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 Abstract 
 
 
This dissertation reports on research, development, and evaluation of a color based 

video sequence identification and tracking algorithm.  We describe an automatic 

video sequence identification and tracking algorithm that detects and extracts 

repeated video sequences from a continuous video stream.  Because our technique is 

domain and video source independent, it is applicable to any video stream that is 

repetitive and changes slowly over time.   

We digitize and segment a continuous video stream into video sequences 

using color histogram-based techniques.  Our video sequence identification approach 

groups individual frames together based on their color features.  In particular, we use 

the nine color moments, namely the mean, variance, and skew of each primary color 

component of the RBG color format.  Then, we identify similar video sequences 

based on how many similar frames they contain.  Finally, we compare the similar 

video sequences frame by frame to identify repeated video sequences 

We studied the efficiency and the effectiveness of our algorithms on 24 or 

more hours of video data from two different sources.  We found that the technique 

accurately identifies repeated sequences, producing recall and precision values both 

over 90%.  We also evaluated the applicability of our technique as a lossless 

compression algorithm.  By removing repeated sequences from the video archive, we 

achieve a compression gain ratio of 30% on each source. 
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Chapter 1  

Introduction and Motivation 

 

 

1.1 Driving Problem 

One of the main technology achievements in the mid-twentieth century was the 

invention of the television set and hence the proliferation of video signal 

broadcasting.  In the late 1990s, we saw the technology of the late-twentieth century, 

the Internet, used as a new broadcasting media, bringing video streams to personal 

computers (PCs).  Due to the combination of these two technologies, we are able to 

see the latest events and stories happening around the world in real time by watching 

television or video streams over the Internet.  The easy availability of these media 

transmissions has created repeated broadcast content that causes the ineffective use of 

a viewer’s time and inefficient use of storage media in archives.  Unlike earlier times 

when there were only a few television channels, cable networks and Internet web sites 

provide continuous program coverage of news and documentaries.  However, if we 
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watch the same channel at different times of the day to keep abreast of television 

programs, we can spend hours only to discover that a large portion of the programs 

and video sequences are repeated from the previous television program sessions.   

What is needed is a video sequence tracking system that could combine, for 

instance, a day’s worth of program coverage into one shorter program session 

containing only the unique stories. In other words, we need an effective way to shrink 

the length of a viewer’s television program session without losing any content.  One 

possibility is to compare continuous program coverage, remove repeated video 

sequences and combine all and only the unique video.  This should create a more 

compact representation of the entire days.  Shorter television program sessions could 

lead to shorter broadcasting time and better bandwidth utilization.   Viewers could use 

the time saved to receive content from a wider variety of programs.             

 

 

1.2 Project Goals of the Thesis 

This dissertation describes an automatic video sequence identification and tracking 

technique.  The focus of the work is to design, implement, and test algorithms and 

technologies to extract unique video sequences from repetitive continuous video 

streams.  Our technique is domain and video source independent so that it can be 

used on any video stream that contains repeated sequences.  For testing and 

evaluation purposes, we have applied this technology to two television channel video 

streams.   
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Our work has three main goals:  1) design and implement an efficient real time 

video sequence identification and tracking technique; 2) reduce the storage 

requirements of video archive built from the stream by omitting repeated sequences; 

and 3) reduce the amount of time a user needs to view a program by displaying only 

new, unique material.  We evaluated the accuracy of our video sequence 

identification and tracking techniques using a collection of 32 hours of continuous 

video.  We evaluated the compression achievable in both the user’s viewing time and 

the archive storage requirements.  We have also evaluated how well the technique 

performs on other video sources by testing the technique on a 24 hours of video 

stream collected from a different television source. 
 

 

1.3 The Broader Picture  

This work could form one component of a video archive system for content-based 

topic tracking.  Figure 1 illustrates a function block diagram for a fully automated, 

content-based story tracking system for television news programs.  The question now 

is:  Is it feasible to build such a fully automated video content-based news story 

tracking system that can represent continuous news coverage as a series of unique 

topics/stories to achieve better content and compression efficiency? 
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Figure 1.1 Functional Block Diagram of An Ideal Television News Topic Tracking 

System 
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Given the current video signal processing technologies, without any human 

intervention and manual editing, the solution to the above problem is still not 

achievable. The fast growth of multimedia information in image and video databases 

in the last ten years has triggered research on efficient video retrieval and processing 

methods, but none of these projects concentrate on finding techniques for identifying 

unique video sequences and tracking news stories from a given video source.  In 

order to detect and aggregate news stories from a video source, we need a fully 

automated video signal processing system that can first apply content-based video 

processing techniques to track and extract all the unique video sequences from the 

input source.  Then, video sequences must be grouped into different stories using 

video abstractions such as closed captions, audio and video features. The research 

presented in this dissertation has tried to answer some (indicated as grayed blocks in 

Figure 1.1), although not all, of these problems.  In particular, we concentrate on the 

feature-based identification and tracking of unique video sequences, but not on the 

knowledge-intensive activity of content-based aggregation into stories.   
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Chapter 2  

The Related Work 

 

 

This research has its roots in image and video processing techniques and in topic 

detection and tracking of text documents.  Related digital image and video processing 

problems include the abstraction and representation of a video content, the detection 

and segmentation of the video shots and scenes, and the content-based video archive 

retrieval and storage.  Other ongoing areas of video processing research study video 

similarity measurement, topical event detection in video sources, commercial 

detection, and story-based video segmentation.  The following sections discuss some 

of this related work.  
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2.1 Image Abstraction and Similarity Measure 

A video sequence is made up of number of video frames captured in temporal order 

in which each video frame can be treated as one single image.  Hence, a video 

sequence can be seen as an ordered stream of images with each image represented by 

its own abstraction.  Existing research on content-based image retrieval explores 

multiple ways of representing these images for content-based similarity measurement 

and retrieval.  Images can be represented by properties of color, shape, and edge 

features.  One of the most popular ways of representing an image is to use its color 

histogram.  This feature-based image representation has been shown to be efficient 

and effective in the content-based image retrieval [11][24][28].  A color histogram 

describes the global color distribution in an image.  The color histogram is extremely 

easy to compute and insensitive to small changes in viewing positions and partial 

occlusion.  The degree of similarity between two represented images is calculated as 

the distance between two color histograms.  However, a color histogram only records 

an image’s overall color composition, so images with very different appearances can 

have similar color histograms.  Pan and Zabih [26] show that the histogram method is 

not robust to large appearance changes and is liable to produce false positives due to 

the lack of any spatial information. 

 Several approaches have attempted to incorporate spatial information with 

color.  Smith and Chang [36] propose dividing images into sub-regions and imposing 

positional constraints on the image comparison (image partitioning).  In their 

research, an image is partitioned into binary color sets.  The binary color sets, 
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calculated using histogram back-projection [38], and their location information 

constitute the feature for an image.  This feature can be used to perform region-based 

queries.  Stricker and Dimai [37] divide an image into five fixed overlapping regions 

and extract the first three color moments of each region to form a feature vector for 

the image.  The storage requirements for this method are very low.  The use of 

overlapping regions makes the feature vectors relatively insensitive to small rotations 

or translations.  Pass and Zabih [27] partition histogram bins by the spatial coherence 

of pixels.  In their work, a pixel is coherent if it is a part of some “sizable” similar-

colored region, and incoherent otherwise.  A color coherence vector (CCV) is created 

to represent this classification for each color in the image.  CCVs are fast to compute 

and appear to perform better than histograms.  The notion of CCV is also extended in  

[27] using additional features to further refine the CCV-refined histogram.   

 Since histogram refinement methods depend on local properties, they are 

unlikely to tolerate large image appearance changes.  The same problem occurs in the 

image partitioning approach that depends on pixel position.  The correlogram method 

proposed by Huang and Kumar [18][19] takes into account the local spatial 

correlation between colors as well as the global distribution of this spatial correlation. 

A color correlogram of an image is a table indexed by color pair, where the k-th entry 

for (i, j) specifies the probability of finding a pixel of color j at a distance k from a 

pixel of color i in the image.  The correlogram is easy to compute and the size of the 

feature is fairly small.  It has also been shown to be robust to large image changes. 
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 Other image features used for image similarity comparison are the shape and   

invariant properties of the color image.  Geusebroek and Koelma [17] demonstrate an 

image retrieval system based on local color invariants.  For each image stored in the 

database, color edge invariants for shadow and highlights are extracted.  Shape 

invariant descriptors are computed from the edge map and the resulting shape features 

are used to index the image.  Swain and Ballard [38] use dominant colors to construct 

an approximate representation of color distribution of a image and the results have 

shown that using only a few dominant colors will not degrade the performance of 

color image matching.  In fact, since small histogram bins are likely to be the result of 

noise, performance may even be enhanced.  Rowe and Boreczky [34] represent an 

image by the first three color moments for each color component and experimental 

evidence has shown image similarity based on color moments is more robust than that 

based on color histograms.  
 In another approach, Kato and Zhang [22][42] derive edges from an image 

using a technique such as Sobel filter to provide good cues for content. Two images 

can be then compared for similarity measure by calculating a correlation between 

their edge maps.  However, these comparison methods are limited by their 

dependency on image resolution, size and orientation. 
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2.2 Video Sequence Abstraction and Feature based 

Video Similarity Measure 

 

The ease of capturing and encoding digital video has created the need for new 

technologies able to handle multimedia information.  One of the basic video 

processing techniques needed to handle video is the representation of video 

sequences.  Typically, the video source is segmented into either shots or scenes.  A 

video shot is defined as a continuous roll of the camera while a video scene is a 

collection of shots that occur in a single location or are temporally unified.  Thus, a 

scene is a sequence of video shots representing continuous action.  In our research, 

we define a video sequence as a video shot.  One way of abstracting a video sequence 

is to map the entire video segment to some small number of representative images, 

usually called key frames [40][42][43].  Key frames are still images that best 

represent the content of the video sequence.  They may be either extracted or 
constructed from the original video data.  Index and video features can be constructed 

from these key-frames using image abstraction techniques discussed in the previous 

section to provide a key-frame similarity measure between two video sequences.  

