

DSP Analysis of Digital Vector Slope Gauge Data
Produced by

Ocean Wave Simulation

Prof. Earl Schweppe
EECS 803

Introduction to Research
December 9, 2003

Evan L. Bryson
KUID 618093

In memory of my dad,
who earnestly wished to see me complete this work.

“Although no one can start over and make a new beginning,
Anyone can start from now and make a new ending.”

 - Carl Bard

i

Acknowledgment

I acknowledge first of all my heavenly Father. Without His assistance I could not have
finished this race. I also acknowledge my sister and her family for providing me a place of refuge
during an extremely difficult time. My wife, Kathleen; my parents; Jim Hill; Pieter Willems; Paul
Taylor; Steve Butler; Woody Davis; and Joyce Meyer have provided invaluable encouragement
through this time. My professor for this class, Earl Schweppe; the principal of the Ocean Project,
Prof. Richard Moore; my advisor, David Petr; Assistant Dean Mulinazzi; and my other professors,
Glenn Prescott, John Gauch, and Jim Stiles have provided timely words of wisdom, and assistance
when I needed it most. Many thanks go to Carmela Sibley for her kind words and long
conversations, and to Prof. Victor Wallace for providing my entrance into this program. All these
have continued to believe in me, even when I did not. Thanks also go to Mike Hulett, Torry Akins,
and Justin Legarsky for their last-minute assistance in compiling information for this project.

ii

TABLE OF CONTENTS

1. INTRODUCTION 1

1.1 Motivation 2

1.2 Three Versions of VSG 2

2. Basic Ocean Wave Behavior 4

2.1 Wave Superposition 5

2.2 Orbital Motion 7

2.3 Capillary Waves 8

3. VSG Function 9

4. VSG Output Data Simulation 14

4.1 VSG-3 Output Data Format 14

4.1.1 Header Format 14

4.1.2 Data Format 15

4.2 Wave Simulation Algorithm 16

4.3 Errors 18

4.3.1 Built-in errors 18

4.3.1.1 Quantization Noise 18

4.3.1.2 Slant Range Measurement Error 18

4.3.1.3 Error resulting from sequential measurements 20

4.3.2 Extractable Errors 20

4.3.2.1 Gaussian Noise 20

4.3.2.2 Doppler Shift 21

iii

4.3.3 Errors not included 21

4.3.3.1 Slope Modulation 21

4.3.3.2 Frequency Spreading 21

5. DSP Analysis 23

5.1 DSP Algorithm 23

5.2 Frequency Estimation 25

5.3 Module Verification 27

6. CONCLUSION 29

6.1 Future Work 30

 Appendix A – Glossary 31

 Appendix B – MATLAB® m-Files 33

 Part 1 – Wave Simulation Files 33

 Part 2 – DSP Analysis Files 43

 Part 3 – Other Authors’ Routines 49

 Appendix C – Summary – Gary Hamilton Paper 57

 REFERENCES 64

iv

1. INTRODUCTION

 The Vector Slope Gauge (VSG) is a linearly-swept FM radar designed for

the purpose of measuring the varying slopes of ocean wave surfaces at close

ranges. Motivations for the work include, but are not limited to 1) verification of

SAR images collected by aircraft and spacecraft and 2) eventual design

modification as a shipboard radar for measuring real-time local ocean wave

behavior. Design and analysis of the first two versions of the VSG are well

documented.

 The first two VSG versions averaged radar returns internally and stored

text results to hard disk. The third version departed from this method by digitally

sampling the IF returns and storing the samples and beam data to binary files on

hard disk. This paper concerns simulation and analysis of the third version of the

VSG. Since the third version has not been tested on the ocean, this paper will

divide into two main topics: 1) generation of simulated ocean wave data, and 2)

DSP analysis of the simulated data.

 Simulated ocean wave data is generated in the same form as the data

output from the VSG. In addition to Gaussian noise present in previous VSG

measurements, data from the digital VSG will also contain some quantum

(sampling) noise. It is expected that the advantages of digital signal processing

will outweigh losses attributed to quantum noise.

 Inherent errors associated with the VSG collection method are

incorporated into the generation of simulated ocean wave data with some

 1

approximations. Previous analyses exposed three sources of error: 1) skewing

of slope measurement due to sequential measurement method, 2) slope range

measurement error due to wave motion at non-vertical incidence angles, and 3)

slope modulation of radar return energy due to varying aspect of waves with

respect to radar position.

 Experiments with a flat, still surface are compared to results obtained from

simulated inputs. Results from simple single wavefronts are compared to

simulated inputs. Doppler shift added to these analyses verify proper function of

program modules.

1.1 Motivation

 A number of motivations drive the design and testing of the VSG as

described in [Hesany, 1994 and Evans, 1994]. The VSG can determine wave

energy distribution, wave frequency, and predominant wave direction. The close-

range data may be compared to spaceborne SAR images and used to determine

how winds affect ocean waves. Ocean wave effects on shipping and offshore

structures is another motivation, as are coastal sediment migration and wave

diffraction and refraction from the shoreline. For remote sensing, VSG results

help the understanding of tilt and hydrodynamic modulation on radar returns.

1.2 Three versions of VSG

 The versions will be designated VSG-1, -2, and -3 for brevity. VSG-1 and

VSG-2 processed the resulting IF within the analog circuitry of the VSG and

stored the processed ASCII data on disk. All versions switched between the

antenna horns sequentially.

 2

VSG-1 was used in the SAXON-FPN experiment from the Nordsee oil

platform in the North Sea during November 1990. It switched between beams at

30 Hz, with a 20ms delay after switching [Hesany, 1994]. This radar had a range

error of 10 cm.

VSG-2 was tested at the U.S. Army Field Research Facility in Duck, NC in

December 1995 [Legarsky, 1996]. Duck Pier extends about 1000 meters into the

ocean, avoiding some of the shoreline effects on ocean waves. This version

switched beams at a 300 Hz rate, with a 2.3 ms delay at switching. Faster

switching allowed the radar a 1 cm range error, which came out to less than 1%

slope measurement error.

VSG-3 departs from the other two versions in that it samples the IF and

stores the samples in binary files, rather than processing the data internally. This

process lends itself to DSP analysis. This version was never tested on the

ocean, so only rudimentary data exists; simple synthesized ocean data is used

for this analysis.

 3

2. Basic Ocean Wave Behavior

 The study of ocean waves is a complex subject. One can make a highly

detailed analysis, yet not have a complete description of their behavior. Tides,

gravity waves, tsunamis, ship waves, and capillary waves are all ocean waves.

This paper will focus primarily on simplified gravity waves. Entire books are

written to describe the complex shapes and behaviors of ocean waves. The

purpose of this project was to present simplified wave shapes to the MATLAB®

DSP modules, rather than to reproduce the complex wave shapes which occur in

nature.

 As with other waves occurring in nature, ocean waves can be described

by a sum of sinusoids, especially in the deep ocean. It is there that the basic

sinusoidal shape is better preserved. Most people do not witness this wave

shape unless they have been aboard a ship in the open ocean. As waves near a

shore, the water becomes shallower, which alters the shapes of the waves.

Energy once concealed beneath the surface is constrained by the rising bottom

to appear increasingly above the surface. Eventually the waves peak, pitch

forward, and break on the shoreline, as most people are accustomed to seeing

them. Waves begin their decline in the region where the water depth decreases

to half a wavelength.

 4

2.1 Wave Superposition

 A superposition of sinusoids of varying wavelengths, heights, directions,

and velocities make up a “sea” (Figure 2.1). A single wavefront may be defined

by the equation

)cossincos(),,(φακακσ +++= yxtAtyxh (Kinsman, 1965)

where h is wave height relative to mean water level, A is amplitude, κ is the wave

number, x and y are axes, φ is the phase angle, and α is the angle of approach,

with 0° corresponding to the y direction and increasing clockwise. The variables

σ and κ are defined as
T
πσ 2

= and
L
πκ 2

= .

Figure 2.1.
Superposition of Wavefronts (Bascom, 1964).

 A developed sea has a period T ranging from five to twelve seconds. The

wavelength L is then 2

2
TgL

π
= where g = 9.8 m/sec2. Wave velocity C in deep

 5

ocean is
π2

gLC = . When water depth decreases to less than L/2, velocity

decreases and a new term become significant in the equation. Then C becomes

L
dgLC π

π
2tanh

2
= .

 Ocean wave energy spectrum is shown in Figure 2.2. A portion of the

spectrum is shown in Figure 2.3 in graphical form with wave periods. Of interest

to this project are waves with periods between 5 and 12 seconds, which fall in

the classifications of sea and swell. Also of interest are capillary waves, or

ripples, which are discussed below.

Figure 2.2. Ocean Wave Energy Spectrum

[Kampion, 1997]

 6

Figure 2.3. Wave Speed vs. Wave Length with Period.

[Kampion, 1997]

2.2 Orbital Motion

 Orbital motion is the motion of the water particles within the wave. (See

Figure 2.4.) As the wave moves through its cycle, the water near the surface

moves in an elliptical pattern. At the end of each cycle of the wave, net

displacement of the water particles is near zero. Further from the surface, the

water particles move in smaller ellipses.

Figure 2.4. Orbital Motion in Approaching Wave [Kampion, 1997]

 7

2.3 Capillary Waves

 Capillary waves, or ripples, are small waves occurring on the surface of

the gravity waves. These are generated by wind currents working against the

water surface. Wavelengths of capillary waves are in the millimeter range;

periods are in the range of fractions of a second.

 During World War II in the early days of radar, operating frequencies were

much lower than they are today. The desired targets over the English Channel

were German war planes. One undesired radar return was clutter from the water

surface. After the war, scientists discovered a symmetry to the clutter and

determined that it was due to Bragg scattering. Whenever ocean wavelength

corresponded to half the radar operating wavelength, large radar returns

occurred.

 Capillary waves make it possible to receive sizable radar returns at the

VSG operating frequency of 34.6 to 34.9 GHz. Since the wavelength at this

frequency range is about 8.7 mm, capillary waves often produce Bragg

scattering. VSG radar returns come primarily from this phenomenon rather than

the smooth ocean surface.

 8

3. VSG Function

 The Vector Slope Gauge (VSG) is a 35 GHz linearly-swept FM radar used

to measure the vector slope of an ocean surface. Function of the VSG is fully

discussed in [Haimov and Moore, 1993; Hesany, 1994; Evans, 1994; and

Legarsky, 1995 and 1996]. A brief summary of VSG function is in order here.

 The VSG transmits FM radar energy in sequence to three spots arranged

in an orthogonal pattern on the ocean surface (Figure 3.1). Returns from the

three spots each contain frequency information proportional to the range to each

spot. Trigonometric computations with the known physical configuration and

three range measurements are used to compute a nearly instantaneous estimate

of vector slope of the surface. Vector slope is defined as a vector perpendicular

to a plane defined by the x, y and z positions of the three radar spots.

Beam 1

Beam 2

Beam 3

~ 1 mete
r

~ 1 meter

Figure 3.1. Beam Spot Arrangement on Ocean Surface

 9

 The VSG routes radar energy to Beam 1, Beam 2, and Beam 3

sequentially. Each beam experiences one upsweep and one downsweep (Figure

3.2). Careful aiming of these beams creates the orthogonal beam pattern on the

surface. Returned energy mixes with the transmit frequency to produce three

difference frequencies (IF’s). These IF’s are the frequencies corresponding to

the ranges to each spot.

F

T

Cycle

Sweep

Up-
sweep

Down-
sweep

Beam 1 Beam 2 Beam 3

Bandw
idth

Frequency Format of Vector Slope Gauge Radar Signal

Figure 3.2. Frequency Format of VSG Radar Transmitted Signal

 Figure 3.3 illustrates frequency format of the VSG returns from a point

target. Obviously, the ocean surface is not a point target, so frequency

spreading will occur in the actual radar return. Furthermore, the figure illustrates

return from a stationary point target. Ocean waves are not stationary targets;

therefore, Doppler shift will be present in the return, as shown in Figure 3.4.

