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Abstract 
 This thesis is a study of the application of artificial neural networks to the 
problem of calculating error compensation values for axis positioning on a machine tool.  
The primary focus is on the development of a neural network-based system that could be 
implemented and integrated into the open architecture control system of an actual 
machine. A number of neural network architectures were examined for applicability to 
the problem and one was selected and implemented on the machine.  Positioning error 
compensation capabilities were tested using industry standard equipment and procedures, 
and the results obtained were compared with the capabilities of standard error 
compensation routines in machine tool controls. 
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Chapter 1 Introduction 

1.1 Motivation 
 In a modern high-precision industrial machining environment, there is a general 
push to constantly produce better and better parts by reducing the dimensional errors of 
the machined parts.  A large portion of the dimensional errors in these parts is caused by 
positioning errors in the axes of motion on a machine tool.  Efforts to reduce these 
positioning errors have been on-going for many years.  Much of the work has gone into 
making the machine tool itself more accurately.  At installation, the technicians will 
spend many hours ensuring and correcting the structural alignment of the machine parts 
to reduce geometric errors such as perpendicularity of axes in a milling machine, or 
concentricity of a spindle and axis on a lathe.  But, no matter how much work is put into 
making an accurate machine, it is impossible to make it perfect.  And, if the dimensional 
tolerances required are fine enough, the basic mechanical errors in machine motion will 
impact the quality of the parts that are produced. 
 In the continuing effort to improve the performance of machining tools, control 
routines to compensate for uncorrected positioning errors have been developed.  Machine 
errors are measured with some type of a high-precision device, such as a laser 
interferometer system.  This information is then entered into the control system of the 
machine tool, and it is used to correct for known errors in the machine.  For example, if a 
machine consistently falls 0.002 inches short of the desired position when moving an 
axis, the control system will command a move 0.002 inches longer than desired to 
compensate for the expected error.  Using this method, modern machine tools have been 
able to reduce positioning errors to a level lower than the mechanical accuracy of the 
machine. 
 Typical positioning error compensation routines in modern machine tool control 
systems have one basic characteristic in common.  They allow for a limited number of 
compensation values to be entered and the values must be at fixed intervals of motion.  
Some systems will allow the user to pick the interval, and, in some systems, this value is 
determined at design time by the machine tool builder.  
 With the advent of open architecture control systems, which allow for the 
integration of external control routines into the basic function of the control system,  
there is now interest in more advanced and flexible error compensation routines. 

1.2  Research Methodology 
 The focus of this thesis is the design and implementation of a neural network-
based positioning error compensation system for an actual machine tool in an industrial 
environment.  A large, standard configuration, two-axis lathe was chosen as a test 
machine, and the machine errors were measured using a laser interferometer system 
already available in the factory for this purpose.  The lathe was chosen because it had 
recently been retrofitted with a PC-based open architecture control system, which 
allowed for the integration of external error compensation routines.  The neural network 
design and development was done using Matlab® and it’s associated Neural Network 



 2

Toolbox from The MathWorks, Inc (Demuth and Beale).  The programming required to 
implement the system was accomplished with standard PC programming tools. 
 In the course of this thesis, several different neural network architectures were 
examined, with three being closely studied for their application to this problem  For 
reasons of training speed and the ability to reduce the errors to an absolute minimum, one 
of the networks was selected and finally implemented in the live machine.  A small set of 
learning algorithms for the networks was examined with a determination of one as best 
suited for the problem at hand.   
 The neural network based system was implemented in its most basic form and 
tested for its ability to compensate for the mechanical errors of the lathe.  The resulting 
error compensation system was shown to be as good as the current state-of-the-art in 
commercially available machine tool control systems.  This was based on its ability to 
reduce the positioning errors as measured by the laser interferometer system to a level 
slightly below that of the controls standard error compensation capability. 

1.3  Thesis Structure 
 This thesis is organized into six chapters and five appendices.  Chapter 1 is the 
introduction, which discusses the motivation for the thesis and the basic methodology for 
the experiments conducted.  This chapter  highlights the desire for improving the 
performance of machine tools and how that will be attempted by improving the machine 
tools ability to compensate for positioning errors in the axes of motion.  Chapter 2 is the 
background information for the thesis.  In it is discussed the equipment, machinery and 
systems used in the experiments and a very basic discussion of artificial neural networks.  
Chapter 3 is the related works section of the thesis.  In it is discussed the current methods 
of positioning error compensation and some applications of artificial neural networks that 
exist in the literature.  Chapter 4 is the experimental setup discussion.  This chapter 
presents the measurement system used to evaluate positioning error on the machine tool, 
how the artificial neural networks were designed and implemented, and how the resulting 
neural network was integrated into the machine tool control.  Chapter 5 is the 
experimental results.  In it is discussed the numerical results achieved by the artificial 
neural network positioning error compensation system and a comparison with the results 
achieved by traditional methods of compensation on the same machine.  Chapter 6 is the 
conclusions section.  The discussion in the chapter is on the conclusions reached after 
examining the experimental results, the limitations of the work conducted in this thesis, 
and a discussion of future work. 
 The five appendices contain information that expands on the discussions in the 
main chapters.  Appendix A contains detailed photographs of the measurement 
equipment and the machines that highlight key features for this thesis.  Appendix B 
contains the complete listing of the Visual Basic macro and resultant machine control 
code that was used in the course of this thesis.  Appendix C is the complete listing of the 
Matlab m-file script that was used to generate the artificial neural networks for this thesis.  
Appendix D is the complete listing of the Matlab m-file used for the extraction of key 
neural network paramaters required for integration into the machine tool control.  
Appendix E is the listing for the C program that provides the necessary calculations to 
integration the artificial neural network into the machine tool control. 
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Chapter 2 – Background 
 The technological basis for this thesis lies in four areas: Computer Numerically 
Controlled (CNC) machine tools, Open Architecture Controls (OACs) for machine tools, 
laser interferometry, and artificial neural networks.  From the perspective of this thesis, 
three of these areas were fully developed and available equipment and systems were 
used.  The CNC machine used is an American Hustler lathe (American Tool), the OAC 
on the lathe is OpenCNC® from Manufacturing Data Systems, Inc. (MDSI, V6.2 
Datasheet), and the laser interferometer is a 5/6-D Laser Measuring System from 
Automated Precision, Inc (Automated Precision).   This thesis focuses on the application 
of neural networks to the problem of compensating for positioning errors in the axes of 
motion on machine tools. 

2.1 American Hustler Lathe 
The American Hustler lathe is a standard, single spindle, two-axis CNC lathe,  as 

shown in Figure 2.1.  The two axes are labeled X and Z with the X axis being the cross-
slide which moves perpendicular to the spindle center line and the Z axis being the major 
carriage axis which moves parallel to the spindle center line (American Tool). 

In most operations, control of the lathe is handled by the automatic control 
system, as programmed by the operator.  In other words, a predetermined sequence of 
operations is programmed into the control using standard G and M code programming.  
The control is then set into the “Automatic” mode and a “Cycle Start” is initiated.  It will 
then step through the pre-programmed sequence of operations with no further 
intervention by the operator.  The basic operations available to the operator are control of 
axis motion (direction and rate of travel), control of the spindle (direction and rate of 
rotation), and control of other machine functions such as use of coolant or selection of 
cutting tools.  More advanced functions are available for capabilities such as interpolation 
of arcs and thread-cutting operations (American Tool). 

Since the motions studied were single-axis and linear, the programming of the 
lathe was restricted to only those commands required to produce these movements.  The 
normal pattern 
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Figure 2.1 The Hustler lathe by American Tool, Inc. 
of motion could be accomplished by repeating these two commands: 

G01X#1F#2 
G04F#3 

Where G01 is the G code command for single axis, controlled feedrate motion.  The first 
line would command the X axis to move to position ‘#1’, at feedrate ‘#2’ (normally 
inches per minute).  G04 is the command for a program dwell.  Therefore, the second line 
would command a program dwell for ‘#3’ seconds at the current position.  An example of 
the complete command lines is: 

G01X3.5 F20 
G04F6 

These two lines would command the X axis to move to the 3.5 inch position at 20 inches 
per minute, then dwell at this point for 6 seconds.  The entire program would be 
constructed by a series of these moves either specifically listed out in the program, or 
some type of looping structure would be used in the program, while setting the values to 
#1, #2, and #3. 

2.2 Open Architecture Control 
 According to the Open Modular Architecture Controls User’s Group (OMAC), a 
CNC control is generally considered to be an Open Architecture Control (OAC) if it has 
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the characteristics of being open, economical, maintainable, modular, and scalable 
(OMAC). The key characteristic applied to this thesis was that of being “open”.  OMAC 
presents a definition of an open control as:  “allowing the integration of off-the-shelf 
hardware and software components into a controller infrastructure that supports a de facto 
standard environment.” (OMAC).  It is the ability to integrate external software 
components into the controller that makes it possible to write custom error compensation 
routines and use them in real-time.  In the case of the lathe used in this project, the 
control system was OpenCNC from Manufacturing Data Systems, Inc. (MDSI). 
 OpenCNC is an open-architecture, software based CNC control system (MDSI, 
V6.2 Datasheet ) suitable for use on most typical CNC controlled machines. OpenCNC 
runs on the Microsoft Windows NT (Microsoft) operating system and uses the add-on 
Real-Time Extensions from VentureCom, Inc. (VenturCom)  to give it the hard, real-
time, deterministic response required to maintain control of the machine tool.  Since 
OpenCNC uses a standard PC operating system, it runs on generic PC hardware.  It also 
has a published Application Programming Interface (API) that allows the control 
designer to develop external software routines and interface them with the control system 
using standard PC software development tools. 
 The internal architecture of OpenCNC is centered around its Real-Time Database 
(MDSI API Datasheet).  This database contains all the system variables for the control.  
These system variables contain the current state of the machine under control, and define 
all of the control characteristics.  Literally, every function of the machine and the control 
are defined and represented in the system variables.  As part of the database, there are 
system variables for the location, velocity, and direction of motion of each of the axes on 
the machine, along with any error compensation values that should be applied to the 
positioning of the axis. 
 The API that is available with OpenCNC provides functionality at two levels.  
The API Level 1 provides access to the system variables in the database.  It is often used 
to develop additional user-interfaces to the control or to add functionality such as e-mail 
notices or system monitoring capability.  However, the API Level 1 is used for non real-
time applications and does not have the functionality to create scheduled, deterministic, 
hard real-time applications. Applications created using the API Level 1 run with the same 
priority and scheduling scheme as any other application running on the Windows NT 
operating system. 
 OpenCNC’s API Level 2 is used to develop those applications that require 
deterministic, hard real-time response.  It also provides access to the system variables in 
the database, and additionally provides the ability to schedule the execution of processes 
at predetermined time intervals and set the priority of processes to levels normally 
reserved for internal control functions.  Examples of applications created using API Level 
2 are thermal compensation routines, such as monitoring machine temperature and 
adjusting for positioning errors induced by thermal expansion, or other machine error-
compensation routines (MDSI API Datasheet). 
 While the software development tools used for both levels of the API are standard 
tools, there are restrictions on the functions available for use when developing API Level 
2 applications.  These are based on the list of functions supported by the VentureCom 
RTX in the C  Run-Time Library-Supported API (VCI). 
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2.3 Laser Interferometers 
The laser interferometers have been around for many years, and today are 

commonly used to make extremely accurate measurements of linear displacement. The 
basic theory for laser interferometers dates back to the early 1900s with the Michelson 
Interferometer being one of the earliest devices to demonstrate interferometric 
measurements of length (Jenkins and White). Modern interferometers are highly portable 
devices that are relatively easy to set-up and use.  They are normally computer controlled 
devices that offer an array of analysis and recording capabilities. 

2.3.1 General Theory 
A laser interferometer uses a laser source that emits a very focused, 

monochromatic, light beam.  In its simplest form, the normal set-up for a laser 
interferometer uses a stationary light source, a beam splitter, a stationary reference 
reflective target, and a mobile reflective target, as illustrated in Figure 2.2. The emitted 
beam is projected through the beam splitter which results in two separate beams of light 
that start out with matching phases.  These beams are then projected onto the two targets 
and reflected back to the beam splitter which combines them into a single beam again.  
The resultant combined beam is then examined for fringes created by a mismatch in the 
phase relationship between the two returned beams.  By counting these fringes as the 
mobile target is moved, the interferometer system can determine linear displacement as a 
function of the wavelength of the light beam. 

 

Laser

Beam
Splitter Mobile

Retroreflector

Direction of Motion

Measurement
Beam

Reference
Beam

Stationary
Retroreflector

Phase
Detector

Measurement
Electronics

Output to 
Computer

Emitted Beam

Combined Beam

 
Figure 2.2 Simplified block diagram for laser interferometer. 

 Since the measurement of distances with an interferometer is accomplished by 
comparing phase relationships between the reference beam and the measurement beam, 
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the accuracy of the system is dependent on the wavelength of light used and the system’s 
ability to distinguish fringes created by phase mismatches.  The 5/6-D Laser system used 
for this thesis is a Helium-Neon laser with a wavelength of 0.6329 microns. The system 
is able to count fringes in ¼ fringe increments.  This leads to a resolution of 

1582.0416329.0 =×  microns or approximately 6.23 microinches (Automated Precision, 
Inc.). 

2.3.2 Physical Setup 
 The physical set up of the laser interferometer consists of arranging the stationary 
and mobile components of the  system so that the relative motion between these 
components accurately reflects the motion of the machine under measurement.  Mounting 
of the mobile reflector is normally done with a magnetic base, and it is mounted, as 
closely as possible, to mimic the motion of the cutting tool of the machine.  The 
stationary components are mounted off the machine, on a tripod, to insulate them from 
vibration of the machine in motion.  For a linear measurement (as in this case) they are 
aligned so that the emitted beam leaves the interferometer from the lower aperture and is 
returned from the mobile reflector to the upper aperture throughout the entire range of 
motion to be measured. Figure 2.3 shows a view of the physical setup and Figure A.1 and  
Figure A.2 illustrate detailed views of the components. 