Zhang and Low [42] represent video sequences based on key-frame color, texture, 

shape, and edge features.  

  Instead of selecting still images as key-frames for video sequences, Arman [3] 

represents each video sequence using a representative frame called an Rframe.  Each 
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Rframe consists of a body, which is the 10th frame of the video sequence, four 

motion-tracking regions, and the video sequence length indicator. The shape and 

color properties of these Rframes are calculated and used to measure similarity 

between Rframes, and hence their respective video sequences.  The shape property of 

an Rframe is represented using the moment invariant while its color property is 

represented by the color histogram.  The output of the moment-based and color 

histogram-based analyses are two floating numbers describing the similarity in shape 

and in color of the Rframes’ body.  A mapping function is used to map both entities 

onto a common space in order to combine and compare these two different entities. 

 Chueng and Zakhor [5] consider the use of meta-data and video domain 

methods to detect similar videos on the web.  In their work, meta-data is extracted 

from the textual and hyperlink information associated with each video sequence while 

in the video domain a video signature is created for video similarity measure.  In the 

meta-data method, each video sequence is represented by a set consisting of all the 

distinct terms found in the associated meta-data.  The degree of meta-similarity, 

which determines the degree of video sequence similarity, is defined as the ratio 

between the size of the intersection and the union of the two meta-data sets.  The 

video signature for each video sequence is constructed by selecting a small number of 

frames that are most similar to a set of random seed images.  In the video signature 

method, the similarity between video sequences is based solely on the similarity 

between individual signature frames selected.  The degree of signature frame 

similarity is determined by measuring visual feature distance between frames.  Since 
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it needs to be done for every seed and every pair of video in the database, they 

propose a statistical pruning procedure [6] to the complexity of the frame distance 

computation.  Also, a new signature clustering algorithm [6] is proposed to further 

improve similar video sequence retrieval performance by providing an efficient 

organization of data that allows users to focus on relevant information.  This 

clustering algorithm treats all the signatures as an abstract threshold graph, where the 

threshold is determined based on local data statistics.  The experimental results show 

that this algorithm outperforms the simple thresholding and hierarchical clustering 

techniques proposed by Chueng [5]. 
 The VisualGREP project [18] includes a systematic method to compare and 

retrieve video sequences at four levels of temporal resolution:  frame, shot, scene and 

video.  At each level, features are employed to transform the video sequences into an 

appropriate representation.  Features used in this system are color, motion intensity 

and frontal faces.  A normalized measure of distance between the representations of 

two video sequences is defined to capture their similarity.  At the frame level, frames 

are compared by any image feature.  At shot levels, the image features derived from 

their respective frames represent shots and hence the similarity is determined by 

frame values and also the temporal order.  A scene is represented by multiple shots 

and hence they are compared based on the concepts developed for shots, resulting in a 

recursive computation scheme.  The same recursive computation scheme applies to 

the video level.  The system allows users to easily adjust a feature’s distance measure 

to their actual desired similarity judgment.  The method presented is capable of 
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comparing temporally large entities such as scenes and full-length feature films for 

general video.     
           Dimitiova Abdel-Mottaleb [8][9] regards the average distance of all the 

corresponding frames as two videos’ similarity and defines that video frame sequence 

must obey temporal order.  He introduces a novel approach for video similarity and 

retrieval from a large archive of MPEG compressed video clips.  The proposed 

method takes a video clips as a query and searches the database for clips with similar 
contents characterized by a sequence of representative frames signatures constructed 

from the Discrete Cosine coefficient and motion information.  In contrast, Wu [40] 

combines color and textual features from key-frames for shot similarity measure.  The 

color feature is defined by histogram in HIS color space, represented as a 32-floating 

point number.  The texture feature is composed of three floating point: coarseness, 

contrast and direction.  On the whole, visual features of the key-frame are expressed 

as a vector of 35-dimension.  The Euclidean distance between two vectors and the 
shot duration determines the degree of similarity between two shots represented by 

these key-frames.  The video similarity measure takes into account the temporal order 

of similar shots and the number of scattered shots that cannot find a similar 

counterpart to measure the final degree of similarity between two video sequences.     
      The work by Rui and Huang [35] show that the similarity of two shots is an 

increasing function of visual similarity and a decreasing function of shot size 

difference.  Visual similarity is measured based on the shots’ spatial and temporal 

features.  Their current algorithm uses the color histogram for the first and last frames 
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as the spatial feature for the shot.  The temporal feature is represented by calculating 

the average of the color histogram difference between adjacent frames in the shot. 

The VidWatch Project [12] demonstrates the use of the first three color 

moments of the red, green, and blue color components to represent a video frame.  

Thus, each video frame is represented by a vector of nine floating point numbers and 

hence a video sequence is represented by multiple vectors of nine, one for each video 

frame.  Two video streams are compared by measuring the sum of the absolute 

moment difference of video frames represented by the nine color moments.  The 

VidWatch project uses the same video frame abstraction and video sequence 

comparison method to detect commercial replays on a television channel. The results 

from both applications show that the color moment technique can be robustly 

deployed to represent a large video archive.  The feature storage requirements are 

small, yet the nine color moment values are able to represent each video frame 

uniquely and hence identify duplicate (or different) video sequences. 

The goal of our video identification technique is to detect and identify 

repeated video sequences from video archive captured from a continuous video 

stream of a television channel.  We have developed a sequential video frame 

comparison technique that compares each video frame from two video sequences in 

temporal order to decide if they are repeated or not.  Since we need to select a method 

of video frame feature abstraction that requires little data storage while creating a 

unique abstraction for each video frame, we use the color moment feature proposed in 

[12] as our video sequence abstraction. 
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2.3 Topical Video Event Detection 

Since they do attempt to model the semantic content of the video, the feature-based 

video indexing, retrieval and similarity measure methods may not necessarily be 
semantically meaningful or relevant.  A more advanced video content analysis 

method that is semantically meaningful is needed to more effectively identify and 

label video content and help users find what they are looking for.  The detection of 

semantic events within video streams presents a new research area in content-based 

video processing.  The goal of event-based video detection methods proposed in and 

implemented in [7][30][39][41] are to visually and semantically describe the content 

of video so that it is meaningful and significant to viewers.  Qian and Haering [30] 

design an event-based video indexing, summarization and browsing for animal hunt 

detection in wildlife documentaries.  Texture, color, and motion features are extracted 

and motion blobs are detected.  A neural network is employed to verify whether the 

motion blobs belong to objects of interest.  Shot summaries are generated and are 

used to detect video segments that contain events of interest.  

The SmartWatch Project in [7] combines the use of textual (closed caption or 

transcripts) and aural analysis to automatically detect truly “interesting” events in 

video sequences.  Tanveer and Srinivasan [39] use the image content of foils to detect 

visual events in which the foil is displayed and captured in the video stream.  The 

textual phrases listed on a foil are used as an indication of a topic events, the audio 

track is analyzed to detect where the best evidence for the topical phrases is heard.  

The combined results of the visual and audio event detection determine the time 
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occurrence of the video event.  Yoon and DeMenthon [41] describe the use of motion 

vectors to detect interesting dynamic events based on the information in the 

compressed domain.  Their method takes advantage of motion encoding without the 

need for full frame decompression, and hence their approach has a lower computation 

cost.   
Instead of video sequence organization and detection, the Topic Detection and 

Tracking Project (TDT) [1][10] sponsored by NIST aims to develop technologies for 

retrieval and automatic organization of text and speech information such as news 

coverage on television and radio.  The purpose of this project is to advance the state 

of the art in technologies required to segment, detect and track topical information in 

a stream consisting of both text speeches from newswire, radio and television news 

broadcast programs.  Assuming the presence of textual information which can be 

used to semantically abstract the content of it video source, technologies for topic and 

event detection on text documents developed in TDT project can be extended for the 

purpose of  topic and event detection from video sources.  
 One common requirement of all the event based video detection techniques 

described above is that they are heavily dependent on specific artifacts and are 

domain specific.  This limits their effectiveness and applicability in different 

domains.  An ideal model of fully automated video content-based event or topic 

tracking method will be an extensible computational approach that may be adapted to 

detect different events in different domains.  While we do not attempt to track 

individual video stories through time, the first step in this process is the identification 
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of new content. Thus, our work can be considered a first step towards domain 

independent topic and tracking for video sources.  In particular, we concentrate on 

feature-based identification of video sequences, but not the knowledge-intensive 

activity of content-based aggregation into stories or events. 
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Chapter 3 

Pilot Work 
 
 

 

3.1 The VISION Digital Video Library  
 
The acronym VISION stands for “Video Indexing and Searching Over the 

Networks.” It is a system developed at the University of Kansas as a testbed for 

evaluating automatic and comprehensive mechanisms for library creation and 

content-based search, retrieval, filtering and browsing of video across networks with 

a wide range of bandwidths [14][15]. The pilot system was populated with a 

collection of news videos from CNN [16].  These videos were automatically 

partitioned into story segments based on their content and stored in a multimedia 

database.  A client-server based graphical user interface was developed to enable 

users to remotely search this library and view selected video segments over networks 

of different bandwidths.  Additionally, VISION classifies the incoming videos with 

respect to a taxonomy of categories and will selectively send users videos which 
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match their individual profiles.  The archive can also be explored by browsing 

through the taxonomy. 