 10

Transmitted Signal Returned Signal

F

T

Radar Signals

Intermediate Frequency Signal (Difference Frequency)

Figure 3.3. FM Radar Return from a Point Target

[Adapted from Ulaby et al, 1986]

Transmitted Signal Returned Signal

F

T

Radar Signals

Intermediate Frequency Signal (Difference Frequency)

Figure 3.4. FM Radar Return from a Point Target with Doppler Shift Added

[Adapted from Ulaby et al, 1986]

 11

Note that while upsweep and downsweep IF’s are equal for a stationary target,

the IF’s from a moving target are shifted due to added Doppler shift. Curiously,

no Doppler shift appears due to the forward wave velocity. Doppler shift does

occur, however, due to the orbital velocity of the water within the wave [Ulaby, et

al, 1988].

 Bandwidth and sweep rate are selected to produce a mixing frequency

corresponding to the desired range window, according to the equation:

RR

Rs cT
BR

T
BTTff 42)(==∆= [Ulaby et al, p. 512]

where: fs = Signal frequency (IF)
 B = Bandwidth of sweep
 T = Time for signal to travel distance 2*R
 TR = Repetition period
 R = Range to target
 c = Speed of light

Example

Let B = 600 MHz, R = 14.14 meters, desired fs = IF = 450 kHz

(typical VSG values). Desired repetition period, TR, then becomes

approximately 250 ms, or fR ≈ 4 kHz. It is useful when working

with the VSG to obtain the following numbers for a given

configuration:

 Since c = 3*1010 cm/sec, the signal travels 1 cm in

µs10*33.3
s/cm10*3

cm 1 3
10

−= . The time for one upsweep or one

downsweep in frequency is 125 ms, then

µs / MHz 4.77
µs 125.7

Mhz 600 ==
∆
∆

RT
B .

 12

Translating from time to range:

cm / Hz 159.1 µs 3-10*3.33 * µs / MHz 4.77 =

Since the energy must traverse the distance twice:

cm 1414
cm/ Hz 318.2

khz 450
cm/ Hz159.1 * 2

=== IFfR

Any fIF substituted into this equation will produce the range in cm for this

configuration and VSG setting. Of course, fIF must lie within the bandwidth of

the IF filter.

 For DSP sampling in VSG-3, the sample rate should be at least the

Nyquist rate plus about 10%:

sec 1 and MHz 1 1.1 2 Hz 10450 3 µ==∗∗⋅= ss TF

Since sec 250 Hz, 4000 µ== sweepsweep TF , then

N = 250 samples/sweep or N = 125 samples per up/down sweep.

 13

4. VSG Output Data Simulation

4.1 VSG-3 Output Data Format

 Each binary file begins with 24 bytes of header information and continues

with an unspecified length of 2-byte data items. Data recording will nearly always

begin during a cycle. Similarly, the ending cycle will also be incomplete.

Therefore, the first and final [partial] cycles must be discarded.

4.1.1 Header Format

 Each binary file begins with 24 bytes of header information in this format:

Variable
Name

Size
(bytes)

Data
Type

Description

Original 4 uint File number
Time 1 1 uint Month
Time 2 1 uint Day
Time 3 1 uint Hour
Time 4 1 uint Minute
FBeam 4 x 3 float 3 sweep

freqs
Fs 4 float Sample freq

Table 4.1

For long data sequences, the VSG may break up the binary data into a

series of shorter files. The Original variable will be a “1” for the first data file. It

may be zero for remaining files in the sequence, or it may contain “2,” “3,” etc. to

indicate the proper sequence of the files. The main concern was to mark the first

file in the sequence with a “1,” hence the name Original.

 The Time variables are self explanatory. They indicate the time each data

sequence was generated.

 14

 FBeam contains three sweep frequencies, for the up/down sweep on each

of the three beams. Although these variables are recorded three times, it would

be very unusual to have one beam’s sweep frequency differ from another’s. This

amounts to the frequency of sampling of the ocean wave.

 Fs is the DSP sample frequency, or the rate of digital sampling of the IF

return within VSG-3. Fs is always higher than FBeam. From Fs and FBeam,

one can determine the average number of DSP samples in each sweep.

4.1.2 Data Format

 After the header information, each binary file contains a long data series.

The data format produced by the VSG contains three pieces of information: The

beam number (2 bits), up or down sweep direction (1 bit), and unsigned integer

data (12 bits). Arrangement of the bits in one datum is shown in Figure 4.1.

MSB LSB
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

not used (alw
ays 0)

Beam
 #

U
p/D

ow
n

D
ata

12 bit unsigned integer0 = Up
1 = Down

00 = Beam 1
01 = Beam 2
10 = Beam 3
11 not used

Figure 4.1. Digital VSG Data Output Structure

 15

The unsigned integer has a range from 0 to 212 – 1 or 4095. In the analysis

phase, 2048 is subtracted from the data to bring it back to zero mean.

4.2 Wave Simulation Algorithm

 No ocean data or Clinton Lake data was taken on VSG-3. Rudimentary

data was taken in a hallway at the Remote Sensing Laboratory. VSG-2 data

taken at Duck Pier and Clinton Lake was available, but was not usable since it

was created and stored in an entirely different format. Therefore, it became

necessary to generate simple ocean wave data in VSG-3 format.

 It was not necessary to recreate a complex ocean surfaces such as those

occurring in nature. The Wavesim7.m module creates data for flat surfaces and

simple sinusoidal wavefronts. It is capable of injecting Doppler shift and noise

into the return signal. These capabilities are sufficient for testing the basic

function of the DSP modules.

 The programmer supplies VSG-3 configuration and desired ocean

wave parameters in the command line of Wavesim7.m. The block diagram in

Figure 4.2 contains three modules based upon (Evans, 1994). (See Appendix B

for complete code.) Modules slrangemod.m and slopepoimod.m are slight

modifications of Evans’ modules. The modifications allow the data to fit the VSG-

3 format. Module slopeab2.m is an exact recreation of Evans’ module.

The top row of Figure 4.2 computes and stores the slopes of the simulated

ocean wave, as well as providing ranges to the three beam spots on the surface.

Module slrangemod.m requires a range estimate for input, which is computed by

 16

RangeEst.m. It then performs an iterative process on two nonlinear

simultaneous equations according to Newton’s method (see Errors section

below).

VSG Parameters

Ocean Wave
Parameters

Wavesim7.m

RangeEst.m

NsPerSweep.m

SampGen.m

Save2Slopes.m

slopeab2.m

slopepoimod.mslrangemod.m

SlopeOut.txt

Range IF Sampled
IF

VSGOutput.m

VSGOut.bin

Figure 4.2. Wavesim7.m Block Diagram

Module slopepoimod.m uses range data to calculate a time series of exact

x and y slopes (in degrees) based upon the derivative of the waveshape. Module

slopeab.m uses x, y, and z data for the three radar spots to approximate x and y

wave slope (in degrees) by extending a plane through the three points. Exact

and approximated slope series are saved in a text file by Save2Slopes.m. These

are for later comparison to processed data.

 The middle row of Figure BB shows each range converted to an IF. The

IF is sampled at Fs by module SampGen.m and submitted to VSGOutput.m.

 Since Fs is usually not a multiple of FBeam, the number of samples in an

up or down sweep has some variability. For example, if sweep frequency is 3000

Hz and sample frequency is 1 MHz, the average number of samples in an

 17

up/down sweep is 166.67. This means that some sweeps will have 167 samples

and others will have 166. Module NsPerSweep.m computes an M x 3 matrix

containing the number of samples in each sweep of the data block to be created.

VSGOutput.m uses this information and the sampled IF data to create a binary

file just as VSG-3 would create it.

4.3 Errors

4.3.1 Built-in errors

4.3.1.1 Quantization Noise

 The digital VSG introduces quantization noise to the signal during the IF

sampling process. This was not an issue in VSG-1 and VSG-2. Storage of data

in the exact configuration as VSG-3 output assures the same noise will be

present in the simulation. Theoretical quantization noise for 12-bit uniform

quantization is defined by:

b
pp

N

V
V

V

2

 where
12

2

2

−=∆

∆
=σ

 (Frerking, 1994)

Since the stored VSG data is an unsigned integer, �V may be regarded as unity

and the variance as 1/12.

4.3.1.2 Slant Range Measurement Error

 [Evans, 1994] deals with slant range measurement error in terms of phase

error in the ocean wave measurement. Generally, measurements are not taken

from the vertical, or θ = 0° incidence angle. Larger incidence angles produce

 18

larger phase errors, since the VSG measures the change in length along the

radar beam, not the amplitude of the wave. (See Figure 4.3.) Wave propagation

aligning with the RLD produces the largest phase error, whereas propagation

transverse to the RLD produces no error, regardless of the incidence angle.

Evans computes the largest phase error (in degrees) in this way:

λ
φθε °

=
360 cos tan (max)phase

A

Side View Top View

Direction of Wave
Propagation

Mean Sea Level

A tan(θ) RLD

Φ

θ
A = Wave Amplitude

cosθ
A

RLD

ε

Figure 4.3. Geometry used to calculate phase and range error in a single beam

due to slant range measurement. Adapted from (Evans, 1994).

 In this simulation, it is necessary to compute the actual distance along the

RLD rather than the phase error relative to the ocean wave. For this purpose, an

approximation may be used:

θ
φ

cos
 cos)(slant

thR =∆

where ∆Rslant = Distance along RLD from mean sea level
 h(t) = Height of wave at time t

 19

The approximation leaves a small error ε, as shown in Figure 4.3. This error is

the difference between the horizontal at the RLD point and the height of the wave

at the RLD point. Error ε is zero for a calm surface and increases with wave

amplitude.

For a more precise solution, [Evans, 1994] wrote slrange.m to compute an

iterative solution to these two equations. This module uses Newton’s method to

approximate the solution to the two equations to a very small error of 10-13:

)('
)(rr n

n1n
nrf

fr =+

The module slrange.m is called in wavesim7.m.

4.3.1.3 Error resulting from sequential measurements

 This error, treated in [Evans, 1994], was more pronounced in earlier

versions. The error results from the fact that the radar beams are switched, and

returns measured, sequentially. From one measurement time to the next, an

ocean wave will travel a small distance. This will skew the slope a small amount

depending on the speed with which samples are taken.

4.3.2 Extractable Errors

4.3.2.1 Gaussian Noise

 Gaussian noise is extractable only in the data simulation sense, in that it

may be included in a simulation or not, so that other phenomenon may be

isolated. Gaussian noise is present in all versions of the VSG, as it is in any real-

world measuring device. It is added to the simulation in the final analysis of

 20

program module function. It is excluded in other simulations in order to isolate

the effects of other error modes.

4.3.2.2 Doppler Shift

 Doppler shift is not a true error. However, if not considered and dealt with

appropriately, it will introduce errors into the range measurements. Doppler shift

is extractable in the simulation sense, and the DSP analysis attempts to isolate it

for measurement. It may be included in a simulation to compare processed

results with original Doppler shift input.

4.3.3 Errors not included

4.3.3.1 Slope modulation

 Generally we analyze the radar always looking in the y direction. In this

case, the slope variation in the x direction will have no effect on radar return.

Then variation in y slope varies the radar return in this proportion:

4

p

p

 - tan
tan 1

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡ +
∝°

y

y

s
s
θ

θ
σ [Ulaby et al. p.1694]

where σ° = Relative radar power return

 θp = Radar pointing direction (incidence angle)

 sy = y component of water surface slope

4.3.3.2 Frequency Spreading

 The ocean surface is not a point target and the radar beam width is not

infinitesimally small. This results in a continuum of ranges to a radar spot on the

surface, which in turn results in a range of frequencies in the IF return. The

 21

frequency return may be approximated from an integration of the ranges to the

area of a spot, out to the -3dB points. This frequency spreading is discussed in

[Ulaby et al, 1988]. At angles departing from perpendicular incidence, the

frequency spreading increases, as may be inferred from Figure 4.4.

Ra Rc

Rb

VSG

Perpendicular
Incidence

Oblique
Incidence

Figure 4.4. Illustration of Range/Frequency Spreading
In an FM Radar

Inclusion of frequency spreading will provide a more realistic simulation of radar

returns from the VSG.

Variation of returned signal power in the simulation according to this

proportionality approximates actual ocean data return. Gaussian noise will

remain statistically constant, while signal return strength varies. Maximum return

occurs when the wave face is perpendicular to the RLD. This is practically never

the case, as the slope relative to the RLD constantly changes. Inclusion of this

return variation will create a more realistic simulation of received power.

