts of time.  All 

twenty failed, and so that direction of the experiment was abandoned. 

The study which follows is the result of the failures and frustrations from the 

previous experiment.  It should be noted that the failure of the first experiment could 

be a result of the nature of the problem and associated data, i.e., it is possible that no 

network topology is capable of learning from the specific set of data used for the first 

experiment.  Perhaps a network topology could be programmatically developed in 

such a way as to guarantee the success of the network, assuming that a topology 
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capable of learning the data exists.  A review of the literature showed that genetic 

algorithms had been used in other studies to do this very thing. 
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Chapter 2 
 

Background and Related Work 
 
 This thesis combines neural networks with genetic algorithms in an effort to 

find a better method of selecting neural network topologies.  This chapter provides 

background information on neural networks, genetic algorithms, and hybrid systems 

like the one used here. 

2.1 Neural Networks 
 

Artificial Neural Networks (ANNs), are a method of artificial intelligence  

based upon models posed by cognitive theory in psychology as to how biological 

brains function.  A brain is composed of neurons, cells that receive a stimulus which 

triggers a response from the neuron.  The response from the neuron can trigger other 

neurons, which trigger other neurons, etc.  Eventually, this chain of neural activation 

results in some response from the body, such as recollection of a memory, identifying 

a sound, movement of a muscle, etc. 

2.1.1 The Structure of Neural Networks 
 

The way ANNs are represented in a computer system is very similar.  An 

artificial neural network consists of several neurons, but they are divided into layers.  

There is an “input” layer where the initial “stimulus” is received.  These neurons are 

connected to a layer of “hidden” neurons.  This hidden layer can be connected to 

either another hidden layer, or the “output” layer.  There can be any number of hidden 

layers between the input layer and the output layer, but typically the number of 
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hidden layers in any particular ANN is limited.  Typically, a neuron of any layer is 

connected to each other neuron in adjoining layers.  Thus, each neuron in the input 

layer is connected to each neuron in the first hidden layer.  Each neuron of the first 

hidden layer is also connected to each neuron in the next layer (either another hidden 

layer, or the output layer).  Each of these connections between neurons has a “weight” 

associated with it, and each connection is treated individually – each connection can 

have a unique weight associated with it.  As the network “learns,” these weights are 

adjusted to represent the strength of connections between neurons.  Thus, the network 

might determine that a particular connection is of no value, and give it a weight of 

zero.  To determine the output from any particular neuron, the neuron must first 
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Figure 2.1.   A neural network with 3 input neurons, one 
hidden layer with 4 hidden neurons, and 3 output 
neurons. 
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gather its input.  For neurons in the input layer, this is trivial – the input is merely the 

value given as input to the network.  For each other neuron, however, this is more 

complicated.  The input for neurons not in the input layer is a function of the output 

from each neuron in the previous layer, and the weight of the connection to that 

neuron.  Using Figure 2.1, the input to neuron H0 in the hidden layer is based upon 

the output of each neuron in the input layer, multiplied by the connection between 

that neuron and H0.  To be more specific, suppose the output from neuron I2 is 0.35 

and the weight of 0.11 exists for the connection between I2 and H0.  Multiplying 0.35 

x 0.11, results in an input of 0.0385 into H0 from I2.  To get the total input to H0, the 

input values from each connected neuron must be summed.  Thus, the input to a 

neuron j can be written as: 

Σ(Oi * Wi,j)     (1) 

where Oi is the output from neuron i and Wi,j is the weight of the connection between 

neuron i and neuron j.  The total input to the neuron is then used to determine an 

output value from the neuron.  A sigmoid function is typically used for this, and the 

output value from a neuron will be between 0 and 1.  When a neuron is “inactive” its 

output will be close to 0.  When a neuron is triggered or “active” then its value will be 

close to 1. 

2.1.2 Training a Neural Network 
 

In order to get a Neural Network to successfully learn a task, it must first be 

trained.  This requires that some training data be gathered.  The training data must 
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include the inputs to each input neuron, and the anticipated result from each output 

neuron.  Thus, for Figure 2.1, each example in the training data must include 6 

values:  3 for the inputs, and 3 for the outputs.  Any number of examples can be 

provided to the network.  The more training examples, the better the network can 

learn the data.  There is a trade-off, however, between having a very accurate network 

and one that is robust to new data.  By providing large amounts of training data, a 

network can train to be very accurate in its results, but will not be very successful at 

dealing with new examples not included in training.  On the other hand, by providing 

fewer training examples, the network might be able to better handle new examples 

that it has never seen before, but will likely suffer in the overall accuracy of its 

results. 