 

Client ClientClient

Server

Video Processing
System

Search EngineVideo StreamerArchive
Browser

query
category ID

scenes keyframes

scene IDsvideo
scene ID

scene IDs

Raw Video
(audio/video/closed captions)

category IDs keywords

 

 
Figure 3.1 The architecture of the VISION system 

 

The architecture of the first version of VISION is summarized in Figure 3.1.  

Although we originally developed our own client, server, and video streamer, the 

later VISION system uses a World Wide Web server and an Internet browser for the 

Server and Client, and the RealMedia Server and Client for video streaming.  The 

Search Engine is an implementation of the vector space model and the Archive 

Browser is a cgi program which presents a browsable hierarchy of concepts (the 
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taxonomy) or a clustered set of keyframes to  the user.  The Video Processing System 

can continuously capture, segment, compress, classify, extract keyframes (and their 

features) and store and index video clips from a live broadcast feed in real-time. 

The VISION project has also been extended to support real-time video scene 

detection and segmentation.  A pipelined digital video processing architecture was 

developed that is capable of digitizing, processing, indexing and compressing video 

in real time on an inexpensive general purpose computer [13].  It uses a three-phase 

segmentation algorithm that combines video, audio and closed captions to detect 

scene changes. The videos were automatically partitioned into short scenes using 

combination of video, audio and closed-caption information and the resulting scenes 

are indexed based on their captions and stored in a multimedia database.  An image 

feature based algorithm produces over-segmentation because it detects camera shots 

not just scene changes.  Higher levels of video representation such as closed caption 

and audio are used to merge some of these shots so the resulting scenes will be more 

semantically unified.  The studies of the effect of closed-caption based merging used 

after image-based video segmentation in [32] shows that the method significantly 

reduces the over-segmentation phenomenon and improves the accuracy of scene 

detection. 

 
 
3.2 The VIDSEEK Project 
 
One of the goals of the VISION project was to develop a client-server-based 

graphical user interface to enable users to remotely search the video archive and view 
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selected video segments over networks of different bandwidths.  The VIDSEEK 

project [29] was designed to complement this goal by developing a web-enabled 

digital video library browsing system.  With the explosive growth of information 

available in the World Wide Web, most queries result in many retrieved documents 

only some of which are relevant.  Accessing digital video information is an even 

harder problem because content-based video indexing is difficult and the volume of 

retrieved video data is enormous.  VIDSEEK (Figure 2.1) is a dynamic Web-based 

digital video library browsing system that allows users to preview the contents of the 

VISION digital video library via automatically selected and organized key frames.  

The focus of this system is the dynamic organization, i.e., categorization and 

clustering, of the video abstractions to provide a sophisticated tool for video archive 

exploration. 

The system supports two main features, namely dynamic clustering-on-

demand and category-based browsing.  The dynamic clustering-on-demand allows  

users organize the digital video library clips into clusters based on multiple user-

specified video features.  The category-based browsing allows users to interactively 

and dynamically filter the VISION digital video library clips based on a given set of 

constraints, such as video source, keywords, and date of capture.  This hybrid of 

browsing and searching system provides a powerful and flexible video archive 

exploration tool.  The need for video clip playback can be reduced by allowing users 

to browse through video abstractions such as multiple key frames, category and 

caption information which provide a summary of video clip content. 
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Figure 3.2 The system block diagram of VIDSEEK Browsing System 

 
3.3 The VIDWATCH Project 
 
Whenever video content is licensed and broadcast by distributors such as cable 

operators, the producers and owners of that content need to verify that their video is 

reaching customers correctly.  The goal of the VidWatch [12] project is to develop 

methods to transmit and compare video features from two or more video streams in 

real-time to determine if the video broadcasts are reaching customers unchanged in 

each distributor’s market.  In other words, the research group developed content-

based video analysis methods to provide video authentication.  One of the main 

achievements of this research work was the patented automated video information 
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processing technique using features of color moments to characterize video content 

continuously in real-time. 

The VidWatch project utilizes a client-server architecture to provide 24 by 7 

video content analysis and video authentication over a wide area network of PCs with 

video digitizers.  Whenever video differences are detected, the system digitizes and 

encodes the broadcast video and the customer video, and uses this information to 

generates daily video authentication reports for each channel and location being 

monitored.  The VidWatch product has been deployed and successfully field tested 

for three years in cooperation with a major international television broadcasting 

network company. 

 This underlying video authentication technology can be used to compare any 

two video streams that are being simultaneously transmitted to different locations.  

For example, VidWatch could be used to monitor the “transmission quality” of digital 

video sources being streamed over the Internet in any format.  Alternatively, the 

differences detected by VidWatch could be used to boost or correct a distorted video 

signal.
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Chapter 4   

Overview of Video Sequence 

Identification and Tracking System  
 

 

4.1 The Approach 

The process flow of the Video Sequence Identification and Tracking System has four 

main processes (Figure 4.1).  First, during video processing and segmentation, we 

extract video abstractions and segment the video stream into multiple video 

sequences.  Then, using video sequence hashing process, we identify similar video 

sequences from the stream of input video sequences.  Next, we compare the input 

video sequences to any similar video sequences frame by frame to decide whether or 

not the input video sequence is truly a repeat or if it is a new sequence.  Finally, we 

record temporal information for the video sequence that can be used to track video 

sequence occurrences or to reproduce the original video stream.  An overview of the 

processes is given in this chapter and they are described in detail in Chapter 5. 
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Figure 4.1 Block diagram of the Video Sequence Identification and Tracking System 
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4.1.1 Video Processing and Stream Segmentation Process 

Our primary goal is to develop real-time algorithms to compare the current video 

sequence to a large archive of previously viewed video sequences.  Since we do not 

want to overlook video sequences that are longer, more complete, versions of earlier 

sequences, we have chosen to compare abstractions for every image in the video 

sequence rather than to develop an algorithm based on comparing sequence features 

such as key frames.  Since so many frames are to compared, the efficiency of the 

sequence abstraction algorithm is of prime importance.  Because the color moment 

feature method [12] is compact, efficient, and accurate, we have adopted it as our 

video frame abstraction.  The color moments used are the mean, the standard 

deviation and the skew of the Red, Blue and Green color components of the pixels in 

each video frame.  Thus, regardless of the size of the video frame, each frame in the 

video sequence is represented by nine color moment values.  The video broadcast 

time, or start and end broadcasting time and duration for each video sequence, is also 

stored.  This temporal information about video sequences can be used as indices to 

track occurrences for each video sequence processed.   

In our research, we define a video sequence as a single video shot.  A video 

shot is an image sequence that represents continuous action and corresponds to a 

single action of the camera.  The video stream is separated into individual video 

sequences using the video segmentation technique developed by the VISION project 

[15].  It is a feature-based algorithm that uses color histogram, image differences, and 
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average brightness to detect shot boundaries.  It is able to recognize shot boundaries 

in real-time with 94% accuracy [13]. 

 

4.1.2 Video Sequence Hashing Process 

For an archive of documentary programs, individual video sequences average 60 

seconds in length.  Thus, approximately 1,440 video sequences will be created daily.  

In order to determine if a video sequence is new or a previously broadcast sequence, a 

total of 1,036,080 ((1,440-1)*(1,440/2)) video sequence comparisons are needed.  

Other video sources, for example news, may have shorter sequences and thus required 

more comparisons.  Hence, it is important to do this video comparison efficiently. 

In order to identify new video sequences in real-time, we must be able to 

compare the current video sequences to all archived video sequences efficiently.  We 

have designed a video comparison algorithm based on hashing.  The video hashing 

process consists of two major components, namely video frame hashing and similar 

video sequence filtering.  We use the video frame hashing component to identify 

video sequences in the video archive that are potentially similar to the input video 

sequence.  We then use the video sequence filtering component to determine if these 

potentially similar video sequences are truly similar to the input video sequence.  

During video frame hashing, the nine color moments calculated for the current 

video frame are mapped from floating point numbers to integers to remove noise and 

group similar video frames together.  These nine integer numbers are then 

concatenated to create a fixed-length color moment string.  The color moment string 
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is used as the key for this video frame and also the hash value for this frame.  The 

color moment string of video frame, along with its video sequence identifier and size, 

is stored in the hash bucket identified by the hash value.  Thus, the color moment 

string and sequence identifier for every frame from the digitized video stream is 

stored in the hash table.  All frames that share identical color moment strings are 

grouped together in the same hash bucket.  All video sequences that have at least one 

frame in the same hash bucket as the input video sequence are considered potential 

similar video sequences.  

 While the video frame hashing process will detect similar video frames and 

identify potential similar video sequences, we require the second component of the 

video hashing process in order to identify truly similar video sequences.  Potential 

similar video sequences are filtered to remove those sequences whose degree of 

similarity is below some threshold.  Video sequence similarity is based on the lengths 

of the potential similar and input sequences as well as the percentage of frames in the 

two sequences that have identical color moment strings. 

Based on informal observation, we consider two video sequences to be 

dissimilar if their size difference is greater than 10%.  For videos of roughly the same 

size, we concluded experiments to establish a overlap threshold value to be used as 

the ceiling for potential similar video sequence filtering (see section 6.1.4).  The 

overlap threshold is defined in term of the percentage of frames in the two video 

sequences that have the same color moment string.  Video sequences that fail to 
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exceed the overlap threshold for any previously archived video sequence are deemed 

to be new video sequences, the first occurrence in the video archive.   