 22

5. DSP Analysis

5.1 DSP Algorithm

 A DSP algorithm, developed by [Hamilton, 1998] in five stages, is found in

summary form in Appendix C. Figure C.1 is a block diagram of this algorithm. At

the time of writing, the algorithm was incomplete. Portions of Hamilton’s

algorithm are incorporated into this analysis.

 Figure 5.1 contains a block diagram of DSP2.m; MATLAB® code is found

in Appendix B. Modules FindPSD.m and FindEffFreq.m are used directly as

VSG ParametersVSGOut.bin

GetTimeSeries2.m DSP2.m

FindPSD.m

evanslope.m

Upsweep

FindEffFreq.m

Sum
Average

Frequency

Downsweep

Difference
Average

Frequency

Range DopplerSlopes
Sx, Sy

Level Shift

Figure 5.1. DSP2.m Block Diagram

written by [Hamilton, 1998]. Module evanslope.m is derived from trigonometry

and coordinate transformations in [Evans, 1994].

 23

 VSG binary data, stored by module WaveSim7.m in the file VSGOut.bin, is

accessed by GetTimeSeries2.m. The programmer specifies the time offset

(Toffset) and number of cycles (M) desired to average (usually M = 4).

GetTimeSeries2.m moves a pointer into the binary file corresponding to the time

offset, and finds the beginning of the cycle nearest to the pointer. This becomes

the beginning file pointer. The module then looks M cycles later to find the end

file pointer. Binary search for the file pointers is unnecessary, since close

approximate locations may be calculated prior to search. Once a file pointer is

placed, the direction of search is determined by the beam number and up/down

indicator of the current datum. The program searches the data sequentially

backwards or forwards. It usually has only to step once or twice to find the

starting/ending pointer. Once pointers are established, the module reads in the

data between the pointers and places it in an M x 6 x Nmax matrix, where Nmax is

the maximum DSP sample size, M is the number of cycles read in, and 6 is the

number of up/down sweeps for all three beams.

 Application of FindPSD.m and FindEffFreq.m to each “column” of DSP

samples results in an M x 6 matrix of effective frequencies. Simple multiplication

results in an M x 6 matrix of ranges. Separation of the ranges into three

upsweep and three downsweep ranges enables computation of sum and

difference average frequencies, which enables computation of range and

Doppler values, respectively (see Appendix 1 for a description of these

computations). Module evanslope.m computes slopes in the x and y directions

for comparison with generated data.

 24

5.2 Frequency Estimation

 Accurate estimation of frequency is key to obtaining the best slope

measurements. The desire is that DSP sampling and analysis will produce more

accurate estimates of the frequencies and associated ranges than the previous

analog processing technique.

 Frequency is defined as the time derivative of phase:

dt
df φ

=

We cannot estimate a frequency from one data point, but we may attempt to

estimate frequency from small piece-wise segments of a signal. Small segments

of a signal may be relatively stationary, whereas the entire signal may not be.

This is the case with the radar return from ocean waves. Since the waves are in

motion, the ranges to the waves are constantly changing, which means the

radar's IF is constantly changing. Overall, then, the returns from ocean waves

are not stationary. But taken in short enough time segments, these returns

become quasi-stationary. In this case, most stationary frequency estimation

techniques may be applied.

 For VSG-2, the averaging of range frequencies over four cycles was

considered the optimum method. At 3.33 ms per sweep, this amounted to

averaging the returns over a period of 40 ms. A gravity wave travels between 5

and 12 m/sec. In 40 ms a wave with velocity 8 m/sec will move 32 cm (if the

wave travel is along the RLD).

 25

 Using values from the previous example for VSG-3:

Example

Fbeam = 4000 Hz, B = 600 MHz, 8 m/s wave velocity

sweep (up/down)
m 101 m/s 8 sec 10125 3-6 ⋅=∗⋅ −

In 4 cycles the wave will move this distance:

cm 2.4 m 1024 cycles 4
cycle

sweeps 3

sweep

sweeps (up/down) 2
sweep (up/down)

m101

3-

3

=⋅=∗

∗∗⋅ −

The frequency excursion for 4 cycles will be:

Hz 404
m
cm 100

cm
Hz 159.1 24 101 3 =∗∗∗⋅ −

which amounts to only

shift % 0.125
Hz10350

Hz 404
3 =

⋅

 Let M be the number of cycles over which to average. An engineering

tradeoff must be made in choosing the value of M. Increasing M will increase the

estimation accuracy, but decrease the stationarity of the estimated frequencies.

Decreasing M will increase stationarity while decreasing the accuracy of the

estimation. Clearly, 4 cycles of averaging will have better stationarity for VSG-3

than it did for VSG-2.

 In DSP2.m, we use a discrete version of Rice's expected number of zero

crossings to determine effective frequency [Hamilton, 1998]:

 26

limitfrequency Lower
limitfrequency Upper

spacingvector frequency Discrete ∆
1]N/2 x [1vector frequency Discrete

1]N/2 x [1 ion vectorapproximatdensity spectralpower
where

)(

)(2)(
 e

=
=
=

+=
+=

∆⋅

∆⋅⋅
=

∑

∑

l

u

F

F

F

F
ff

F
F
k

k(i)
PSD(i)

kiPSD

kiPSDik
f

u

l

u

l

Module FindEffFreq.m performs an FFT on each sweep, resulting in a discrete

frequency spectrum. Choosing the frequency of the largest element would be

inaccurate, since there exist surrounding frequency elements of lesser strength

which affect the result. The desired effective frequency will, in all likelihood,

reside between two discrete frequency elements. Rice's method provides an

interpolation of the FFT elements and a much more precise estimate of single

frequency content.

5.3 Module Verification

 All modules were verified for function and accuracy during synthesis

without added Gaussian noise. Ranges and IF’s were checked during synthesis

of the modules to assure freedom from errors. Slopes extracted by DSP2.m

matched slopes produced by slopeab2.m. The slopes closely resembled the

slopes produced by slopepoimod.m with slight error, as expected (See Section

4.3.1.2 on slant range error.) This was true for incidence angles up to about 65

degrees, which was the design limit of the VSG [Legarsky, 1995]. Higher

 27

incidence angles applied to these modules generated difficulties in

slantrangemod.m module, where iteration by Newton’s method took place.

Velocities injected into a flat surface in Wavesim7.m module were extracted by

DSP2.m in the correct values and directions.

 The only known VSG-3 data was taken against a vertical wall at a range of

about 5.75 meters. This data was treated as return from a flat surface at zero

degrees’ incidence. Application of DSP2.m to this data produced near expected

results. Slope values in the y direction were about 2 degrees, regardless of the

number of averaged cycles. Slopes in the x direction were near zero. The wall

being a stationary object, error due to sequential measurement did not affect

accuracy, and cycle averaging did not improve repeatability. Since the wall was

flat and angle of incidence was zero, slant range error was not a consideration.

The 2-degree slope discrepancy in the y direction was probably due to pointing

error. However, no precise physical measurements corresponding to this data

were recorded.

 28

6. CONCLUSION

 This paper serves as documentation of simulated input and subsequent

DSP analysis programs for VSG-3, the digital vector slope gauge. Simple wave

simulations incorporate most known measurement errors and anomalies from

previous versions, as well as from VSG-3. Known errors included skewing of

slope measurements due to sequential measurement method and slope range

measurement error due to non-vertical angles of observation of vertical wave

motion. Modules are capable of introducing Gaussian noise and Doppler shift

into the data. Simulations create binary data in the format produced by VSG-3,

thereby embedding quantization noise in the data.

 Not included in the simulation was slope modulation of radar return energy

due to varying aspect of waves with respect to radar position. Frequency

spreading due to finite width of the radar beam is also not included in the

simulation.

Simulations of simple flat surfaces and single sinusoidal wavefronts

enable primary evaluation of DSP modules. Expected output of the VSG with flat

surface and single wavefront, with and without Doppler, is verified. No Gaussian

noise is included in these evaluations. Evaluation of the only known VSG-3 data

reveal expected measurements from a vertical wall in a hallway at a range of

about 5.75 meters. This data shows little frequency spreading, since the angle of

incidence is near zero.

 29

 DSP modules extract VSG-3 data from binary data files at operator

designated points and will process one to 75 cycles of data, as desired. The

modules perform PSD on sampled IF’s and estimate the sampled frequencies for

each of the three beams. From these estimates the modules compute x and y

slopes, ranges to each beam, and Doppler shifts.

6.1 Future Work

 Further evaluation of DSP modules should include performance capability

with Gaussian noise added. We also need to interpret orbital velocity

measurements. Frequency spreading and slope modulation may or may not be

necessary in the simulation stage.

The next step will be to take measurements on actual ocean waves from

Duck Pier or an oil platform for accurate comparison to previous data from VSG-

1 and VSG-2. This would be followed by real time processing using a TI-30 or

similar DSP board. Finally, depending on the success of the preceding steps, we

will need to integrate the VSG with a shipboard environment.

 30

Appendix A

Glossary

Beam - One of the three lobes of microwave energy which strike the ocean

surface and enable measurement of vector slope. Beams are numbered 1,

2, and 3. Each beam has a frequency upsweep and downsweep.

Cycle - A series of six vectors corresponding to one upsweep and one

downsweep for each of the three beams.

Doppler – An apparent frequency shift as perceived by an observer, due to a

physical motion of a frequency source either toward or away from the

observer.

Downsweep – A linear frequency excursion of the VSG in which the frequency

changes from high to low, or the data collected from a downsweep.

FPN – Forschungsplattforn Nordsee. A German oil drilling platform in the North

Sea. Test site of the first version of the VSG.

Group Velocity – Speed of ocean wave movement as a whole.

Orbital Velocity – Speed of water movement within the surface of a wave.

Returned Power – That portion of the transmitted power scattered toward and

received by the radar antenna.

RLD - Radar Look Direction. For VSG purposes, RLD is usually in the positive y

direction.

 31

SAXON – Synthetic Aperture Radar and X-band Ocean Nonlinearities. An

experiment to compare close-range mm radar results with spaceborne SAR

remote sensing results.

Sweep – A contiguous upsweep and downsweep from a single radar beam, or

the data collected from such a sweep.

Vector Slope - The instantaneous slope of a wave surface coupled with its

direction of travel.

Vector Slope Gauge (VSG) – An FM radar instrument emitting microwave

energy in three beams toward the ocean surface. Radar returns from the

three beams are processed to obtain the vector slope of the wave.

Upsweep – A linear frequency excursion of the VSG in which the frequency

changes from low to high, or the data collected from an upsweep.

 32

APPENDIX B

MATLAB® m-files

Part 1 - Wave Simulation Files

WaveSim7.m

function [NSmat,Range,IFreq,IFSamp] =
WaveSim7(BW,Fs,FBeam,HVSG,Thetad,Alphad,T,hwave,PHId,d,TObs);

% [NSmat,Rsamp] =
WaveSim7(BW,Fs,FBeam,HVSG,Thetad,Alphad,T,hwave,PHId,d,TObs);
% INPUTS
% Radar Parameters:
% BW Bandwidth of frequency sweep (MHz)
% Fs DSP sample frequency (Hz)
% FBeam Beam sweep frequencies [3] (Hz)
% Height Height of VSG from mean ocean surface (m)
% Thetad Angle of incidence, from vertical (deg)
% Alphad Angle of ocean wave group velocity (deg)
% [0 deg = receding along y axis (away in RLD),
% 90 deg = transverse, left to right (along x axis)]
% wrt RLD
% Ocean Parameters:
% T Period of ocean wave (sec)
% hwave Height of ocean wave = 2*Amplitude (m)
% d Depth of ocean at measurement area (m)
% TObs Total observation time (sec)
%
% OUTPUTS
% Binary file containing DSP samples in VSG format
% Text file containing x and y slopes from two methods

% t = 0 is defined as first transmission time recorded at time of
% arrival at ocean wave.
% Origin is defined as intersection of center beam (2) with
% calm ocean surface.

