
�

�����������	
��
��
�����	����������	�����
��

�

By

Dinesh Selvarajan

Bachelor of Engineering (Electronics and Communication Engineering),

Bharathiar University, Coimbatore, India, 2000

Submitted to the Department of Electrical Engineering and Computer Science

and the Faculty of the Graduate School of the University of Kansas in partial

fulfillment of the requirements for the degree of Master of Science

Dr. Jerry James, Chair

Dr. Douglas Niehaus, Member

Dr. John Gauch, Member

Date Project Accepted

 2

Copyright © 2003 by Dinesh Selvarajan.

All rights reserved.

 3

���������	
�����

����
������������	�
������
����������
����

	
�����������
��

�

�������������
����	���������������
��
�������
���	�	�����������������
�

�	��
���	
	
��	
��
��������

 4

Acknowledgements

I would like to express my gratitude to Dr. Jerry James, my graduate advisor and

committee chair, for giving me this opportunity and guiding me throughout this

research project presented here. He not only acted as a project manager

promptly overwhelming me with technical inputs, but also supported me in

keeping up the morale during the entire course, thereby making me enjoy his

guidance to the hilt.

I would also like to thank Dr. Douglas Niehaus and Dr. John Gauch for serving as

members on my committee. Special thanks to Dr. Niehaus, for providing us with

his fully-grown brainchild, KURT, based on which this implementation has been

done. I am also grateful to Hariharan and Mike Frisbie and their co-team

members of the KURT project, for their cooperation by providing valuable inputs

on the real-time operating system (KURT) that is mainly used for this project.

I would like to extend my thanks to Hans Harmon, Richard Stansbury and Eric

Akers, who were involved in a part of this implementation in the spring of 2003.

Finally, my appreciation is extended to Brett Becker and Mike Hulet and their co-

system/network administrators of our research center (Information and

Telecommunication Technology Center), for their patience and expertise in

maintaining the network and smoothly dealing with all our system-level issues

every now and then.

Finally, my acknowledgements section would not be complete without

acknowledging my parents and my brother, who constantly assist me on the

background by showing their love and care toward my growth.

 5

Abstract

Java is best suited for batch computations on objects and not so good for

asynchronous, parallel and time-aware systems. There is always a need for a

proven predictable behavior in industrial Java applications. The main idea of this

project, Real-time Java (RTJ), is to enable Java for real-time systems. In short,

real-time behavior guarantees predictability and deterministic outcome of your

applications. This is done by implementing the Real-time specification for Java

(RTSJ) provided by the Java Expert Group. RTSJ defines the requirements of a

library and virtual machine to support Java on a real-time operating system

(RTOS). Using the RTSJ as a guide, RTJ library has been created, which would

enable the creation, verification, analysis, execution and management of Java

threads whose correctness conditions include timeliness constraints (basically

known as real-time threads).

 6

Contents

1.0 INTRODUCTION ...9

2.0 RELATED WORK...12

2.1 TimeSys Java...12

2.2 The simpleRTJ ...12

3.0 IMPLEMENTATION ...14

3.1 Overview ..14

3.2 RTJ Library...14
3.2.1 Clocks and Timers .. 15
3.2.2 Asynchronous Events.. 18
3.2.3 Thread parameters... 19
3.2.4 Threads.. 21
3.2.5 Scheduling... 21

3.3 Application – Bouncing Ball ...23
3.3.1 Bouncing Ball ... 23
3.3.2 Real-time threads and Dynamic Scheduling with KURT......................... 25

4.0 EVALUATION ..29

4.1 System Threads and their Problems..29

4.2 Data Streams – Instrumentation & Output ...32
4.2.1 DSUI ... 32
4.2.2 DSUI using JNI... 33
4.2.3 Instrumentation – family, events and counters ... 34
4.2.4 Execution and output .. 35

4.3 Testing and Results...36
4.3.1 User level .. 36
4.3.2 Accuracy of Scheduling – Kernel level .. 40

5.0 CONCLUSION AND FUTURE WORK ...45

5.1 Conclusion...45

5.2 Future Work – Pointers ...45
5.2.1 Memory Management... 46
5.2.2 Garbage Collection Algorithm – Non-determinism 46

BIBLIOGRAPHY..49

APPENDIX – A...50

 7

 List of Tables

4.1 Results of scheduling of events – timestamp calculation………………...38

 8

List of Figures

3.1 Overall view of RTJ library added to JVM & KURT………………………..15

3.2 Bouncing Ball – multi-threaded application…………………………………24

3.3 Dynamic Schedule – wrapper class…………………………………………25

3.4 rtparams Data Structure……………………………………………………...26

3.5 rt_timer_list Data Structure……………………………………………….27

4.1 System Threads - output of JDB……………………………………………..30

4.2 Build J2SDK-1.4.1……………………………………………………………..32

4.3 DSUI – wrapper class…………………………………………………………33

4.4 Output of Bounce2.java – real-time ID#...37

4.5 Histogram results – no load condition……………………………………….41

4.6 Histogram results – with disk load…………………………………………...42

4.7 Histogram results – with network load………………………………………44

 9

1.0 Introduction

A greater degree of importance and complexity is always present in developing

mission-critical applications that show real-time behavior. Real-time systems are

those which should produce desired responses within a specified amount of time.

Those time-critical systems which cannot afford even a slightest deviation are

termed as strict or hard real-time systems, for instance aviation flight control.

Soft real-time systems are those that still need to be real-time, but a deviation in

the responses will not actually result in any disasters. Some of the practical

applications that need control systems exhibiting mission-critical real-time

functionality are Military, Aerospace, Satellite Systems, Nuclear Power Plant,

Aircraft Control, Submarine Control, Factory Automation, Airport Aviation Flight

Control, Energy & Power Systems Supply and commercial process control

systems [1].