Once the training data has been obtained, the training process is relatively 

simple.  When the network is first created, these weights often have random or pre-

determined values and are unlikely to produce the expected outputs on the first 

attempt.  Training or “learning” in an ANN takes place by changing the connection 

weights between neurons.  The most common learning technique employed in neural 

networks is called “back propagation.”  Back propagation works by taking the input 

values and pulsing the network to see what outputs are obtained based on the current 

weights.  The resulting outputs are then compared with the expected outputs indicated 

in the training data.  If the outputs are different then the weights are adjusted based 

upon the amount of error involved and the “learning rate,” λ.  The learning rate is 

typically a value between 0.3 and 0.7 and represents the percentage of the error to be 
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used for adjusting the weights.  A larger value for the learning rate means that the 

weights receive greater adjustments, while a smaller value indicates that the weights 

receive smaller adjustments.  The learning rate is important because the neural 

network is supposed to learn all of the examples in the training data and over-

adjusting the weights after each training example is used can cause the network to 

“unlearn” some of the progress made with earlier training examples.  Thus, by 

reducing the λ the network can continue to learn new training examples without 

counter acting prior progress.  As the λ-value is decreased, so does the speed at which 

the network learns.  Setting a larger learning rate means the network will train faster, 

but might reach a limit at which it cannot improve because changes in weight values 

are interfering with learning.   

Weights in a neural network are typically readjusted backwards – the weights 

between the output layer and the adjacent hidden layer are adjusted first and the 

weights between the input layer and the hidden layer connected to it are adjusted last.  

Thus, the error is propagated backwards.  Once the weights have been re-adjusted, the 

next example in the training data is used and the weights again re-adjusted.  Once 

every example in the training data has been used to re-adjust the weights, the process 

starts over again at the beginning, with the network again trying the first example in 

the training data and seeing how close the outputs match to those it was supposed to 

obtain.  Each iteration through the training examples is called an “epoch.”  The 

network continues to train in this manner until a) the difference between the outputs 

from the network and the expected outputs, i.e., the error, falls below a certain 
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threshold (indicating that the network has successfully learned the data) or b) a 

maximum number of epochs have passed (indicating that the network failed to learn 

the data in the number of epochs it was allowed). 

2.1.3 Applications of Neural Networks 
 

Neural networks are most typically used in “classification” problems.  A 

classification problem is one where a certain number of “classes” are identified.  

Based on the input data, the ANN determines to which class the sample will most 

likely belong.  An example of a classification problem might be in determining if a 

picture is of a male or a female – a two class problem.  When using a neural network 

for classification, the number of output nodes are usually determined by the number 

of classes, with one output node per class.  In this manner, the values of each output 

node represent the likelihood of the sample falling into each of those classes, as 

determined by the neural network.  It should be noted, however, that this is not 

probability – the ANN might indicate with absolute certainty that a given sample 

belongs to multiple classes, or none at all.  For example, using the male/female 

classes mentioned earlier, the ANN might indicate that a particular photo is both male 

and female, or neither.  This would indicate that the network requires further 

refinement in order to successfully classify the photo. 

Neural networks have been used successfully in a large number of 

applications.  They have been used to successfully recognize handwritten (Lyon, 

1996) or spoken (Hosom, 1999) words, allowing for dictation software and software 

which can take handwritten text and convert it to electronic text.  They have been 
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used to distinguish between the handwriting of different individuals, providing a 

method for handwriting verification (Guyon).  ANN’s have been used in face 

recognition, allowing the network to distinguish between pictures of different people.  

One such application is a crime fighting system used in Tampa (GAITS).  Cameras 

take pictures of people on the streets and compare them to a database of photos to 

help police locate felons.  With any classification problem, there is a potential for the 

application of an artificial neural network. 

More information on artificial neural networks, see Bart Kosko’s book 

“Neural Networks and Fuzzy Systems” (1996). 

2.2 Genetic Algorithms 
 

Genetic algorithms (GAs) are based upon evolutionary principles of natural 

selection, mutation, and survival of the fittest (Dulay).  GAs are very different from 

most computer programs, which have well-defined algorithms for coming up with 

solutions to problems.  The genetic algorithm approach is to generate a large number 

of potential solutions and “evolve” a solution to the problem. 

2.2.1 How Genetic Algorithms Work 
 
 One of the big keys to a successful genetic algorithm is in the development of 

a good “fitness function.”  The fitness function is how each potential solution is 

evaluated by the algorithm, and is in essence how the problem to be solved by the 

algorithm is defined.  For example, if the purpose of the genetic algorithm is to design 

a car, then the fitness function will provide a means for evaluating the “fitness” of any 

car design. 
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 When developing a genetic algorithm, one must decide how each solution will 

be represented in the algorithm.  For simplicity, a string of bits is most often used.  

The bits can be used to represent any part of the solution.  Taking the car example 

mentioned above, some of the bits might represent the color of the car, others the size 

of the wheels, and others the gas mileage of the car.  It is the responsibility of the 

fitness function to understand what the bits mean and how to use them to evaluate the 

fitness of each potential solution. 

 When the GA is first run, it generates an initial “population” of potential 

solutions, which could be random.  Each member of the population is then examined 

and its fitness is evaluated and recorded.  Once each member of the population has 

been evaluated, then the next generation is produced from the current generation.  