% FUNCTION CALLS
% RangeEst.m Initial range estimate for slrangemod.m
% slrangemod.m Solves nonlinear equations by Newton's method.
% Gives ranges to radar spots (C. Evans)
% slopepoimod.m Calculates slope at wave by derivative method
% slopeab2.m Calculates slope at wave by intersecting plane
% method (C. Evans)
% Save2Slopes.m Saves results of slopepoi and slopeab2 to text
file
% NsperSweep2.m Calculates number of samples in each sweep
% SampGen.m Generates DSP samples of IF
% VSGoutput.m Saves DSP samples to binary file in VSG format

% FILENAMES
BinFileName = 'D:\VSG\VSGout.bin';
TxtFileName = 'D:\VSG\SlopeOut.txt';

% CONSTANTS
c = 2.998e8; % propagation velocity (m/s)
dr = pi/180; % conversion factor, degrees-->radians (rad/deg)
g = 32*12*2.54/100; % grav const (m/s)

% VSG beams as measured by Justin Legarsky and Torry Akins, Dec. 1995

 33

% Subtended angles, Beam-to-beam (deg)
Beta12d = 3.53; Beta12 = Beta12d*dr; % convert to radians
Beta23d = 3.34; Beta23 = Beta23d*dr;
Beta13d = 5.03; Beta13 = Beta13d*dr;
% 3 Db Beam widths (degrees)
ThetaE1d = 1.31; ThetaE1 = ThetaE1d*dr; % convert to radians
ThetaE2d = 1.43; ThetaE2 = ThetaE2d*dr;
ThetaE3d = 1.26; ThetaE3 = ThetaE3d*dr;
ThetaH1d = 1.03; ThetaH1 = ThetaE1d*dr;
ThetaH2d = 1.28; ThetaH2 = ThetaE2d*dr;
ThetaH3d = 0.94; ThetaH3 = ThetaE3d*dr;

Theta = Thetad*dr;
Alpha = Alphad*dr;
PHI = PHId*dr;
Delta = 0; % No rotation about z' axis

% OCEAN
% Calculate Ocean Surface parameters
F = 1/T; % frequency of ocean wave
L = g*T^2/2/pi; % wavelength (m)
Csq = g*L/2/pi; % deep water velocity squared
Fsh = tanh(2*pi*d/L); % shallow water factor
C = sqrt(Csq); % deep water velocity
Csh = sqrt(Csq*Fsh); % shallow water velocity
Lsh = T*Csh; % shallow water wavelength
A = hwave/2; % wave amplitude
if d < L/2
 DepthFlag = 'Shallow water wave';
else
 DepthFlag = 'Deep water wave';
end

% VSG
% Calculate VSG Radar parameters
Ts = 1/Fs;
TBeam = 1/FBeam;
%TSweep = TBeam/2;
dFdTcgs = BW/(TBeam*1e6/2); % (MHz/us)
dFdT = dFdTcgs*1e12; % convert dFdT to (Hz/sec)
Ns = TBeam/Ts/2; % samples per up or down sweep
(samples/sweep/2)
Ns = ceil(Ns); % max # samples in sweep
Nsweeps = TObs/TBeam; % # U/D sweeps in total observation time
Nsweeps = fix(2*Nsweeps); % counting each up or down sweep as one
TperM = 1/c; % Time for signal to travel 1 meter (sec)
IFperM = dFdT*TperM; % Intermediate frequency as dependent on range
(Hz/m)
NsObs = Fs*60*TObs; % Total samples observed in TObs

% Display parameters of ocean wave, VSG system

% **
% * GENERATE OCEAN WAVE BEAM RANGES AND SLOPES *
% **

% Estimate shortest range to wave surface [1x3] for each beam
[r] = RangeEst(Theta,HVSG,Beta12,Beta23,A);
%r = ones(1,3);
%rless = r;
%r(2) = HVSG/cos(Theta); rless(2) = A/cos(Theta);
%r(3) = HVSG/cos(Theta+Beta23); rless(3) = A/cos(Theta+Beta23);
%r(1) = r(2)/cos(Beta12); rless(1) = rless(2);
%[r; rless; r-rless]

 34

%r = r - rless;

% calculate time series for ranges and xyz positions
%[Range,x,y,z] = slrange(Theta,Delta,r,Alpha,T,A,HVSG);
[Range,x,y,z] = slrangemod(Theta,Delta,r,Alpha,T,A,HVSG,FBeam,TObs);

% calculate time series for slopes from derivative
%[Sxd,Syd] = slopepoi(Range,Theta,Delta,A,Alpha,F);
[Sxd,Syd] = slopepoimod(Range,Theta,Delta,A,Alpha,T,FBeam);

% calculate time series for slopes from xyz positions
[Syp,Sxp] = slopeab2(x,y,z);

% store slopes to text file
Save2Slopes(TxtFileName,...
 Syd,Sxd,Syp,Sxp,...
 BW,Fs,FBeam,HVSG,Thetad,dFdTcgs,IFperM,Ns,...
 DepthFlag,Alphad,PHId,hwave,A,d,T,F,C,L,Csh,Lsh);

% ***
% * GENERATE FREQUENCIES, SAMPLE, AND STORE *
% ***
% generate matrix of DSP sample sizes for VSG3
[NSmat] = NsperSweep2(TBeam,Ts,TObs);
% NSmat col 1 contains Beam number
% col 2 contains Up/Down sweep indicator
% col 3 contains # of DSP samples in sweep

% generate frequency time series from range time series
IFreq = Range*2*IFperM;

% Generate IF, Sample IF at Fs (one up or down sweep)
% add doppler shift
fD = 0; % Doppler ********* TEMP

% add slope modulation ? ? ?
IFSamp = SampGen(NSmat,IFreq,Ts,fD); % IFSamp is [NSweeps x
NSamples]
 % These are DSP samples
% add noise

% SCALE SAMPLE VALUES
% to unsigned integers in the range [0, 2^12-1]
MaxSamp = max(max(IFSamp)) % most positive DSP sample
MinSamp = min(min(IFSamp)) % most negative DSP sample
SpanSamp = MaxSamp - MinSamp % range of DSP samples
IFSamp = (IFSamp - MinSamp)./SpanSamp; % shift samples to be >= 0
 % scale samples to range [0,
1]
IFSamp = fix(IFSamp.*(2^12-1)); % scale samples to range [0, 2^12-1]
 % fix to whole numbers

% WRITE DATA TO BINARY FILE
[HdrWrit,DatWrit] = VSGoutput(Fs,FBeam,NSmat,IFSamp,BinFileName);
disp(sprintf('%14i %30s',HdrWrit,' items written to file header'))
disp(sprintf('%14i %30s',DatWrit,' data items written to file'))

RangeEst.m

function [r] = RangeEst(Theta,HVSG,Beta12,Beta23,A);

% Estimate shortest range to wave surface [1x3] for each beam

 35

r = ones(1,3);
rless = r;
r(2) = HVSG/cos(Theta); rless(2) = A/cos(Theta);
r(3) = HVSG/cos(Theta+Beta23); rless(3) = A/cos(Theta+Beta23);
r(1) = r(2)/cos(Beta12); rless(1) = rless(2);
%[r; rless; r-rless]
r = r - rless;

 36

Save2Slopes.m

function Save2Slopes(FileName,...
 Syd,Sxd,Syp,Sxp,...
 BW,Fs,FBeam,HVSG,Thetad,dFdTcgs,IFperM,Ns,...
 DepthFlag,Alphad,Phid,hwave,A,d,T,F,C,L,Csh,Lsh);

% 1st line contains output file name
% 2d line contains slope data
% 3d line contains VSG parameters
% 4th line contains ocean wave parameters
%
% Header contains VSG parameters, ocean wave parameters
% Save slopes in text form in the following format:
% Derivative slope Point Estimated slope
% Sy Sx Sy Sx
% .
% .
% . etc.

[fidOut, Success] = OpenOutFile(FileName);

Form3 = ' %25s %1s %9.4f %7s\n';
Form4 = ' %30s %1s %14.4f %7s\n';

% Output VSG Parameters
fprintf(fidOut,'\n%40s\n','VSG Parameters');
fprintf(fidOut,Form4,'Bandwidth','=',BW,'MHz');
fprintf(fidOut,Form4,'DSP sample freq','=',Fs,'Hz');
fprintf(fidOut,Form4,'Sweep freq, per beam','=',FBeam,'Hz');
fprintf(fidOut,Form4,'VSG height above surface','=',HVSG,'m');
fprintf(fidOut,Form4,'Incidence angle (theta)','=',Thetad,'degrees');
fprintf(fidOut,Form4,'dF/dT','=',dFdTcgs,'MHz/us');
fprintf(fidOut,Form4,'IF per range','=',IFperM,'Hz/m');
fprintf(fidOut,Form4,'Samples per U/D sweep','=',Ns,'samples/sweep');

% Output ocean wave parameters
fprintf(fidOut,'\n%40s\n','Wave Parameters');
fprintf(fidOut,'%40s\n',DepthFlag);
fprintf(fidOut,Form4,'Approach direction (Alpha)','=',Alphad,'CCW
degrees from RLD');
fprintf(fidOut,Form4,'Phase offset (Phi)','=',Phid,'degrees');
fprintf(fidOut,Form4,'Wave height','=',hwave,'meters');
fprintf(fidOut,Form4,'Wave amplitude','=',A,'meters');
fprintf(fidOut,Form4,'Water depth','=',d,'meters');
fprintf(fidOut,Form4,'Wave period','=',T,'sec');
fprintf(fidOut,Form4,'Wave frequency','=',F,'sec');
fprintf(fidOut,Form4,'Wave velocity','=',C,'m/s');
fprintf(fidOut,Form4,'Wave length','=',L,'meters');
fprintf(fidOut,Form4,'Wave velocity (shallow)','=',Csh,'m/s');
fprintf(fidOut,Form4,'Wave length (shallow)','=',Lsh,'meters');
fprintf(fidOut,'%s\n',' ');
fprintf(fidOut,'%s\n',' Syd Sxd Syp Sxp');

% Output heights and slopes to ASCII file
Form5 = '%9.6f %9.6f %9.6f %9.6f\n';
for Cnt = 1:length(Syd)
 fprintf(fidOut,Form5,Syd(Cnt),Sxd(Cnt),Syp(Cnt),Sxp(Cnt));
end

CloseFile(fidOut,FileName);

 37

SampGen.m

function [IFSamp,NewIF] = SampGen(NSmat,IFreq,Ts,fD);

% [IFSamp] = SampGen(IFSamp,NSmat,IFreq,Ts,fD);
% Fills the IF sample array with sampled values of IF array
frequencies,
% accounting for Doppler shift

% INPUTS
% IFSamp IF sample array [n x m], initially all zeros
% NSmat matrix indicating how many DSP samples are in each
sweep
% IFreq IF array computed from range values
% Ts time between DSP samples
% fD Doppler shift (+ = approaching, - = receding)
% OUTPUTS
% IFSamp filled IFSamp array to return

[r,c] = size(IFreq);

% Generate vector of IF +/- fD
NewIF = ones(2*r,1);
J = 1; % index for NewIF
for K = 1:r
 L = mod(K-1,3) + 1;
 NewIF(J) = IFreq(K,L) + fD;
 J = J + 1;
 NewIF(J) = IFreq(K,L) - fD;
 J = J + 1;
end

r = length(NewIF);

% create DSP sample array
NSweeps = size(NSmat,1);
Nsmax = max(NSmat(:,3));
IFSamp = zeros(NSweeps,Nsmax);
% sample all the sweeps
for Cnt = 1:NSweeps
 t = Ts:Ts:Ts*NSmat(Cnt,3); % time series
 % U/D multiplier [+1 for Upsweep, -1 for Downsweep]
 UDmult = -sign(NSmat(Cnt,2)-0.5);
 %Beam = NSmat(Cnt,1) + 1;
 TempIF = UDmult*(cos(2.*pi.*NewIF(Cnt).*t)); %+ PhIF + pi));
 IFSamp(Cnt,1:NSmat(Cnt,3)) = TempIF; % assign to data
end

 38

VSGoutput.m

function [HdrWrit,DatWrit] =
VSGoutput(Fs,FBeam,NSmat,Rsamp,OutFileName);

% Output simulated data to binary file
% in same format as VSG produces it

% INPUTS
% Fs DSP sampling frequency [1,1]
% FBeam Beam sweep frequenc(ies) [1,1]
% NSmat Indicator matrix containing columns [Nsweeps,3]:
% Beam # Up/Down sweep # DSP samples
% Rsamp Sample data [Nsweeps,Ns]
% OUTPUT
% data to binary file:
% HEADER
% Original [float32]
% Month [uint4]
% Day [uint4]
% Hour [uint4]
% Minute [uint4]
% FSweep [float32 X 3]
% Fs [float32]
% DATA
% Data [uint16 X NSamples]