Laser Head with
Interferometer

Mobile Reflector

Direction of Motion

 
Figure 2.3 Physical setup of laser interferometer. 
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2.3.3 Software Setup 
The 5/6-D Laser system is controlled by software on a standard laptop computer 

connected via an RS-232 serial connection.  For this project, the APInc’s Winner v1.3.1 
package was used (Automated Precision).  To successfully collect information from the 
laser interferometer system, the software must be setup to coordinate the reading of data 
from the system with the motion of the machine tool.  In this case, the motion of the lathe 
was under automatic control of a part program written specifically for this purpose. 

Setting up the Winner software for linear motion testing is done by filling in 
entries on the setup screen when it is presented, as shown in Figure 2.4. The key entries 
for linear testing are explained in Table 2-1. 

 
Figure 2.4 Setup screen for control of the 5/6-D laser system. 
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Entry Explanation of Selections 

Test Mode In a Bidirection test, readings are taken in both directions of motion.  
Therefore the machine is expected to move, by the specified interval, 
forward from the starting point, and then in reverse from the ending 
point. 

Mode In the Auto mode, machine motion is controlled automatically by a 
part program.  The laser system is set to expect a specified sequence 
of moves and uses the Dwell Time and Window parameters to trigger 
readings. 

Dwell Time Specifies the time (in seconds)  for the laser to read at each position.  
In Auto mode, when the machine moves to within the Window 
parameter of the next position, the laser system will begin its Dwell 
timer.  Halfway through the Dwell time, the laser will begin taking its 
reading with the final reading at the end of the Dwell time.  This 
allows for the machine to complete the move to the next position and 
settle in place. 

Window Specifies how close the machine has to be to the next position to start 
the Dwell timer. 

Initial Position This is the starting point of the laser run.  For multiple Bidirectional 
runs, the system expects the machine to incrementally move back to 
this position.  When the prior run is complete, the machine is 
expected to move past this position (outside the Windows distance), 
and then return to the starting point for the first reading of the next 
run. 

End Position This is the ending point of the laser run.  For a Bidirectional run, the 
system expects the machine to incrementally move to this position in 
the forward direction, then move past it (outside the Window 
distance) and then return to this position for the first reading in the 
reverse direction. 

Step Size This is the distance between measurement points. 
Num of Runs This is the number of complete runs to measure.  A Bidirectional run 

is complete when the machine has moved from the starting point, to 
the ending point, and back to the starting point for a final reading. 

Table 2-1 Key entries for software setup. 

The other entries on the setup screen are for general system parameters and labeling the 
results with name, title, comments, etc. 
 Just as the 5/6-D Laser system requires setup to correctly measure the motion of 
the lathe, the lathe itself requires programming so that it would make the expected 
sequence of moves for correct measurement. The required machine programming is 
accomplished by a Visual Basic macro that produces the G and M code commands for 
the machine.  This macro is called by a small part program that establishes the parameters 
for the test being run.  Changing this program for a different series of moves (i.e., moving 
a different interval or a different axis of motion) is accomplished by editing the values of 
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the variables in the first several lines of the program. Table 2-2 is an extract of the key 
lines in the part program matching the setup illustrated in Figure 2.4. 
 
vb #1 = 1      'Axis 1=X, 2=Y, 3=Z 
vb #3 = -7     'Starting Position in Machine Coordinates 
vb #4 = 7      'End Position in Machine Coordinates 
vb #5 = 0.14   'Increment of motion between points 
vb #6 = 6      'Dwell time at points 
vb #7 = 4      'Number of complete runs 
vb #8 = 20     'Feedrate for motion 
vb #9 = .1     'Overshoot for backlash moves 

Table 2-2 Part program entries for X-axis motion. 
Close examination and comparison between the two shows one key difference – the 
Dwell parameter on the machine is set for 6 seconds while the Dwell parameter on the 
5/6-D Laser is set for 4 seconds.  After several runs of collecting data it was determined 
that these were the best real-world settings for reliably collecting accurate data.  
Attempting to too closely time the moves of the machine with reading the laser system 
sometimes leads to faulty readings and errors.  These settings are conservative and insure 
that the machine motion will settle before the laser system takes its reading, and the 
machine will not begin motion to the next position until well after the laser system has 
completed the previous reading. Figure 2.5 diagrams the relationship between the motion 
of the machine and the activity of the 5/6-D Laser system for taking measurements.  The 
key point here is that although there is no direct connection between the control of the 
laser system and the lathe motion, the laser expects a specific series of moves to be made, 
and the lathe is programmed to make those exact moves. 
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Figure 2.5 Machine motion - laser timing diagram. 

2.3.4 Graphical Results and Output Data 
The results of a successful laser interferometer run are presented using three 

methods.  During the run, a screen is displayed on the controlling laptop that shows the 
current state and activity of the system.  After the run is complete an ASCII test data file 
is produced which can be manually analyzed or opened from within the 5/6-D laser 
system for a graphical display of the results. 

While a run of the 5/6-D laser system is in progress, the screen shown in Figure 
2.6 is displayed.  This shows the current reading of the laser distance measurement in the 
upper-left block.  A graphical display of the results collected in this run is plotted in the 
upper-right block. Operating parameters of the current run are displayed in the lower-left 
area, with the bottom-right blocks showing the current status, target position, and run 
number.  
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Figure 2.6 5/6-D laser system in progress screen. 

 After all runs of the current test are completed, the 5/6-D laser system closes the 
ASCII text data file for this run.  This file contains all of the data collected for this run 
and other summary data from the 5/6-D laser system. Table 2-3 is a partial list of results 
from the 5/6-D laser system run used as an example in the previous screens.  As seen in 
the table, the system records the current position, laser reading and the calculated linear 
error.  The position and laser reading are different because the system is “zeroed” at the 
starting point of the run – therefore in this case, a position of –7.00000 inches is 
equivalent to a laser reading of 0.00000 inch.  Since the laser reading was –0.000004 
inches the calculated error is +0.000004 inches.  The system also records the current air 
temperature and pressure, and the current material temperature of the machine under test.  
This data is collected from sensors attached to the 5/6-D laser system and is used in 
internal laser wavelength and material temperature compensation algorithms (Automated 
Precision, Inc.). 
Position       LasRead   LinearError Status AirTemp AirPress MatTemp 
    -7.00000     -0.000004      0.000004      0 73.76 29.33    74.65 
    -6.86000     -0.139901     -0.000099      0 73.76 29.33    74.65 
    -6.72000     -0.279949     -0.000051      0 73.76 29.34    74.65 
    -6.58000     -0.419945     -0.000055      0 73.76 29.34    74.65 
    -6.44000     -0.559952     -0.000048      0 73.76 29.34    74.65 
    -6.30000     -0.699888     -0.000112      0 73.76 29.34          74.65 

Table 2-3 Partial list of output data from 5/6-D laser system. 
 The resulting data from a complete 5/6-D laser system run may also be 
graphically displayed using APInc’s Winner v1.3.1 software. Figure 2.7 displays the 
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results of the example laser run.  This screen is a complete display of operating 
parameters of the recorded run, a plot of all collected data points, and calculated error 
values for the entire run.  For a perfect machine, all the data points would lie directly on 
the 0.000000 line in the middle of the plot.  Variation from this line is the error in the 
actual motion of the machine from the commanded motion.  In Figure 2.7, the lower 
curve is the data from the forward motion of the machine, while the upper curve is the 
data from reverse motion.  The difference between the two curves is a result of the 
mechanical backlash of the machine that occurs when the leadscrew-ballnut assembly 
reverses its direction of motion.  This value is also calculated and displayed as “Max Rev 
Err” (maximum reversal error).  The two horizontal dotted lines are the high and low 
points of the average error values for, in this case, the four runs. This value is calculated 
and displayed as “Max Avg Error” (maximum average error).  These are the two key 
values that give an indication of the mechanical condition of the machine.  Compensation 
routines discussed elsewhere are directed at reducing these values to acceptable levels. 

 
Figure 2.7 Graphical display of 5/6-D laser system data. 

2.4 Artificial Neural Networks 
 As one of the forms of artificial intelligence, artificial neural networks are an 
attempt to mimic the behavior and capabilities of biological neural networks.  In 
particular, neural networks are designed to model the behavior of the human brain 
(Russell and Norvig).  For this thesis, the key characteristics of interest are the ability of a 
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network to be trained on a problem, and its ability to learn or to improve its performance 
as it is presented with more data. 
 The fundamental structure of a neural network is that of a massively 
interconnected collection of simple computing elements (neurons), operating in parallel 
to produce an output (or set of outputs) in response to a set of inputs.  Figure 2.8 
illustrates the interconnections of a small, fully connected neural network.  In this figure, 
each of the input neurons feeds information to each of the neurons in the next layer, and 
each of those neurons feed information to the output neuron. 

 Inputs

 Output

 Neurons

 

Figure 2.8 Neural network interconnections. 
It is this characteristic of having every neuron in each layer connected to every neuron in 
the next layer that defines this network as being fully connected.  If some of the 
connections were missing, the network would be defined as partially connected (Haykin). 
 The computational elements of the neural network are in two areas.  The first is in 
the interconnections themselves.  Each of these interconnections has a weight assigned to 
it.  The weight assigned to the interconnection becomes part of the information passed to 
the connected neuron.  The second computational element of the network is the transfer 
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function of each neuron.  The transfer function is used to generate the output of each 
neuron based on the complete set of inputs to that individual neuron. 
 In its simplest form, a neural network would consist of a single input to a single 
neuron, which outputs a single output.  A more useful form of this single neuron network 
is diagrammed in Figure 2.9.  In this case, a single neuron with several inputs generates a 
single output.  The figure illustrates the network consisting of a set of inputs I, weighted 
connections W, a single neuron with transfer function T, and output O.  It also adds the 
concept of an applied bias B.  Where B is used to offset or bias the output of the neuron.  
B is also sometimes viewed as another weighted connection to a fixed input value of 1.  
A mathematical description of the single-neuron network is: 

( )BWIWITO ++∗+∗= ...2211  
The transfer function of the neuron is determined when the network is initially designed 
and created.  Determination of the transfer function is one of the basic issues the network 
designer has to address.   
 

Figure 2.9  Single-neuron network. 
 There are many different types of transfer functions used in neural networks but a 
few examples are commonly presented in the literature, including the step (or threshold) 
function and the sigmoid function.  Simple graphical illustrations of these two functions 
are shown in Figure 2.10.  Figure 2.10 (a) shows the step function.   
In this function, the output is held at zero until the input reaches a threshold value.  At 
that point, the output immediately steps to a fixed value (normally one).  In Figure 2.10 
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(b) the sigmoid function is illustrated.  While the sigmoid has the same general shape as 
the step function, there are some key differences.  First, it can take on values anywhere 
between zero and one, where the step function is either zero or one.  Second, the sigmoid 
function is differentiable.  This becomes an important issue in later discussions on 
training algorithms.  Once the transfer function of the neuron(s) has been defined, 
determining the weights and bias values is the other portion of defining the functionality 
of the network. 

Figure 2.10 Step and sigmoid function graphs. 
 Determining the values for the weights and bias for the neurons in a network is 
accomplished by the training process.  Haykin generalizes the training (or learning) 
process to three steps of stimulating the network, changing the network parameters based 
on the stimulation, and the network responding in a different manner due to the changes 
(Haykin).  For example, in error-correction learning, the network is stimulated by a set of 
training data in the form of input-output pairs.  Each pair is a set of inputs combined with 
the desired output for this input.  The actual output of the network is compared to the 
desired, and an error value is produced.  This error value is then used to adjust the 
network parameters such that it will produce an output that is closer to the desired. 
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 Mathematically, referring to the single neuron model in Figure 2.9 where I is the 
input vector, W is the weight vector, and O is the output of the neuron, and adding D as 
the desired output from the training data, and the factor η, the learning rule can be stated 
as: 

( )ODIWW oldnew −••+= η  
From this equation, the following points can be made:  

1. The new weight values are not totally new values, but rather modifications of 
the previous values after some incremental adjustment. 

2. Since D is the desired output, and O is the actual, if D-O is positive the output 
O is increased in the next iteration, and if D-O is negative, the output is 
decreased in the next iteration.  Since each individual input contributes W•I to 
the total input, the error, D-O, is multiplied by each individual input I in the 
adjustment factor.  This way, if this input is positive, its  associated weight is 
greater, giving it more influence on the total input to increase it.  If the input is 
negative, the associated weight is decreased, reducing this input’s influence on 
the total input  - also increasing it. 

3. The factor η is known as the learning rate.  It is used to adjust the learning 
rule for a balance between stability and speed of convergence.  A large 
learning rate will make the system converge more quickly to an acceptable 
state (reducing the error to acceptable limits), but too large of a learning rate 
may make the system unstable by causing the learning rule to over-correct for 
small errors causing it to oscillate around the desired weight values. 

The rules stated above are often presented in neural network texts as the initial starting 
point for a study of learning rules or training algorithms, and complete coverage can be 
found in Russell, Hagan, and Haykin. 
 