Java, which is a programmer-friendly language, has a lot of advantages (such as

portability, reusability, object-oriented programming, garbage collection, etc.) that

make it unique and user-friendly. It would not be an overstatement, if we say that

almost any kind of application can be developed by using Java and its

supplementary tools/concepts. Having this, it would be a godsend for the

application developers if Java were to support certain real-time scenarios.

 10

Understanding the need for the application of Java in real-time, a workshop at

the National Institute of Standards and Technology (NIST) was organized to pool

all the resources and propose a draft for Real-time Specification for Java (RTSJ).

This led to the formation of the Real-time for Java Expert Group (RTJEG) in the

Java Community Process (JCP) that has created a specification for incorporating

the real-time functionality in Java. Development of real-time Java (RTJ) has

always been a challenge for the Java community.

While commercial implementations exist for RTJ (like that of TimeSys and

simpleRTJ), there does not appear to be an available implementation free to all

users. Using the RTSJ as a guide, we have begun the development of an API,

which would enable the creation, verification, analysis, execution and

management of Java threads whose correctness conditions include timeliness

constraints (basically known as real-time threads). This project aims to develop

a real-time library for a real-time operating system (RTOS), which in our case is

KURT (KU Real-Time) Linux. KURT is an RTOS developed in the University of

Kansas. The Java version that is used is JDK1.4.1.

The rest of the paper is structured in a way that it first discusses the related work

in Chapter 2. Then it explains the way this project has been implemented in

Chapter 3. It then deals with the testing for the correctness of the results of the

application that has been created to demonstrate the determinate scheduling of

 11

events, in Chapter 4. Finally, Chapter 5 conclusively briefs the work and gives

the future work in this area.

 12

2.0 Related Work

2.1 TimeSys Java

TimeSys Corp. is a private company that mainly deals with supplying leading-

edge Linux products to the developers of embedded systems. They have

developed their own Linux real-time operating system called the TimeSys RTOS.

This is considered to be the only single-kernel Linux RTOS [3].

TimeSys built the official reference implementation for RTSJ. They developed

the world’s first RTSJ-compliant JVM. TimeSys RTOS is being used to

implement the real-time functionality in the JVM. The RTSJ-compliant JVM that

they have developed is called JTime. JTime is a fully integrated customizable

Java runtime environment that enables real-time Java development for

embedded devices. JTime uses a real-time priority scheduler with greater

precision. Eventhough they have pioneered this implementation, neither the

RTOS nor the customized JVM along with implementation are made freely

available to the users.

2.2 The simpleRTJ

The simple Real-Time Java is a clean room implementation of the Java

language. In comparison with the other systems available in the market, this

simpleRTJ only requires 18-24kb of memory to run. This being the major

 13

advantage, simpleRTJ can be used for small embedded and consumer devices

with only small amount of system memory. [4]

Its implementation also contains native calls to the operating system. Dynamic

class loading disrupts the timing behavior. The fact that the simpleRTJ

application is made to execute pre-linked Java applications so as to minimize the

application start-up times has obviated the dynamic class loading process (of the

Java application). The simpleRTJ also comes with a graphical debugger that is

helpful in development.

This is known to be the only implementation of JVM that can execute byte codes

on devices with bank switching memory model. Mobile phones, electronic toys,

smart card readers etc. are some of the applications where simpleRTJ can be

used.

 14

3.0 Implementation

3.1 Overview

The total scope of this work (i.e. implementation) can be divided into two major

categories viz., the creation of the RTJ library (javax.realtime package) and the

development & testing of a driving example, which is a real-time application (to

test the determinate scheduling of real-time threads).

3.2 RTJ Library

Real-Time Specification for Java was used as a template for developing RTJ

library. That is, a package called javax.realtime has been created. The features

that have been implemented can be classified into the following major categories:

(The threads and scheduler require a couple of lower-level features like clock

and timers)

• Real-time Clocks

• Real-time Timers

• Real-time Threads

• Real-time Scheduling

The current Java Virtual Machines use the native threads. So, instead of making

changes to the JVM, the real-time functionality can be can be added by making

calls to the native KURT functions. The Java Native Interface (JNI) is employed

 15

for making these native calls. This gives us the convenience of calling the native

methods through Java and also of modifying the Java objects from the native

methods. The idea is to implement real-time Java with as little dependency on

the JVM as possible.

Fig 3.1: Overall view of RTJ library added to JVM & KURT

3.2.1 Clocks and Timers

3.2.1.1 Clocks

As the complex threads and scheduler are built on the Time classes, we have

this as the starting point for our implementation. The classes (related to the

clock/time) that are implemented are:

Clock.java

javax.realtime package

JVM

KURT-Linux

 16

The Clock abstract class defines the basic functionality for a clock in Java.

Through the Clock.getTime() method, the current time will be available. This

basic clock class can be extended for numerous other types of clock such as a

real-time clock.

KURTClock.java

The KURTClock represents an implementation of the abstract clock class. This

clock utilizes the enhancements of KURT on the system clock. To access the

current timeofday, two native methods have been implemented:

nativeGetResolution(), obtains the clock resolution, and nativeGetTime(), calls

getTimeofDay().

HighResolutionTime.java

The HighResolutionTime abstract class is base class for AbsoluteTime,

RelativeTime, and RationalTime. It is used to store a number of milliseconds and

nanoseconds. This class also implements the compareTo class that allows

comparison between time events to be simplified.

AbsoluteTime.java

The AbsoluteTime class produces a HighResolutionTime object that represents a

specific time in milliseconds plus nanoseconds past the epoch (January 1, 1970

00:00:00 GMT). This is used to replace the given standard representation of

time for Java with nanosecond resolution. Numerous math functions are

available to add or subtract RelativeTime values from an AbsoluteTime, or find

the difference between two AbsoluteTime values.