 

4.1.3 Video Sequence Comparison Process 

The method described above might result in false positive matches.   There are two 

main sources of error.  First, the color moment strings used for comparison are built 

from approximate color moment values.  Second, the video sequence filtering 

technique considers only the percentage of similar video frames, ignoring their 

temporal ordering.  Thus, the final step of our algorithm performs a more accurate, 

frame-by-frame, video sequence comparison.  In the frame-by-frame video sequence 

comparison process, the absolute moment differences between video frames from the 

input video sequence and the similar video sequences are calculated.  The original 

floating point color moment values are used and the differences are aggregated over 

the entire sequence.  The absolute moment difference value calculated for each 

similar video sequence is compared with a moment difference threshold to determine 

whether or not the video abstractions are similar enough for the input video sequence 

to be considered a repeated sequence. 

 

4.1.4 Video Sequence Archiving and Tracking 

The goals of the video sequence archiving and tracking process are to: 1) record 

meta-information for each video sequence processed; 2) record the video 
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identification process results, i.e., the total number of new and repeat video sequences 

processed and whether or not each input video sequence is new or a repeat; and 3) 

record and control the total working size of the video archive captured by the video 

identification process.  

In conjunction with the video sequence identification process, meta-

information for a video sequence is recorded and kept in a video sequence index table 

data structure.  The meta-information includes the video sequence identifier assigned, 

the captured time of video sequence, the length of the video sequence (number of 

frames extracted during the segmentation step), and also a video sequence 

identification label assigned during the matching process.  The video sequence 

identification flag indicates whether the sequence is new or a repeat.  

In our research, we designed a video sequence identification and tracking 

system that can process and store an archive of at least 24 hours video worth of 

continuous video broadcast in real time.  Continuous processing in excess of 24 hours 

is handled by using a sliding window wherein only the most recent 24 hours of video 

are kept.  Using the information stored in the index table, one can track video 

sequences broadcast at any time within the defined 24 hours of time window, and 

hence easily reproduce the whole video stream or find all repeats for a given 

sequence.  
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4.2 System Architecture Design and Definition 

As described in Section 4.1, there are four main processes in our Video Sequence 

Identification technique and Tracking System: 1) Video Processing and Stream 

Segmentation; 2) Video Sequence Hashing; 3) Video Sequence Comparison; and 4) 

Video Sequence Archiving and Tracking.  We designed and developed two stand-

alone systems with a total of four main software component modules (Figure 4.2) to 

support the four processes of the video identification and tracking system. 
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Figure 4.2 System flow diagram of the Video Sequence Identification and Tracking 

System 
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These four main components are: 1) Video Processing System (VPS); 2) Video 

Sequence Identification module (VSI); 3) Video Sequence Abstraction Module 

(VSA); and 4) Video Sequence Storage (VSS).  The VPS component is one stand-

alone system and the other three components are modules of the second stand-alone 

system.  As shown in figure 4.2, video input is first digitized and segmented into 

shots using the Video Processing System (VPS).  The newly digitized video sequence 

is then compared to all previously archived video sequences using the Video 

Sequence Identification (VSI) module. If no matches are found, the video sequence is 

deemed to be a new video sequence; i.e., the first occurrence of a video sequence.  

The video sequence, together with its video abstractions, are sent to the Video 

Sequence Abstraction (VSA) and the Video Sequence Storage (VSS) modules for 

analysis and storage. 

 

a. Video Processing System (VPS)  
The main functions of the VPS are video signal digitization, video abstraction 

extraction, and video shot detection and segmentation.  The VPS receives a video 

source, digitizes the video signal into individual images in RGB color format, and 

segments the video stream into different shots. A video abstraction based on color 

moments is extracted from each frame in the shot.  The color moments and shot 

boundaries are passed along to the Video Sequence Identification module (VSI).  The 

digitized video frames are encoded into RealMedia format and sent to the Video 

Sequence Storage (VSS) for storage.   
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b. Video Sequence Identification (VSI) 

The main focus of this research is the design of video sequence identification 

technique used by the Video Sequence Identification Module.  To compare a new 

shot’s video abstraction to a potentially large collection of stored video abstractions 

efficiently, a technique combining hashing and filtering was designed.   

 

c. Video Sequence Abstraction Module (VSA) 

The video abstraction information for each video sequence is kept in the Video 

Sequence Abstraction (VSA) Module.  This video abstraction consists of the nine 

color moment values of each video frame stored in color moment string format, and 

meta-information such as the video sequence size and the temporal information of 

video sequence.  We also keep the raw nine color moment values of each frame that 

are needed in the video sequence comparison process.  The VSA module consists of a 

video sequence index table, which captures the meta-information and results of the 

identification process of each video sequence and the file index information to its 

video abstraction and video clip. 

    

d. Video Sequence Storage (VSS) 

The Video Clip Storage (VCS) stores unique video clips encoded in RealMedia and 

also their video abstraction (nine moment values per frame) in text format. 
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The standalone Video Processing System (VPS) used in this research is a 

modified version of the Video Processing Software Module designed and 

implemented in the VISION project [15] for video shot detection and segmentation.  

It was implemented in C with the OSPREY digitizer board on a Windows NT 

platform.  The second standalone system (standalone system B) containing the VSI, 

VSA, and VSS modules, was also implemented using the C language on a Windows 

NT platform.  The main reasons for dividing the video segmentation and abstraction 

process and video identification and tracking process into two separate standalone 

systems are: 1) to provide system modularity and independence for future expansion 

and enhancement of both systems; and 2) to interact easily with the VPS.  Output 

from the VPS is saved in disk files in a common folder that is accessible by multiple 

systems for data access and sharing.   The following pseudocode describes the overall 

system flow of the video identification and tracking process : 

 

/** The Overall Process Flow of Video Sequence Identification and Tracking System 

**/ 

 

System Inputs :   

1) an existing video hash table and video index table in text files 

 2) system default parameters in a text file 

 3) video sequences created by the VPS module that are stored in a common 

    input folder accessible by both VPS standalone system and the  

    identification system. 

 

/* System Restart */ 
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system initialization and parameter reading; 

 

/* Main video identification process infinite loop*/ 

for (; ; ) { 

if (there is input video sequence found in input folder ) { 

 /* Input Video Sequence reading */ 

 Read original moment values of each frame of the sequence; 

 Create Color Moment String for each frame; 

 

 /* Video Sequence Identification (VSI) Module – Phase II */ 

 Do video sequence hashing process; 

 Do video sequence comparison; 

 /* Video Sequence Abstraction (VSA) & Video Sequence Storage (VSS) –    

            Phase III*/ 

 Record result and update video index table – remove any expired sequences; 

 Update video hashing table – remove any expired video frames; 

   } 

 /* wait 5 seconds and then go back to input folder to check for  any new input  

           sequence */ 

 Wait 5 seconds; 

 Go back to the input folder and check for any new input video sequence; 

} 

System Outputs: 

 1) Result log files  

 2) System standard log files 

   3) Video hash table and video index table in text files  

     – they are updated automatically in every user-defined interval during the  

        continuously running process 
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Chapter 5   

Design of Video Sequence Identification 

and Tracking  
 

 

5.1 Video Processing and Segmentation Process 

The video processing and segmentation process involves the abstraction and creation 

of video sequences.  Video data streams need to be processed and segmented into 

video sequences before the process of video sequence identification.  We first extract 

video abstractions and segment the video stream into multiple video sequences.  We 

then process video sequences to identify new video sequences and record temporal 

information that can be used to track video sequence occurrences or to reproduce the 

original video stream.  This section describes our methods of video sequence 

abstraction and video segmentation in detail. 
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5.1.1 Video Frame Abstraction  

We represent video sequences using image features extracted from each video frame 

for video processing and segmentation.  A wide variety of possible features and 

feature abstraction techniques have been used by the research community.  The 

following sub-sections describe abstracting video frames using properties of color, 

texture, and shape.  We conclude this section with a discussion of why, among the 

various possibilities, we chose to use color moments as our video abstraction.  

 

5.1.1.1 Color Features  

Image abstraction based on color features has been studied extensively and there are 

multiple ways of representing an image using color features.  A few of the most 

commonly used color measures are the color histogram, dominant colors, and 

statistical color moments.  The following subsections discuss each of these color 

measures. 

Color Histogram A color histogram is a function showing, for each color c, the 

number of pixels in the image that have this color.  In other words, it describes the 

distribution of colors in an image or video frame.  Let  

F(x,y), = c , x ∈  [0..M-1] , y∈ [0..P-1]          (Equation 5.1) 

where M is the total number of row, 

P is the total number of column, 

c is a color value. 
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be an image consisting of N colors.  Then the normalized histogram is given as: 

              (Equation 5.2) 

where M*P is the total image size. 

The color histogram is invariant to translation, rotation, change of angle of view, 

change in scale, and small occlusions.  The similarity between two images can be 

computed using the following simple distance measurement: 

               (Equation 5.3) 

A color histogram only records an image’s overall color composition, so images with 

very different appearances can have similar color histograms. 

 

Dominant Colors Only a small number of colors are used to represent an image.  

Swain and Ballard [38] have shown that using only a few dominant colors for image 

comparison did not lower the performance.  It could even enhance it by getting rid of 

noise often represented by irrelevant colors. 

 

Statistical Color Moments Another way of representing an image is the use of its first 

three color moments, namely the mean, standard deviation and skew of each primary 
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color component found in the RGB color space (see Appendix C).  The mean of a set 

of values is used to estimate the value around which central clustering occurs.  The 

standard deviation describes the “width” or “variability” around the mean value.  The 

skew characterizes the degree of asymmetry of a distribution around its mean.  Skew 

is non-dimensional and characterizes only the shape of the distribution.  Higher 

moments, involve more manipulations on the input data, are almost always less robust 

than lower moments that involve only linear sums or, the lowest moment of all, 

counting.  Therefore, higher moments such as fourth moment or above are rarely used 

to represent the content of an image. 