2.5 MATLAB and the Neural Network Toolbox 
 There are two primary methods of implementing a neural network system.  One is 
in dedicated hardware, and the other is to simulate the network on a digital computer.  
Because of the obvious cost and flexibility concerns, the latter is the most common 
method.  Also, because of the programming complexities of implementing the various 
types of networks, it is often advantageous to use a commercially available packaged set 
of routines to design and develop a neural network system.  One such package is the 
Neural Network Toolbox  from The Mathworks, Inc (Demuth and Beale).  This package 
runs under The Mathworks’ MATLAB program and extends its capability to include 
many of the functions necessary to design and implement a neural network system. 
 MATLAB and the Neural Network Toolbox provide the capability to design 
many different types of neural network systems for a variety of applications.  The Neural 
Network Toolbox User’s Guide includes chapters on applications in control systems, 
linear and adaptive filters, and others (Demuth and Beale).    There is a Graphical User 
Interface (GUI) for interacting with the routines in the toolbox, or command-line access 
for use in MATLAB’s programming and scripting capability.  The Toolbox also includes 
an extensive set of built-in transfer functions to use in defining the neurons of the 
network, and many different training routines are included for use.  All of the neural 
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network development and implementation discussed in this thesis was done using 
MATLAB and the Neural Network Toolbox. 
 Utilizing the functionality of the Neural Network Toolbox (referred to here as 
simply the toolbox), defining a new neural network becomes a fairly simple series of one-
line commands with a few parameters to create, train, and simulate the specific 
characteristics and behavior of the network.  The toolbox has commands to create 
perceptrons, radial basis networks, competitive, feed-forward networks, and many others 
(Demuth and Beale).  For example, creating a two-input, single-neuron perceptron 
network where one input ranges from 0 to 2, and the second from –1 to 1 is accomplished 
by using the command: 
   net = newp([0 2: -1 1],1); 
A more complex (and useful) feed-forward network with two inputs, ranging from 0 to 1 
and 1 to 40, with 30 neurons in the hidden layer, with the logsig transfer function, and a 
single, linear neuron in the output layer can be created using the command: 
  net = newff([0 1: 1 40],[30 1], 
‘logsig’,’purelin’); 

Where logsig is defined as: xe−+1
1

 

This network has a structure similar to the network shown in Figure 2.8. 
 Training a newly created neural network can also be accomplished using a single 
command such as: 
  net = train(net,p,t); 
where p is a set of input vectors and t is the set of associated target outputs for p.  This 
command would train the network for the toolbox default of 100 epochs (one epoch is a 
single pass through all the inputs and targets) utilizing the other toolbox default 
parameters for training function, performance function and other parameters.  If desired, 
or necessary, all of the default parameters can be changed to meet the specific needs of 
the application under study. 
 Simulating network behavior when presented with a set of inputs is accomplished 
using the command: 
  sim(net,p); 
which presents the network the inputs p and calculates the output of the network based 
on its current definition.  For example, in the case of a single-neuron perceptron with two 
inputs, with the input weights defined as [1 2], a bias value of 0.5, inputs of -1 and 1, and 
using the “hardlim” transfer function in the neuron, the function sim() performs the 
following calcuation: 
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where a is the network output. 
 By utilizing the functions of the toolbox, a network designer can quickly create, 
train, and test a neural network for the application of interest.  With some knowledge of 
neural networks and some study of the toolbox User’s Guide, the designer can rapidly get 
into very complex networks and customize the details of the network structure as desired, 
while taking for granted the lowest-level details of network implementation in a software 
simulation environment. 
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Chapter 3 – Related Works 
 Since the primary goal of this thesis was to implement a neural network-based 
error-compensation capability for a machine tool,  the related works falls into three areas.  
The first area is the traditional  methods of machine tool error compensation.  JThe 
second is a brief survey of other applications of neural networks.  The third area is a 
review of available material on attempts to use a neural network-based error 
compensation routine for machine positioning errors. 

3.1  Traditional Lead-Screw Compensation 
 Any modern machine tool control will contain some capability to compensate for 
linear axis positioning errors.  This is often referred to as lead-screw error compensation 
– so named because the major cause of positioning errors is often the lead-screw 
mechanism that drives the motion (Figure A.3 and Figure A.4 illustrate the detailed 
views).  The errors occur when, usually due to mechanical variations or wear, the 
machine does not exactly reach the commanded position.  For example, the X-axis of a 
lathe may be commanded to move to the +4 inch position, but if measured with a very 
precise measurement system it will actually be at +3.9980 inch – thus an error of -0.002 
inches in axis positioning.  The normal method of compensation is accomplished by 
creating a table of these positioning errors for a set of points at fixed intervals.  For a 
large machine this might be at every even inch for the entire range of travel.  Other 
machines may have other intervals, or the end-user might be able to choose an interval 
that best meets the requirements. Giddings & Lewis and MDSI (Variable Dictionary) 
include the details for methods of implementing lead-screw compensation.  There are two 
basic types of lead-screw error compensation,  the first is uni-directional with backlash 
compensation, and the second is bi-directional compensation. 

3.1.1  Uni-Directional Compensation with Backlash 
 In uni-directional compensation (with backlash), the error measurements are all 
taken with the machine moving in only one direction, with no direction reversals while 
taking the error measurements.  Measurements taken with the machine moving in the 
other direction are only used to determine an average backlash value.  Backlash is the 
error induced by mechanical looseness or other mechanical slop that occurs when the 
machine reverses direction of motion.  In other words, it is the amount that the motor will 
move to drive the machine in the opposite direction – before the motion is observed at the 
point of interest.  In a machine tool, this is usually at the cutting tool tip.  This type of 
compensation is generally quicker to measure and apply than bi-directional, but it is 
limited in some ways.  It does work well for cases where the errors in motion are 
consistent in each direction, and the amount of backlash is consistent throughout the 
range of motion. Figure 3.1 illustrates an error-motion profile that would be suited for 
uni-directional with backlash compensation.  Note the consistent error  profile – the 
reverse motion plot looks like the forward motion plot shifted down a fixed amount.  
There is no variation in the backlash across the range of motion. 
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Figure 3.1  Error versus motion profile for uni-directional compensation. 
 Implementing uni-directional compensation from this data is simply a matter of 
creating a table that provides the amount of error at each fixed point of measurement.  
Each control has its own manner of entering the table, but the basic contents are listed in 
Table 3-1.  Note that in this table, each error amount will be negated when entered as a 
compensation value.  For example, if at position 1.0 inch there is an positioning error of 
+0.001 inches, the compensation amount will be –0.001 inches.  The control will take 
this information and uses it any time an axis motion is programmed.  The compensation 
values for any points between the listed fixed intervals are normally calculated by linear 
interpolation between the two adjacent fixed points.  The compensation table should 
cover the entire range of motion for the axis, but if it does not, the compensation values 
for points outside the table are often held stable as the value at the nearest fixed point. 

Position Error 
0.0” -0.001” 
1.0” -0.001” 
2.0” -0.001” 
3.0” 0.0” 
4.0” +0.001” 
5.0” +0.001” 

Table 3-1  Error versus position compensation. 
 Implementing the backlash amount is a matter of calculating the average backlash 
over the range of motion and entering this amount into the control system.  In Figure 3.1, 
the backlash is the difference between the two plots of forward and reverse motion.  This 
number would be determined from the data and entered as specified by the control.  The 
control would then use this value each time it reverses the direction of motion. 
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3.1.2  Bi-Directional Lead-Screw Compensation 
 In some situations, uni-directional compensation with backlash will not be 
capable of correctly compensating for the mechanical errors in the machine.  If the error 
associated with the motion profile were similar to Figure 3.2, the variations in the overall 
error profile and the variations in the amount of backlash over the range of motion would 
make this difficult to compensate using that method.  This would be a case for using bi-
directional lead-screw compensation. 
 In this method, positioning errors are measured in both directions of motion and 
these values are independently recorded.  These values would then be entered into the 
control as separate compensation values and the control would consider direction of 
motion when determining which value to use.  In this method of compensation, there is 
no direct backlash value because that error is included in the bi-directional 
measurements.  Once again, the exact method of entering the compensation values is 
control-specific, but the contents would appear similar to Table 3-3 
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Error Amount

Forward Motion

Reverse Motion

 

Figure 3.2   Error versus motion profile for bi-directional compensation. 

 
Forward Position (inches) Error (inches) 

0.0 +0.001 
1.0 +0.001 
2.0 0.0 
3.0 -0.001 
4.0 -0.002 

Table 3-2 Bi-directional lead-screw compensation values (forward). 
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Reverse Position Error 

4.0 -0.004 
3.0 -0.003 
2.0 -0.002 
1.0 -0.001 
0.0 -0.001 

Table 3-3 Bi-directional lead-screw compensation values (reverse). 

3.2  Applications of Neural Networks 
 The applications of neural networks are many and varied.  The Matlab Neural 
Network Toolbox User’s Guide (Demth & Beale) lists a variety of applications in 
Finance, Control, Manufacturing, and many others.  In Artificial Intelligence: A Modern 
Approach, Russell and Norvig briefly discuss three specific applications of neural 
networks; pronunciation of written English text by a computer,  recognition of 
handwritten characters, and driving a vehicle along a single lane highway. 

3.2.1  Intelligent Control 
 One common area of application for neural networks is in intelligent control. 
Bauman, et al. present an intelligent control for load balancing the internal combustion 
engine (ICE) and the electric machine (EM) of a hybrid vehicle.  In their problem, the 
ICE and the EM were mechanically connected in parallel to drive the vehicle.  The goal 
of the controller was to distribute the load across the ICE and the EM to achieve 
maximum efficiency for the entire system.  The authors present a discussion of the 
controller that uses a combination of neural networks and fuzzy logic to achieve the 
goals.  In their discussion of  the controller approach, they list five properties of the 
controller which make it appropriate for their application: a model-free approach, 
adaptability, fault tolerance, nonlinearity, and real-time operation.  These properties were 
highly advantageous in their application  which had the characteristics of being highly 
complex and difficult to mathematically model, experienced a high degree of variability 
and system noise in operation, was fundamentally nonlinear in its behavior, and required 
 the ability to handle constant transient operations. 

3.2.2  Analysis of Vibration Signatures 
 Another area of application for neural networks is in data analysis and 
classification or grouping. Alguindigue, et al. present a method  of classifying vibration 
signatures for rolling element bearings in analyzing the bearings for defects.  The idea is 
based on the fact that a real mechanical system in operation generates vibration.  The 
amplitude and frequency spectra of the vibration changes as the mechanical system 
changes due to wear or mechanical defects.  By analyzing the resulting vibration 
signatures, likely defects can be determined. 
 In this application, neural networks were used for compression of the spectral 
signatures and for classification of the compressed signature.  For the compression phase 
of the system the authors described using a recirculation network.  Compressing the 
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vibration signature results in mapping the spectra into a smaller dimensional space.  This 
results in the network acting as a feature extractor which highlights the notable features 
of the data, while reducing the noise present in the signal.  For the classification phase of 
the system, a backpropagation network was used to classify the signal into one of eight 
possible patterns – one indicating no fault, and the rest indicating one or a combination of 
predefined fault signatures. 

3.3  Positioning Error Correction with Neural Networks 
 One example of using a neural network to correct for positioning errors in a 
machine tool is described in U.S. Patent 5,523,953 (USPTO).  In it, the inventors outline 
a method of correcting for errors induced by temperature changes in the machine during 
its operation. 
 The machine is equiped with thermal sensors, and accurate measurements of the 
thermal deformations of the machine are taken while the temperature at each sensor is 
recorded.  This data is prepared and presented to the network as training data.  Once the 
trained network is completed, it then becomes a part of the machine controller.  During 
operation, the thermal sensors are constantly monitored by the neural network and its 
output is routed to the machine control as an error signal to be included in the control of 
the axes of motion of the machine. 
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Chapter 4 – Experimental Setup 
 The setup of the experiments consisted of five major steps: 
1. Configuring the laser interferometer system and the lathe control to measure the 

positioning accuracy of the axis under examination 
2. Running the lathe and laser system to collect the measurement data 
3. Designing the neural network and training it with the measured data 
4. Extracting the key network parameters and programming the real-time calculations 

for integration into the control 
5. Repeating the measurement test to determine real-world performance of the system 

4.1 Configuring Laser and Lathe Control 
 The configuration of the laser and the lathe control is determined by the desired 
test data.  While these are two separate systems, their configurations must match for a 
successful test.  The lathe control must be set up to produce the pattern of motions 
expected by the laser measurement system. 

4.1.1 Laser Measurement System Setup 
 The first step in configuring the laser interferometer system and the lathe for data 
collection is the physical alignment of the laser interferometer.  In Figure 4.1 the physical 
arrangement for collecting data on the Z (long) axis is shown.  In the lower right corner, 
the laser head can be seen which houses the laser emitter, beam splitter, interferometer, 
stationary reflector, and measurement electronics.  Circled in the upper left is the mobile 
reflector mounted on a magnetic base to the tool turret. The mobile reflector is mounted 
such that, as closely as possible, it accurately reflects the motion of the tool – which is the 
point of greatest interest in this experiment. 
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Figure 4.1 Laser alignment for Z axis. 

 Once the system components are arranged for the desired test, they are precisely 
aligned horizontally and vertically parallel with the Z axis so that linear motion in the Z 
axis is accurately measured by the laser interferometer system.  This is readily 
determined by monitoring the beam-strength of the laser as the machine is moved 
through its entire range of motion – as long as the beam-strength remains in an acceptable 
range throughout this motion, the alignment is sufficient for correct measurement. 
 With the physical arrangement and alignment of the laser system complete, the 
final step in configuring the system is to set the software parameters for the test to be 
conducted.  This is done on the Test Setup screen in the API 5/6-D laser system software.  
While many tests were conducted with a variety of parameters, the setup for the primary 
test for the Z axis is shown in Figure 4.2.  The key parameter to note is that this was a 
bidirectional test, with readings taken every 0.025 inches (40 readings per inch). 

Mobile 
Reflector 

Laser Head 

Direction of 
motion 
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Figure 4.2  Test setup for primary Z axis test. 

4.1.2 Lathe Control Setup 
 Configuring the lathe control is accomplished by writing a part program that 
produces the pattern of motion expected by the laser measurement system.  For this 
experiment, OpenCNC’s VB Macro feature was used for the required programming.  In 
this setup, a small part program was written in which the key test parameters were 
defined.  The program then called a VB macro to error check the input parameters and 
produce a subroutine that  contained the G&M code required to produce the desired 
pattern of motion. Finally, the program called the subroutine to run.  This allowed for 
major changes in test parameters with only quick, minor edits to the basic part program – 
the macro would then be recalled to regenerate all of the necessary code, instead of 
rewriting all of the code each time a test needed to be changed. 
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 Figure 4.3 contains the part program used for control of the lathe under test.  The 
first nine lines establish the parameters for the desired test.  The “macrofile…” line calls 
the VB macro and passes in the test parameters for processing.  The M200 is a part 
program syncing command in this control, and the “subfile…” line calls the subroutine 
produced by the VB macro.  Finally, M30 is the end-of-program command. 

Figure 4.3 The part program for lathe control. 
 

 When the listed part program is run and the macro is called, the first function it 
performs is to error-check the input parameters.  The macro looks for errors in requested 
axis of motion, requested limits of travel, and requested increment of motion – along with 
others.  The first part of Appendix B includes a complete listing of the macro source 
code.  After the input parameters have been checked, the G&M code is generated and is 
output to a specified filename and location.  The second part of Appendix B contains a 
complete listing of the output from running the part program listed in Figure 4.3.  After 
the macro has generated all of the necessary code, it exits and returns control back to the 
part program, which then calls the subroutine file to control machine motion. 