RelativeTime.java

 17

The RelativeTime class represents a period of time of length milliseconds +

nanoseconds long. A relative time can be defined relative to the current time

from Clock.getTime(). Numerous methods are available to convert, add, or

subtract RelativeTime values to create new RelativeTime or AbsoluteTime

values.

RationalTime.java

The RationalTime class takes a time RelativeTime object and a frequency value

and calculates the interarrival times by dividing the RelativeTime by the

frequency.

3.2.1.2 Timers

Timers represent a timed event that fires at a given time relative to a given clock.

The following timer classes have been implemented from the RTSJ:

Timer.java

The Timer class is an abstract class that defines the basic functionality for the

timer classes. This file extends an AsynchronousEvent which allows handlers to

be assigned to a timer. Once the timer expires, all of the handlers are fired. In

order to implement the timer, an internal class, which extends RealtimeThread,

was created. This class worked for both OneShotTimers and PeriodicTimers.

JNI method calls to nanosleep were utilized. Once the sleep terminated, the

Timer event would fire.

OneShotTimer.java

 18

The OneShotTimer class behaves as the name suggests. The timer is assigned

a start time, AbsoluteTime, and a handler. Once the timer is told to start, it will

fire when the given time has been reached. If the time has already passed, the

timer will fire immediately.

PeriodicTimer.java

The PeriodicTimer class performs similar to OneShotTimer. However, it also

takes a time interval, RelativeTime, which represents the time between

successive firings of the timer. Thus, the timer fires once at the given start time.

After that firing, the timer will fire after every interval has passed.

3.2.2 Asynchronous Events

Each event can have a set of handlers with it that react when the event is fired.

When the event occurs, the handler is placed on the scheduler. In the event of

an error or time violation during a real-time thread, an asynchronous event

handler is utilized to respond. The classes were implemetned to support

asynchronous events are:

AsyncEvent

The AsyncEvent class defines an asynchronous event. One or more handlers

are associated with the event. When the event is fired, each handler is

scheduled to execute.

AsyncEventHandler

 19

The AsyncEventHandler class defines the basic structure of an asynchronous

event handler. It implements Schedulable so that it may be placed on the

scheduler. Like threads, the AsyncEventHandler contains many parameters

(release, scheduling, etc) that allow the event to be properly scheduled as a real-

time task.

3.2.3 Thread parameters

SchedulingParameters.java

The abstract class SchedulingParameters is the parent class for

PriorityParameters, KURTSchedulingParameters, and ImportanceParameters.

The parameters set by these classes determine the scheduling behavior of the

schedulable object they support. Modifications to these parameters will result in a

change in these behaviors.

PriorityParameters.java

The class PriorityParameters supports priority-based schedulers by storing an

integer value for the Priority of the schedulable object.

KURTSchedulingParameters.java

The class KURTSchedulingParameters extends SchedulingParameters. It was

designed to help make our real-time threads interoperable with KURT. This

class performs the same basic functions as the rtparam struct found in KURT.

This parameter includes real-time process modes and system-level real-time

 20

modes. The constructor for KURTSchedulingParameters takes the values real-

time task ID, the period between executions, the execution time, a name for the

real-time task, and the KURT real-time mode.

ImportanceParameters.java

The ImporatanceParameters class extends PriorityParameters. In addition to a

priority, this class also takes an importance value. During an overload situation, a

scheduler (priority or rate-monotonic) could use this value to act as a tiebreaker

for threads of the same priority.

ReleaseParameters.java

The abstract class ReleaseParameters describes the release characteristics for

real-time threads. Release parameters include two RelativeTime values: cost and

deadline. Cost is the threads processing time per interval. The deadline is the

latest the thread must complete from when it is released. Two

AsyncEventHandler objects are also assigned. First, overrunHandler is fired if

the execution of the object exceeds the given cost. The missHandler is fired if

the thread is still execution after the deadline.

PeriodicParameters.java

The PeriodicParameters class extends the abstract class ReleaseParameters. In

addition to the above parameters, a period is assigned which represents the time

between unblocks of the schedulable object.

AperodicParameters.java

 21

The AperiodicParameters class extends the abstract class ReleaseParamters. In

actuality, this class provides no unique additions to ReleaseParameters. It

simply acts as a placeholder to make ReleaseParameters appear hierarchical.

ProcessingGroupParameters.java

The class ProcessingGroupParameters allows common parameters to be

assigned to a group of schedulable objects. Unlike other parameters classes, an

instance of ProcessingGroupParameters may apply to multiple objects.

3.2.4 Threads

RealtimeThread.java

The class RealtimeThread extends the java.lang.Thread the standard Java

thread class. Unlike tranditional Java threads, these threads also store the

various parameter classes discussed above. The parameters are interpreted by

the scheduler to ensure that the threads operate in a real-time fashion. Once the

thread has been approved by the scheduler (discussed later), a JNI call is used

to schedule the thread as a process in KURT.

3.2.5 Scheduling

Schedulable.java

 22

The interface Schedulable defines the requirements of classes that will be placed

on the scheduler. Schedulable is implemented by AsynchronousEventHandler

and RealtimeThread.

Scheduler.java

The abstract class Scheduler defines the basic functionality that is required for a

real-time thread scheduler. This class is used as the parent class for various

scheduling policies including priority scheduling and KURT scheduling.

PriorityScheduler.java

The implementation of the PriorityScheduler is required by the RTJ specification.

Maximum and minimum priorities are defined to determine the bounds for priority

assignments.

KURTScheduler.java

The class KURTScheduler is where Real-time Java becomes real-time. Since

we utilize native calls to schedule the thread directly in KURT, this class is only

utilized to verify the feasibility of a thread. Based on the various parameters

given to the thread, the scheduler determines if the thread may be scheduled or

not.