Given I ∈  [ R, G, B], the first three moment values are defined by the 

following equations: 

               (Equation 5.4) 

 

             (Equation 5.5)
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      (Equation 5.6) 

where   Gi,j  is the value of the i-th color component of the j-th image pixel,  

M*P is the total image size.  

The distance between two color distributions representing two images  (image A and 

image B) is given as: 

             (Equation 5.7) 

Even with only nine moment values per image, studies in [12] and [43] have found 

that this method of representing images is more robust than color histogram methods. 

 

 

5.1.1.2 Texture Features 

Texture is observed in the structural patterns of surfaces of objects such as wood, 

grain, sand, grass, and cloth.  The term texture generally refers to repetition of basic 

texture elements called texels.  A texel contains several pixels whose placement could 

be periodic, quasi-periodic or random.  Figure 5.1 lists several texture measures.  In 

image analysis, texture is broadly classified into two main categories, statistical and 

structural.  The mosaic model is based on the combination of the statistical and the 

structural approaches.   
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Figure 5.1 Image texture categorization model 

 

Statistical Approaches Textures that are random in nature, for example, the 

realizations of random fields such as wood grain and sand, are well suited for 

statistical characterization.  Three common statistical models used for measuring 

texture of an image are: 1) the autocorrelation function (ACF) to measure coarseness 

of texture; 2) image transforms to estimate coarseness, fineness, and orientation of 

texture; and 3) histogram features to measure coarseness and the orientation-

independent spread of the texture.  Appendix A presents the mathematical description 

of each model.  The other statistical texture methods include the use of edge density 

to measure the coarseness of the random texture in which the edge density is 

measured by the average number of edge pixels per unit area.  
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Structural Approaches Purely structural textures are deterministic texels, which 

repeat according to some placement rules.  A texel is isolated by identifying a group 

of pixels having certain invariant properties that repeat in the given image.  The texel 

may be defined by its gray level, shape, or homogeneity of some local property such 

as size, orientation, or second-order histogram.  The placement rules define the spatial 

relationships between the texels and these spatial relationships may be expressed in 

terms of adjacency, closest distance, and periodicities.  The texture is labeled as being 

strong in the case of deterministic placement rules.  In case of the randomly placed 

texels, the associated texture is called weak and the placement rules may be expressed 

in terms of measures such as edge density, run lengths of maximally connected texels, 

and relative extrema density (the number of pixels per unit area showing gray levels 

that are locally maxima or minima). 

 

Mosaic Model The mosaic model, which combines statistical and structural 

approaches, is used to represent random geometrical processes.  A mosaic model 

could define rules for partitioning a plane into different cells, where each cell contains 

a geometric figure whose features have prescribed probability distributions.   

 

5.1.1.3 Shape Features 

The shape of an object refers to its profile and physical structure. These 

characteristics can be represented by the boundary, region, moment, and structural 

representations.  These representations can be used for matching shapes, recognizing 
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objects, or for making measurements of shapes.  Figure 5.2 lists several useful 

features of shape. 
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Figure 5.2 Shape features 

Many shape features can be conveniently represented in terms of moments (Figure 

5.2).  One of the common shape measurements using moment values is the moment 

invariants.  Moment invariants are spatial properties of connected region in images 

that are invariant to translation, rotation and scale.  They are useful because they 

define a simple calculated set of region properties that can be used to perform image 

similarity queries using the Euclidean distance given as: 
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where  Mi() , i=1….7, is the first seven moment invariants  

(see Appendix B for the Moment Invariant Measurement),  

A and B are the two comparing images, 

Wi is a scale factor calculated such that all moments of all images are 

normalized into [0…1] range.   

 

5.1.2 Video Sequence Abstraction Using Color 

Moments 
Our primary goal is to develop real-time algorithms to compare an input video 

sequence to a large archive of previously viewed video sequences.  Since we do not 

want to overlook video sequences that are longer, more complete versions of earlier 

sequences, we have chosen to compare abstractions for every frame in the video 

sequence rather than to develop an algorithm based on comparing key-frames only. 

Since so many frames are to compared, our video abstraction must be able to 

represent the content of each frame compactly while still preserving the individuality 

of the frames as much as possible.  We eliminated using either texture-based or 

shape-based frame representations as our frame abstraction because they are input 

domain dependent and only work well on a limited range of video sources.  On the 

other hand, a color-based abstraction, such as statistical moments, provides a good 

description of the overall color characteristics of a frame and has been shown to work 

well for video sources in general.  We decided to use a set of nine color moments to 
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represent the content of each video frame captured.  These nine color moments are 

the first three color moments of the Red, Blue and Green primary color component 

for each video frame, namely the mean, the standard deviation and the skew.  

Equations 5.4, 5.5 and 5.6 presented in the previous section show the mathematical 

calculation of these values. 

We chose to use color moments [11] to represent video frames because they 

are compact, efficient to calculate, effective for similarity computation and require 

little storage, regardless of the size of the video frame.  This video abstraction will be 

used as the data input for our video sequence identification algorithm.  The start and 

end broadcasting time and duration for each video sequence are also stored.  This 

temporal information about video sequences can be used as indices to track 

occurrences for each video sequence processed.  

 

5.1.3 Creation of Video Sequences 

In order to identify and track video sequences, we first must define the meaning of a 

video sequence.  In this paper, a video sequence is defined as a single video shot.  A 

video shot is an image sequence that represents continuous action.  It corresponds to a 

single action of the camera.  The video stream is segmented into multiple shots using 

the content-based video segmentation technique developed in VISION project [15].   

When making a video for broadcast, three major steps are involved: 1) shot 

creation; 2) editing; and 3) final cut assembly.  Editing decides the ordering of the 

shots and the choice of transitions between two consecutive shots, creating an edit 
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decision list.  The final process assembles the shots and transition effects into the 

final cut.  Figure 5.3 illustrates a sample of the video production model.   

EDIT EFECTS SET

SHOT SET

EDITING Edit Decision List

ASSEMBLING Shot1 Shot1Transition Transition
 

Figure 5.3 The video product model 

 

The creation of video shots from a video stream is in fact the reverse process of 

assembling and detecting the transitions created during editing.  We identify the 

boundary between the shots as one frame in the middle of the transition.  The 

VISION system uses color histograms (Equation 5.11), intensity differences 

(Equation 5.10) and average brightness (Equation 5.9) to detect the transitions 

between video shots.  The following three measurements had been defined in [4] for 

video shot detection: 

 

■ Average Brightness (B): 

           (Equation 5.9) 

 where  t  is the time coordinate (frame = t) of a video sequence, 

      x is the horizontal coordinate of the frame, 

=
xy

tyxItB ),,()(
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  y is the vertical coordinate of the frame, 

  I is the pixel value. 

 

■ Intensity Difference (dP): 

          (Equation 5.10) 

where  t is time coordinate (frame = t) of the video sequence, 

 dt is the total time difference (number of frames), 

 I is the pixel value, 

 x & y are the horizontal and vertical coordinates of the frame. 

■ Histogram Difference (dC) : 

         (Equation 5.11) 

  where 

         (Equation 5.12)  

 I is the pixel value, 

 t is the time coordinate (tth frame) of the video sequence, 

 x& y are the horizontal and vertical coordinates of the frame, 

 c is one of the defined pixel values 
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Transitions may be fast and sharp, called a cut, or relatively long and gradual, 

called a smooth edit.  If we assume the transition frame does not belong to the shots, 

there should be a large difference in pixel intensity and histogram between the last 

frame of shot n and the first frame of shot n+1.  Therefore, if we look at the 

differences between two consecutive frames, then we should detect the cuts and 

hence boundaries of the video shots.  If we look at the differences between two 

frames dt distant from each other, we should be able to detect smoother transitions, 

assuming our choice for dt is correct.  Usually, when there is a lot of motion in a 

picture, the value dP(t,1) (pixel intensity difference) is high.  Moreover, smooth edits 

are applied on still images, so the dP(t,1) must be very small when we have a smooth 

edit.  In conclusion, in order to detect video shot boundaries with smooth edits, we 

need to look at values of dC(t,dt) and dP(t,dt), where dt >1, but only if the values of 

dC(t,1) and dP(t,1) are small enough. 

The experimental results of VISION project in [13][15] suggested the use of 

three values of dt: 1, 5, 10 to produce satisfactory video shot detection results.  Three 

threshold values, namely Bthresh, Cthresh, and Pthresh were defined for the video shot 

detection process.  There is a shot change if the following statement is true: 

 

B(t) < Bthresh 

(The brightness is too low, indicating a blank transition frame) 

OR 

(( dC(t,1) > Cthresh ) AND ( dP(t,1) > Pthresh )) 
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(Both histogram difference and intensity difference are higher than a given 

threshold values)  

OR 

((( dC(t,1) < Cthresh ) AND ( dP(t,1) < Pthresh )) AND 

(( dC(t,5) > Cthresh ) AND ( dP(t,5) > Pthresh ))) 

(Both histogram difference and intensity difference are below than a given 

threshold values, and the both histogram difference and intensity difference 

measured a distance of 5 frame away (dt=5) are higher than a given 

thresholds) 

OR 

((( dC(t,1) < Cthresh ) AND ( dP(t,1) < Pthresh )) AND 

(( dC(t,5) < Cthresh ) AND ( dP(t,5) < Pthresh )) AND 

(( dC(t,10) < Cthresh ) AND ( dP(t,10) > Pthresh ))) 

(Both histogram difference and intensity difference measured for dt=0 and 

dt=5 are lower than a given threshold, but are higher than the same given 

threshold for measurement at dt=10)  

 

 The values chosen for each threshold were experimentally selected [4]. 
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Figure 5.4 Video segmentation and abstraction extraction 

 

 Figure 5.4 illustrates the video stream segmentation and processing 

performed by the Video Processing System (VPS).  The average brightness, pixel 

intensity and color histogram of each frame from video stream is extracted and is 

used to determine shot boundaries during the video sequence creation process.  Each 

created video sequence is uniquely named using the date and time of its creation.  