4.2 Data Collection 
 The data collection step of the experiment is a fairly simple process.  Once the 
laser and lathe controls are configured correctly, the lathe is put into an “AUTO” mode.  
This is where the control of the lathe is passed to the part program currently loaded.  
When the control’s “CYCLE START”  function is activated, the lathe proceeds along the 
programmed pattern of motion.  The laser control observes this motion and, based on the 
parameters entered for the test, automatically takes measurements and collects the 
resultant data.  At the conclusion of the test, the laser system writes out the data files that 
contain all of the data collected, along with some analytical results.  Figure 4.4 is an 
extract of one laser data file with a few sample lines of data. 

Figure 4.4 Laser data example. 

 The raw data collected by the laser measurement system include the commanded 

vb #1 = 3      'Axis 1=X, 2=Y, 3=Z 
vb #3 = 1      'Starting Position in Machine Coordinates 
vb #4 = 7      'End Position in Machine Coordinates 
vb #5 = 1      'Increment of motion between point 
vb #6 = 2      'Dwell time at points 
vb #7 = 3      'Number of complete runs 
vb #8 = 50     'Feedrate for motion 
vb #9 = .1     'Overshoot for backlash moves 
 
macrofile "LaserMotion" A=#1 S=#3 E=#4 I=#5 T=#6 N=#7 
F=#8 B=#9 D=0 
 
M200 

Position      LasRead   LinearError Status AirTempAirPress
 MatTemp 
     1.00000      0.000010     -0.000010      0 70.37 29.25 71.49 
     2.00000     -0.999691     -0.000309      0 70.36 29.25 71.49 
     3.00000     -1.999600     -0.000400      0 70.35 29.25 71.49 

4 00000 -2 999554 -0 000446 0 70 35 29 25 71 49
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position, laser reading, calculated linear error, status, air temperature, air pressure, and 
material temperature.  This data can be taken off-line for analysis or reviewed in some 
detail on the laser measurement system. 

4.3 Neural Network Design and Training 
 As all of the neural network design and training was done using Matlab and its 
associated Neural Network Toolbox, this portion of the experiment centers on the use of 
various Matlab functions to accomplish specific tasks. 
 After the data have been collected from the laser measurement system, they are 
taken off-line for processing.  The data file would contain two sets of data.  The first is 
the raw data collected during the entire test.  The second (in the case of a multiple run 
test) would contain the average of the error value at each individual data point over all of 
the runs in the test.  Using Matlab’s internal File:Import Data functionality, all of the 
data is manually imported into two matrices – one of raw data, the other of averages.  
These matrices would become the basis for neural network training and testing.  The 
average values were used to train the network, and the raw data were used to test the 
resultant network. 
 Generating and training a neural network, and displaying the results of test data 
was accomplished using Matlab’s m-file scripting capability.  As this process turned out 
to be highly repetitive in trying and testing different network structures (numbers of 
neurons, numbers of layers, etc.), using a script allowed for quickly editing a few key 
lines and rerunning the script to test an entirely different network. Appendix C includes 
the complete script.  The key line in the script generates a new network and specifies the 
network architecture in terms of the number of layers, neurons in each layer, and the 
transfer function to be used in each layer.  It also defines what training function is to be 
used and the evaluation function used in training and measuring performance. For 
example, the script line: 
net = newff([0 1;1 40],[60 1],{'logsig','purelin'},'trainlm','learngdm','sse'); 

 
generates a new network with two layers.  One layer will be made up of 60 neurons with 
the logsig transfer function, and the second layer will be a single neuron with a linear 
transfer function.   Once edited, the script line: 
net=newff([0 1;1 40],[40 20 1],{'logsig',’logsig’,'purelin'},'trainlm','learngdm','sse'); 
 

will generate a three layer network, a 40 neuron logsig, a 20 neuron logsig, and a single 
linear neuron.  The last few lines in the script plot the results of testing the new network 
on the same figure as the original test data.  This provides a pictorial view of the results 
for evaluation of network performance. 
 After evaluating the network performance and finding a suitable network for the 
problem, the network structure is saved to allow for extracting the key parameters to use 
in programming the real-time calculations. 

4.3.1 Matlab Implemented Training Algorithms 
 Training a neural network in the Matlab environment is normally accomplished 
using one of the built-in training functions that are included in the Neural Network 
Toolbox.  There are sixteen different training functions implemented and included as part 
of the toolbox (Demuth and Beale).  While each of the training algorithms could be used 
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on any problem, they are each more suited for certain classes of problems and network 
architectures.  One of the issues was to determine, early on, which algorithm was best 
suited for the problem at hand and the network architectures under investigation. 
 For feed-forward, backpropagation networks, the default training algorithm is the 
Levenberg-Marquardt algorithm.  According to Demuth and Beale this algorithm is well 
suited to function approximation problems with networks of moderate size and number of 
parameters.  It is also well suited to problems that require the approximation to be very 
accurate.  Other algorithms that were considered to work well in function approximation 
problems are the Scaled Conjugate Gradient and the BFGS Quasi-Newton algorithms 
(Demuth and Beale). 
 Demuth and Beale present a discussion on speed and memory comparisons of the 
various training algorithms for a set of sample problems.  This discussion supports the 
conclusion that the Levenberg-Marquardt (LM) algorithm is the best available in this 
toolbox for the class of problems that are function approximation problems on small to 
moderate sized networks.  As the problem under study fits that description, these 
recommendations were considered and the conclusions on the actual data for this problem 
were validated. 

The work in this thesis included a function approximation problem that required 
the final error to be reduced to a very small value and, in general, the networks were of 
moderate size.  A series of ten tests each were conducted on four of the training 
algorithms where a newly created network was trained against the data collected from the 
laser-interferometer measurements of the lathe.  In each of the tests, the entire network 
was newly created and randomly initialized in the default manner of the toolbox.  The 
training parameters were set to train for 1000 epochs, and the goal of reducing the error 
to 4 x 10-8 was set, as measured by the Sum Squared Error (SSE) function.  In each of the 
tests, the time to complete 1000 epochs (or reach the training goal) was tracked, along 
with the final error reached.  The results of the test are summarized in Table 4-1.  While 
the LM algorithms was the slowest of the four tested, it was the only algorithm capable of 
reaching the training goal specified and it still completed in a reasonable amount of time.  
The accuracy reached in each trial is shown in Figure 4.5.  In this figure, and noting that 
the accuracy level is plotted on a logarithmic scale, it can be seen how much better the 
LM algorithm is at reaching a very small error level as required by this application. 
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Training Algorithm 
Average Time to 1000 

Epochs 
(seconds) 

Final Error Measure 
(inches) 

TrainRP 23.4 4.67E-4 
TrainSCG 44.9 3.67E-4 
TrainBFG 54.3 1.23E-7 
TrainLM 65.8 4.81E-8 

Table 4-1  Comparison of training algorithms 

Figure 4.5  Comparison of training algorithm accuracy. 
 After reviewing the information on training algorithms, and conducting the test 
discussed above on actual data from this experiment, it was concluded that the 
Levenberg-Marquardt was the best training algorithm to use for this application.  All 
further network development and training for this experiment were done using the LM 
algorithm.  

4.4 Programming Real-Time Calculations 
 Programming the real-time calculations for integration into the lathe control 
system is accomplished using the capabilities provided by MDSI’s Application 
Programming Interface (API) for hard, real-time program development (MDSI, API 
Manual).  The programming was done in Microsoft Visual C++ and referenced libraries 
provided as part of VentureCom’s Software Development Kit (VenturCom).  
Programming the real-time calculations first required the extraction of the key network 
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parameters from the network developed in Matlab described in the previous step.  Then, 
those parameters had to be coded into the program that produced the actual calculations 
of compensation values to integrate into the control. 

4.4.1 Extraction of Network Parameters 
 At the point where the real-time calculation is being programmed, the structure of 
the neural-network has been designed, and all of the values within the network have been 
determined by the training process.  These key parameters are the weights applied to the 
inputs, the bias values applied to the input neurons, the weights applied to any values 
passed to neurons in the hidden layers of the network (these are usually known as layer 
weights), the bias values applied to hidden neurons, and the transfer functions of all the 
neurons in the network.  Since the design and training of the network were accomplished 
within the Matlab environment these parameters are all stored as properties of the 
network object created in Matlab. 
 As is often the case, the easiest method of repeatedly accomplishing a task in 
Matlab is to write an m-file script to do the work.  For example, within Matlab, if there 
exists a neural network object named “net”, it will have properties referred to as 
“net.IW{1}”  which contains the matrix of input weights for the network.  Other 
properties are net.b{1}, net.b{2}, and net.LW{2} which are the bias values for layer one, 
bias values for layer two, and the layer weights applied to inputs to layer two, 
respectively.  The script included as Appendix D was used to extract the parameters of 
the networks.  Also included in Appendix D is the results of running the script which 
shows the output of the m-file.  This output was formatted to be as close as possible to 
the text necessary to define constants in a C program – which is how the values were 
used in programming the calculations. 

4.4.2 Calculation of Compensation Values 
 Determining the compensation values to be used in the system control is done by 
calculating the feed-forward action of the neural network defined previously.  This 
calculation must be designed to meet the constraints of the tools used – it must use only 
functions supported by the VentureCom SDK (VCI), and must be simple and quick 
enough to meet the timing constraints established in the machine control.  In the case of 
this system, the control was queried for inputs and new compensation values were 
calculated and returned every 10 milliseconds. 
 As an example, one network structure that was used in this system was made up 
of two simple networks. Figure 4.6 includes a diagram of the network structure with 
weights and bias points, where I1 and I2 are input neurons, I1W1…I1Wn and 
I2W1…I2Wn are input weights, H1…Hn are the hidden neurons, bH1…bHn are the bias 
values for these neurons, LW1…LWn are the layer weights, O1 is the output neuron, and 
bO1 is the bias value for that neuron.  The first network had two input neurons, an eight-
neuron hidden layer using the logsig transfer function, and a single output neuron with a 
linear transfer function.  The second network also had two input neurons, a 30-neuron 
hidden layer using the logsig transfer function, and a single, linear, output neuron.  The 
outputs from the two simple networks were added to make the final compensation value 
to be returned to the control. 
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Figure 4.6 Neural network with weights and biases. 

 Following the diagram in Figure 4.6, the complete calculation of the feed-forward 
path of the network can be written as: 
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or more succinctly as: 
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where n is the number of neurons in the hidden layer, and the transfer function logsig(x) 
is defined as: 

xe−+1
1

 

However, by taking advantage of prior knowledge of the inputs, this can be simplified.  
In the case of this system, the first input, I1, is either 0 or 1 indicating forward or reverse 
motion respectively.  In the case of forward motion where I1 is 0, the calculation can be 
reduced to: 
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In the case of reverse motion where I1 is 1, and noting that the input weights and bias 
values are predetermined,  the calculation can be reduced to: 
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where bWHj is the predetermined value of bHjWjI +1 . 
 The complete C program code for this calculation is included as Appendix E.  By 
reviewing that code, it can be seen how all of the calculations were accomplished using 
simple mathematical functions and basic looping structures.  These were required to stay 
within the supported functions of the VentureCom SDK.  It can also be seen how all 
required values from the network, and any additional constants that could be derived 
from those basic values, were predetermined and loaded into the program code as 
constants to be used in the calculations. 

4.4.3  Control Integration and Measurement Testing 
 Integration into the control requires the installation of the compiled program onto 
the machine under test, and editing the control system’s configuration files to include this 
program in the startup of the machine control.  The exact details are specific to MDSI’s 
OpenCNC product and can be found in the OpenCNC 6.0 API Manual and the sample 
programs provided with the OpenCNC API. 
 The program was configured to run on a strict timing cycle of 10 milliseconds.  In 
each cycle the following actions take place: 

1. Control variables are read to determine the current axis position. 
2. Direction of motion is determined from previous position to current position. 
3. Current position is recorded for motion comparison in the next cycle. 
4. Input values are scaled and applied to the compensation calculations. 
5. Compensation values are calculated based on the inputs presented. 
6. Compensation value is returned to the control for immediate application to the 

system. 
7. Wait for the next timing mark to repeat cycle. 

The complete routine is programmed to run as an infinite loop.  Once the loop is entered, 
the cycle will be repeated on each timing mark forever or until the process is killed by 
shutting down the control system. 
 Once the compensation routine is installed in the control system and the control is 
restarted, the measurement test outlined previously is repeated under the exact same setup 
conditions.  The results from this test are then used to determine the effectiveness of the 
compensation system as applied to the real-world system. 
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Chapter 5 – Results 
 The results for this thesis are based on the laser interferometer data taken  with the 
machine in three different states.  In the first state, all positioning error compensation 
systems are turned off or removed from the control system.  This represents the basic 
mechanical condition of the machine and the data taken in this state is the starting point 
for any compensation system applied to the machine.  The second state, the controls 
standard bi-directional leadscrew compensation is applied as described in previously.  
This represents the “state-of-the-art” in machine tool positioning error compensation as 
normally seen on the shop floor today.  While there are more advanced methods of 
positioning error compensation, they are normally not part of a commercially available 
control system and therefore are not often seen in a modern machine shop.  In the third 
state, the results achieved by the neural network-based positioning error compensation 
system are developed.  This includes a discussion of the various network architectures 
examined as part of this project. 

5.1  Uncompensated Positioning Errors 
 Initial attempts at measuring the linear positioning error were made at the usual 
settings for a large machine tool.  Three repeated runs were made with measurements 
taken at one inch intervals over the full range of motion of the Z-axis of the machine.  
However, after getting some inconsistent results and taking a closer look at the condition 
of the machine, the final measurements were made as a set of four repeated runs with the 
measurement interval set to 0.025 inches (40 readings per inch).  The range of 
measurements was reduced to 39 inches (from the 1 inch point to the 40 inch point).  This 
was done to reduce the time involved in taking the measurements.  The results of these 
measurements are shown in Figure 5.1. 
 In Figure 5.1, each data point was measured in the forward and reverse directions.  
The individual data points were averaged and presented.  From these values, the 
maximum average error is calculated to be 0.005582 inches.  This is the difference 
between the highest average value and the lowest average value across the entire range of 
measured motion.  The lower set of values are those taken while the machine was moving 
in the forward direction (stated position was increasing in value).  The upper set of values 
are those measured while the machine was moving in the reverse direction.  The data plot 
graphically illustrates the three major issues that any positioning error compensation 
system must address to improve the performance of the machine. 
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Figure 5.1  Uncompensated positioning error average results. 