There are many ways of generating the next generation, but the two most popular 

techniques involve “crossover” and “mutation.”  In crossover, two members of the 

population are chosen at random with higher probability given to the more fit 

members of the population.  These two members are then combined to produce two 

offspring.  This is usually performed by selecting a position in the bit sequence and 

exchanging the two sequences after that position, which is called the crossover point.   

 For example, given the following two members of a population: 

11101010 

10010100 
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 If these were crossed over at position 4, the resulting offspring would be: 

11100100 

10011010 

 There are many ways to perform the crossover, but this example is one of the 

simplest.  The result is two new members in the next generation.  In theory, these two 

new members should be reasonably better fit because they likely came from fit 

members in the previous population.  Each member of the population is assigned a 

biased probability of selection.  Because of this increased probability of selection, the 

most fit members of a population are more likely to be selected for crossover than 

less fit members.  However, there is always a possibility that a less fit member will be 

selected instead. 

 The crossover process continues until the size of the next generation is the 

same as the population size of the previous generation.  After crossover has taken 

place, “mutation” is then applied to each member of the population.  A typical 

mutation function is to assign a probability for flipping each bit.  Thus, if a 10% value 

for mutation is assigned, then each bit of each member of the population has a 10% 

chance of being flipped (a 0 becomes a 1, or a 1 becomes a 0).  After mutation is 

completed, each member of the new generation is evaluated for fitness and the 

process repeats for another generation.  This process of evolving new populations 

continues until some criteria is met.  The stopping criteria could be a) when the 

overall fitness of the population reaches a certain value, b) when the overall fitness 
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over several generations fails to change more than a specified value, or c) after a 

certain number of generations have passed. 

 There are many different ways to perform crossover and mutation. There are 

also many other “genetic operators” that have been used in GAs.  Regardless of the 

details, the overall process remains the same: generate an initial population, evaluate 

the members of the population, generate a new population based upon the more fit 

members of the previous generation, and repeat the process until a certain stop criteria 

is achieved. 

2.2.2 Applications of Genetic Algorithms 
 
 Genetic algorithms are very powerful search tools.  By “search” it is meant 

that GAs are capable of pouring through a large number of potential solutions to find 

good solutions.  Scheduling has been an area where genetic algorithms have proven 

very useful.  The GA searches the space of potential schedules and finds those 

schedules which are most effective and maximize the desired criteria (such as 

minimizing idle time).  For example, GAs are used by some airlines to schedule their 

flights (Dulay).  An application of a GA to a financial problem (tactical asset 

allocation and international equity strategies) resulted in an 82% improvement in 

portfolio value over a passive benchmark model, and a 48% improvement over a non-

GA model used to improve the passive benchmark (Dulay).  GAs have also been 

applied to problems such as protein motif discovery through multiple sequence 

alignment and many other problems (Mendez, et. al.). 
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 For more information on genetic algorithms, can be found in David 

Goldberg’s book “Genetic Algorithms in Search, Optimization, and Machine 

Learning.” (Goldberg, 1989) 

2.3 Hybrid Systems – Combining Neural Networks and 
Genetic Algorithms 
 
 There have been several systems developed that combine neural networks 

with genetic algorithms in various ways.  These generally fall into three categories: 

(1) using a GA to determine the structure of a neural network, (2) using a GA to 

calculate the weights of a neural network, and (3) using a GA to both determine the 

structure and the weights of a neural network. 

 In the first category, a genetic algorithm is used in an attempt to find a good 

structure for a neural network.  The process involves the GA evolving several 

structures and using the neural network as the fitness function to determine the fitness 

level of each structure.  This technique can help eliminate the guess-work in deciding 

upon the structure of a neural network that can successfully be trained on the data. 

In the second category, the genetic algorithm is used to evolve the weights of 

the network rather than using back propagation or some other technique for training 

connection weights.  This can potentially result in quicker training of the network. 

The third category uses the GA to generate not only the structure, but also the 

connection weights in the GA.  For each structure in the population, another GA 

evolves weights.  Using the evolved weights, the GA sets a fitness value for that 

network structure.  Thus, two GAs are implemented with one running inside the 
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other.  The neural network is the final result of both GAs, with one having determined 

the structure, and the other having determined the weights of the connections in the 

network. 
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Chapter 3 
 

Statement of Problem 
 

In a series of previous experiments involving artificial neural networks, a 

great deal of difficulty was encountered in trying to find a structure for the network 

which could quickly and accurately learn to identify four objects based upon the 

sounds they made.  A previous set of experiments had already successfully classified 

the objects based upon image data.  After several failed attempts where the structure 

for the network was “guessed” by the investigator, research into more reliable ways 

of obtaining network structures was performed. 