Orig = 1;
C = datevec(now);
Time = zeros(1,4);
for Cnt = 1:4
 Time(Cnt) = C(Cnt + 1);
end
FBeam = [FBeam,FBeam,FBeam];

% OPEN BINARY FILE FOR OUTPUT
%OutFileName = 'U:\OCEAN\Wave Simulation\VSGout.bin';
[fidBin, Success] = OpenOutFile(OutFileName);

% WRITE HEADER INFORMATION
% write continuation indicator as unsigned 32 bit int
Numwrit = fwrite(fidBin, Orig, 'uint32');
HdrWrit = Numwrit;

% write 4 Time Codes
for Cnt = 1:4
 Numwrit = fwrite(fidBin, Time(Cnt), 'uint8');
 HdrWrit =HdrWrit + Numwrit;
end

% write 3 Beam Frequencies
for Cnt = 1:3
 Numwrit = fwrite(fidBin, FBeam(Cnt), 'float32');
 HdrWrit = HdrWrit + Numwrit;
end

% write Sampling Frequency
Numwrit = fwrite(fidBin, Fs, 'float32');
HdrWrit = HdrWrit + Numwrit;
DatWrit = 0;

% CREATE DATA
Cnt = 0;
NSweeps = size(NSmat,1);

 39

for SwCnt = 1:NSweeps
 Beam = bitshift(NSmat(SwCnt,1),13);
 UD = bitshift(NSmat(SwCnt,2),12);
 Word = zeros(1,size(Rsamp,2));
 %Beam = bitshift(Beam,13);
 %UD = bitshift(UD,12);
 Ns = NSmat(SwCnt,3);

 for NsCnt = 1:Ns
 Data = Rsamp(SwCnt,NsCnt);
 Word(NsCnt) = Data + UD + Beam;
 %WordStr = dec2bin(Word(NsCnt),16);
 Cnt = 1 + Cnt;
 %disp(sprintf('%12i %16i %18s',Cnt,Word(NsCnt),WordStr))
 end

 % WRITE DATA
 NumWrit = fwrite(fidBin, Word(1:Ns), 'uint16');
 DatWrit = DatWrit + NumWrit;
end

CloseFile(fidBin, OutFileName);

 40

NsperSweep.m

function [N] = NsperSweep(TBeam,Ts,TObs);

% create matrix containing vectors:
% Column 1: Sweep number [1,2,3]
% Column 2: Up/Down [0 = up, 1 = down]
% Column 3: Number of DSP samples in each sweep

Ns = ceil(TBeam/2/Ts) + 1; % max # of samples in a sweep
NSweeps = floor(TObs/TBeam); % # of complete sweeps
NSamples = floor(TObs/Ts); % total # of DSP samples

N = zeros(NSweeps,3);
T = Ts;
Beam = 0;
UD = 0;
for Cnt = 1:NSweeps
 N(Cnt,1) = mod(Beam,3);
 N(Cnt,2) = mod(UD,2);
 Temp = T - Cnt*TBeam/2; % test value
 while Temp <= 0
 N(Cnt,3) = N(Cnt,3) + 1; % increment sample count
 T = T + Ts; % next DSP sample
 Temp = T - Cnt*TBeam/2; % test value
 end
 UD = UD + 1;
 if mod(UD,2) == 0
 Beam = Beam + 1;
 end
end

 41

Part 2 – DSP Analysis Files

DSP2.m

function [SlopeXY,R,V,BeamData,Fs,FBeam,PSD,F] =
DSP2(InFileName,Toffset,M,BW,Theta,HVSG);

% DSP of Ocean Project data
%
% INPUTS
% InFileName VSG binary filename
% Toffset Time position in file to begin reading (sec)
% M Number of cycles to average
% BW IF bandwidth (MHz)
% Theta Incidence angle (deg)
% OUTPUTS
% R Range (m)
% V Velocity (m/s)
% BeamData DSP sample data for 3 beams, Up/Down, M cycles, N
% samples each [M x 6 x N]
% Fs DSP sample frequency (Hz)
% FBeam Beam sweep repetition frequency (1 beam)(Hz)
% PSD power spectral density calculated from samples
% (relative units)
% F frequency abscissa for PSD (Hz)

% CONSTANTS
c = 2.998*10^8; % speed of light
f0 = 34.75e9; % radar operating frequency
Lambda = c/f0; % radar operating wavelength
dr = pi/180; % conversion, deg to radians
Delta = 0; % rotation angle about z' axis
Theta = Theta*dr;

BW = BW*1e6;

% Read Data to Analyze
[BeamData,Fs,FBeam] = GetTimeSeries2(InFileName,Toffset,M);
% Make BeamData symmetric about zero
BeamData = BeamData - 2^11;

% Compute size of PSD
DataSize = size(BeamData);
%DataSize(3)
Nexpt = 1;
N = 2^Nexpt;
while N < DataSize(3)
 Nexpt = Nexpt + 1;
 N = 2^Nexpt;
end

% Initialize arrays for PSD results
PSD = zeros(M,6,N/2); % PSD results
F = zeros(6,N/2); % PSD frequency scale
FreqBuff = zeros(M,6); % effective frequency buffer
%x = zeros(DataSize(3),1);
for MCnt = 1:M
 for BUDCnt = 1:6
 x = reshape(BeamData(MCnt,BUDCnt,:),[DataSize(3),1]);
 % Get PSD of one sweep vector
 [y, z] = FindPSD(x, N, Fs);
 PSD(MCnt,BUDCnt,:) = y;

 42

 F(BUDCnt,:) = z;
 y = FindEffFreq(x, N, Fs);
 FreqBuff(MCnt,BUDCnt) = y; % frequency buffer [M x 6]
 end
end

% TEMP
PSDSize = size(PSD);
x = reshape(F(6,:),[1,PSDSize(3)]);
y = reshape(PSD(1,6,:),[1,PSDSize(3)]);
stem(x,y)
% TEMP

% Average frequencies for each beam/sweep
AvgFreq = mean(FreqBuff);
FreqBuff
AvgFreq

% Compute frequencies for range and Doppler
FRange = zeros(1,3);
FDoppler = zeros(1,3);
for J = 1:3,
 FRange(J) = (AvgFreq(2*J) + AvgFreq(2*J-1))/2;
 FDoppler(J) = (AvgFreq(2*J-1) - AvgFreq(2*J))/2;
end

% Convert to range
R = FRange.*(c/(4*BW*FBeam));
% Convert to velocity
V = FDoppler.*(c/2/f0);

%[SlopeXY] = slopexymod(R,Theta,Delta)
[SlopeXY] = evanslope(R,Theta,HVSG)

GetTimeSeries2.m

function [BeamData,Fs,FB] = GetTimeSeries2(InFileName,Toffset,M);
% Obtain one time series of raw VSG data from input file.
% Sort into array, pad with zeros as needed.
% Pass to analysis program.
% INPUTS
% InFileName Binary source data filename
% Toffset Desired Time offset from beginning of file (sec)
% M Desired number of [beam1,beam2,beam3] cycles
% after offset
% OUTPUTS
% BeamData 3-D array in this form: BeamData(Cycle,BUD,Datum)
% where Cycle = which cycle number [1,2,...M]
% BUD = Beam/Up/Down number [1,2,...6]
% Datum = Individual raw data item
% FUNCTION CALLS
% OpenInFile.m
% GetHeader.m
% GetFileSize.m
% FindFirstDatum.m
% FindLastDatum.m
% CloseFile.m
%
% CONSTANTS
global MaskBUD MaskData MaskBeam MaskUD It HdrSize
MaskBUD = 28672; % to extract Beam and Up/Down bits from word

 43

MaskData = 4095; % to extract data value from word
MaskBeam = 24576; % to extract Beam Number from word
MaskUD = 4096; % to extract Up/Down bit from word
It = 2; % search iteration size, bytes/word
%HdrSize = 2; % header size (bytes)

% ROUTINE
% GET HEADER INFO
% Open input file
[fid, Success] = OpenInFile(InFileName);
% Read header information
[Original, Time, FBeam, Fs] = GetHeader(fid);
HdrSize = ftell(fid);
FB = FBeam(1);

% Initialize beam data array
Ns = ceil(Fs/2/FBeam(1));
BeamData = zeros(M,6,Ns);

% Test time offset against file size, issue warning
FileSize = GetFileSize(fid); % get file size (bytes)
TFile = FileSize/2 / Fs; % compute file size (sec)
SamplesOffset = fix(Toffset*Fs); % # words in Toffset
BytesOffset = It*SamplesOffset; % set estimate # of bytes
 % It = bytes/word
 % TotalSamples = samples desired
if BytesOffset >= FileSize
 disp(sprintf(' %s %8.3f sec','Toffset too long: File length
=',TFile))
end

% Estimate Bytes2Read (number of bytes to read) = 2*N
Ns = Fs/2/FBeam(1); %+ 1; % avg # of samples in a sweep
% set estimated # of bytes to read
Bytes2Read = It*Ns*M*6 %+ mod((It*Ns*M*6),2)
Bytes2Read = 2*round(Bytes2Read/2) % force multiple of 2
 % It bytes/word
 % Ns words/sweep
 % 6 sweeps/cycle
 % M cycles desired

% Find beginning and ending file pointers
FPtrBegin = FindFirstDatum1(fid,BytesOffset)
FPtrEnd = FindLastDatum1(fid,FPtrBegin,Bytes2Read)

N = (FPtrEnd - FPtrBegin + It)/It; % # of words to read

fseek(fid, FPtrBegin, -1); % set file to beginning of desired data
[RawVSGData, NumRead] = fread(fid, N, 'uint16'); % read data
disp(sprintf(' %8i Items read out of %8i required\n',NumRead,N))

% Close input file
[Success] = CloseFile(fid, InFileName);

% EXTRACT BEAM/U/D NUMBERS AND DATA, SORT INTO OUTPUT ARRAY
MCnt = 1;
PrevBUD = 1;
%BUDCnt = zeros(1,6);
DataCnt = ones(1,6);
for NCnt = 1:N
 % Read bits 12, 13, & 14, ie. 0111000000000000
 BUD = bitshift(bitand(RawVSGData(NCnt),MaskBUD), -12) + 1;
 %BUDCnt(BUD) = BUDCnt(BUD) + 1;
 %while BUDCnt(BUD) > 6

 44

 % BUDCnt(BUD) = BUDCnt(BUD) - 6;
 %end
 % Read bits 0 thru 11 for Data, ie. 0000111111111111
 Data = bitand(RawVSGData(NCnt), MaskData);
 % Beam = bitshift(bitand(Word,MaskBeam),-13) + 1;
 % UD = bitshift(bitand(Word,MaskUD),-12);
 if PrevBUD == 6 & BUD == 1
 MCnt = MCnt + 1;
 DataCnt = ones(1,6);
 end
 BeamData(MCnt,BUD,DataCnt(BUD)) = Data;
 DataCnt(BUD) = DataCnt(BUD) + 1;
 PrevBUD = BUD;
end

GetHeader.m

function [Original, Time, FBeam, FSample] = GetHeader(fid);
% Get header information and place in output variables.
% Original: 1 = first file in series
% 0 = continuation file
% Time (int) X 4 = time code of experiment
% FBeam (float) X 3 = beam frequencies
% FSample (float) = sampling frequency

Original = fread(fid, 1, 'uint32'); % read continuation indicator
 % as unsigned 32 bit int
Time = fread(fid, 4, 'uint8'); % read 4 time segments as
 % unsigned 8 bit ints
FBeam = fread(fid, 3, 'float32'); % read 3 beam frequencies
 % as 32 bit floats
FSample = fread(fid, 1, 'float32'); % read sampling frequency

GetFileSize.m

function [FileSize] = GetFileSize(fid);

% go to end of file, get file size, rewind file
Success = fseek(fid,0,1);
if Success ~= 0
 ErrMsg = ferror(fid)
 N = -1;
 return
end
FileSize = ftell(fid);
frewind(fid);