Other information, such as size of each video sequence, representative key frames, 

and the first three color moments are also extracted during the video processing and 

segmentation process.   
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This dissertation will not go into depth into the design and implementation of 

the Video Processing System (VPS).  For details of the design and implementation 

technique, please refer to Sylvain Bouix’s Master’s Thesis [4] and Gauch [13].  
 

 

5.2 Video Sequence Hashing Process 

Once we have a newly captured video sequence, we send its abstraction to the Video 

Sequence Identification and Tracking Components (VSI and VSS) to determine if this 

is a replay of a previously seen sequence or the first occurrence of a new sequence.  

The first step of the video sequence identification technique is the video sequence 

hashing process, which is designed to identify video sequences in the archive that are 

similar to the input video sequence.  Figure 5.5 illustrates the conceptual flow of the 

video hashing process.  Referring to the figure, the video sequence hashing technique 

is divided into two main components: 1) video frame hashing to detect potential 

similar video sequences; and 2) video sequence filtering to identify similar video 

sequences.  The following sections describe the design and implementation of each 

component. 
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Figure 5.5 Block diagram of Video Hashing Process 

 

5.2.1 Video Frame Hashing  

During video frame hashing, the nine color moments for each frame extracted in VPS 

are mapped from floating point values to integers and then concatenated to create a 

fixed length color moment string.  These color moment string is used as a hash key 

for the frame.  The frame’s color moment string, video sequence identifier, and video 

sequence length are stored in the appropriate hash table bucket.  This process groups 

all video frames with similar color moment strings into the same bucket of the Video  
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Sequence Abstraction Module.  Figure 5.6 illustrates the flow diagram of the video 

frame hashing.  Referring to the flow diagram of the figure, the first step of the 

process for each new input video sequence is to generate a hash key for each video 

frame.  Then, we perform video frame hashing for each hash key to collect potential 

similar video sequences, defined as those having at least a single frame with the same 

color moment string as a frame in the input video sequence.  
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Figure 5.6 The flow diagram of Video Frame Hashing 
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5.2.1.1 Video Hash Table Design   

Figure 5.7 illustrates the video hash table data structure designed for the video 

hashing process.  Each hash table bucket contains a frame’s color moment string, 

video sequence identifier, a clip counter that captures the total number of video 

sequences containing this video frame, and a pointer that points to a sorted linked list.  

The linked list captures the meta-information for each video sequence, namely: 1) the 

video sequence identifier (ClipID); 2) the temporal order (frame position) of the index 

video frame in this video sequence (FramePos); 3) the size of the video sequence 

(Size); 4) the date when the video sequence was created (Time); and 5) a pointer that 

points to the next linked list element.  The linked list for each hash bucket is sorted by 

the video sequence identifier.  

For our experiments, we created a hash table large enough to store 24 hours of 

video frames.  A sliding window mechanism was used to control the maximum 

number of video sequences stored in the hash table at one time.  Assuming a 15 

frame/second video stream, 24 hours of video will contain 24 hours * 3600 

seconds/hour * 15 frames/second = 1.296 million video frames.  The maximum 

numbers of buckets required to handle the worst case (when all 24 hours worth of 

video frames are unique) will be 1,296,000.  In our work, we implemented a memory-

based hash table with a bucket size equals to 3,600,000 to handle a total of 24 hours 

of video window hashing size.  This will require nearly 110MB of memory to 

perform the memory-based hashing.  The following shows how the memory size 

requirement for the memory-based hashing is calculated: 



 56

(refer to Figure 5.7 for hash table structure description) 

Memory size assigned for the Color Moment String field  = 54 bytes 

Memory size assigned for the Total Number of Clips field  = 4 bytes 

Total memory size assigned for other fields in each hash bucket field  

= 8 bytes 

Total memory size required for one hash bucket = 54+4+8 = 66 bytes 

 

Total memory size assigned for one linked list element = 5*4 = 20 bytes 

 

Therefore,  

Total memory required for storing one video frame in a hash bucket  

= Total memory size of one hash bucket + Total memory size required for one 

    linked list   =  66 + 20 = 88 bytes 

 

Total memory size needed in order to store a 24 hours worth of unique video 

 frames  =  88 bytes * 3.6 million = 317 MB 

 

For handling video hashing with a very large video window size, a disk-based 

hash file could be used. 
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Figure 5.7 Hash table data structure for Video Frame Hashing Process 

 

Assume that the video hashing table contains n hours of previously stored 

video sequences.  A video sequence is captured and we want to whether or not this 

video sequence is a new or repeat video sequence.  The following pseudocode 

describes steps performed during the video frame hashing process:  

 

/*** Video Frame Hashing Process Pseudocode ***/ 

 

Component Input : A linked list containing color moment strings for each video 

frame of the input video sequence 
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/* Component 1 - Video Frame Hashing */ 

for (each color moment string of  the input video sequence) { 

 Do hash index generation; 

 Do video table hashing to find similar video frames;  

If there is a hit { // sequences with at least one similar video frame to the input   

                          video sequence 

  Traverse the matching linked list { // record result 

1. record meta-information for each video sequence stored in  

each element of the linked list into an output linked list; 

2. increment similar frame counter of a video sequence for 

each color moment string matching; 

 } 

} 

 next color moment string 

} 

 

Component Final Output: A linked list containing video sequences having at least 

one video frame similar in the same bucket as a frame in the input video sequence 

 

5.2.1.2 Hash Index Generation 

An important element of the video frame hashing process is the creation of hash index 

for each video frame of an input video sequence.  The nine color moments calculated 

in the video processing system are concatenated to form the color moment string as 

shown below: 

 

MNumber(n) = { M[Red(n)], M[Green(n)], M[Blue(n)]  
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        S[Red(n)], S[Green(n)], S[Blue(n)] 

      Skew[Red(n)], Skew[Green(n)], Skew[Blue(n)] } 
where 

Mnumber(n) = The color moment string of a video frame n, 

 M[] = Mean value (0…256),    (refer to Equation 5.4) 

 S[] = Standard Deviation  (0…256),   (refer to Equation 5.5) 

 Skew[] = Skew value  (-256…256)   (refer to Equation 5.6 ) 

 

The color moment string is used as the hash index to determine the bucket in which 

the video frame is stored.  A hashing experiment using a concatenation of all digits of 

the original float numbers of the nine moment values as the hashing key proved to be 

ineffective due to noise introduced by both transmission and digitization of the video 

source.  A test of multiple passes of moment calculations for the same video frame 

showed that the moment values calculated for a single video frame can vary 

somewhat, making identical values unlikely for repeated video broadcasts.  The test 

results also showed that the error in moment values calculated from a single video 

frame could range from –5.0 to +5.0.  Therefore, we decided to ignore the least 

significant digit for each color moment.  This results in a 10 to 1 mapping of raw 

moment values (see Table 6.1 for color moment mapping), e.g., the skew value will 

be mapped from (-256…256) to (-25…25). Figure 5.8 illustrates a sample mapping of 

the original nine color moments of a video frame into a color moment string.   
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Figure 5.8 An example of color moment mapping process 

The choice of the mapping ratio is important for the accuracy and speed of the 

video identification process.  If the mapping ratio is too small, then highly similar 

video frames could fall into different buckets and hence actual repeated frames will 

be missed.  For example, due to both transmission and quantization error, the nine 

color moment values for two identical video frames are calculated and are equal to 

19.40 and 20.40 respectively.  The absolute moment difference (1.0) between these 

two video frames indicates that they are indeed identical.  Nevertheless, with a 10 to 1 

mapping ratio, we will get different values (19 versus 20) for the 9 integer 
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components of their color moment strings and they will be hashed into different 

buckets.  Therefore, identical video frames having moment values close the any one 

of the boundaries of the integer mapping numbers will tend to be mis-mapped into 

different video bucket even though their difference moment values are small enough 

to be considered as identical to each other.   

A mapping ratio that is too large will result in dissimilar video frames ending 

up in the same bucket, requiring more work to be done (increase in total video 

comparison time) during video sequence comparison.  However, a too large mapping 

ratio will not adversely affect the final accuracy of the sequence identification 

algorithm.   

In order to select a mapping ratio that strikes a balance between speed and 

accuracy, we conducted an experiment to measure the mis-mapping error rate for 

‘identical’ frames for various mapping ratios.  We randomly selected a total of 25,916 

video frames from six video sequences in the video archive.  For the purpose of this 

experiment, two video frames were considered identical if the absolute moment 

difference of these two video frames was lower than a moment difference threshold 

of 10.0.  A mis-mapping was recorded if the two video frames were identical but had 

different color moment strings. With 25,916 test video frames, over 335 million video 

frame pairs were compared.  The mis-mapping error percentages for mapping ratios 

were recorded and the results are shown in Table 5.1.  As expected, a smaller 

mapping ratio resulted in more similar video frames being mapped into different 

buckets and hence a higher mis-mapping error percentage.  With a mapping ratio of 
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10 to 1, we recorded an error percentage of close to 1%, which was acceptable for our 

video frame hashing technique.  