 23

3.3 Application – Bouncing Ball

3.3.1 Bouncing Ball

The RTJ library (javax.realtime package) that has been created by invoking

native calls to communicate with KURT provides the real-time functionality. To

have it implemented in and check the results for a practical application, a multi-

threaded and graphical Bouncing ball application (Bounce2.java) has been

created. Java Swing and the Abstract Window Toolkit (AWT) are utilized to

generate the graphics.

This application demonstrates a multi-threaded application simulating the balls

bouncing against the wall. It can be noticed that at low loads, the balls move

faster and as the load increases, refreshing takes a longer time and the threads

are non-deterministic and their movement is not jerkier. When the real-time

functionality is incorporated, the threads follow a deterministic pattern and as a

result, the movement of the balls is much smoother.

This application has three features of controlling the motion of the ball viz., add a

ball, pause & resume and reset the screen. Whenever a ball is added to the

screen, a new thread is spawned and started to run. Each thread is linked to the

each of the balls on the screen. This thread will run and cause the ball to move.

When reset, all the balls are removed from the container and all the threads are

completely stopped. But, when the Pause button is clicked, all the balls are

 24

stopped i.e. they are still in the container and are being displayed without getting

moved from that location. But, all the threads that are linked to the balls are

terminated. And, once the balls are made to Resume, then the movement of the

each of the balls start from the location where it was left, by making all the

threads (linked to the balls) to run.

Fig 3.2: Bouncing Ball – multi-threaded application

 25

3.3.2 Real-time threads and Dynamic Scheduling with KURT

From Java, JNI is employed to communicate with the real-time operating system

(KURT). Native calls are made from the Java program and they in turn call the

core KURT functions written in C code. A Java wrapper class

(DynamicSchedule.java), containing the prototypes for the native methods (which

are defined in a C program – Java_Dynamic_Schedule.c), is written to invoke calls

from Java.

public class DynamicSchedule {
...

 public native static int nativeKURT_open();
 public native static int nativeRegister(int kurtdev, int
ballNum);
 public native static int nativeSchedule(int kurtdev, int
total_balls, int[] rt_ids, int speed);
 public native static void nativeSuspend(int kurtdev);
 public native static void nativeDisableSchedule(int kurtdev);
 public native static void nativeKURT_close(int kurtdev);

...

}

Fig 3.3: Dynamic Schedule – wrapper class

When starting the application, a kurt device is opened. Whenever a new ball i.e.

threads, starts to run, first it is registered with KURT as a real-time process. A

real-time ID is assigned to it. A name for that particular ball is being assigned

and the entire rt_params structure is being internally maintained by KURT.

struct rtparams {
 int rt_id;
 unsigned long period;

 26

 unsigned long exec_time;
 char rt_name[MAX_RT_NAME_LENGTH];
 unsigned int rt_mode;
};

Fig 3.4: rtparams Data Structure

The total number of balls created in the application (at any point of time), the ball

number for each ball, and all the real-time IDs are kept track in the program. The

real-time system mode for which each thread is being registered is a combination

of the KURT_EXPLICIT and KURT_EPISODIC modes.

Once a single ball, for instance, has been created, it now has to be scheduled.

Threads are constantly getting created. Each time a thread is created and

started to run, this thread has to be dynamically added to the scheduling of

processes. For scheduling with KURT, the concept of explicit time scheduling is

employed. The main advantages of this kind of scheduling in KURT are,

1. scheduling can be done by specifying times in micro- and nanosecond

resolution and,

2. schedule of events is guaranteed to execute within the specified time

A structure for the schedule is created. A real-time schedule queue (which is

nothing but an array) of rt_timer_list structures is being created and populated

with the specific times when each thread has to be started, suspended and

woken up. The timer flag (for all the threads) has to be set to KURT_WAKEUP.

 27

The structure also contains the real-time ID of each of the threads so as to

enable it to run the thread when it is woken up.

struct rt_timer_list {
 struct timer_list timer;
 struct rt_timer_list *next;
 int programmed;
 int expired;
};

Fig 3.5: rt_timer_list Data Structure

Now that the schedule has been created, it has to be submitted to system using

submit_dynamic_schedule() function. The scheduling mode needs to be

specified as SCHED_KURT_PREFERRED.

After submitting a new schedule to the system, the particular thread is made to

suspend (rt_suspend) for the millisecond duration that is given as the command-

line parameter while executing the bouncing ball program. This suspend mode is

the combination of SUSPEND_IF_NRT and START_SCHED. When this thread

gets woken up after the specified duration of time, it is made to move (by

invoking the move method). And when another new thread gets created, the

same process gets repeated and the bouncing of all the balls goes on smoothly.

The point to be noted is that when the thread starts to run, a new schedule

(including all the threads that are running so far) is submitted. It has been

designed internally that submitting a new schedule overrides the older/existing

schedule queue. When the application ends, this dynamic scheduling has to be

 28

disabled (disable_dynamic_schedule function); else the schedule keeps on

running without getting terminated. Finally, the kurt device is closed (by the close

function).

 29

4.0 Evaluation

This chapter discusses how the bounding ball application is tested and the tools

used for tracking the timings of the real-time threads. It explains the following:

the list of system level threads that are created when a Java application is

created. And subsequently, the removal of GC and Compile threads in the JVM

(j2sdk-1.4.1) – for testing (as they need to be gotten rid of for real-time testing

and evaluation), instrumentation using DSUI tool and how it is incorporated using

JNI, the actual testing of the bouncing ball application, its results (using the .xml

file – which is the output of the DSUI instrumentation) and the comparison.