 45

FindFirstDatum1.m

function [FPtr] = FindFirstDatum1(fid,BytesOffset);

% Finds file position of ending data for M desired cycles of VSG data
% INPUTS
% InFileName Complete path and input file name
% Toffset Time into file to begin read (sec)
% M Number of cycles required
% (to find beginning byte to read)
% OUTPUTS
% N Number of 16-bit integers to read from file

% CONSTANTS
global HdrSize MaskBUD It

%[fid BytesOffset]

% move file pointer to estimated position
%Success =
fseek(fid, HdrSize + BytesOffset, -1);
%if Success ~= 0
% ErrMsg = ferror(fid)
% N = -1;
% return
%end

% test contents, determine Beam/U/D position
[Word, NumRead] = fread(fid, 1, 'uint16');
Vector = bitshift(bitand(Word,MaskBUD), -12) + 1;
Cnt = 0; % byte shift counter
%BinDir = sign(Vector-3.5); % search direction

% Look backward if in Beam 1 Up (BUD = 1)
while Vector == 1
 fseek(fid,-2*It,0); % back to previous word
 [Word, NumRead] = fread(fid, 1, 'uint16');
 Vector = bitshift(bitand(Word,MaskBUD), -12) + 1;
 FPtr = ftell(fid); % beginning file pointer
 Cnt = Cnt - It;
end
% Look forward if not in Beam 1 Up (BUD ~= 1)
while Vector ~= 1
 [Word, NumRead] = fread(fid, 1, 'uint16');
 Vector = bitshift(bitand(Word,MaskBUD), -12) + 1;
 FPtr = ftell(fid) - It; % beginning file pointer
 Cnt = Cnt + It;
end

 46

FindLastDatum1.m

function [FPtr] = FindLastDatum1(fid,BytesOffset,Bytes2Read);

% CONSTANTS
global HdrSize MaskBUD It

%[fid BytesOffset Bytes2Read HdrSize]

% move file pointer to estimated position
Success = fseek(fid,(BytesOffset+Bytes2Read+HdrSize),-1);

%ftell(fid)

if Success ~= 0
 ErrMsg = ferror(fid)
 N = -1;
 return
end

% test contents, determine Beam/U/D position
[Word, NumRead] = fread(fid, 1, 'uint16');
Vector = bitshift(bitand(Word,MaskBUD), -12) + 1;
Cnt = 2; % byte shift counter
%BinDir = sign(Vector-3.5); % search direction
% Look forward if in Beam 3 Down (BUD = 6)
while Vector == 6 | Vector == 5 | Vector == 4
 [Word, NumRead] = fread(fid, 1, 'uint16');
 Vector = bitshift(bitand(Word,MaskBUD), -12) + 1;
 FPtr = ftell(fid); % ending file pointer
 Cnt = Cnt + It;
end
% Look backward if not in Beam 3 Down (BUD ~= 6)
while Vector == 1 | Vector == 2 | Vector == 3
 fseek(fid,-2*It,0); % back to previous word
 [Word, NumRead] = fread(fid, 1, 'uint16');
 Vector = bitshift(bitand(Word,MaskBUD), -12) + 1;
 FPtr = ftell(fid) - It; % ending file pointer
 Cnt = Cnt - It;
End

 47

OpenInFile.m

function [fidIn, Success] = OpenInFile(InFileName)

fidIn = fopen(InFileName, 'r');
if fidIn > 2
 Success = 1;
 fprintf('\n\n File %s Opened Successfully for read\n',
InFileName);
else
 Success = 0;
 fprintf('\n\n *** UNABLE TO OPEN FILE %s ***\n\n',...
 InFileName);
 return
end

CloseFile.m

function [Success] = CloseFile(fid, FileName);
% User Inputs: fid - file identifier of the file to close (int)
% FileName - Filename of the file to close (string)
% Output: Success - 1 = successful close (bin int)
% 0 = unsuccessful close
%
% Module closes the indicated file and gives message as to success of
% close. In addition, it returns a binary indicator of success or
% failure.

CloseErr = fclose(fid);
if ~CloseErr
 Success = 1;
 fprintf('\n File %s Closed Successfully\n\n\n', FileName);
else
 Success = 0;
 fprintf('\n\n *** UNABLE TO CLOSE FILE %s ***\n\n',...
 FileName);
end

 48

Part 3 - Other Authors' Routines

FindPSD.m

%**

% Program: FindPSD.m
% Version: 1.0
% Type: MATLAB
% Date: 5/18/98
% Programmer: Gary W. Hamilton II
%
% Syntax: [PSD, F] = FindPSD(x, N, Fsampling)
%
% Function: To calculate the approximate power spectral density of
a
% sweep vector using a FFT^2 algorithm
%
% Input: Sweep vector, FFT length, and sampling frequency
%
% Output: Approximate power spectral density and corresponding
% discrete frequency vector
%
% Fun. Calls: none
%
% Variable Definition
% -------------------
% x Sweep vector
% N FFT length
% Fsampling Sampling frequency (in Hz)
%**

% Define function
function [PSD, F] = FindPSD(x, N, Fsampling)

% Convert PSD sample index to positive continuous frequency domain
F = [0:N/2-1]*Fsampling/N;

% Calculate FFT of sweep vector
%length(x) % TEMP
%size(x) % TEMP

x = x.*hanning(length(x));
X = abs(fft(x, N));
FFT = X(1:N/2)/N;

% Calculate PSD of sweep vector
PSD = (FFT.^2)';

 49

FindEffFreq.m

%**

% Program: FindEffFreq.m
% Version: 3.0
% Type: MATLAB
% Date: 5/19/98
% Programmer: Gary W. Hamilton II
%
% Syntax: EffFreq = FindEffFreq(x, N, Fsampling)
%
% Function: To calculate the effective frequency of the VSG
return
% signal using a FFT^2 algorithm
%
% Input: Sweep vector, FFT length, and sampling frequency
%
% Output: Effective frequency of VSG return signal
%
% Fun. Calls: FindPSD
%
% Variable Definition
% -------------------
% x Sweep vector
% N FFT length
% Fsampling Sampling frequency (in Hz)
%**

% Define function
function EffFreq = FindEffFreq(x, N, Fsampling);

% Local variable definitions
% dF Discrete frequency vector spacing (in Hz)
% PSD Power spectrum of sweep vector (in Watts)
% Numerator Numerator integral of effective frequency calculation
% Denominator Denominator integral of effective frequency
calculation
% EffFreq Effective frequency of sweep vector

% Declare and initialize local variables
Numerator = 0; Denominator = 0; EffFreq = 0; dF = 0; PSD = 0;

% Calculate approximate power spectral density
[PSD, F] = FindPSD(x, N, Fsampling);

% Calculate discrete frequency vector spacing
dF = F(2) - F(1);

% Calculate the effective frequency
Numerator = trapz((F.^2).*PSD) * dF;
Denominator = trapz(PSD)*dF;
EffFreq = sqrt(Numerator / Denominator);

slrangemod.m

function [ran,x,y,z] = slrangemod(theta,delta,r,phi,T,A,h,FBeam,TObs);
% Format:
% [ran,x,y,z] =
slrangemod(theta,delta,beta12,beta23,gamma,r,phi,f,A,h);
% Determines range to ocean surface from radar along the three beams
% taking into account all possible angles. This program solves the
% nonlinear equation that arises from finding the point of intersection
of

 50

% the radar beam with the ocean surface.

% Since there may be multiple solutions to the nonlinear equation, it
is
% best to guess the most accurate length of r, while making sure that
the
% guess is shorter than the resulting solution.

% INPUTS
% theta incidence angle (rotation of radar around x axis)
% delta rotation angle (rotation of radar around z' axis)
% r initial guesses of lengths of beams 1,2,and 3 (meters)
% phi angle between RLD and direction from which waves
approach
% (deg)
% T period of ocean waves (sec)
% A amplitude of ocean waves (meters)
% h height of radar from mean sea surface (meters)
% OUTPUTS
% ran
% x
% y
% z

% Chris Evans, RSL, University of Kansas, March 1, 1994
% Adapted from original by Evan Bryson, 12/2003
% Inserted hard-wired antenna angles from Akins/Legarsky VSG work
% Inserted h (VSG height) and A (ocean wave amplitude) in input
% Modified from f to T (using period of ocean wave, rather than
% frequency)
% Modified rate of sampling to FBeam rate, instead of 0.1 sec
% Modified length of time observed to TObs, instead of 1 wave period

beta12 = 3.53;
beta23 = 3.34;
gamma = 90;

dr = pi/180;
%theta = theta*dr;
%delta = delta*dr;
beta12 = beta12*dr;
beta23 = beta23*dr;
gamma = gamma*dr;
%phi = phi*dr;

% h = 20;
% A = 5.0;
f = 1/T;

R11 = cos(delta)*sin(beta12)*cos(gamma-pi/2) +...
 sin(delta)*sin(beta12)*sin(gamma-pi/2);
R21 = sin(delta)*cos(theta)*sin(beta12)*cos(gamma-pi/2) -...
 cos(delta)*cos(theta)*sin(beta12)*sin(gamma-pi/2) +...
 sin(theta)*cos(beta12);
R31 = sin(delta)*sin(theta)*sin(beta12)*cos(gamma-pi/2) -...
 cos(delta)*sin(theta)*sin(beta12)*sin(gamma-pi/2) - ...
 cos(theta)*cos(beta12);
R12 = 0;
R22 = sin(theta);
R32 = -cos(theta);
R13 = -sin(delta)*sin(beta23);
R23 = cos(delta)*cos(theta)*sin(beta23) +...
 sin(theta)*cos(beta23);
R33 = cos(delta)*sin(theta)*sin(beta23) -...

 51

 cos(theta)*cos(beta23);

k = ((2*pi*f)^2)/9.8; % spatial frequency of waves (wave number)

% initial guesses
r1(1) = 0; r1(2) = r(1);
r2(1) = 0; r2(2) = r(2);
r3(1) = 0; r3(2) = r(3);

for t = 1:FBeam*TObs % t is in 1/FBeam second increments
 % FBeam*T gives 1 period of samples at rate
FBeam
 J = 2;
 %disp(sprintf(' %i4 ',t)) % *****TEMP*******
 while (abs(r1(J)-r1(J-1)) > 1e-13) | (abs(r3(J)-r3(J-1)) > 1e-13),
 % error must be less than this number------------------^^^^^
 % ranges from equations
 x1(J) = r1(J)*R11; x2(J) = 0; x3(J) = r3(J)*R13;
 y1(J) = r1(J)*R21; y2(J) = r2(J)*R22; y3(J)=r3(J)*R23;
 z1(J) = r1(J)*R31; z2(J) = r2(J)*R32; z3(J)=r3(J)*R33;
 % ocean wave equations
 zeta1(J) = 2*pi*f*t/FBeam + k*sin(phi)*x1(J) +
k*cos(phi)*y1(J);
 zeta2(J) = 2*pi*f*t/FBeam + k*sin(phi)*x2(J) +
k*cos(phi)*y2(J);
 zeta3(J) = 2*pi*f*t/FBeam + k*sin(phi)*x3(J) +
k*cos(phi)*y3(J);
 sea1(J) = A*cos(zeta1(J)) - h;
 sea2(J) = A*cos(zeta2(J)) - h;
 sea3(J) = A*cos(zeta3(J)) - h;
 F1(J) = z1(J) - sea1(J);
 F2(J) = z2(J) - sea2(J);
 F3(J) = z3(J) - sea3(J);
 % derivatives for slope of ocean wave
 Fder1(J) = R31 + A*sin(zeta1(J))*(k*sin(phi)*R11 +
k*cos(phi)*R21);
 Fder2(J) = R32 + A*sin(zeta2(J))*(k*sin(phi)*R12 +
k*cos(phi)*R22);
 Fder3(J) = R33 + A*sin(zeta3(J))*(k*sin(phi)*R13 +
k*cos(phi)*R23);
 % Newton's equation
 r1(J+1) = r1(J) - F1(J)/Fder1(J);
 r2(J+1) = r2(J) - F2(J)/Fder2(J);
 r3(J+1) = r3(J) - F3(J)/Fder3(J);
 J = J + 1;
 %disp(sprintf(' %7i %18.14f %18.14f',J-1,r1(J),r3(J))) %
*****TEMP*******
 end
 ran(t,:) = [r1(J), r2(J), r3(J)];
 x(t,:) = [x1(J-1), x2(J-1), x3(J-1)];
 y(t,:) = [y1(J-1), y2(J-1), y3(J-1)];
 z(t,:) = [z1(J-1), z2(J-1), z3(J-1)];
 if mod(t,100)==0
 [t J]
 end
end