 

 

Table 5.1 Error percentage of color moment string mis-mapping   

 

The total possible number of color moment strings can be calculated as 

follows: 

Number of color moment strings = RM = 519 = 2.33 x 1015 

 where,  

R = Total possible integer value of each moment after mapping (-25…25)  

M = Total number of color moments  

 

The generation of the hash bucket index value using the hashing key is described by 

the following pseudo code: 

 

/* Hash Bucket Index Generation */ 

Index =0; 

Sum =0; 

TableSize = Size of Hash Table = 3.6M; 

ColorString[M] = Color Moment String; 

For (x=0; x < strlen(ColorString); x++)  
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  Sum = (Sum*19) + ColorString[x] 

Index = Sum% TableSize 

 

Since the number of possible hash keys is many orders of magnitude larger than the 

number of hash buckets (3,600,000), we ran a simulation to evaluate the distribution 

of hash keys produced by our hash function.  The simulation showed that the hash 

keys produced from input video frames produced an acceptable collision rate of 2 to 

1.  The simulation results validated our choice of using color moment string as the 

input to the hash function. 

  

5.2.1.3 Video Frame Hashing Cost Estimation 

For each video frame added to a bucket, a new node is added to the bucket’s linked 

list to store the video sequence identifier, the frame occurrence position of the video 

frame, the numbers of video frames in the video sequence, and the date the video 

sequence was captured.   

The total cost to hash one video sequence can be estimated as follow: 

CH(m) =  ∑ [H(n) + L(n)]    for n = 1….m        (Equation 5.13)    

where 
 m  = size (total video frame count) of the video sequence 

 H(n)  = a fixed cost of one basic hashing pass 

 L(n) = linked list traversal cost 

 

Referring to equation 4, H(n) is a fixed cost for hashing key generation and table 

lookup, while L(n) depends on the size of the linked list, or the total number of video 
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sequences containing a same similar video frame.  With a video window size of 1.296 

million frames (i.e., 15 frames per second for 24 hours), the worst case for CH(m) is 

when all the 1.296 million frames are similar.  In this case, the video hash table will 

contain only one bucket with a linked list of 1.296 million elements.  On the other 
hand, the best case for CH(m) will occur when the 1.296 million frames are unique.  

In other words, the more unique video frames, the less total video hashing cost is 

affected by L(n).  The collision rate of 2 to 1 predicted by our simulation experiment 

predicts that the linked lists will, on average, remain short.  As we will see later in the 

result discussion section, this is validated in practice and the linked list traversed does 

not affect the overall hashing performance.  We also verify that the total hashing cost 

is independent of the total video window size, and hence is a fixed cost linearly 

proportional to the size of the input video sequence (m).   

 

5.2.2 Video Sequence Filtering Process 

If, for all frames in the sequence, there are no matching video frames in the hash 

table, we can stop the video identification process and conclude that the new input 

video sequence is a new video sequence.  This is based on the assumption that if both 

the input video sequence and video archive have no similar frames in common, then 

we can say that there should be no repetitive connection between them and hence they 

must be different.  If there are some video frame matches between the input video and 
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Figure 5.9 Flow diagram of Video Sequence Filtering 

the archive, we must develop a heuristic to determine how much overlap is required 

to identify a similar sequence.  We consider two video sequences to be candidates for 

similarity (or similar video sequences) if the following two conditions are met: 

1) the size difference of the matching video sequences is less than 10%, and 
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2) the total number of matching video frames is at least 30% of the total 

number frames of smaller video sequence.   

If no video sequences survive this filtering process, then the video sequence input is 

identified as a new video sequence (see Figure 5.9).  Video sequences pass this 

filtering process are considered “similar”, but they are not necessarily identical to the 

matching input video sequence.  The video sequence comparison process then will be 

used to determine if these qualified similar video sequences are indeed repeats of the 

matching input video sequence.  

 

 
In summary, the main purpose of the overall video hashing process is to 

decrease the number of video sequence comparisons required by efficiently 

identifying video sequences in the video archive that one similar to the input 

sequences.  Using this video hashing technique, we were able to reduce the video 

identification computation time required during normalized video sequence 

comparison tremendously (see Section 5.3.3).  An example of video hashing process 

is illustrated in Appendix D.  The pseudocode for the final overall video hashing 

process, including the video sequence filtering, is shown below: 

 

/*** Final Video Hashing Process Pseudocode ***/ 

 

Process Input : A linked list containing color moment string for each video frame of 

the input video sequence 
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/* Component 1 -  Similar Video Frame Hashing */ 

for (each color moment string of  the input video sequence) 

{ 

 Do hash bucket index number generation; 

 Do hash table hashing;  

 If (Hits) 

Collect meta-information of video sequences & accumulate 

occurrences of color moment string matching;   

 Next color moment string – video frame; 

} 

/* Component 2 - Video Sequence Filtering */ 

/* potential similar sequence : video sequence having at least one similar video frame 

to the input video sequence */ 

for (each potential similar video sequences captured) 

{ 

Remove the video sequence having size difference > 10% when compared to 

the input video sequence; 

 Apply overlap threshold to screen out “dissimilar” video sequences; 

} 

 Process Final Output: A linked list containing similar video sequences passing both 

the size difference and hashing threshold screening checks  
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5.3 Video Sequence Comparison 

The final step of our video sequence identification algorithm performs a more 

accurate repeated video sequence identification using a frame-by-frame comparison 

technique illustrated in Figure 5.10.  This is to eliminate false positives created during 

the video hashing process caused by color moment approximation and ignorance of 

temporal ordering of the matching video sequences.  The absolute moment 

differences between video frames from the input video sequence and the similar video 

sequences are calculated.  The result is compared with a moment difference threshold 

to determine whether or not the video sequences are similar enough for the input 

video sequence to be considered a repeat sequence.  Appendix D contains a detailed 

example of the video sequence comparison process.  
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Figure 5.10 The flow diagram of the Video Sequence Comparison Process 
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The following pseudocode describes steps performed during the video sequence 

comparison process: 

  

/*** Complete Video Sequence Comparison Process ***/ 

Process Input :  

1) The Input Video Sequence 

2) A list containing similar video sequences, Similar[M]  

 

Output[]; 

Best Detected Repeated Sequence=NULL; 

Best Moment Difference =1000;  // captures the best moment difference 

M = Total number of captured similar video sequences; 

 

/* compare each similar sequence to the input video sequence*/ 

for ( x=0;x< M, x++)) 

 {  

Video Sequence Comparison Function(Input, Similar[x], Difference, Best 

Frame Pos);    

If (Difference < Best Moment Difference)  

 { 

 Best Moment Difference = Difference; 

Best Sequence = Similar[x]; 

} 

/* Insert Similar Sequence into Output[], sorted by Difference */ 

Insert(*Output, Similar[x], Difference, Best Frame Pos); 

} 

/* Moment Difference Threshold screening */ 

if (Best Moment Difference < Moment Difference Threshold)   

 Detected Repeated = Best Sequence; 
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Process Output:  

1) Detected Repeated Sequence; 

2) List of similar sequences with respective moment differences 

 

5.3.1 The Absolute Moment Difference Calculation 

During video sequence comparison, the absolute moment difference between video 

frames from both the input video sequence and similar video sequences are 

calculated.  The absolute moment difference of two video sequences is calculated as 

follows: 

 

Moment Average of a video sequence for each moment number (c= 1…9): 

  

     where 

    m(c,n) = cth color moment  in the nth frame, 

   N=size of video sequence        

   c =   1….9  (color moment)            (Equation 5.14) 

 

Normalized Absolute Moment Difference for each moment number: 

 

    where 

 v1 & v2 are  video sequences being compared     
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     mv1(c,n) = c moment value of the nth frame n in video sequence v1   

 N = sequence size of the smaller video sequence of v1 & v2 

 n = video frame temporal order 

 c = color moment index (1..9) 

  

  (Equation 5.15) 

 

Sum Absolute Moment Difference: 

 

   where  

M = total moment numbers (9) 

v1 & v2 are the two video sequences being compared 

c = color moment index (1…9) 

Difc(v1,v2) = normalized absolute moment difference of sequence v1 & v2 for 

color moment c 

 

              (Equation 5.16) 

 

The absolute moment difference value calculated between similar video 

sequences is checked against a moment difference threshold (see Chapter 6 for 

experimental results) to determine if it is close enough to the input to be considered 

repeated.  The following pseudocode describes the flow of the absolute moment 

difference calculation function designed and implemented as part of the overall video 

comparison process: 
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/***** Video Sequence Comparison Function  - Part of VSI Module****/ 

Function Input:   

1) Original color moments of the input video sequence  

2) Original color moments of a similar video sequence –output of the video  

      hashing process 

  

/* calculate moment average for each sequence – See Equation 5.13 */ 

Calculate average value of each 9 moments in the input video sequence ; 

Calculate average value of each 9 moments in the similar video sequence; 

 

/* calculate sum absolute moment difference for each possible sequence 

alignment */ 

For (each sequence alignment shifting)  

{ 

 For (each comparing frame) 

{ 

  Calculate normalized absolute moment difference  

- See Equation 5.14 

 } 

Accumulate Sum Absolute Moment Difference  - See Equation 5.15 

If (calculated new sum absolute difference < previous recorded sum absolute 

difference)  

{ 

Best Difference = new sum absolute difference; 

Record the new sequence alignment position; 

}  

} 
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Function Output:  

 1) The best difference value 

 2) The sequence alignment position creating the best difference value 

 

5.3.2 Aligning Video Sequence for Best Comparison Result 

Video Segmentation error due to noise might result in two repeated video sequences 

having different video sequence size.  So, we use a simple video sequence alignment 

method (Figure 5.11) during the video sequence comparison to align the two video 

sequences being compared into the proper position to achieve the best sum absolute 

difference result. Sum absolute moment different is calculated for each of these 

alignments, and the best value is recorded.  We allow a total shifting of up to 10% of 

video sequence size.  Referring to Figure 5.11, the alignment process begins by 

aligning the start of the larger sequence to the nth frame of the smaller sequence, in 

which n frame is one tenth of the size of the smaller sequence.  We slide the smaller 

sequence, one frame at a time, to the right until it reaches a point where the last frame 

of the larger sequence is aligned to the mth frame of the smaller sequence, in which 

case the mth frame is 90% into the size of the smaller sequence (see Figure 5.11).  