 The most glaring problem on this machine is the difference in positioning from 
between the forward and reverse motions – commonly known as backlash.  As listed in 
the lower portion of the plot, the maximum reversal error is 0.004181 inches.  This is the 
maximum error at any one measurement point between the two directions of motion.  The 
next problem is the general trend of the machine to position “long” as the desired position 
increases from 1 inch to 40 inches.  In the left side of the graph, positioning errors are 
less than the errors on the right side of the graph.  By analyzing the numerical 
measurements associated with this graph, this contributes approximately 0.0012 inches to 
the overall error.  The last error is the most problematic and is very difficult to see in this 
plot.  Figure 5.2  is an expansion of the plot around measurements from a single direction 
of motion over a space of 2.5 inches (from 1 inch to 3.5 inches).  This highlights the 
cyclic error on this machine.  
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Figure 5.2  Single direction cyclic error. 

 The major mechanical contributor to linear positioning error on this machine is 
the leadscrew assembly (Figure A.3 and Figure A.4).  In this case, the pitch of the 
leadscrew, or the amount of linear motion generated by a single revolution of the 
leadscrew, is 0.25 inches.  Examining Figure 5.2 the rather severe cyclic error can be 
seen for each revolution of the leadscrew.  It measures approximately 0.00145 inches 
peak-to-peak and has a double-humped pattern for each turn of the screw.  This is what 
causes the forward and reverse runs in Figure 5.1 to appear as broad swipes across the 
graph instead of the expected single line of points.  As previously mentioned, this 
contributes approximately 0.00145 inches to the overall positioning error, but more 
importantly is very difficult to compensate for in many control systems. 
 The data shown represents a machine with some significant mechanical flaws 
affecting its performance.  Any effort truly directed at improving its performance (for 
example preparing it for use in a production environment) would have to begin with 
mechanical repairs of these flaws.  However, in its current state it is a good test of 
compensation systems that may be applied. 

5.2  Bi-Directional Leadscrew Compensation 
 Bi-directional leadscrew compensation was applied as described previously.  The 
average error values recorded in the uncomped measurements were negated and input 
into the control system as leadscrew compensation values.  Since this compensation 
system requires that the values be at a fixed interval over the entire compensated range of 
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motion, and in trying to make this work as well as possible, compensation values were 
applied just as measured – 0.025 inch interval from 1inch to 39 inches.  The overall 
results are displayed in Figure 5.3. 

 
Figure 5.3  Bi-directional leadscrew compensation results. 

 The measurement runs that were used to test this compensation system were set to 
an interval of 0.52 for the range of 1 inch to 40 ionches.  This made for a much quicker 
check (the umcompensated four passes took almost 20 hours to run), and by setting the 
increment to a value that was not evenly divisible by the pitch of the leadscrew it still 
brought out the cyclic errors as the leadscrew stopped in different rotational positions. 
 As shown in Figure 5.3, the bi-directional compensation system was able to 
correct for the majority of the errors.  The overall maximum average error was reduced to 
0.000995 inches – 17.8% of the uncompensated error.  Backlash as measured by the 
maximum reversal error has been reduced to 0.000813 inches – 19.4% of the 
uncompensated value.  And, while the cyclic error is clearly visible, it has been reduced 
to approximately 0.0005 inches or less – about 35% of the uncompensated value. 
 These results represent what is generally achievable as state-of-the-art in 
production machinery.  This machine is compensated at a very close interval (typical for 
a machine this size is 1 inch intervals).  But the control system in use here allows for this, 
and also allows for the large number of points that must be entered with this small 
interval. 
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5.3  Neural Network-Based Error Compensation 
 A neural network based positioning error compensation system was constructed 
as previously described, and the post-compensation test was rerun with the same 
parameters as the bi-directional leadscrew compensation was tested.  This allowed for a 
direct comparison of the results of the two methods.  The overall results can be seen in 
Figure 5.4. 
 Figure 5.4 shows that the neural network error compensation routine was able to 
correct for the majority of the positioning errors in the machine.  The overall maximum 
average error was reduced to 0.000933 inches – 16.7% of the uncompensated error.  The 
maximum reversal error was measured at 0.000614 inches – showing a reduction of the 
backlash error to 14.7% of the uncompensated error.  Under close examination of the data 
plot, the cyclic error can still be seen as peaks in the error measurements, but it has been 
reduced to less than 0.0005 inches, or about 35% of the uncompensated measurement. 
 The laser interferometer tests results are for the three compensation systems 
(uncompensated errors, bi-directional leadscrew compensation and neural network-based 
compensation) are summarized in Table 5-1.  Briefly, it can be seen that either 
compensation system made vast improvements in the accuracy of the machine, and the 
results of the two systems are comparable. 

 
Figure 5.4  Neural network error compensation results. 

 
Error Measured Uncompensated Bi-Directional Neural Network 

Max Average Error 0.005582 0.000995 0.000933 
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(inches) 
Max Reversal Error 

(inches) 
0.004181 0.000813 0.000614 

Max Repeat 
(inches) 

0.005570 0.001098 0.001043 

Cyclic Error 
(inches) 

~0.00145 ~0.0005 ~0.0005 

Table 5-1  Positioning error summary. 

5.4  Network Training Results 
 In the course of this project, many different networks were tried and examined.  
This trial phase quickly focused on three network architectures that produced reasonable 
and consistent results for the problem under study.  For all the networks, the inputs 
consisted of the linear position of the machine, a direction-of-motion indicator, and a 
calculated value indicating where the machine was currently located - within a single 
revolution of the leadscrew.  Also for all the networks, the output was a single value of 
the currently required positioning error compensation value to be applied to the control 
system.  The variation between the networks was in the hidden layers of the network and 
the connectivity between the neurons. 
 The first network consisted of a single, 40-neuron, hidden layer between the 
inputs and outputs as diagrammed in Figure 5.5 (the diagram is an extract from the view 
function in the Matlab Neural Network Toolbox graphical network editor nntool).  All the 
hidden layer neurons have the logsig transfer function, with a single linear neuron in the 
output layer.  The network is fully connected from inputs to the hidden layer to the output 
layer. 
 

 
Figure 5.5  Single hidden-layer network. 

 Typical training results for the trials of this network are shown in Figure 5.6.  
After approximately 7500 epochs, which took just over two hours on the test computer, 
the network was normally able to get the error measure down to a value of approximately 
7.00e-7 as measured by the Sum Squared Error performance function.  With this level of 
performance, a maximum error of 1.3498e-4 was reached for any single point in the 
range of operation. 
 The second network architecture that was closely studied consisted of two hidden 
layers between the inputs and outputs.  Both of these layers were made up of logsig 
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neurons, with 30 neurons in the first layer, and 10 neurons in the second layer.  The 
diagram of this network is shown in Figure 5.7. 
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Figure 5.6  Training results for the single-layer network. 

 

 
Figure 5.7  Multi-layer network diagram. 

 The training results for this network were typically in the same range as the 40-
neuron single-layer network.  The training results are shown in Figure 5.8.  As shown, the 
network was able to achieve a comparable level of performance, with the training time 
for this network taking about 2.5 hours (about 25% longer than the single-layer network), 
but only 3200 epochs – or less than half the single-layer network. 
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Figure 5.8  Training results for the multi-layer network. 

 The last network architecture closely examined was a combination of two 
networks.  This architecture was arrived at by considering the nature of the problem.  
From the uncompensated positioning error results (Figure 5.1 and Figure 5.2) the errors 
can be classified into two categories – large or gross errors that occur over the range of 
motion and the cyclic error that occurs within the space of a single revolution of the 
leadscrew.  The large errors would include the general trend of the positioning error as 
the machine moved from 1inch to 40 inches and the backlash error as the machine 
changes direction of motion.  By considering, and compensating for, these problems 
separately, two networks can be created.  One would be designed to address the large 
error issues, and the other would focus solely on the cyclic error problem.  The system 
would be constructed so that, just prior to applying the compensation to the control, the 
network outputs would be added to make a single compensation value to be used. 
 The resulting networks were two single-layer networks, one with 30 neurons in 
the hidden layer, and one with eight neurons in the hidden layer.  In both cases, the 
network is as diagramed in Figure 5.5, only the number of hidden-layer neurons would 
change.  The training results for the 30-layer network are shown in Figure 5.9.  For the 
data presented, this network was able to reduce the error measure (as before, the 
performance function was the SSE) to under 4e-8 in less than 600 epochs.  The training 
time for this network was just under 42 seconds. 
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Figure 5.9  Training result for large-error network. 

 The training result for the eight-neuron network is shown in Figure 5.10.  This 
network was designed to address the cyclic errors seen in the data.  For this, the network 
was able to reduce the SSE error measure to under 9e-9 in less than 300 epochs.  The 
training time for this network was under 15 seconds on the test computer. 



 44

0 50 100 150 200 250

10
-8

10
-6

10
-4

10
-2

10
0

10
2

273 Epochs

Tr
ai

ni
ng

-D
as

h 
 G

oa
l-S

ol
id

Performance is 8.98224e-009, Goal is 9e-009

 
Figure 5.10  Training result for cyclic error network. 

 By taking advantage of some pre-training analysis, it was possible to reduce the 
training time from over two hours to just a few minutes for the problem under study.  
This was achieved while maintaining (or improving) the ability of the system to 
approximate the function as necessary to generate the compensation values.  This multi-
network architecture was the network architecture that was implemented and tested.  
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Chapter 6 - Conclusions 

6.1  Contributions 
 In the course of this project, it was shown that a neural network is a viable 
technology for calculating compensation values for positioning errors in a machine tool.  
By treating this as a function approximation problem, and designing and training a 
network to approximate the function that describes the mechanical errors in the machine, 
a system was constructed that successfully corrected for the majority of the positioning 
errors in the machine.   
 The system designed was not simulated, but was actually implemented on a real 
machine tool in an industrial environment.  Uncompensated errors were measured, the 
neural network system was designed and integrated into the real-time, deterministic, level 
of the machine control system.  The results were measured using industry-standard test 
equipment and procedures.  The final results achieved were as good as, or slightly better, 
than the current state-of-the-art in machine tool positioning error compensation 
capabilities in commercially available control systems. 
 Three different network architectures were closely studied, and it was 
demonstrated that any of the three were able to achieve final results sufficient to meet the 
machine requirements.  However, it was shown that with some analysis of the problem 
prior to network design, an architecture could be created that was well tailored to the 
application.  This architecture was able to meet system requirements with much less 
training time. 

6.2  Limitations 
 The limitations of this work are in two areas.  The first is in the highly manual 
nature of the work required to implement the system.  Data is manually moved from the 
laser interferometer system to the network design and training system.  Results are then 
manually moved to the real-time calculation programming system and imbedded in the 
code.  The end result is then manually moved to the control system and installed.  In 
working on this project, the ability of each of these systems to take the information and 
data from other systems was proven, but no real effort was made to truly integrate these 
systems. 
 The second limiting area was in designing the neural network to perform the 
function approximation. As it was implemented, there was no generic or universal 
solution that could be used to solve a wide range of problems.  For example, applying the 
neural network-based positioning error compensation system to another machine tool 
would likely require the re-examining of the network architecture and redesigning it to 
solve the new function approximation problem (a new set of error data). 

6.3  Future Work 
 While this project was successful in demonstrating the application of neural 
networks to the positioning error problem, there is certainly much more work to be done.  
Addressing the limitations discussed would be a high priority.  This would involve 
several areas of integration.  One would be the integration of the control of the laser 



 46

interferometer system and the machine tool motion.  This would eliminate the dual set up 
required, and it would facilitate development of more advanced motion routines.  For 
example, variable increments of motion over the range of motion versus the current 
requirement for a fixed interval across the entire range of motion can be examined. 
 Development of a widely applicable network architecture would greatly improve 
the usability of this technology in the industrial environment. Development of a universal 
architecture would also facilitate development of a more universal real-time calculation 
routine that would not have to be independently implemented for each individual 
machine. 
 Other areas of future work would focus on expansion of the capabilities of the 
system.  For example, including more variables into the compensation calculation.  This 
would allow the system to account for errors induced by thermal changes or by errors 
caused by the interaction between machine axes or by fundamental geometric errors in 
the machine.  A common geometric error is an out-of-square condition, where the axes of 
motion are not exactly perpendicular.  In this case, the motion of one axis would induce a 
positioning error in the other axes. 
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Appendix A – Detail Photographs 

Lower Aperture

Upper Aperture

Reflected Beam

 
Figure A.1 Laser interferometer upper and lower apertures. 

Figure A.1 shows the upper and lower apertures of the interferometer.  The laser beam is 
emitted from the lower aperture and is reflected back to the upper aperture from the 
mobile reflector.  In this photo, the beam is intentionally misaligned to be visible to the 
side of the upper aperture. 



 49

Tool Turret

Cutting Tool

 
Figure A.2 Close-up of mobile reflector. 

Figure A.2 shows a close-up view of the mobile reflector.  It is mounted on a magnetic 
base and its position is adjusted by sliding or rotating the shafts used to mount it.  As 
shown, it is positioned as close as possible to the tool turret and its height matches the 
height of cutting tools mounted in the turret.  In this position, the motion of the mobile 
reflector closely matches the motion of the cutting tool. 
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Figure A.3 Long axis leadscrew assembly. 

The machine depicted in Figure A.3 similar to the American Hustler lathe used in the 
experiments.  As shown, it has been partially disassembled for major maintenance – 
leaving the leadscrew exposed and viewable.  The long axis leadscrew is visible in the 
lower portion of the figure, running the entire length of the machine.  The leadscrew (and 
its corresponding ballnut) is used to convert the rotary motion of the servo-motor to the 
linear motion required by the machine.  It is fixed at both ends with bearings, and rotating 
it causes the cross-slide to move along the guide ways for the long axis.  This can be seen 
in greater detail in Figure A.4. 
 