One of the more intriguing possibilities was that of combining a neural 

network with a genetic algorithm.  The genetic algorithm would create a population 

of potential structures for the neural network.  The neural network would then briefly 

try each of the structures and report on the success of each.  Using these values from 

the neural network, the genetic algorithm would then evolve a new population for the 

network to try.  After several generations, a population of several “good” structures 

should result and could then be used to completely train the neural network. 

The work that follows in this thesis shows the results of such an experiment.  

Using the same data from the successfully imaging experiments mentioned earlier as 

a benchmark, a new effort was undertaken to see if the concept of combining genetic 

algorithm with the neural network could produce results as good or better than the 

already successful network. 
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Chapter 4 
 

Methodology 
 

In order to use both image and sound data, four objects were selected that 

could produce sound.  The objects were a toy duck which played music, a toy truck 

which made sounds like the engine was running, a race car toy which made sounds 

when it was moved, and a fire engine toy which made sounds when moved.  For the 

rest of this thesis, the objects will be referred to as “Duck,” “Truck,” “Racecar,” and 

“Fireman.”  Details into the methods employed and the reasons for choosing each are 

included in this chapter. 

4.1 Setup 
 

Setting up the experiment was an involved process.  The four objects had to 

be imaged from many different angles, and the sounds from the objects had to be 

recorded.  Then this data had to be converted from raw data into something that could 

be provided to the neural network as inputs. 

4.1.1 Capturing the Images 
 

In order to capture the images and sounds, a Logitech QuickCam was used.  

An “angle mat” was created by drawing long, intersecting lines on a sheet of paper.  

Each line was separated by five degrees.   For each object, a center line was drawn on 

it in pencil so that each object could be set properly to any desired angle on the “angle 

mat.” Images of all the objects were recorded every fifteen degrees.  All images were 
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captured at the same time of day to ensure that lighting conditions were as controlled 

as possible. 

4.1.2 Capturing Sounds 
 

Using the microphone from the webcam, each sound from each object was 

recorded.  The duck played three different songs, so each song was recorded.  The 

racecar and the fireman each made multiple sounds, so each of those were recorded.  

The truck was the only object which made the same sound every time.  More 

accurately, the duck would play music and quack with the song (for example, one of 

the songs was “Old MacDonald”).  The truck sounded like the engine was running 

and it would periodically make a sound like the horn honking.  The racecar and the 

fireman each made multiple different sounds.  Care was taken in recording the sounds 

to ensure that there was as little ambient noise as possible. 

4.1.3 Preparing the Data 
 

For the image data, no real manipulation of the data needed to occur.  

However, the sound data required quite a bit of manipulation to be converted to 

useful data.  Sounds were encoded in a .WAV format.  The sounds were examined 

and trimmed in order to eliminate noise and empty space at the beginning and ends of 

the files.  Because each of the objects made multiple sounds, with the exception of the 

duck, one sound from each of the objects was selected.  Trying to train on multiple 

sounds for each object would have added a great deal of complexity to the problem.  

Then each file was broken into 10 pieces.  Since each sound had a different length, 
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these pieces were not the same size.  Each of the 10 pieces from the duck sound were 

the same size, but they were different sizes from the 10 pieces from the truck sound.  

In order for the sounds and images to be used in the neural network, the files had to 

be converted to raw data.  To achieve this, a program was written that would take 

each byte of the file and normalize the value between zero and one before writing the 

resulting value out to a text file (a byte of 00000000 would equal zero, and a byte of 

11111111 would equal one).  In this manner, each byte of data was converted to a 

value between zero and one and placed within an easy-to-read text file.  From there, it 

was easy to gather any number of desired inputs from any location in any file. 

4.1.4 Gathering Inputs from Raw Data 
 

Another program was written to gather data from the text files created using 

the processes described in section 4.1.3.  The program asked for a number of bytes to 

be drawn from each file and used to create a training file for the neural network.  

These inputs were drawn from the center of the file.  Thus, if 50 bytes were 

requested, the program would take the middle 50 bytes from each file and create a 

training set for the neural network, with each input file being used as a separate 

training example.  Thus, if 50 byte sets were requested and there were 20 files, then 

20 training examples of 50 bytes each would be created and merged into a single 

training set.   
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4.1.5 Training File Format 
 

The training set was written as an ASCII text file with one training example 

per line and each value separated by a space.  The last four values of each example 

would indicate which output should be turned on for that example.  The outputs, in 

respective order, correlated to Duck, Fireman, Racecar, and Truck.  The 

corresponding output value would be set to 1 and the others to 0.  Thus, if a training 

example would result in being identified as the Duck, the values 1 0 0 0 would be 

appended to the end of the example.  If an example corresponded to the Racecar, then 

the values 0 0 1 0 would be appended to the end of the example. 