4.1 System Threads and their Problems

When a simple Java application (for instance, a “Hello World!” program) is

executed in a Linux box, it spawns a total of nine spooky threads. The Java

Debugger (JDB) is used to display six of the threads that get created. The

system level threads are Reference Handler, Finalizer, Signal Dispatcher,

CompileThread0 and those under the Group Main (i.e. user-level threads) are

main thread and Thread-0 (the logger thread). If the Java program creates any

thread, then the naming convention of Thread-1, Thread-2 and so on is followed.

main[1] threads
Group system:
(java.lang.ref.Reference$ReferenceHandler)0xee Reference Handler cond.
waiting

 30

(java.lang.ref.Finalizer$FinalizerThread)0xed Finalizer cond.
waiting
(java.lang.Thread)0xeb Signal Dispatcher running
(java.lang.Thread)0xec CompileThread0 cond.
waiting
Group main:
(java.lang.Thread)0x1 main running
(java.util.logging.LogManager$Cleaner)0x123 Thread-0 unknown
(dummyThread)0x124 Thread-1 cond.
waiting
(dummyThread)0x125 Thread-2 cond.
waiting

Fig 4.1: System Threads - output of JDB

As the system threads have a higher priority and can override any other activities

especially the real-time threads that we have created and pose a problem, they

need to gotten rid of the JVM. This is because the Memory management and the

Garbage collection (GC) features have not been taken care of in our

implementation.

One part of the GC is the Finalizer thread and the other is the Reference Handler

thread. Removal of the reference handler makes our application not to support

weak references. The non-deterministic GC has to be suspended, so the

finalizer is also removed. As far as the Signal Dispatcher thread is concerned,

this is left untouched. This can be removed only if the timing between the signals

can be controlled by our real-time system.

The CompileThread0, is just a best-effort thread, not a real-time thread. This

could be a JIT compiler or a HotSpot compiler. It basically runs only if there are

 31

no other real-time process is running. This poses the real-time processes a

problem only if it acquires a lock. So, this also has been removed.

The Thread-0 is the one that closes all the open handlers. This is actually

spawned only when the program exits. There is one more thread called the

Secondary Finalizer Thread that is linked to the Finalizer process. But even this

does its job only on exit. There are no problems with these threads and so are

left untouched.

The entire Java Development Kit including the HotSpot (for customizing and

development purposes) is got from the java.sun.com downloads. The kit that is

being customized is the J2SDK-1.4.1, which is the latest version that Sun

Microsystems has released. Summarizing all the above, the threads that have

been removed in this JVM are Reference Handler, Finalizer and the

CompileThread0. The commented locations for the above in the J2SDK are as

follows:

• Finalizer thread in: /projects/kurt/rtj/j2sdk-

1.4.0/j2se/src/share/classes/java/lang/ref/Finalizer.java

• Reference Handler thread in: /projects/kurt/rtj/j2sdk-

1.4.0/j2se/src/share/classes/java/lang/ref/Reference.java and,

• CompileThread0 thread in: /projects/kurt/rtj/j2sdk-

1.4.0/j2se/src/share/classes/java/lang/Thread.java

 32

These are the threads that get created (i.e. new Thread …) from the following

locations: /java/lang, /java/util, /java/nio – in the J2SDK directory structure.

Those, if any, under the /java/awt, swing and /sun/corba are not taken into

account.

For these above changes to take effect the Java kit is built again and the

resulting executable is used to compile and execute our driving example, the

bouncing ball program.

make DEV_ONLY=true ALT_BOOTDIR=/tools/java/i586/j2sdk1.4.0/
ALT_OUTPUTDIR=/projects/kurt/rtj/j2sdk-1.4.1/build
ALT_MOZILLA_PATH=/projects/kurt/rtj/j2sdk-1.4.1/devtools
ALT_DEVTOOLS_PATH=/usr/local/bin
ALT_JAVAWS_PATH=/tools/java/i586/j2sdk1.4.2/jre/javaws
ALT_MOTIF_DIR=/projects/kurt/rtj/j2sdk-1.4.1/motif

Fig 4.2: Build J2SDK-1.4.1

4.2 Data Streams – Instrumentation & Output

4.2.1 DSUI

The Data Streams User Interface (called DSUI) that comes along with KURT is

used to instrument the bouncing ball Java program so as to check the various

timings of the threads created.

 33

This is basically a tool that helps to gather the instrumentation data during the

execution of programs. The activity of the real-time threads that are used in the

application can be measured using high-resolution timers, which are made

possible by incorporating the DSUI instrumentation points in the program.

4.2.2 DSUI using JNI

The DSUI calls are to be made from the Java Bouncing ball program by native

method calls. This is done using JNI. A wrapper class (dsui_Bounce2.java) for

the DSUI functions is written in Java. These methods in turn call the JNI-linked C

functions (that are defined in Java_dsui_Bounce2.c) which make the actual DSUI

call.

public class dsui_Bounce2 {
 . . .

 public static final int APPLICATION_FAM = 1;
 public static final int EVENT_OPEN = 5;
 public static final int EVENT_START = 4;
 public static final int EVENT_SUBMIT_SCHED = 3;
 public static final int EVENT_SUSPEND = 2;
 public static final int EVENT_WAKEUP = 1;
 public static final int EVENT_EXIT = 0;
 public static final int COUNTER_BOUNCE_SPEED_CONST = 0;

 public static final boolean DSUI_SET = true;

 public native static void native_DSUI_INIT(String identifier,
String enabled);
 public native static void native_DSUI_EVENT_LOG(int family,
int event, int set, int len, Object data);
 public native static void native_DSUI_RESET_COUNTER(int
family, int counter);
 public native static void native_DSUI_ADD_TO_COUNTER(int
family, int counter, int amount);
 public native static void native_DSUI_LOG_COUNTER(int family,
int counter);
}

Fig 4.3: DSUI – wrapper class

 34

4.2.3 Instrumentation – family, events and counters

A family with the name APPLICATION is created and is assigned a family ID

(which is 1). All the events and a counter come under this family. The counter,

named as COUNTER_BOUNCE_SPEED_CONST, is just used to store the value

of the speed that is entered as a command-line parameter by the user, (instead

of having the values incremented as in a counter). The various events that mark

the instrumentation points in the program are (along with their entity IDs):

• EVENT_OPEN 5

• EVENT_START 4

• EVENT_SUBMIT_SCHED 3

• EVENT_SUSPEND 2

• EVENT_WAKEUP 1

• EVENT_EXIT 0

These information pertaining to the events, counters and the family are contained

in a namespace file (namespace_Bounce2.dsui) which has to be inputted to the

DSUI parser.