Leadscrew

Guide 

Cross-slide 
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Figure A.4 Close up of ballnut assembly. 

Figure A.4 shows the leadscrew-ballnut assembly for the long axis on a lathe.  Motion 
along this axis is generated by a servo-motor rotating the leadscrew.  Since the leadscrew 
is fixed in position by bearings at each end, rotating it causes the ballnut assembly to 
move linearly along its length.  The ballnut is, of course, fixed to the cross-slide which 
then slides along the long axis of the machine, guided by the guide ways seen at the top 
of the figure. 
 

Ballnut Assembly 

Leadscrew 

Guide Ways 
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Appendix B – Visual Basic Macro Code and Subroutine 
Result 
 The following text is the main module from the Visual Basic (VB) macro that 
error checks the input parameters and generates the G&M code subroutine to run the 
machine under test. 
 
Attribute VB_Name = "Module1" 
 
'************************************************************************** 
'* 
'* LaserMotion 
'* VB Macro to make motion for laser checks 
'* By John M. Fines 
'* This assumes that we have either a XZ lathe or XYZ mill 
'* and only does bidirectional runs 
'************************************************************************** 
 
'Ensure that all variables must be declared 
Option Explicit 
 
'macro-specific constants 
'ms.... => index to argument name 
'mv.... => index to argument value 
Public Enum macroArgs 
    msAxis = 0 
    mvAxis        'Axis of motion X=1, Y=2, Z=3 
    msStartPos 
    mvStartPos    'Starting point of motion 
    msEndPos 
    mvEndPos      'Ending point of motion 
    msIncrement 
    mvIncrement   'Motion increment 
    msDwell 
    mvDwell       'Dwell time at each point 
    msNumRuns 
    mvNumRuns     'Number of complete runs 
    msFeedrate 
    mvFeedrate    'Feedrate for moves 
    msBacklash 
    mvBacklash    'distant for backlash overshoot moves 
    msDebugMode 
    mvDebugMode       'Debug mode for program 0 = No messages NonZero = messages 
    maxArguments 
End Enum 
 
'Declare any global constants for use 
Const NearZero As Double = 0.0001 
 
 
'Declare the win32 API function that let's us return an error code 
Private Declare Function ExitProcess Lib "kernel32" (ByVal exitCode As Long) As Long 
 
'this needs to be global so we can clean it up on a fatal error. 
Dim mdsiMacroObj As IMdsiMacroSupport 
 
'declare argument variables 
    Dim Axis As Double 
    Dim StartPos As Double 
    Dim EndPos As Double 
    Dim Increment As Double 
    Dim Dwell As Double 
    Dim NumRuns As Double 
    Dim Feedrate As Double 
    Dim Backlash As Double 
    Dim DebugMode As Double 
 
 
Public Sub Main() 
    'generic macro variables 
    Dim ret As mdsiMacroReturnTypes 
    Dim block As String 
    Dim nValues As Long 
 
    'macro application-specific variables 
    '  for example: 
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    'Dim x As Double, y As Double 
    'Dim index As Integer 
    Dim defAxisLetters As Variant, defGInchMode As Variant, defDecimalShift As Variant 
    Dim AxisLetter As String 
    Dim AxisNumber As Integer 
    Dim AxMin As Double, AxMax As Double 
    Dim v As Variant 
    Dim CurrentPos As Double 
    Dim LaserZero As Boolean 
    Dim RunCount As Integer 
     
    'open and clear the subroutine file 
    Open "\OpenCNC\Subroutines\laserSub.txt" For Output As #1 
    Print #1, "( Error in processing input - see message window )" 
    Close #1 
     
     
    'Initialize and parse the command line arguments 
    Initialize 
 
    'first check the axis selection - if bad bail out 
    'this allows me to set up initial values based on axis selection 
    'it might not be the right axis - but at least it's not total garbage 
    If (Axis < 1) Or (Axis > 3) Then 
        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("ERROR: Invalid Axis selected must be between 1 and 
3") 
        fatal ret 
    End If 
 
    'Set up initial values 
    'go get the axis letters for this machine 
    ret = mdsiMacroObj.mdsiVariableReadByNameVB("defAxisLetters", defAxisLetters, nValues) 
    If ret <> mdsiMacro_Succeeded Then 
        fatal ret  'quit; return the error code to OpenCNC 
    End If 
    If DebugMode <> 0 Then 
        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("DEBUG: Axis letters: " + CStr(defAxisLetters)) 
    End If 
    AxisLetter = Choose(Axis, "X", "Y", "Z")        'select letter based on numeric input from user 
    If Axis < 3 Then        'if X or Y, then axis number is 0 or 1 respectively 
        AxisNumber = Int(Axis) - 1 
    ElseIf ((Axis = 3) And (InStr(CStr(defAxisLetters), "Y") > 0)) Then 
        AxisNumber = 2      'if selected Z and Y exists, then axis number is 2 
    Else 
        AxisNumber = 1      'if selected Z and no Y, then axis number is 1 
    End If 
 
    ' get the decimal shift value for location calculations 
    ret = mdsiMacroObj.mdsiVariableReadByNameVB("defDecimalShift", defDecimalShift, nValues) 
    If ret <> mdsiMacro_Succeeded Then 
        fatal ret  'quit; return the error code to OpenCNC 
    End If 
 
    'go get the absolute minimum coord for selected axis 
    ret = mdsiMacroObj.mdsiVariableReadByNameVB("axLocAbsMin", v, nValues) 
    If ret <> mdsiMacro_Succeeded Then 
        fatal ret  'quit; return the error code to OpenCNC 
    Else 
        AxMin = v(AxisNumber) / (2540000 * (10 ^ -(defDecimalShift))) 
    End If 
    If DebugMode <> 0 Then 
        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("DEBUG: Axis Minimum: " + CStr(AxMin)) 
    End If 
    'go get the absolute max coordinate for selected axis 
    ret = mdsiMacroObj.mdsiVariableReadByNameVB("axLocAbsMax", v, nValues) 
    If ret <> mdsiMacro_Succeeded Then 
        fatal ret  'quit; return the error code to OpenCNC 
    Else 
        AxMax = v(AxisNumber) / (2540000 * (10 ^ -(defDecimalShift))) 
    End If 
    If DebugMode <> 0 Then 
        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("DEBUG: Axis Maximum: " + CStr(AxMax)) 
    End If 
     
    'go get the inch mode G code for this machine 
    ret = mdsiMacroObj.mdsiVariableReadByNameVB("defGInchMode", defGInchMode, nValues) 
    If ret <> mdsiMacro_Succeeded Then 
        fatal ret  'quit; return the error code to OpenCNC 
    End If 
    If DebugMode <> 0 Then 
        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("DEBUG: Inch Mode G-Code: " + CStr(defGInchMode)) 
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    End If 
     
    'Error checks - see imbedded messages for individual purpose 
    If (InStr(CStr(defAxisLetters), AxisLetter) < 1) Then 
        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("ERROR: Invalid Axis specified") 
    ElseIf (StartPos >= EndPos) Then 
        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("ERROR: Start Position must be less than End 
Position") 
    ElseIf (StartPos < AxMin) Or (StartPos > AxMax) Then 
        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("ERROR: Invalid Start Position must be between " + 
CStr(AxMin) + " and End Position") 
    ElseIf (EndPos < AxMin) Or (EndPos > AxMax) Then 
        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("ERROR: Invalid End Position must be between Start 
Position and " + CStr(AxMax)) 
    ElseIf (Increment < NearZero) Or (Increment > (EndPos - StartPos)) Then 
        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("ERROR: Invalid Increment spec'd - too small or too 
large") 
    ElseIf Not CheckIncrement(EndPos, StartPos, Increment) Then 
        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("ERROR: Increment does not divide evenly") 
    ElseIf (Dwell < 1) Or (Dwell > 99) Then 
        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("ERROR: Invalid Dwell spec'd must be between 1 and 
99") 
    ElseIf (NumRuns < 1) Or (NumRuns > 99) Then 
        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("ERROR: Invalid Number of Runs spec'd must be between 
1 and 99") 
    ElseIf (Feedrate < 0.1) Or (Feedrate > 50) Then 
        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("ERROR: Invalid Feedrate spec'd must be between 0.1 
and 50 IPM") 
    ElseIf (Backlash <= 0) Or (Backlash > 1) Then 
        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("ERROR: Invalid Backlash move spec'd must be between 0 
and 1") 
    ElseIf ((StartPos - Backlash) < AxMin) Then 
        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("ERROR: Not enough travel to make backlash move from 
starting position") 
    ElseIf ((EndPos + Backlash) > AxMax) Then 
        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("ERROR: Not enough travel to make backlash move from 
ending position") 
    Else 
         
        'made it past all the error checks so run the machine 
        LaserZero = False 
         
        'open the subroutine file for writing 
        Open "\OpenCNC\Subroutines\laserSub.txt" For Output Shared As #1 
         
        'set machine initial conditions 
        'if there is a diameter type axis (i.e. a lathe) do the G07 
        ret = mdsiMacroObj.mdsiVariableReadByNameVB("axDiameterType", v, nValues) 
        If ret <> mdsiMacro_Succeeded Then 
            fatal ret  'quit; return the error code to OpenCNC 
        End If 
        If v(AxisNumber) <> 0 Then 
            block = "G07" 
            Print #1, block 
        End If 
             
        'set to inch mode 
        block = "G" & CStr(defGInchMode) 
        Print #1, block 
             
        'Feedrate moves, Inch mode, work coord offsets off, absolute mode, IPM 
        block = "G01G59G90G94  (Setting Machine Modals)" 
        Print #1, block 
         
        'move to starting position 
        'I'm using G53 to make sure offsets are not a factor - necessary??? 
        block = "G53" & AxisLetter & Format(StartPos, "##0.0###") & "F" & Format(Feedrate, "##.#") 
        Print #1, block 
         
        'start to loop through motion 
        For RunCount = 1 To NumRuns 
            'make the backlash move 
            block = "G53" & AxisLetter & Format(StartPos - Backlash, "##0.0###") & "F" & 
Format(Feedrate, "##.#") 
            Print #1, block 
             
            block = "G04F" & Format(Dwell, "##") 
            Print #1, block 
            'return to start position 
            block = "G53" & AxisLetter & Format(StartPos, "##0.0###") & "F" & Format(Feedrate, "##.#") 
            Print #1, block 
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            If LaserZero Then 
                block = "G04F" & Format(Dwell, "##") 
                Print #1, block 
            Else 
                block = "M00  (Program Stop for Zero Laser)" 
                Print #1, block 
                LaserZero = True 
            End If 
            'clear the comment line 
            block = "(Measurement run: " & CStr(RunCount) & ")" 
            Print #1, block 
             
            'loop for motion in positive direction 
            CurrentPos = StartPos + Increment 
            Do 
                block = "G53" & AxisLetter & Format(CurrentPos, "##0.0###") 
                Print #1, block 
                block = "G04F" & Format(Dwell, "##") 
                Print #1, block 
                CurrentPos = CurrentPos + Increment 
            Loop Until (CurrentPos > (EndPos + NearZero)) 
            'make the end backlash move 
            block = "G53" & AxisLetter & Format(EndPos + Backlash, "##0.0###") 
            Print #1, block 
            block = "G04F" & Format(Dwell, "##") 
            Print #1, block 
             
            'loop for return pass 
            CurrentPos = EndPos 
            Do 
                block = "G53" & AxisLetter & Format(CurrentPos, "##0.0###") 
                Print #1, block 
                block = "G04F" & Format(Dwell, "##") 
                Print #1, block 
                CurrentPos = CurrentPos - Increment 
            Loop Until (CurrentPos < (StartPos - NearZero)) 
            block = "M01 (End of Run: " & CStr(RunCount) & ")" 
            Print #1, block 
        Next 
'        ret = mdsiMacroObj.mdsiMsgWindowWriteVB("End of requested runs - exiting macro") 
    End If 
   
    Set mdsiMacroObj = Nothing 
    Close #1 
 
End Sub   'main() 
 
'This function checks for (EndPos - StartPos) / Increment evenly (within value of NearZero) 
'By looping through - there are numerical problems with int() 
Public Function CheckIncrement(E As Double, S As Double, I As Double) As Boolean 
    'local variables 
    Dim x As Double 
     
    CheckIncrement = True       'default to success 
    x = S 
     
    Do 
        x = x + I 
    Loop Until (Abs(E - x) < NearZero) Or (x > E) 
    If (x > E) And (Abs(E - x) > NearZero) Then 
        CheckIncrement = False 
    Else 
        x = E 
        Do 
            x = x - I 
        Loop Until (Abs(S - x) < NearZero) Or (x < S) 
        If (x < S) And (Abs(S - x) > NearZero) Then 
            CheckIncrement = False 
        End If 
    End If 
     
End Function 'CheckIncrement() 
'This subroutine does the initialization and command line parsing. 
' 
Public Function Initialize() 
    'generic macro variables 
    Dim arguments(maxArguments + 10) As Variant 
    Dim retArgs As Variant 
    Dim ret As mdsiMacroReturnTypes 
    Dim argCount As mdsiMacroReturnTypes 
    Dim errorPosition As Long 
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    'MDSI initialization 
    '  this section of code must not be deleted 
    Set mdsiMacroObj = CreateObject("mdsiMacroSupport.clsMdsiMacroSupport") 
    ret = mdsiMacroObj.Initialize(Command()) 
    If ret <> mdsiMacro_Succeeded Then 
        fatal ret  'quit; return the error code to OpenCNC 
    End If 
    'setup argument names 
    arguments(msAxis) = "A" 
    arguments(msStartPos) = "S" 
    arguments(msEndPos) = "E" 
    arguments(msIncrement) = "I" 
    arguments(msDwell) = "T" 
    arguments(msNumRuns) = "N" 
    arguments(msFeedrate) = "F" 
    arguments(msBacklash) = "B" 
    arguments(msDebugMode) = "D" 
 