 52

slopepoimod.m

function [Sx,Sy] = slopepoimod(ran,theta,delta,A,phi,T,FBeam);
%
% [Sx,Sy] = slopepoi(ran,theta,delta,beta12,beta23,gamma,A,phi,f);
% calculates the slope at the point for which the slope is being
% approximated with slopeab.m
%
% INPUTS
% ran time series of ranges [nx3]
% theta angle of incidence (deg)
% delta angle of CCW rotation of radar about z' axis
% beta12 angle between beams 1 and 2
% beta23 angle between beams 2 and 3
% gamma flat angle between beam21 and beam23 lines
% A ocean wave amplitude
% phi angle of wave approach direction relative to RLD
% T period of ocean wave
% f frequency of ocean wave = 1/T
%
% OUTPUTS
% Sy slope in y direction (deg)
% Sx slope in x direction (deg)
%
% Chris Evans, RSL, The University of Kansas, March 10, 1994
% Adapted from original by Evan Bryson, 12/2003
% Modified from f to T (using period of ocean wave, rather than
% frequency)
% Modified rate of sampling to FBeam rate, instead of 0.1 sec
% Modified length of time observed to TObs, instead of 1 wave period
%
beta12 = 3.53;
beta23 = 3.34;
gamma = 90;

dr = pi/180;
%theta = theta*dr;
%delta = delta*dr;
beta12 = beta12*dr;
beta23 = beta23*dr;
gamma = gamma*dr;
%phi = phi*dr;

f = 1/T;

[r,c]= size(ran);

% coordinates in the antenna system
x1a = ran(:,1)*sin(beta12)*cos(pi/2-gamma);
y1a = ran(:,1)*sin(beta12)*sin(pi/2-gamma);
z1a = -ran(:,1)*cos(beta12);
x2a = zeros(r,1);
y2a = zeros(r,1);
z2a = -ran(:,2);
x3a = zeros(r,1);
y3a = ran(:,3)*sin(beta23);
z3a = -ran(:,3)*cos(beta23);

% rotation transforms from the antenna to the earth coord system
rot = [cos(delta), -sin(delta), 0;
 cos(theta)*sin(delta), cos(delta)*cos(theta), -sin(theta);
 sin(theta)*sin(delta), cos(delta)*sin(theta), cos(theta)];

for t=1:r,

 53

 Ant = [x1a(t), x2a(t), x3a(t);
 y1a(t), y2a(t), y3a(t);
 z1a(t), z2a(t), z3a(t)];

 E = rot * Ant;
 x1e(t) = E(1,1); x2e(t) = E(1,2); x3e(t) = E(1,3);
 y1e(t) = E(2,1); y2e(t) = E(2,2); y3e(t) = E(2,3);
 z1e(t) = E(3,1); z2e(t) = E(3,2); z3e(t) = E(3,3);

 % coordinates are now in the earth system
 A1 = (y1e(t) - y2e(t))*(z3e(t) - z2e(t)) - (y3e(t) -
y2e(t))*(z1e(t) - z2e(t));
 B1 = (x3e(t) - x2e(t))*(z1e(t) - z2e(t)) - (x1e(t) -
x2e(t))*(z3e(t) - z2e(t));
 C1 = (x1e(t) - x2e(t))*(y3e(t) - y2e(t)) - (x3e(t) -
x2e(t))*(y1e(t) - y2e(t));
 A2 = x3e(t) - x2e(t);
 B2 = y3e(t) - y2e(t);
 C2 = z3e(t) - z2e(t);
 A3 = x1e(t) - x2e(t);
 B3 = y1e(t) - y2e(t);
 C3 = z1e(t) - z2e(t);

 R = [A1, B1, C1;
 A2, B2, C2;
 A3, B3, C3];

 D1 = A1*x2e(t) + B1*y2e(t) + C1*z2e(t);
 D2 = 0.5*(x3e(t)^2 + y3e(t)^2 + z3e(t)^2 - x2e(t)^2 - y2e(t)^2 -
z2e(t)^2);
 D3 = 0.5*(x1e(t)^2 + y1e(t)^2 + z1e(t)^2 - x2e(t)^2 - y2e(t)^2 -
z2e(t)^2);

 S = [D1; D2; D3];

 % x and y positions of beam spots
 Q = inv(R)*S;
 Px = Q(1);
 Py = Q(2);

 % ocean wave equations for slopes (-sin is derivative of cos)
 % changed from original program (it had +cos, which is d(sin())/dr
 k = (2*pi*f)^2/9.8;
 Sy(t) = -atan(A*k*cos(phi)*sin(2*pi*f*t/FBeam + k*sin(phi)*Px +...
 k*cos(phi)*Py)) * 180/pi; % degrees
 Sx(t) = -atan(A*k*sin(phi)*sin(2*pi*f*t/FBeam + k*sin(phi)*Px +...
 k*cos(phi)*Py)) * 180/pi; % degrees
end
Sy = Sy';
Sx = Sx';

slopeab2.m

function [Sy,Sx] = slopeab2(x,y,z);
%
%
% Slopeab2 determines the slope time series from the plane given the x,
y,
% and z coordinates of the points of intersection of the radar beams
with
% the ocean surface.
%
% INPUTS

 54

% x x coordinate of the point of intersection [nx3]
% y y coordinate of the point of intersection [nx3]
% z z coordinate of the point of intersection [nx3]

% OUTPUTS
% Sy time series of slope in y (RLD) direction (deg)
% Sx time series of slope in x (cross) direction (deg)

% Chris Evans, RSL, The University of Kansas, March 10, 1994

% B & C are vectors in the plane, and N is the normal to the plane.
B = [(x(:,1) - x(:,2)), (y(:,1) - y(:,2)), (z(:,1) - z(:,2))];
C = [(x(:,3) - x(:,2)), (y(:,3) - y(:,2)), (z(:,3) - z(:,2))];

% Normal components are found from the cross product of B and C
Nx = B(:,2).*C(:,3) - C(:,2).*B(:,3);
Ny = B(:,3).*C(:,1) - C(:,3).*B(:,1);
Nz = B(:,1).*C(:,2) - C(:,1).*B(:,2);

% The slope of the plane is the negative inverse of the slope of the
line.
Sy = 180/pi*atan(-Ny./Nz);
Sx = 180/pi*atan(-Nx./Nz);

 55

evanslope.m

function [SlopeXY] = evanslope(R,Theta,HVSG);

% From Chris Evans, June 1994
% compute slope from measured VSG ranges
% INPUTS
% R ranges from VSG to ocean surface [beam1 beam2 beam3]
% Theta incidence angle (rad)
% HVSG vertical height of VSG from mean ocean surface
% OUTPUT
% SlopeXY slope of ocean surface [Sx Sy] (deg)

% CONSTANTS
dr = pi/180;
b12 = 3.53; b12 = b12*dr;
b23 = 3.34; b23 = b23*dr;
g = 90; g = g*dr; %
d = 0; d = d*dr; % rotation on z' axis
t = Theta;
h = HVSG;

% Coordinates in radar coord system
Ar = [R(1)*sin(b12)*cos(pi/2-g);
 R(1)*sin(b12)*sin(pi/2-g);
 -R(1)*cos(b12)];

Br = [0; 0; -R(2)];

Cr = [0; R(3)*sin(b23); -R(3)*cos(b23)];

% Transformation matrix
Tx = [cos(d), -sin(d), 0;
 sin(d)*cos(t), cos(d)*cos(t), -sin(t);
 sin(d)*sin(t), cos(d)*sin(t), cos(t)];

% Convert to earth coord system
Ae = Tx*Ar;
Be = Tx*Br;
Ce = Tx*Cr;

% add height of VSG
Ae(3) = Ae(3) + h;
Be(3) = Be(3) + h;
Ce(3) = Ce(3) + h;

% Slope vectors
BA = Ae - Be;
BC = Ce - Be;

% Normal vectors
N = cross(BA,BC);
Nx = N(1);
Ny = N(2);
Nz = N(3);

% x and y Slope in degrees
Sx = atan(-Nx/Nz) / dr;
Sy = atan(-Ny/Nz) / dr;
SlopeXY = [Sx Sy];

 56

Appendix C

Summary – Gary Hamilton Paper

DSP Algorithm

 A DSP algorithm was developed by [Hamilton, 1998] in five stages.

Figure C.1 is a block diagram of this algorithm. A brief summary of the algorithm

is in order here. The five stages are:

1) Power spectral density

2) Effective frequency

3) Buffer, sum, and difference averaging

4) Range, Doppler velocity, and 3-D slope calculations

5) Beam power calculation

Stage 1 – Power Spectral Density

Module FindPSD.m

This module incorporates the general function for each point of the PSD:

{ }

1
2

1

1
 where)()()(2

+≤≤

≤≤

=

Nk

Li
iHixFkPSD

and x = sweep vector [1 x L]

 H = Hanning window [1 x L]

 F = Fourier transform operator

 57

 58

PS
D

St
or

ag
e

B
uf

fe
r

C
al

cu
la

te
f ef

f,
u

B
PF

D
at

a
B

ea
m

 1
 U

p
C

al
cu

la
te

f av
g,

 u

Sc
al

e
to

V
el

oc
ity

Sc
al

e
to

R
an

ge
C

al
cu

la
te

f ef
f,

d

St
or

ag
e

B
uf

fe
r

C
al

cu
la

te
f av

g,
 d

PS
D

B
PF

D
at

a
B

ea
m

 1
 D

ow
n

1f d1 R
1

+

+

_

+

PS
D

St
or

ag
e

B
uf

fe
r

C
al

cu
la

te
f ef

f,
u

B
PF

D
at

a
B

ea
m

 2
 U

p
C

al
cu

la
te

f av
g,

 u

Sc
al

e
to

V
el

oc
ity

Sc
al

e
to

R
an

ge
C

al
cu

la
te

f ef
f,

d

St
or

ag
e

B
uf

fe
r

C
al

cu
la

te
f av

g,
 d

PS
D

B
PF

D
at

a
B

ea
m

 2
 D

ow
n

2f d2 R
2

+_

+

+

PS
D

St
or

ag
e

B
uf

fe
r

C
al

cu
la

te
f ef

f,
u

B
PF

D
at

a
B

ea
m

 3
 U

p
C

al
cu

la
te

f av
g,

 u

Sc
al

e
to

V
el

oc
ity

Sc
al

e
to

R
an

ge
C

al
cu

la
te

f ef
f,

d

St
or

ag
e

B
uf

fe
r

C
al

cu
la

te
f av

g,
 d

PS
D

B
PF

D
at

a
B

ea
m

 3
 D

ow
n

3f d3 R
3

+_

+

+

C
al

cu
la

te
V

ec
to

r
Sl

op
e

C
al

cu
la

te
f d,

 a
vg

R
1

R
2

R
3

f d1
f d2

f d3

Lo
ok

A
ng

le

A
da

pt
ed

 fr
om

 (H
am

ilt
on

, 1
99

8,
 F

ig
ur

e
3)

Fi
gu

re
 C

.1
.

B
lo

ck
 D

ia
gr

am
 o

f V
SG

 A
lg

or
ith

m
 [H

am
ilt

on
, 1

99
8]

This module uses L, the length of the sweep data vector, as the length of the

Hanning window and PSD vectors. Length of the FFT result is N, of which only

N/2 = L are used, in order to eliminate redundancy.

Stage 2 – Effective Frequency

 This stage calculates and stores the effective frequencies for each of the

six sweeps in a cycle.