4.2 The Artificial Neural Network 
 

The ANN was written in Visual Basic 6.0 (Microsoft), as Visual Basic 

provided a quick and easy way of building objects, as well as a graphical user 

interface that could be used to monitor the progress of the network and adjust values, 

if needed.  Each neuron of the network was built as an object.  The network was fully 

scalable, within the physical memory limitations of the PC.  It supported any number 

of hidden layers, with any number of nodes in each layer.  The training rate, 

maximum number of epochs, and error tolerance could all be modified from the 

Graphical User Interface (GUI).  The current average error of learning is also 

displayed on the GUI and updated with each new epoch.  The ANN program can be 

initiated in several ways.  A network structure can be specified through the GUI and 

then a training set can be loaded.  The program can also be passed several different 

structures via a text file.  The latter method was implemented in order to allow the 
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neural network and the genetic algorithm to run concurrently without user-

intervention.   

The neural network has successfully learned several non-trivial classification 

problems.  These include XOR and radar signature identification of aircraft, in which 

the network was trained to distinguish between two classes of aircraft based upon 

radar signals received at various angles.  More importantly, the network had 

previously learned the image data for the four objects using a network of 300 inputs, 

10 hidden nodes, and 4 outputs.  Thus a known solution existed for the problem. 

4.3 The Genetic Algorithm 
 

The GA was implemented in C++ and was run under the Cygwin shell for 

Windows.  The constraints on the GA were that each ANN structure could have a 

maximum of 5 layers: one input layer, three hidden layers, and one output layer.  The 

input layer was fixed at 50 inputs and the output layer was fixed at 4 outputs.  Each 

structure could have from zero to three hidden layers, with a maximum of 64 (26) 

nodes per layer.  Each hidden layer was represented with 6 bits for a total of 18 bits 

per structure.  Any layer which did not have at least one node in it was ignored.  

Thus, a bit stream resulting in values of 13 0 15 would be translated as only two 

hidden layers, with 13 nodes in the first layer and 15 nodes in the second layer.  The 

algorithm used a population size of 100. 

When evolving the population of possible solutions, the GA used two simple 

operators: crossover and mutation.  The algorithm also used a “survival of the fittest” 

concept to preserve the most fit solutions from the previous generation.  Thus, for 
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each new generation, one half of the population actually consisted of “surviving” 

members from the previous population.  This was done by assigning a value to each 

member of the population in proportion to that member’s contribution to the overall 

fitness of the population.  More fit members were given larger values than less fit 

members.  Then 50 members were drawn from the population based upon these 

weighted values.  More fit members would have a higher likelihood of being moved 

to in the next generation.  The rest of the next generation was obtained by combining 

the “survivors” that resulted from the selection just described.  The theory behind this 

choice is that the survivors would be the most fit members of the previous generation 

and should result in reasonably fit “offspring.”  In order to obtain offspring, two of 

the survivors were selected at random and then the “crossover” operator was applied.  

The crossover operator randomly selected a position in the 18 bit sequence.  Each bit 

from that position to the end of the sequence was then switched between the two 

sequences, potentially resulting in two new sequences.  For example, given the two 

18 bit sequences show in Figure 4.1, the crossover operator chooses bit 6 for the 

crossover.  The results would be as shown: 

 010110101010101101  010111011010101010 

010101011010101010  010100101010101101 

Figure 4.1.  Example of results after the crossover operator is applied to two sequences. 
 
Once the crossover operator had obtained two new offspring, each bit of the sequence 

would be tested for “mutation.”  Each bit was given a 10% chance of mutation.  If a 

mutation occurred, the bit was flipped -- a 1 became a 0 and vice-versa. 
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This genetic algorithm implementation has been used successfully in a 

previous problem involving multiple sequence alignments of proteins.  In the multiple 

sequence alignment problem, a series of proteins were examined to determine if they  

shared any similar subsequences.  Similar subsequences can be exact matches, but 

typically contain amino acids that are commonly substituted for each other.  

Similarity scores were determined using the BLOSUM62 substitution matrix.  

Alignment of the sequences involves inserting “gaps” into sequences so that the 

similar subsequences are aligned with each other. 

4.4 Combining the Neural Network and the Genetic 
Algorithm 
 

in order to eliminate the need for constant user interaction in the process and 

thus improve overall performance and speed, it was necessary that both the NN and 

GA programs run concurrently.    This was implemented through a file-passing 

protocol.   

The neural network would wait until a file called “ga.done” was created.  If 

the file was not present, then the neural network would look again in 30 seconds.  

Once the “ga.done” file was found, it was deleted and the file “ga.txt” was loaded.  

The “ga.txt” file contained the path to the training set to be used by the neural 

network, the number of epochs to train each network in the file, the number of 

networks contained in the file, and the structure of each network.  The neural network 

would then create a copy of the file as “ga.#.txt” where # was the current generation 

in the genetic algorithm.  Thus, “ga.1.txt” would be the structures output from the 
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first generation of the genetic algorithm.  In this manner, each generation of structures 

could be saved for future reference.  The neural network would then attempt to train 

using each structure in the file and the specified training set for the number of epochs 

specified in the file.  After the last epoch, the ANN would write the fitness result 

(calculated as 1 – error) of the network to a file called “nn.txt” and then attempt the 

next structure in the file.  After the last structure had been attempted, the ANN copied 

the “nn.txt” file to “nn.#.txt” for archival purposes as described earlier.  Then the 

neural network would write a file called “nn.txt.go” and then go back into wait mode. 