    'setup default values 
 
    'parse the incoming command-line arguments 
    argCount = mdsiMacroObj.mdsiParseMacroArgsVB(arguments, retArgs, errorPosition) 
    If argCount < mdsiMacro_Succeeded Then 
        fatal argCount  'quit; return the parse error code to OpenCNC 
    End If 
    'assign argument variables 
    Axis = retArgs(mvAxis) 
    StartPos = retArgs(mvStartPos) 
    EndPos = retArgs(mvEndPos) 
    Increment = retArgs(mvIncrement) 
    Dwell = retArgs(mvDwell) 
    NumRuns = retArgs(mvNumRuns) 
    Feedrate = retArgs(mvFeedrate) 
    Backlash = retArgs(mvBacklash) 
    DebugMode = retArgs(mvDebugMode) 
 
End Function 
 
' Call fatal when you want to quit with an error code. 
' 
Public Sub fatal(exitCode As Long) 
  Dim o As Object 
 
  'cleanup all objects we know about 
  mdsiMacroObj.unInitialize 
  Set mdsiMacroObj = Nothing 
  For Each o In Forms 
    Unload o 
  Next o 
 
  'close all open files 
  Reset 
 
  ExitProcess exitCode 
End Sub 
 
 
' This is a wrapper function for mdsiBlockWrite. 
' It checks the return code and calls 'fatal' on an error other 
' than 'mdsiMacro_InJogMode'. 
' Note:  A caveat about using this function:  mdsiBlockWriteVB returns 
'        the error code 'mdsiMacro_InJogMode' if OpenCNC is in Jog mode. 
'        This is not considered a fatal error here.  The property 
'        'runMode' may be checked to determine if OpenCNC is in Jog mode. 
' 
Public Sub SendBlock(block As String) 
  Dim ret As mdsiMacroReturnTypes 
 
  'send the block to the parser 
  ret = mdsiMacroObj.mdsiBlockWriteVB(block) 
  If (ret <> mdsiMacro_Succeeded) Then      'And (ret <> mdsiMacro_InJogMode) Then 
    'failed to send block; do error processing here. 
    fatal ret  'quit; return the error code to OpenCNC 
  Else 
    ret = mdsiMacroObj.mdsiMsgWindowWriteVB("Sendblock OK:" & block) 
  End If 
End Sub 
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 The following text is the resultant subroutine code after running the part program 
listed in Figure 4.3. 
G70 
G01G59G90G94  (Setting Machine Modals) 
G53Z1.0F50. 
G53Z0.9F50. 
G04F2 
G53Z1.0F50. 
M00  (Program Stop for Zero Laser) 
(Measurement run: 1) 
G53Z2.0 
G04F2 
G53Z3.0 
G04F2 
G53Z4.0 
G04F2 
G53Z5.0 
G04F2 
G53Z6.0 
G04F2 
G53Z7.0 
G04F2 
G53Z7.1 
G04F2 
G53Z7.0 
G04F2 
G53Z6.0 
G04F2 
G53Z5.0 
G04F2 
G53Z4.0 
G04F2 
G53Z3.0 
G04F2 
G53Z2.0 
G04F2 
G53Z1.0 
G04F2 
M01 (End of Run: 1) 
G53Z0.9F50. 
G04F2 
G53Z1.0F50. 
G04F2 
(Measurement run: 2) 
G53Z2.0 
G04F2 
G53Z3.0 
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G04F2 
G53Z4.0 
G04F2 
G53Z5.0 
G04F2 
G53Z6.0 
G04F2 
G53Z7.0 
G04F2 
G53Z7.1 
G04F2 
G53Z7.0 
G04F2 
G53Z6.0 
G04F2 
G53Z5.0 
G04F2 
G53Z4.0 
G04F2 
G53Z3.0 
G04F2 
G53Z2.0 
G04F2 
G53Z1.0 
G04F2 
M01 (End of Run: 2) 
G53Z0.9F50. 
G04F2 
G53Z1.0F50. 
G04F2 
(Measurement run: 3) 
G53Z2.0 
G04F2 
G53Z3.0 
G04F2 
G53Z4.0 
G04F2 
G53Z5.0 
G04F2 
G53Z6.0 
G04F2 
G53Z7.0 
G04F2 
G53Z7.1 
G04F2 
G53Z7.0 
G04F2 
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G53Z6.0 
G04F2 
G53Z5.0 
G04F2 
G53Z4.0 
G04F2 
G53Z3.0 
G04F2 
G53Z2.0 
G04F2 
G53Z1.0 
G04F2 
M01 (End of Run: 3) 
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Appendix C - M-File for Neural Network Generation 
The following  Matlab m-file script is the basic tool for generating a new neural network, 
training it with test data, and viewing the results of the new network. 
% preprocess.m 
% basic processing of the data to prepare for nn tasks 
 
% clear the workspace and load the data file 
clear; 
load z; 
 
% plot the runs just cause I like to look at pictures 
plot (smallzv9_2(1:3122,1),smallzv9_2(1:3122,3),'-r'); 
hold on 
plot (smallzv9_2(3123:6244,1),smallzv9_2(3123:6244,3),'-
g'); 
plot (smallzv9_2(6245:9366,1),smallzv9_2(6245:9366,3),'-
b'); 
plot (smallzv9_2(9367:end,1),smallzv9_2(9367:end,3),'-c'); 
title('Four Runs As Recorded By Laser'); 
 
%plot the averages for the same reason as above 
figure 
plot (smallzv9_2ave(:,1),smallzv9_2ave(:,2),'-b'); 
title('Averages'); 
 
% vector indicating direction of motion - 0 => positive, 1 
=> negative 
dir = [zeros(1561,1); ones(1561,1)]; 
 
% generate the network 
net = newff([0 1;1 40],[60 
1],{'logsig','purelin'},'trainlm','learngdm','sse'); 
 
% set constants 
% for the network construction 
net.trainParam.show = 5; 
net.trainParam.epochs = 1000; 
net.trainParam.goal = 4e-8; 
 
% for simplicity, collect the inputs (p) and targets (t) 
p = [dir smallzv9_2ave(:,1)]'; 
t = smallzv9_2ave(:,2)'; 
 
% train the network 
net = train(net,p,t); 
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% test the network on the first run 
Xm = [zeros(1,1561); smallzv9_2(1:1561,1)']; 
am = sim(net,Xm); 
 
Ym = [ones(1,1561); smallzv9_2(1562:3122,1)']; 
bm = sim(net,Ym); 
 
% plot the result 
figure(1) 
hold on 
plot(smallzv9_2ave(1:1561,1)', am, '-b'); 
plot(smallzv9_2ave(1562:3122,1), bm, '-b'); 
 
% save the resultant network for later use 
save net30 net 
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Appendix D – M-File for Extraction of Network Values 
The following Matlab m-file script is a compete listing of the script used to extract and 
save the key parameters.  These values are written out to a text file in a form intended for 
ease of use as constant definitions in a C program. 
% netvalues.m 
% gets the network values and outputs them in as useful 
% a format as I can determine 
 
clear 
load netmean; 
load netdet3; 
 
% for each network, I need: 
% inputWeights(:,2) - multiplied by position input 
% inputWeights(:,1) + bias1 - equivalent to dir input = 1 + 
bias: added % to pos input * IW(:,2) 
% bias1 - used with dir input = 0: either this or above is 
added to pos % input * IW(:,2) 
% layerWeights - multiplied by result of layer 1 
% bias2 - added to result of above 
fid = fopen('netvalues.txt','w'); 
 
% begin processing for netmean 
inputWeights = netmean.IW{1}; 
bias1 = netmean.b{1}; 
bias2 = netmean.b{2}; 
layerWeights = netmean.LW{2}; 
 
% output input weights column 2 
fprintf(fid,'const double FullIW2[%d] = 
{\r\n',length(inputWeights)); 
for i = 1:(length(inputWeights)-1) 
 fprintf(fid,'  %+2.16e,\r\n',inputWeights(i,2)); 
end 
fprintf(fid,'  %+2.16e\t};\r\n\r\n',inputWeights(i+1,2)); 
 
% output input weights column 1 + bias 1 
fprintf(fid,'const double FullIW_B1[%d] = 
{\r\n',length(inputWeights)); 
for i = 1:(length(inputWeights)-1) 
 fprintf(fid,'  
%+2.16e,\r\n',inputWeights(i,1)+bias1(i)); 
end 
fprintf(fid,'  
%+2.16e\t};\r\n\r\n',inputWeights(i+1,1)+bias1(i+1)); 
 
% output bias values for layer 1 



 63

fprintf(fid,'const double FullBias1[%d] = 
{\r\n',length(bias1)); 
for i = 1:(length(bias1)-1) 
 fprintf(fid,'  %+2.16e,\r\n',bias1(i)); 
end 
fprintf(fid,'  %+2.16e\t};\r\n\r\n',bias1(i+1)); 
 
% output layer weights 
fprintf(fid,'const double FullLW[%d] = 
{\r\n',length(layerWeights)); 
for i = 1:(length(layerWeights)-1) 
 fprintf(fid,'  %+2.16e,\r\n',layerWeights(i)); 
end 
fprintf(fid,'  %+2.16e\t};\r\n\r\n',layerWeights(i+1)); 
 
% output the bias value for layer 2 
fprintf(fid,'const double FullBias2 = '); 
fprintf(fid,'%+2.16e;\r\n\r\n',bias2); 
 
% begin processing for netdet 
inputWeights = netdet.IW{1}; 
bias1 = netdet.b{1}; 
bias2 = netdet.b{2}; 
layerWeights = netdet.LW{2}; 
 
% output input weights column 2 
fprintf(fid,'const double cyclicIW2[%d] = 
{\r\n',length(inputWeights)); 
for i = 1:(length(inputWeights)-1) 
 fprintf(fid,'  %+2.16e,\r\n',inputWeights(i,2)); 
end 
fprintf(fid,'  %+2.16e\t};\r\n\r\n',inputWeights(i+1,2)); 
 
% output input weights column 1 + bias 1 
fprintf(fid,'const double cyclicIW_B1[%d] = 
{\r\n',length(inputWeights)); 
for i = 1:(length(inputWeights)-1) 
 fprintf(fid,'  
%+2.16e,\r\n',inputWeights(i,1)+bias1(i)); 
end 
fprintf(fid,'  
%+2.16e\t};\r\n\r\n',inputWeights(i+1,1)+bias1(i+1)); 
 
% output bias values for layer 1 
fprintf(fid,'const double cyclicBias1[%d] = 
{\r\n',length(bias1)); 
for i = 1:(length(bias1)-1) 
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 fprintf(fid,'  %+2.16e,\r\n',bias1(i)); 
end 
fprintf(fid,'  %+2.16e\t};\r\n\r\n',bias1(i+1)); 
 
% output layer weights 
fprintf(fid,'const double cyclicLW[%d] = 
{\r\n',length(layerWeights)); 
for i = 1:(length(layerWeights)-1) 
 fprintf(fid,'  %+2.16e,\r\n',layerWeights(i)); 
end 
fprintf(fid,'  %+2.16e\t};\r\n\r\n',layerWeights(i+1)); 
 
% output the bias value for layer 2 
fprintf(fid,'const double cyclicBias2 = '); 
fprintf(fid,'%+2.16e;\r\n\r\n',bias2); 
fclose(fid); 
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The following text file is the result of running the previous m-file on one of the neural 
networks developed. It is the output of netvalues.m. 
const double FullIW2[30] = { 
  -3.5299591828609689e-001, 
  +2.9772889998702345e-001, 
  -6.4793260461973534e-001, 
  +5.4195020390193360e-001, 
  +9.7106115496384826e-001, 
  +6.1905741094569089e-001, 
  +7.7323968706067736e-001, 
  -1.9677546910613436e-001, 
  -7.5903727601389914e-003, 
  -1.0715500354505123e+000, 
  +7.4182768355941786e-001, 
  -8.3897565665597562e-001, 
  +6.2476996136658969e-001, 
  +6.2602614925206490e-001, 
  -2.4024212111154136e-001, 
  +8.1848186292315062e-001, 
  -4.0822195177470089e-001, 
  -7.1626070157100863e-001, 
  +8.9921491040980839e-001, 
  +1.2928512211754312e-001, 
  -8.2383751470809030e-001, 
  +8.3874484365466773e-001, 
  +3.7197208002594834e-001, 
  -7.0063070389361926e-001, 
  -7.4830770954720938e-001, 
  +2.5576441880935413e-001, 
  +5.7884559271706870e-001, 
  -5.1772547956387849e-001, 
  +2.8298441045876910e-001, 
  -3.9568791198859837e-001 }; 
 
const double FullIW_B1[30] = { 
  +7.0470049377939930e+000, 
  -1.4097100862194786e+001, 
  +1.8789253140934623e+001, 
  -9.7455579099105591e+000, 
  -2.1396950984946812e+001, 
  -1.0504336719678323e+001, 
  -8.4603634074333058e+000, 
  -4.9485358741831220e+000, 
  +8.5169577723346919e+000, 
  +1.3935073610259401e+001, 
  -1.6541715543130792e+001, 
  +1.3470121353454136e+001, 
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  -1.7694116756426421e+001, 
  -1.8332232907721902e+001, 
  -9.1405546309460455e+000, 
  -1.0092226745629825e+001, 
  +2.3863482551199322e+001, 
  +2.3776316084580969e+001, 
  -6.8667949688335881e+000, 
  -2.6486017651552007e+001, 
  +3.1025011814584467e+000, 
  +4.3567770884020387e+000, 
  +1.1123058872867919e+001, 
  +5.5031336101198693e+000, 
  +2.9086499981718013e+001, 
  +1.9976889065608717e+001, 
  -3.1096013722954432e+001, 
  +3.5389976478144561e+001, 
  -3.1986270148644632e+001, 
  -2.0684497872413800e+001 }; 
 