All these events are logged using the DSUI tool along with the time stamp when

it occurs. The timestamp is a 64-bit counter and not an actual time value – this

counter value has to be converted to get the actual time when it operates. The

 35

EVENT_OPEN is when a KURT device first gets opened in the application.

Whenever a new ball (that is created by adding a ball) starts running

EVENT_START is logged. Once started running, a schedule has to be made

and submitted, whenever a new ball is started to run. Each time a fresh

(dynamic) schedule is submitted, EVENT_SUBMIT_SCHED is logged. After

scheduling, a thread gets suspended periodically and then moves then gets

woken up and the gets suspended and moves and so on. So,

EVENT_SUSPEND is when it gets suspended and EVENT_WAKEUP is when it

gets woken up. EVENT_EXIT notes the occurrence of the KURT device getting

closed – which is normally towards the end of the application (either smoothly or

whenever an exception occurs).

When the application starts, the DSUI has to be initialized by DSUI_INIT()

function. Event logging is done through DSUI_EVENT_LOG() function.

DSUI_RESET_COUNTER(), DSUI_ADD_TO_COUNTER() and

DSUI_LOG_COUNTER() functions are used to reset, add to and log a counter.

4.2.4 Execution and output

Finally, when the entire application (the DSUI-instrumented one) is executed, a

binary file which has collected all the necessary information (in a machine-

recognizable form) is created in /tmp/ of the machine where the application is

executed. This binary file is parsed and the information is extracted in the form

of an xml file using the bintoxml parser – which is done in this format: bintoxml

 36

dsui advanced-events.18047 output.xml namespace_Bounce2.dsui; which in our

case is,

bintoxml dsui /tmp/advanced-events.18047 output.xml

namespace_Bounce2.dsui

where, ‘advanced-events.18047’ is the binary file that gets created, ‘output.xml’ is

the results file in xml format and ‘namespace_Bounce2.dsui’ is the namespace

file which contains the family information.

The results are displayed in terms of a 64-bit counter, whose exact timing and

comparison will be explained in the next subsection that deals with the testing –

where the initial part of the output.xml is shown.

4.3 Testing and Results

4.3.1 User level

The bouncing ball Java program is made to accept the speed with which the balls

should bounce as a command-line parameter while executing java i.e. java

Bounce2 10. The speed is given in milliseconds – which in this case is 10ms.

This speed is stored (as a counter) and is logged in the DSUI.

For running the application finally, one needs to have KURT installed in his

machine and the compiling and linking paths must be properly given. The build

 37

for the all files is in a shell script build-Bounce2.sh

(/projects/kurt/rtj/application/working/).

Requirements for executing the application:

• Check if the environment variable LD_LIBRARY_PATH is set to your

current working directory or the place where the .so files (libraries of the C

code – which are librtj-kurt.so and librtj-kurt-dsui.so) are located.

• Your login should have the root shell permissions on the machine to

execute the KURT commands and making the threads real-time. The

machine that I have been working is testbed43.ittc.ku.edu.

testbed55 [6] # java Bounce2 10
kurtdev is: 20
Real-time ID# (as assigned by KURT) are:
ball1: 255
ball2: 254
ball3: 253
ball4: 252
ball5: 251
ball6: 250
ball7: 249
ball8: 248
ball9: 247

Fig 4.4: Output of Bounce2.java – real-time ID#

For testing the real-time scheduling of the balls, nine balls (i.e. nine real-time

threads) are created. Every time a new ball/thread is created, a new schedule,

appending the new thread, is constructed and submitted. All the timers are

wakeup timers. The schedule causes 10ms time period between events i.e.

 38

each (wakeup) timer is 10ms apart. Thus, the difference between the times of

two consecutive wakeup events gives the duration of sleep of a thread or in other

words, shows if the wakeup timers are triggered properly as expected. The basic

idea is that, having the speed of ball to be 10ms, each thread should sleep for

10ms and then run and do the process in its assigned quantum of time.

Following is the comparison of actual results versus the expected time.

Processor speed = 1399.380 MHz; which means 1399380000 cycles per second.

Timestamp

counter of the
wakeup events

Diff. bet. 2 wakeup

events

Diff. in

milliseconds =
(diff./cycles per
second)* 1000

Deviation (in ms)
from the expected

10ms

6838399036229

6838413029334 13993105 9.9995 0.0004

6838427395794 14366460 10.2663 0.266

6838441011820 13616026 9.7300 0.269

6838455003761 13991941 9.9986 0.0013

6838469000660 13996899 10.0022 0.0022

6838482990727 13990067 9.9973 0.0026

6838496984194 13993467 9.9997 0.0002

6838510979976 13995782 10.0014 0.0014

6838524971172 13991196 9.9981 0.0018

Average error: 0.0605

Standard Deviation: 0.1173

Table 4.1: Results of scheduling of events – timestamp calculation

 39

Based on the timestamp counter results from the DSUI log, the timestamps are

converted to milliseconds in the below table. A sample of 10 wakeup

consecutive events is taken (from the DSUI log). The difference between two

wakeup events is taken and is checked with the input speed value of 10ms. The

deviation is found out to be less and bearable. The mean error comes out to be

0.0605 milliseconds and the closest result is for the eighth sample which is

deviated only by 0.2 microseconds.

The kurt_status command gives the list of currently running real-time

processes along with their real-time IDs and their pids. This clearly shows the

status of all the processes at any given point of time. It shows how many times a

particular thread/process has missed its schedule – which in our case is nil for all

the real-time processes proving that everything has fallen in place and there has

been no missed schedules.