Upon start up, the genetic algorithm created an initial population of structures 

and then wrote out the “ga.txt” file.  When the file was completed, the file “ga.done” 

was written, which activated the neural network and placed the GA into wait mode.  

The GA would continuously look for the file “nn.txt.go” which indicated the ANN 

had finished evaluating the structures.  Once the file was found, the GA deleted it and 

loaded the file “nn.txt” which contained the fitness values for each member of the 

population.  Using these fitness values, the GA would then generate a new population 

based upon the procedures described in earlier sections.  The resulting population 

would be written to “ga.txt” and then the file “ga.done” would be created.  This 

would again activate the neural network and place the GA into wait mode.  This 

process would continue until a desired number of generations had been produced by 

the genetic algorithm.  The number of generations was passed as a command-line 

argument to the genetic algorithm. 
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4.5 Final Remarks on Methodology 
 

Although difficulties in learning the sound data were what led to this 

experiment, the image data was chosen because a neural network had successfully 

learned the data.  The goal of this experiment was to validate the concept before using 

it to find a structure for learning the sound data.  The previously successful network 

only contained a single hidden layer with only 10 nodes.  This would indicate that the 

number of inputs provided enough data to nearly stand alone, and would not be of 

sufficient difficulty to prove the concept of combining the GA with the ANN.  If a 

guess at a trivial neural network topology was sufficient to successfully learn the data, 

then the problem would need to be more complicated in order to truly test if the GA 

would show improvement over random guesses.  To make the problem more difficult, 

the number of inputs was reduced from 300 to 50.  By using fewer inputs, less 

information would be provided to the network, thus making successful classification a 

more difficult task.  Furthermore, by restricting the number of inputs, the amount of 

time required to run the ANN for all 100 structures in each generation was 

significantly reduced. 
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Chapter 5 
 

Results 
 
5.1 Crossover and Mutation, 5 epochs 
 

In the first experiment, each ANN structure was trained for only 5 epochs.  

From the results, the average fitness seemed to peak around generation 40.  For each 

generation, the best fit member of the population remained the same, with the 

exception of generation 94, where a sudden spike occurred and then vanished in the 

next generation.  This spike had a fitness score of 0.427, while the best fit member of 

each other generation only had a 0.378 fitness score.  It is also worth noting that this 

popular member vanished at generation 13, but promptly reappeared in the following 

generation.  The average fitness did not show much improvement after the first 25 

generations or so.  Figure 5.1 shows the most fit member at each generation, and the 

average fitness of each generation. 
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Figure 5.1.  Results of evaluating each topology after 5 epochs. 
 

The well-conserved “best fit” member of the population, as well as the 

“spike,” were both run through the neural network to see if they could successfully 

learn the training data.  Both structures failed.  They would continue to show 

improvement up to a certain limit, at which point both of the structures ceased to 

show any improvement in learning, regardless of the number of epochs they were 

allowed to run.  The spike had a structure of 50-44-23-12-4, which was 50 inputs, 44 

neurons in the first hidden layer, 23 neurons in the second hidden layer, 12 neurons in 

the third hidden layer, and 4 output neurons.  The better conserved member had a 

structure of 50-56-49-13-4.  Both networks trained to an error of approximately 0.75, 

which is unacceptable (75% error rate). 
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5.2 Crossover and Mutation, 20 epochs 
 

For the second experiment, each structure was trained longer in the neural 

network in order to evaluate its fitness.  Rather than the 5 epochs used in the first 

experiment, each structure was trained for 20 epochs before a fitness value was given.  

This time, only 22 generations were run.  This was done to save time, and because 

observations from the prior experiment showed little change after generation 20.  This 

is further justified by the graph of the average fitness.  Figure 5.2 shows very little 

change after the first few generations as the average hovers around the 0.30 mark for 

each generation following the first one.  There appears to be no real benefit from 

letting the algorithm continue to run. 
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Figure 5.2.  Results of evaluating each topology after 20 epochs. 
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As was observed in the first experiment, the best fit member from the first 

generation is well conserved through each generation.  However, unlike the first 

experiment, there was no improvement upon the best fit member after the first 

generation. 

The best fit member from this experiment had a fitness value of 0.402 and a 

structure of 50-44-26-17-4.  This structure was run through the neural network and 

also failed to learn the data regardless of the number of epochs it was allowed to train.  

As in the first experiment, the network obtained an error of 0.75 and then failed to 

improve. 

5.3 Mutation only, 20 epochs 
 

After obtaining the results of the first two experiments, further research was 

done to see what results have been reported in similar studies.  A paper by Garcia-

Pedrajas et. al. (2004) suggested that the standard crossover operator when used in 

conjunction with a neural network is actually just a mutation.  This is because of the 

permutations possible in how the network is encoded within the genetic algorithm.  