const double FullBias1[30] = { 
  +3.5545079968154958e+001, 
  -3.6416031669458668e+001, 
  +3.4983425512452655e+001, 
  +8.5797397367591479e+000, 
  -3.1331556021774304e+001, 
  +1.6358650232444849e+000, 
  -5.4085567369344272e+000, 
  +2.5396281073556299e+001, 
  -2.2155285650187714e+001, 
  +5.4701322032968340e+000, 
  -2.1295955495436054e+000, 
  +1.1081061271037377e+001, 
  -7.2995753942845081e+000, 
  -9.5543556064397652e+000, 
  +2.0061702533473493e+001, 
  -1.9567626679904070e+001, 
  +9.7023646305029010e-001, 
  +1.0185475520917636e+001, 
  -1.6336552516527902e+001, 
  -5.3423886361010664e-001, 
  +1.4957998772309816e+001, 
  -1.5311024980801433e+001, 
  -1.3861709831682187e+001, 
  +8.6954486655705221e+000, 
  +2.2303031682519762e+001, 
  -8.8421753766822473e+000, 
  -1.7125562961409566e+000, 
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  +1.6313926034840971e+001, 
  -1.7332421739865340e+000, 
  +5.9170950459425411e+000 }; 
 
const double FullLW[30] = { 
  -1.9722090856230893e-002, 
  -3.3381213233866988e-002, 
  -3.5392149785856523e-002, 
  -2.2485102542564316e-002, 
  +2.1203505113612767e-003, 
  +1.6435067023459145e-002, 
  -2.8571235938803881e-003, 
  -1.7985204049942757e-001, 
  -2.8522718298553684e-001, 
  +1.6739422819069079e-003, 
  -6.6813157353764335e-003, 
  +5.1686224863966524e-003, 
  -1.2998730486961044e-002, 
  -2.5279135841123679e-002, 
  +5.5089960293835630e-002, 
  +2.0197341240874665e-003, 
  -3.0999957862638091e-002, 
  -1.5265730944106306e-003, 
  -5.8489218591469359e-003, 
  -1.9922873247891157e-001, 
  +1.0679026108750460e-003, 
  +4.2333059590505904e-003, 
  -2.1126715470884939e-002, 
  -7.3627218857791965e-003, 
  -3.7719891563069265e-003, 
  +4.6331692055082856e-002, 
  +6.3970870956342772e-005, 
  +1.6432927867145796e-002, 
  +7.2777120317224900e-002, 
  -7.2225148283068585e-002 }; 
 
const double FullBias2 = +3.3526357495979814e-001; 
 
const double cyclicIW2[8] = { 
  +4.0199735339014765e+001, 
  +1.1412266461437305e+001, 
  -2.6173165967393352e+001, 
  -3.5485150577054590e+001, 
  +4.7523812303695863e+001, 
  -2.6388036946666858e+001, 
  -6.4902852076295659e+001, 
  -3.7128378964014928e+001 }; 



 68

 
const double cyclicIW_B1[8] = { 
  -7.3902984827427503e+000, 
  -4.8286945653885969e+000, 
  +7.7240626438899760e+000, 
  +9.6338193323527328e+000, 
  +3.7826837129765529e+000, 
  -1.1199979350411143e+001, 
  +3.8645326454024267e+000, 
  -8.5064102092927918e+000 }; 
 
const double cyclicBias1[8] = { 
  -1.9372202168215299e+001, 
  +1.1473068913108277e+001, 
  -7.1779003755671003e+000, 
  -5.9534315151373125e+000, 
  -1.0972641799667036e+001, 
  +3.2932649248391974e+000, 
  -1.5021445926326495e+000, 
  +4.4508828942124801e+000 }; 
 
const double cyclicLW[8] = { 
  -1.2845598766206338e-002, 
  -3.7583290668195674e-001, 
  -7.9272704047420051e-001, 
  +4.2340609441792598e-001, 
  -3.3566978204302399e-003, 
  -1.9669801168724809e-002, 
  -3.5317654044065912e-003, 
  +1.6403797843778867e-002 }; 
 
const double cyclicBias2 = +3.7874518228170045e-001; 
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Appendix E – C Program for Network Calculation 
 The following C program is the code for the calculation of the feed-forward path 
of the neural network used in determining error-compensation values.  This is the central 
part of the program that runs in the hard real-time environment to interact with the lathe 
control system. 
/* calcZ.c */ 
 
#include <math.h> 
 
/* input weights column 2 - for mulitply by position input 
*/ 
const double FullIW2[30] = { 
  -3.5299591828609689e-001, 
  +2.9772889998702345e-001, 
  -6.4793260461973534e-001, 
  +5.4195020390193360e-001, 
  +9.7106115496384826e-001, 
  +6.1905741094569089e-001, 
  +7.7323968706067736e-001, 
  -1.9677546910613436e-001, 
  -7.5903727601389914e-003, 
  -1.0715500354505123e+000, 
  +7.4182768355941786e-001, 
  -8.3897565665597562e-001, 
  +6.2476996136658969e-001, 
  +6.2602614925206490e-001, 
  -2.4024212111154136e-001, 
  +8.1848186292315062e-001, 
  -4.0822195177470089e-001, 
  -7.1626070157100863e-001, 
  +8.9921491040980839e-001, 
  +1.2928512211754312e-001, 
  -8.2383751470809030e-001, 
  +8.3874484365466773e-001, 
  +3.7197208002594834e-001, 
  -7.0063070389361926e-001, 
  -7.4830770954720938e-001, 
  +2.5576441880935413e-001, 
  +5.7884559271706870e-001, 
  -5.1772547956387849e-001, 
  +2.8298441045876910e-001, 
  -3.9568791198859837e-001 }; 
 
/* input weights column 1 added to input bias - used for 
addtion when direction input = 1 */ 
const double FullIW_B1[30] = { 
  +7.0470049377939930e+000, 
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  -1.4097100862194786e+001, 
  +1.8789253140934623e+001, 
  -9.7455579099105591e+000, 
  -2.1396950984946812e+001, 
  -1.0504336719678323e+001, 
  -8.4603634074333058e+000, 
  -4.9485358741831220e+000, 
  +8.5169577723346919e+000, 
  +1.3935073610259401e+001, 
  -1.6541715543130792e+001, 
  +1.3470121353454136e+001, 
  -1.7694116756426421e+001, 
  -1.8332232907721902e+001, 
  -9.1405546309460455e+000, 
  -1.0092226745629825e+001, 
  +2.3863482551199322e+001, 
  +2.3776316084580969e+001, 
  -6.8667949688335881e+000, 
  -2.6486017651552007e+001, 
  +3.1025011814584467e+000, 
  +4.3567770884020387e+000, 
  +1.1123058872867919e+001, 
  +5.5031336101198693e+000, 
  +2.9086499981718013e+001, 
  +1.9976889065608717e+001, 
  -3.1096013722954432e+001, 
  +3.5389976478144561e+001, 
  -3.1986270148644632e+001, 
  -2.0684497872413800e+001 }; 
 
/* input bias - used for addition when direction input = 0 
*/ 
const double FullBias1[30] = { 
  +3.5545079968154958e+001, 
  -3.6416031669458668e+001, 
  +3.4983425512452655e+001, 
  +8.5797397367591479e+000, 
  -3.1331556021774304e+001, 
  +1.6358650232444849e+000, 
  -5.4085567369344272e+000, 
  +2.5396281073556299e+001, 
  -2.2155285650187714e+001, 
  +5.4701322032968340e+000, 
  -2.1295955495436054e+000, 
  +1.1081061271037377e+001, 
  -7.2995753942845081e+000, 
  -9.5543556064397652e+000, 
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  +2.0061702533473493e+001, 
  -1.9567626679904070e+001, 
  +9.7023646305029010e-001, 
  +1.0185475520917636e+001, 
  -1.6336552516527902e+001, 
  -5.3423886361010664e-001, 
  +1.4957998772309816e+001, 
  -1.5311024980801433e+001, 
  -1.3861709831682187e+001, 
  +8.6954486655705221e+000, 
  +2.2303031682519762e+001, 
  -8.8421753766822473e+000, 
  -1.7125562961409566e+000, 
  +1.6313926034840971e+001, 
  -1.7332421739865340e+000, 
  +5.9170950459425411e+000 }; 
 
/* layer weights - multiplied by result of layer 1 */ 
const double FullLW[30] = { 
  -1.9722090856230893e-002, 
  -3.3381213233866988e-002, 
  -3.5392149785856523e-002, 
  -2.2485102542564316e-002, 
  +2.1203505113612767e-003, 
  +1.6435067023459145e-002, 
  -2.8571235938803881e-003, 
  -1.7985204049942757e-001, 
  -2.8522718298553684e-001, 
  +1.6739422819069079e-003, 
  -6.6813157353764335e-003, 
  +5.1686224863966524e-003, 
  -1.2998730486961044e-002, 
  -2.5279135841123679e-002, 
  +5.5089960293835630e-002, 
  +2.0197341240874665e-003, 
  -3.0999957862638091e-002, 
  -1.5265730944106306e-003, 
  -5.8489218591469359e-003, 
  -1.9922873247891157e-001, 
  +1.0679026108750460e-003, 
  +4.2333059590505904e-003, 
  -2.1126715470884939e-002, 
  -7.3627218857791965e-003, 
  -3.7719891563069265e-003, 
  +4.6331692055082856e-002, 
  +6.3970870956342772e-005, 
  +1.6432927867145796e-002, 
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  +7.2777120317224900e-002, 
  -7.2225148283068585e-002 }; 
 
/* bias value layer 2 */ 
const double FullBias2 = +3.3526357495979814e-001; 
 
/* input weights column 2 for cyclic error network */ 
const double cyclicIW2[8] = { 
  +4.0199735339014765e+001, 
  +1.1412266461437305e+001, 
  -2.6173165967393352e+001, 
  -3.5485150577054590e+001, 
  +4.7523812303695863e+001, 
  -2.6388036946666858e+001, 
  -6.4902852076295659e+001, 
  -3.7128378964014928e+001 }; 
 
/* input weights column 1 added to bias layer 1 for cyclic 
error net */ 
const double cyclicIW_B1[8] = { 
  -7.3902984827427503e+000, 
  -4.8286945653885969e+000, 
  +7.7240626438899760e+000, 
  +9.6338193323527328e+000, 
  +3.7826837129765529e+000, 
  -1.1199979350411143e+001, 
  +3.8645326454024267e+000, 
  -8.5064102092927918e+000 }; 
 
/* bias layer 1 for cyclic error net */ 
const double cyclicBias1[8] = { 
  -1.9372202168215299e+001, 
  +1.1473068913108277e+001, 
  -7.1779003755671003e+000, 
  -5.9534315151373125e+000, 
  -1.0972641799667036e+001, 
  +3.2932649248391974e+000, 
  -1.5021445926326495e+000, 
  +4.4508828942124801e+000 }; 
 
/* layer weights for cyclic error net */ 
const double cyclicLW[8] = { 
  -1.2845598766206338e-002, 
  -3.7583290668195674e-001, 
  -7.9272704047420051e-001, 
  +4.2340609441792598e-001, 
  -3.3566978204302399e-003, 
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  -1.9669801168724809e-002, 
  -3.5317654044065912e-003, 
  +1.6403797843778867e-002 }; 
 
/* bias layer 2 for cyclic error net */ 
const double cyclicBias2 = +3.7874518228170045e-001; 
 
 
/**********************************************************
**************************** 
 * function calcZ 
 * inputs: 
 *  dir: direction of motion 0 => forward, 1 => 
reverse 
 *  pos: current position in inches 
 * ouputs: 
 *  returns comp value for position and direction in 
Z axis 
 * processing: 
 *  This does the feed forward portion of the neural 
networks.It calculates the  
 *  transfer function of logsig for the hidden layer 
and a pure linear for the output 
 *  neuron.  There are two networks, one for a full 
length error function and one  
 *  that handles the details of the cyclic error in 
the screw. 
 
***********************************************************
***************************/ 
double calcZ(int dir, double pos) { 
 
 register int i; 
 double temp[30]; 
 double cyclicPos; 
 double fullResult = 0; 
 double cyclicResult = 0; 
 
/* init the temp array dependent on direction of travel */ 
 if (dir == 0) /* direction input = 0 => zeros out the 
input weights */ 
 { 
  for (i = 0; i < 30; i++) 
   temp[i] = FullBias1[i]; 
 } 
 else   /* direction input = 1 => includes dir 
input weights */ 
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 { 
  for (i = 0; i < 30; i++) 
   temp[i] = FullIW_B1[i]; 
 } 
 
/* calculate position input*input weights and add to temp 
*/ 
 for (i = 0; i < 30; i++) 
  temp[i]  += (pos * FullIW2[i]); 
 
/* calculate the logsig function for each element */ 
 for (i = 0; i < 30; i++) 
  temp[i] = 1 / (1 + exp(-(temp[i]))); 
 
/* calculate the vector multiplication of layerweights * 
result of hidden layer */ 
 for (i = 0; i < 30; i++)  /* multiplication */ 
  temp[i] *= FullLW[i]; 
 for (i = 0; i < 30; i++)  /* summing results */ 
  fullResult += temp[i]; 
 
/* add the bias value for output neuron */ 
 fullResult += FullBias2; 
 
/* now calculate the value for the cyclic error 
compensation */ 
 cyclicPos = fmod(pos, 0.25); 
 
/* init the temp array dependent on direction of travel */ 
 if (dir == 0) /* direction input = 0 => zeros out the 
input weights */ 
 { 
  for (i = 0; i < 8; i++) 
   temp[i] = cyclicBias1[i]; 
 } 
 else   /* direction input = 1 => includes dir 
input weights */ 
 { 
  for (i = 0; i < 8; i++) 
   temp[i] = cyclicIW_B1[i]; 
 } 
 
/* calculate position input*input weights and add to temp 
*/ 
 for (i = 0; i < 8; i++) 
  temp[i]  += (cyclicPos * cyclicIW2[i]); 
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/* calculate the logsig function for each element */ 
 for (i = 0; i < 8; i++) 
  temp[i] = 1 / (1 + exp(-(temp[i]))); 
 
/* calculate the vector multiplication of layerweights * 
result of hidden layer */ 
 for (i = 0; i < 8; i++)  /* multiplication */ 
  temp[i] *= cyclicLW[i]; 
 for (i = 0; i < 8; i++)  /* summing results */ 
  cyclicResult += temp[i]; 
 
/* add the bias value for output neuron */ 
 cyclicResult += cyclicBias2; 
 
 return (- (fullResult + cyclicResult));  
} /* end of calcZ() */ 
 