It also displays the number of times a process,

• got awoken.

• got suspended (rt_suspend).

• got aborted.

• got switched to another i.e. it is being preempted.

The output of the kurt_status command is shown in Appendix – A.

 40

4.3.2 Accuracy of Scheduling – Kernel level

The accuracy of the actual scheduling (that takes place in the kernel) is found out

using the kernel level instrumentation points through DSKI (Data Streams Kernel

Interface). Now, the DSUI is disabled and the application with speed of the ball

as the command-line parameter. In our case, the speed of the balls is taken as

10 ms, which means each thread is to sleep for 10ms and then resume its

movement.

In these experiments to follow, the application starts with a fixed number of

threads/balls running, which in this case is 10. All these are real-time threads

that start running when the application is executed.

The same concept of explicit time scheduling is followed by scheduling the balls

for 10ms periods i.e. the threads are scheduled to wake up at 0, 10, 20 ,30ms

and so on. For checking when actually the RT threads get awoken, the delta

value (difference between the actual time a thread gets triggered and the

specified wake-up time) of each wake-up event due to this schedule is plotted as

a histogram through DSKI. The histogram that is instrumented in the kernel for

this purpose is HIST_RT_USER_DELAY (which comes under the

KURT_PROFILE family of the namespace file for DSKI). The unit of this delta

measurement is in timestamp counter values – based on which the graph is

plotted. This is run in a 1399 MHz machine. So, 500 time ticks (that is plotted in

the graph) is about 0.36 microsecond and 50000 comes to around 36

microseconds.

When the application is running, compst program is used to track the values at

the instrumentation points in the kernel. The duration of observation, lower &

upper bounds of the histogram and the size of buckets etc. are to be given as

command-line parameters for this compst program.

 41

Experiments are conducted under the following three conditions (under no load,

and with network load & disk activity running in the background). All the

experiments are observed for duration of 30 seconds and a histogram is plotted.

The upper and lower bounds of the plots are specified based on the number of

events occurring in that range, for each case.

4.3.2.1 Unloaded

The Bouncing ball application is the only job that is running on the machine.

There are no other external loads.

Fig 4.5: Histogram results – no load condition

 42

In this case, the delay of most of the events getting switched is at a peak

between 1000 and 1500, which corresponds to 0.72 and 1.07 microseconds.

The maximum of the delay value also comes to be around 2000 timer ticks (1.43

microseconds). As the system is not loaded much, this degree of accuracy, in

spite of the overload from Java and JNI, is achieved.

4.3.2.2 Disk Load

In an idea to simulate a surge of disk activities, which greatly prove to be a

hindrance to the RT processes, a kernel is compiled (in the local disk) in the

Fig 4.6: Histogram results – with disk load

 43

background. The results are taken from the DSKI (for 30 seconds)

simultaneously when the application and the kernel compilation are running in

the same machine and the values are plotted as a graph.

Frequent disk accesses make a considerable impact when compared to the

unloaded condition. It starts at 1000 and the peak is around 2000 (1.43

microsecond), which was the maximum delay in the unloaded condition. The

major cluster of events occurs in the range of 1000 to 7000 (5 microseconds) and

a few spikes around 9000 (6.4 microseconds). Moreover, when the xml output of

the DSKI is analyzed, it is observed that about 220 events (out of 3000) exceed

the delay value of 10000 (7.2 microseconds). The disk activities clearly explain

the increased delay which results from the RT processes getting impacted.

4.3.2.3 Network Load

Another way of thrusting load into the system is to interrupt the machine by

constantly pinging Ethernet messages from a remote machine. Messages are

pinged from a terminal in another network to the machine where the bouncing

ball application is running. Now, the deviation is observed through DSKI for 30

seconds.

 44

Fig 4.7: Histogram results – with network load

This shows that the majority of the delay values lie within 2500 (1.8

microseconds). The xml file from the DSKI also says that around 360 events (out

of 3000) fall outside of 35000 (25 microseconds), which is a relatively

considerable variance from the expected behavior.

 45

5.0 Conclusion and Future Work

5.1 Conclusion

This project aims at implementing the RTSJ for JVM using a real-time operating

system. The gaps of the Java programming language for Real-Time Systems

have been bridged by having developed the API for Java Real-Time, package

name "javax.realtime". This work aims at a much simpler and open-to-all

implementation. The real-time JVM was a result of small modifications to the

Java specification language. We will see Java dominate the other software for

the automation and real-time computer control industries over the coming years.

5.2 Future Work – Pointers

The implementation is done by adding a library, javax.realtime package, (as per

the RTSJ) to the Java package and then by customizing the JVM. The major

areas that were focused in this project are threads, scheduling, clocks and

timers. As a future work, the features of memory management and the garbage

collection (GC) have to be incorporated. The RTSJ specifies the skeleton

classes for the memory management section, using which it can be

implemented.

 46

5.2.1 Memory Management

The memory management and the GC also contribute to the unpredictable

behavior of the Java application. Memory management in Java introduces

unacceptable latencies in embedded and industrial Java applications [3]. The

main idea of the existing JVM is that memory is allocated from the heap rather

than through a specific allocation policy; so the results could be unpredictable

and non-deterministic. For dealing with the memory management, the threads

are to be made No Heap Real-Time threads (NHRT) that guarantee deterministic

outcome of your applications. By making them no-heap, it can be ensured that

those threads can preempt the garbage collector to guarantee that your

applications do what you want, when you need them to.

Dynamic checking has to be done so that NHRT threads never access a location

containing a reference into garbage-collected heap. At every read, check to

make sure result does not point into garbage-collected heap. Similarly, at every

write, check to make sure not overwriting reference into GC heap. If checks fail,

throw exception [7].