Taking note of this, and the fact that in both of the previous experiments the best fit 

member from the first generation was carried through each generation, a third 

experiment was conducted that used only the mutation operator, without crossover.  

When creating the next generation, it was populated entirely using the weighted 

probability method mentioned previously.  Thus, the next generation would be 

populated with the more fit members from the previous generation.  The mutation 

operator was then applied to each member of the population.  The result from this 



30 

method, in theory, should be a population of fit members which have been tweaked 

slightly from generation to generation.  As in the previous experiment, each structure 

was trained for 20 epochs in the neural network before its fitness value was 

determined. 
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Figure 5.3.  Results of topologies evolved using mutation only, evaluated after 20 epochs. 
 

Just as in the previous experiment, the best fit member of the first generation 

was preserved through the entire algorithm, despite the mutation factor.  In fact, the 

frequency with which it occurred in each generation grew dramatically, reaching 27% 

by the last generation.  However, this applies only to the value of the best fit member 

and not the actual structure itself.  Several similar structures resulted in the same 

fitness value.  Examination of these structures showed an overwhelming preference 

for either 16 or 17 neurons in the final hidden layer.  This feature was present in 68% 
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of the final population.  It is also worth noting that the best fit structure from the 

previous experiment had the same fitness value as the best fit member from this 

experiment, 0.402, and had 17 neurons in its last hidden layer. 

5.4 Discussion of Results 
 

In each experiment, one of the population members obtained by a random 

selection in the first generation was maintained throughout each generation of the 

algorithm.  In the first experiment, where only 5 epochs were used for evaluation, 

there were two generations which were exceptions.  In generation 13, the best fit 

member vanished but then promptly returned in the following generation.  In 

generation 94, a better fit member was found, but it vanished in the next generation, 

despite the weighted probability of it being selected to remain. 

Table 5.1 summarizes the best fit members obtained from each experiment, 

including the “spike” obtained in the first experiment. 

Experiment Best Fitness Value Structure of Network 

W/selection, 5 epochs 0.378 50-56-49-13-4 

(spike at generation 94) 0.427 50-44-23-12-4 

W/selection, 20 epochs 0.402 50-44-26-17-4 

Mutation only, 20 epochs 0.402 50-53-17-4 

Table 5.1.  Topologies with the highest fitness values from each experiment. 
 

Figure 5.4 shows the average fitness of each generation from all three 

experiments.  The graph only includes the first 22 generations of the first experiment. 
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Figure 5.4.  Comparison of the average population fitness from the three experiments. 

 
From Figure 5.4, it appears that the experiment using only 5 epochs failed to 

produce results comparable to the other two experiments.  However, from Figure 5.1, 

one can see that the results of the experiment do reach the same levels as the other 

two after about 10 generations.  This seems intuitive.  After all, the longer a network 

is trained, the more accurate the results should be from the network, thus resulting in 

higher fitness values.  Thus from the first experiment, one can observe that the 

genetic algorithm is indeed improving the overall fitness of the population.  However, 

it failed to result in a better overall structure, and took significantly more time to run 

than the other two experiments.  The second and third experiments, where the 

networks were trained longer before given a fitness score, show that the genetic 
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algorithm appears to provide very little, if any, improvement.  The curves in Figure 

5.4 are fairly level for both of these experiments, indicating that all of the 

improvements occurred in the first few generations.  In none of the three experiments 

did the genetic algorithm appear to improve the best structure, which was the entire 

purpose of these experiments. 

The structures produced from the three experiments, as shown in Table 5.1, 

provide some interesting results.  First of all, in each of the structures, the number of 

nodes in the last hidden layer is between 12 and 17 neurons.  When combined with 

the results from experiment 3, where 68% of the final population had 16 or 17 

neurons in the last hidden layer, this seems to indicate that perhaps there is some ideal 

ratio between the number of output nodes and the number of neurons in the preceding 

layer.  It is also interesting to note that each of the structures also has a “wedge” 

shape in that from the first hidden layer to the output layer the number of neurons in 

each layer decreases.   

It is also worth noting that the best structure from the third experiment only 

had two hidden layers, while the best structures from the other experiments all had 

three hidden layers.  This is especially interesting in that the fitness score for this 

network structure was the same as the best structure from the second experiment 

which had three layers.  Both structure have 17 nodes in the last hidden layer.  This 

would seem to indicate that the number of nodes in the last hidden layer is more 

important than the number of layers in the structure. 
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To further compare the results of these structure, three structures “guessed” at  

were also trained in the neural network to see how they compared to the structures 

resulting from the previous three experiments.  None of the “guess” structures were 

successful in learning the data, either.  The three structures were 50-10-4, 50-30-4, 

and 50-15-15-4. 
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Chapter 6 
 

Conclusion 
 
6.1 Summary 
 

In each of the three experiments, the best fit structure from the first generation 

was carried consistently throughout following generations.  This indicates that the 

genetic algorithm did not improve upon the best “guess” from the first generation.  