Module FindEffFreq.m

The effective frequency module is based upon Rice’s expected number of zero

crossings for normal, stochastic processes [Hamilton, 1998]:

Hz)frequency(
density spectralpower

where

)(

2

exp

=
=

⋅

⋅⋅
=

∫
∫

∞

∞−

∞

∞−

f
PSD(f)

dffPSD

dfPSD(f)f
f

For the purposes of VSG analysis, discrete frequencies are summed rather than

integrated, limits of the summation are from the lower to the upper cutoff

frequencies of the VSG bandpass filter, and discrete frequency spacing replaces

df:

 59

limitfrequency Lower
limitfrequency Upper

spacingvector frequency Discrete ∆
1]N/2 x [1vector frequency Discrete

1]N/2 x [1 ion vectorapproximatdensity spectralpower
where

)(

)(2)(
 e

=
=
=

+=
+=

∆⋅

∆⋅⋅
=

∑

∑

l

u

F

F

F

F
ff

F
F
k

k(i)
PSD(i)

kiPSD

kiPSDik
f

u

l

u

l

This module utilizes the “trapz.m” function in MATLAB®, which performs

numerical integration using a trapezoidal approximation technique.

Module StoreToBuffer.m

This module appends each effective frequency result to the appropriate

one of six data buffers corresponding to the sweep and beam origin of the result.

Stage 3 – Buffer, Sum, and Difference Averaging

Module AverageEffFreq.m

This module computes the average for each frequency buffer according to

these equations:

{∑
=

− =
M

i
jijupeff k

M
f

1
,,

1 } for upsweep

{∑
=

− =
M

i
jijdowneff k

M
f

1
,,

1 } for downsweep

where

 M = number of elements in buffer

i = element index {1, 2, …, M}

 60

j = beam j: {1, 2, 3}

 In conjunction with calling modules, it averages the contents of each buffer

from Stage 2 to obtain six averaged frequency values, one for each sweep of

each of the three beams.

Module SumAverage.m

 This module produces two results, one an average of all the upsweep

frequencies, and the other an average of all the downsweep frequencies. These

results are used in DiffAverage.m. They are also used to produce an average

overall frequency according to this equation:

()jdowneffjupeffjrange fff ,,, 2
1

−− +=

This result is used to estimate the range to the wave.

Module DiffAverage.m

 This module computes the difference in the average frequency for each

beam according to this equation:

()jdowneffjupeffjDoppler fff ,,, 2
1

−− −=

This is used to estimate Doppler component in the RLD.

Stage 4 – Range, Doppler Velocity, and 3-D Slope Calculation

 These three functions were under construction at the time of this writing.

Range is determined from estimated frequency using this equation:

 61

sweep

jrange
j fBW

fc
R

⋅⋅

⋅
=

4
,

where

systemVSG ofBandwidth
light of Speed

systemVSG offrequency Sweep
 beam offrequency Range

{1,2,3} :Identifier Beam

=
=

=

=
=

BW
c

f
jf

j

sweep

range,j

 Slope is calculated from the three measured range values and VSG

orientation using trigonometry. Doppler velocity component toward the radar is

measured in stage 3 (See Figure C.2). Orbital velocity is the desired

measurement, and it may be extracted by using trigonometry. Group velocity of

ocean waves may be obtained through a number of measurements of ocean

wave position. (Note that ocean group velocity, vprop, will not appear in actual

radar measurements [Moore, 2003].

Ocean wave
vorbital

RADAR

vDoppler

θ

φ

vprop

Direction of propagation

Figure C.2. Doppler Vector Resolution [Hamilton, 1998]

 62

Stage 5- Average Beam Power

Each of the three VSG beams transmits with a slightly different beam

power. Beam power is of interest in the measurement of slope modulation. The

final stage of the VSG will attempt to calculate the instantaneous average power

of each beam and the average of all three beams. Total average power is given

by an average of the three independent beam averages:

∑
=

=
3

1
,,

j
javgtotalavg PP

where

{1,2,3} : beam ofpower Average , jP javg =

 63

REFERENCES

Frequency Estimation

Banjanin, Zoran; Zrnic’, Dusan S.; and Cruz, J. R. “A Linear Prediction Approach

to Doppler Mean Frequency Retrieval in the Presence of Ground Clutter.”

IEEE Transactions on Aerospace and Electronic Systems 29:3 (July 1993):

1050-58.

Boashash, Boualem. “Estimating and Interpreting The Instantaneous Frequency

of a Signal – Part 1: Fundamentals.” Proceedings of the IEEE 80:4 (April

1992): 520-38.

Boashash, Boualem. “Estimating and Interpreting The Instantaneous Frequency

of a Signal – Part 2: Algorithms and Applications.” Proceedings of the IEEE

80:4 (April 1992): 520-38.

Fitz, Michael P. “Further Results in the Fast Estimation of a Single Frequency.”

IEEE Transactions on Communications 42:2/3/4 (February/March/April

1994): 862-64.

Hocaoglu, A. Koksal and Devaney, Michael J. “Using Bilinear and Quadratic

Forms for Frequency Estimation.” IEEE Transactions on Instrumentation

and Measurement 45:4 (August 1996): 787-92.

Kay, Steven. “A Fast and Accurate Single Frequency Estimator.” IEEE

Transactions on Acoustics, Speech, and Signal Processing 37:12

(Decemeber 1989): 1987-90.

 64

Lovell, Brian C. and Williamson, Robert C. “The Statistical Performance of Some

Instantaneous Frequency Estimators.” IEEE Transactions on Signal

Processing 40:7 (July 1992): 1708-22.

Lovell, Brian C.; Williamson, Robert C. and Boashash, Boualem. “The

Relationship Between Instantaneous Frequency and Time-Frequency

Representations.” IEEE Transactions on Signal Processing 41:3 (March

1993): 1458-1461.

McIntyre, Mark and Ashley, Anthony. “A Simple Fixed-Lag Algorithm for

Tracking Frequency Rate-of-Change.” IEEE Transactions on Aerospace and

Electronic Systems 29:3 (July 1993): 677-83.

Quinn, Barry G. “Estimation of Frequency, Amplitude, and Phase from the DFT

of a Time Series.” IEEE Transactions on Signal Processing 45:3 (March

1997): 814-17.

Quinn, B. G. and Hannan, E. J. The Estimation and Tracking of Frequency.

Cambridge, U.K.: Cambridge University Press. 2001.

Riezenman, Michael J. “Prolog to ‘Estimating and Interpreting The

Instantaneous Frequency of a Signal – Part 2: Algorithms and Applications.’”

Proceedings of the IEEE 80:4 (April 1992): 539.

Swingler, D. N. “Approximate Bounds on Frequency Estimates for Short Cisoids

in Colored Noise.” IEEE Transactions on Signal Processing 46:5 (May

1998): 1456-58.

 65

Tretter, Steven A. “Estimating the Frequency of a Noisy Sinusoid by Linear

Regression.” IEEE Transactions on Information Theory 31:6 (November

1985): 832-35.

Ocean Waves

Bascom, Willard. Waves and Beaches: The Dynamics of the Ocean Surface.

Garden City, NY: Anchor Books. 1964.

Kinsman, Blair. Wind Waves: Their Generation and Propagation on the Ocean

Surface. Englewood Cliffs, NJ: Prentice-Hall, Inc. 1965.

Kampion, Drew. The Book of Waves: Form and Beauty on the Ocean. Boulder,

CO: Roberts Rinehart Publishers. 1997.

Vector Slope Gauge

Evans, Christopher T. “Analysis of a Three-Beam Radar as an Instrument for

Determining Ocean Wave Heights and Vector Slopes.” RSL Technical

Report 8621-5. Lawrence, KS: Radar Systems and Remote Sensing

Laboratory, Dept. of Electrical Engineering and Computer Science, University

of Kansas. June, 1994.

Haimov, Samuel J. and Moore, Richard K. “Part A: Two-Dimensional Slope

Measurement by Vector Slope Gauge, Part B: Coordinate Rotation for the

Vector Slope Gauge.” RSL Technical Memo 8620-3, Radar Systems and

Remote Sensing Laboratory, Dept. of Electrical Engineering and Computer

Science, University of Kansas, Lawrence, KS. October 1993.

Hamilton, Gary W., II and Moore, Richard K. “DSP Algorithm Design and

Development For Ocean Radar VSG System.” Unpublished. Report for

 66

Radar Systems and Remote Sensing Laboratory, Lawrence, KS. May 20,

1998.

Hesany, Vahid. “A Radar Vector Slope Gauge for Ocean Measurements.” RSL

Technical Report 8621-4. Radar Systems and Remote Sensing Laboratory,

Dept. of Electrical Engineering and Computer Science, University of Kansas,

Lawrence, KS. May 1994.

Legarsky, Justin. “An Improved Vector Slope Gauge and C-, Ku-band Radar for

Ocean Measurements.” Unpublished Master’s Thesis. Lawrence, KS: Radar

Systems and Remote Sensing Laboratory, Dept. of Electrical Engineering and

Computer Science, University of Kansas. December 1995.

Legarsky, J. J. and Moore, R. K. “1995 Test of the Vector Slope Gauge at Duck,

North Carolina.” RSL Technical Report 8621-8 and 10530-1. Lawrence, KS:

Radar Systems and Remote Sensing Laboratory, Dept. of Electrical

Engineering and Computer Science, University of Kansas. May 1996.

Moore, R. K. “A Note on Weighted Orthogonal Regression.” RSL Technical

Memorandum 8620-1. Lawrence, KS: Radar Systems and Remote Sensing

Laboratory, University of Kansas Center for Research, Inc. December 1992.

Radar

Farina, A. and Studer, F. A. Radar Data Processing. Vol. 1: Introduction and

Tracking. Letchworth, Hertfordshire, Eng.: Research Studies Press, Ltd.

1986.

 67

Farina, A. and Studer, F. A. Radar Data Processing. Vol. 2: Advanced Topics

and Applications. Letchworth, Hertfordshire, Eng.: Research Studies Press,

Ltd. 1986.

Haykin, Simon and Puthusserypady, Sadasivan. Chaotic Dynamics of Sea

Clutter. New York: John Wiley & Sons, Inc. 1999.

Ulaby, Fawwaz T.; Moore, Richard K.; and Fung, Adrian K., Microwave Remote

Sensing: Active and Passive, Vol. 2: Radar Remote Sensing and Surface

Scattering and Emission Theory. Norwood, Massachusetts: Artech House

Inc., 1986, pp. 512-17, 531-38.

Ulaby, Fawwaz T.; Moore, Richard K.; and Fung, Adrian K., Microwave Remote

Sensing: Active and Passive, Vol. 3: From Theory to Applications.

Norwood, Massachusetts: Artech House Inc., 1986.

DSP

Campa, C.; D'Alessandro, P.; and Rossini, E. “A general purpose processing

system based on digital signal processors.” Proceedings of the Fourth

International Conference on Signal Processing Applications and

Technology, p. 1085-91 vol.2. Newton, Massachusetts: DSP Associates,

1993.

Edward, M. N. and Thompson, H.A. “Array processors for real-time radar signal

processing.” Parallel Computing and Transputer Applications, vol.2, pp.

945-54. Barcelona, Spain: CIMNE, 1992.

Farina, A., ed. Optimised RADAR Processors. London: Peter Peregrinus
Ltd., 1987.

 68

Frerking, Marvin E. Digital Signal Processing in Communication Systems.

New York: Chapman & Hall, 1994.

Ingle, Vinay K. and Proakis, John G. Digital Signal Processing using MATLAB®.

Pacific Grove, CA: Brooks/Cole Publishing Company. 2000.

Kalman, R. E. and Bertram, J. E. “A Unified Approach to the Theory of Sampling

Systems.” Journal of the Franklin Institute 267 (May 1959): 405-36.

Oppenheim, Alan V. and Schafer, Ronald W. Digital Signal Processing.

Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1975.

Rabiner, Lawrence R. and Gold, Bernard. Theory and Application of Digital

Signal Processing. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1975.

Rabiner, Lawrence R. and Helms, Howard D. Literature in Digital Signal

Processing: Terminology and Permuted Title Index. New York: The Institute

of Electrical and Electronics Engineers, Inc., 1973.

Taylor, Fred and Mellott, Jon. Hands-on Digital Signal Processing. New York:

McGraw-Hill. 1998.

Vaidyanathan, P. P. Multirate Systems and Filter Banks. Englewood Cliffs, NJ:

P T R Prentice-Hall, Inc. 1993.

Other
Strang, Gilbert. Introduction to Linear Algebra. Wellesley, MA: Wellesley-

Cambridge Press. 1993.

The Math Works. MATLAB® Compiler Guide. Natick, MA: The Math Works.
1995.

 69