5.2.2 Garbage Collection Algorithm – Non-determinism

As the Garbage Collector (GC) poses the problem acting in a non-deterministic

way, the threads need to be able to preempt the GC. One of the problems that

this JVM poses in this regard is the under-specification of the GC algorithm. The

 47

basic algorithm and its triggering conditions are not clearly specified and could be

non-predictable and non-deterministic.

Sun’s Java HotSpot VM, v1.4.1 uses a relatively simpler conservative garbage

collection algorithm that invokes periodically and reclaims as much memory as

possible. A much closer description of Java's garbage collection algorithm might

be ‘a compacting, mark-sweep collector with some conservative scanning’.

The Java HotSpot VM employs a state-of-the-art generational copying collector,

which provides two major benefits viz., increased allocation speed and overall

garbage collection efficiency for most programs when compared to non-

generational collectors. This attributes to a proportional decrease in the

frequency and duration of user-perceivable garbage collection pauses. To sum it

up, the objects (that are to be collected) are mainly classified into nursery objects

and older generation objects.

Generational collector is exploited to clear away short-lived objects (nurseries),

by allocating all newly created objects contiguously in a stack-like fashion into an

object nursery. The allocation becomes fast since it merely involves updating a

single pointer and performing a single check for nursery overflow. Moreover, by

the time the nursery overflows, most of the objects in the nursery are already

dead, allowing the garbage collector to simply move the few surviving objects

elsewhere, and avoid doing any reclamation work for dead objects in the nursery.

 48

For older generation objects, a mark-compact collection algorithm is used. The

Java HotSpot VM uses a standard mark-compact collection algorithm, which

traverses the entire graph of live objects from its roots, then sweeps through the

memory, compacting away the gaps left by dead objects. By compacting gaps in

the heap, rather than collecting them into a free list, memory fragmentation is

eliminated, and old object allocation is streamlined by eliminating free-list

searching. [8]

 49

Bibliography

[1] Sione Palu. “Real-time Specification for Java (RTSJ)”, June 18, 2002.

[2] Will Dinkel, Douglas Niehaus, Michael Frisbie, Jacob Woltersdorf. “KURT

– Linux User Manual”, University of Kansas March 29, 2002.

(http://www.ittc.ku.edu/kurt)

[3] TimeSys Corp. www.timesys.com

[4] The simpleRTJ. http://www.rtjcom.com

[5] Peter Dibble. “Real-Time Java[tm] Platform Programming”

[6] Real-Time Java Expert Group (www.rtj.org)

[7] International Workshop for Embedded Systems, University of California,

Berkeley (http://www-cad.eecs.berkeley.edu/~fresco/embedded-software/)

[8] Kim Clohessy. Java runtime components for Embedded Revolution

(http://www.microjava.com/articles/techtalk/runtime)

[9] Hans Harmon, Eric Akers, Richard Stansbury. “Real-Time Java for

KURT-Linux”, May 14, 2003.

 50

Appendix – A

testbed55 [7] % kurt_status -i 2
handled late dropped invalid wdog baddog1 baddog2 baddog3
573 225 0 0 0 0 0 0
rt_id pid woken missed rt_susp aborts nonrt_susp
switches
handled late dropped invalid wdog baddog1 baddog2 baddog3
573 225 0 0 0 0 0 0
rt_id pid woken missed rt_susp aborts nonrt_susp
switches
handled late dropped invalid wdog baddog1 baddog2 baddog3
573 225 0 0 0 0 0 0
rt_id pid woken missed rt_susp aborts nonrt_susp
switches
handled late dropped invalid wdog baddog1 baddog2 baddog3
596 225 0 0 0 0 0 0
rt_id pid woken missed rt_susp aborts nonrt_susp
switches
 255 10882 23 0 24 0 0
0
handled late dropped invalid wdog baddog1 baddog2 baddog3
770 252 0 0 0 0 0 0
rt_id pid woken missed rt_susp aborts nonrt_susp
switches
 254 10883 2 0 3 1 0
0
 255 10882 222 0 223 0 0
0
handled late dropped invalid wdog baddog1 baddog2 baddog3
875 346 0 0 0 0 0 0
rt_id pid woken missed rt_susp aborts nonrt_susp
switches
 253 10884 38 0 39 0 0
0
 254 10883 83 0 84 1 0
0
 255 10882 302 0 303 0 0
0
handled late dropped invalid wdog baddog1 baddog2 baddog3
1022 398 0 0 0 0 0 0
rt_id pid woken missed rt_susp aborts nonrt_susp
switches
 251 10886 3 0 4 0 0
0
 252 10885 38 0 39 0 0
0
 253 10884 91 0 92 0 0
0
 254 10883 135 0 136 1 0
0
 255 10882 355 0 356 0 0
0
handled late dropped invalid wdog baddog1 baddog2 baddog3
1131 489 0 0 0 0 0 0

 51

rt_id pid woken missed rt_susp aborts nonrt_susp
switches
 249 10888 6 0 7 0 0
0
 250 10887 22 0 23 0 0
0
 251 10886 37 0 38 0 0
0
 252 10885 72 0 73 0 0
0
 253 10884 125 0 126 0 0
0
 254 10883 169 0 170 1 0
0
 255 10882 391 0 392 0 0
0
handled late dropped invalid wdog baddog1 baddog2 baddog3
1316 504 0 0 0 0 0 0
rt_id pid woken missed rt_susp aborts nonrt_susp
switches
 247 10890 3 0 4 0 0
0
 248 10889 19 0 20 0 0
0
 249 10888 30 0 31 0 0
0
 250 10887 47 0 48 0 0
0
 251 10886 63 0 64 0 0
0
 252 10885 98 0 99 0 0
0
 253 10884 151 0 152 0 0
0
 254 10883 195 0 196 1 0
0
 255 10882 416 0 417 0 0
0