The genetic algorithm implementation used for these experiments had previously 

been used to solve a non-trivial problem, thus making it unlikely that the results 

observed were due to a problem with the GA implementation.  Furthermore, the 

experiment using only mutation yielded results equivalent to the two experiments 

which included crossover.  While the genetic algorithm improved the overall fitness 

of the population, it failed to improve upon the best fit member, which came from the 

initial random population of the first generation. 

6.2 Contributions 
 

After the surprising results of these experiments, further research into similar 

experiments was conducted to see what results had been obtained by other 

researchers.  Fiszelew et al. (ND) compared neural network structures resulting from 

this hybrid method to the results of random neural network structures.  The error rate 

after training showed only a 2% difference, indicating little improvement with the 

hybrid method.  However, when the two were compared in classification accuracy, 

the hybrid structure was 10% more accurate in classifications, i.e., 85% accuracy 
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compared with 75% accuracy from the randomly selected structure.  In a paper by 

Optiz and Shavlik (1997), genetic algorithms were used to find neural network 

topologies.  The results showed up to a 33% improvement in error rates using the 

genetic algorithm when compared to other optimization methods.  However, in the 

experiment showing the most significant improvement in test-set error, the standard 

neural network had an error of 7.83% while the network topology derived from the 

genetic algorithm had an error of 4.08%.  Comparatively, this is a significant 

improvement, but in terms of actual difference the genetic algorithm method reduced 

the error in the test-set by less than 4%.  Furthermore, they reported that the process 

took 4 CPU days to finish.  With a difference of less than 4% resulting after 4 CPU 

days, the gain in performance does not justify the time required to achieve the 

improvement. 

From the findings reported by Fiszelew et al., Optiz and Shavlik, and the 

experiments reported in this thesis, the benefit of employing a genetic algorithm to 

obtain an improved neural network topology is arguable.  The only observable benefit 

would be in the accuracy of the network when classifying previously unseen data.  

While the 10% improvement reported by Fiszelew et al. is nice, the benefit was still 

less than half of the inaccuracy rate, and showed only a 2% improvement in learning 

the training set.  Optiz and Shavlik showed only a 4% difference between the error 

rates of the generated topology and the standard one, requiring 4 CPU days for the 

GA process to run. 
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In conclusion, it would appear that using a genetic algorithm to obtain a neural 

network topology has little benefit when compared to the amount of time required to 

implement such a system and then allow the system to run and evolve a topology.  

However, it is possible that the results obtained in these experiments were skewed 

because too few input neurons were used.  The benefit in training is miniscule, and 

the benefit in accuracy could be merely coincidental.  One could save considerable 

time and effort by generating several random topologies and testing each for a few 

epochs before selecting one to go forward with.  Several different topologies are 

capable of learning the same data, and even the same topology can learn the data 

differently if random starting weights, or a different learning rate, are assigned.  Thus, 

there can be several potentially successful topologies for any given data set. 

6.3 Limitations 
 

Limiting the number of inputs to 50 appears to have made the problem too 

complicated to be solved with a neural network.  Unfortunately, this means that none 

of the topologies were able to learn the data, and so no comparisons in accuracy could 

be made.  Furthermore, the constraints placed upon the network topologies might 

have been too restrictive.  It is possible, but unlikely, that a topology with more 

layers, or more nodes in each layer, might have been able to successfully learn the 

training set.  The constraints on number of inputs were chosen because a simple 

topology was successful with 300 inputs.  The other constraints on topology were 

chosen so that the evaluations performed by the neural network would proceed faster. 



38 

Observations regarding the resulting topologies from the genetic algorithm 

showed that almost all of the topologies used all three hidden layers.  There were very 

few topologies with only two hidden layers, and none that had only one layer.  This 

seems to indicate that genetic algorithm needed another operator, perhaps another 

form of mutation, that would remove a layer from a given topology.  This would 

provide more variation in the population and expand the search space significantly.   

Another possible limitation could be that all four of the objects used for 

training contained the color yellow in significant amounts.  If the inputs drawn from 

the images corresponded to the yellow areas of each object, this could make training 

on the images nearly impossible. 

6.4 Future Work 
 

A follow up study should take careful precautions to ensure that the data being 

learned by the neural networks can, in fact, by learned.  It should begin by allowing a 

large number of inputs, evolving networks, training them, and then comparing the 

accuracy of each.  Then the number of inputs should be reduced and followed with 

another round.  In this manner, the accuracy of random topologies versus that of the 

evolved topologies can be compared and analyzed with fewer and fewer inputs.  

While this process would be very time consuming, it should be able to definitively 

answer the question as to whether or not evolving a topology is worth the amount of 

time required to do so.  In order to perform a truly exhaustive comparison, this should 

be repeated with data sets from different domains. 
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