The sum of absolute moment difference for each alignment is calculated and the best 

value is recorded.   
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Figure 5.11 Video sequence alignment flow chart 
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The following pseudocode describes the alignment process implemented as art 

of the video comparison function: 
 

/*** Video Sequence Alignment Process ***/ 

Process Input:  Comparing Sequence A[M] and comparing sequence B[N]  & M<N 

 

Size Dif = (Size A) – (Size B); 

 

/* Calculate the 10% size of the smaller sequence */ 

AlignShift = (Size A)/ 10; 

 

/* find the proper frame position for both A & B for sequence comparison  

  shift one frame at a time after each video comparison */ 

For (shiftframe= -AlignShift; shiftframe < (Size Dif +AlignShift); shiftframe++) 

{ 

/* calculating correct start and end frame position of each sequence 

alignment */ 

 If (shiftframe >0 && shiftframe< Size Dif)  

{ 

  ShiftframeA =0; 

  shiftsize =0; 

  shiftframeB=0; 

            } 

 if (shiftframe <0)  

{ 

  shiftframeB =0; 

  shiftsize = shiftframe; 

  shiftframeA = -shiftframe;    
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} 

 if (shiftframe > Size Dif )  

{ 

  shiftsize = Size Dif – shiftframe; 

  shiftframeA = 0; 

  shiftframeB = shiftframe;    

} 

 

 /* now have the proper frame position for both sequences A & B, 

   do sequence comparison */ 

for (frame=0; frame < Size(A) + shiftsize; frame++) 

           { 

 /* calculate Absolute Moment Difference  */ 

Temp =  A[frame+shiftframeA] – B[shiftframeB+frame]; 

Do Moment Difference Normalization; 

Accumalte Moment Difference; 

} 

/* Record Sum Absolute Difference for this alignment */ 

Sum Difference; 

Record best frame position; 

Go to next alignment; 

} 

 

Process Output: Best Sum Absolute Moment Difference of this two sequence 

comparison 
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5.3.3 Video Sequence Comparison Cost Estimation 

The total video comparison cost for one video sequence input, x, can be estimated as 

follow: 

 

where  

 M = Total number of similar video sequences detected 
Sn = size of nth  video sequence                  (Equation 5.16) 

            

             (Equation 5.17) 
 

O[OneCompare(n,x)] represents the total one pass cost of  summation of the absolute 

moment difference between two video sequences and hence is linearly proportional to 

the size of both video sequences.  Equation 5.17 estimates the total cost of the video 

comparison by a allowing video sequence alignment adjustment of 10% of the size of 

the smaller video sequence.  Both equations show that the comparison process is 

heavily dependent on the number of similar video sequences and sequence size.  

Therefore, it is our goal to reduce this total video comparison cost by reducing the 

total numbers of similar video sequences (M) detected in the video hashing process.     
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5.4 Video Sequence Archiving and Tracking 

The process of video sequence archiving and tracking works hand-in-hand with the 

video sequence identification process.  While the video sequence identification 

process is the core function for the VSI module, video sequence archiving and 

tracking is the responsibility of the VSA module.  For each input video sequence, the 

sequence identification or matching is performed in the VSI module.  Results from 

the video identification are used by the VSA module to record the sequence’s meta-

information, extracted by the VPS module, and its video identification outcome.  The 

VSA module will also decide whether or not to save the encoded video clip into the 

VSS module, based on whether or not it is identified as a new sequence.   

 

5.4.1 Video Sequence Index Table 
Figure 5.12 illustrates the video index table data structure used while tracking and 

indexing captured video sequences.  The Video Sequence Index Table consists of a 

video index header and a video index array.  Each array element contains a data 

structure called Input Sequence Information that is used to store the meta-information 

of an input video sequence and two pointers pointing to two data elements (Repeated  

Sequence Reference and Repeat Video Linked List). 
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Figure 5.12 Video sequence index table 
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1)Video Index Header  

Table 5.2 contains the definition of each parameter found in the video index header.  

The video index header keeps track of the overall process information for the video 

index table such as numbers of sequences captured and total unique sequences 

detected. 

 

Table 5.2 Video index header parameter definition 

 

2) Input Sequence Information Data Structure 

The Input Sequence Information data structure found in each array element is used to 

store the meta-information of each input video sequence.  In the other words, we will 

need to have one entry of the Input Sequence Information data structure for every 

Variables Definition 

WindowTopIndex Video Array index number of the ‘oldest’ 

video sequence captured  

WindowBottomIndex Table index number of the next available 

video index array element 

MaxWindowSize The allowable maximum size of the video 

archive (Sliding Video Window Size) 

NumVideoClip Total number of video sequences stored 

TableSize Size of the video index array 

CurrentWindowSize Total size of the video archive 

TotalUniqueClips Total number of unique sequence captured 

TotalUniqueFrames Total number frames of the unique 

sequences captured 
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input video sequence.  Table 5.3 contains the definition of each parameter found in 

the Input Sequence Information data structure.  For each Input Sequence Information 

data structure of an input video sequence, the Repeated Sequence Reference data 

element (see Figure 5.12) is used to record information of an “old” sequence if the 

input video sequence stored in this Input Sequence Information data structure is 

detected as a repeat of the “old” sequence.  The Repeat Video Linked List is a sorted 

linked list that is used to record information for repeat occurrences for the input video 

sequence 

Variable Definition 

Array Number The video array index number 

NewClipID The video sequence identifier 

Size The size of video sequence  

Time The year video sequence is captured 

NumReplicatedClip Repeated sequence indicator. 

1 means repeated sequence, 0 otherwise 

MappedfileName Filename of Real video sequence file 

MappedFileSize Size of Real video sequence file 

VideoNodePtr Pointer to Repeated Sequence Reference 

data element  

TvideoNodePtr Pointer to a linked list containing 

information of related repeated video 

sequences 

Table 5.3 Video index array parameter definition 
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For every pass of input video sequence identification, the index information of 

the input video sequence is stored and indexed based on whether it is identified as a 

repeat video sequence or as the first occurrence of a new video sequence.  If the input 

video sequence is considered a new sequence, then the Repeated Sequence Reference 

data element will be set to NULL.  If the input video sequence is detected as a repeat, 

then the detected ‘older’ matching video sequence will be identified as the input 

sequence’s Repeated Sequence Reference and its information will be stored in the 

Repeated Video Sequence Reference data element.  The information kept in the 

Repeated Video Sequence Linked List is needed in order to select a new Repeated 

Sequence Reference whenever an expired video sequence is removed during the 

sliding window process.  The parameters in the video index header are updated based 

on the outcome of the video identification process. 

Figure 5.13 illustrates a flow diagram of the video indexing process.  

Referring to the figure, the main function of the indexing process is to store and keep 

track of meta-information and video sequence identification results of input video 

sequences.  Another main function of the indexing process is to control and enable 

the video sliding window mechanism by keeping track of the total video sequences 

processed and their captured time stamps.  Since the video index array was 

implemented as a fixed-size array structure, we use an array wrap-around indexing 

mechanism.  
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Figure 5.13 The flow diagram of the video indexing process  
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5.4.2 Inserting Index Information of a Input Video Sequence 

Whenever the Video Sequence Identification Module (VSI) completes the processing 

for an input video sequence, the results and the meta-information for that video 

sequence is saved in the video index table.  Color moment strings of the input video 

sequence are also inserted into the video hash table.  

 

5.4.2.1 Video Index Table Insertion 

The index information for the input video sequence is stored in the 

WindowBottomIndex (next available array element) (see Table 5.2 for definition).  

We store the meta-data in the Input Sequence information data element of the 

assigned array element.  If the input video sequence is considered to be new, the 

Repeated Sequence Reference data element and the Repeat Video Linked List are set 

to NULL.  If the input video sequence is considered to be a repeat, we insert its index 

information into its respective Repeated Sequence Reference data element.  The 

Repeat Linked List of the selected Repeated Sequence Reference sequence is also 

updated.  The Repeat Linked List of a video sequence in an array element keeps track 

of indices for the ‘newer’ video sequences that are considered to be repeats of the 

sequence recorded in this array element.  These newer video sequences consider the 

video sequence recorded in this array element as their Repeat Sequence Reference.  

Updates of related parameters in the video index table complete the input video 

sequence insertion.  An example of video index table insertion is illustrated in 

Appendix D.   
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The following pseudo code describes the overall video sequence insertion 

process: 

 

/*** Video Index Table Insertion Process***/ 

Process Input:  

1) Input Video Sequence meta-information 

2) Input Video Sequence Identification Results 

 

ArrayIndex = WindowBottomIndex; 

Copy meta-information and matching results into array elements; 

/* Unique Sequence Detected */ 

If (Input Video Sequence is New – Unique) 

{ 

 Set NumReplicatedClip =0; 

 Set Repeated Sequence Reference element to Null; // a new unique sequence 

 Set Repeat Video Linked List to Null; // no related sequences exists yet 

 Move sequence encoded clip into the Video Sequence Storage (VSS); 

 TotalUniqueClip++; 

 TotalUniqueFrames += Size of the Input Video Sequence; 

} 

/* Repeated Sequence Detected */ 

If (Input Video Sequence is Repeated) 

{ 

 Set NumReplicatedClip =1;  

Insert the detected matching video sequence into the Repeated Sequence 

Reference data element;  // matching is found 

 Search array index of the detected matching sequence; 
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 Insert the input video sequence into its Repeat Video Linked List  (sorted by 

sequence identifiers)   

 Remove encoded sequence file from the input common folder 

} 

 

NumVideoClip++; 

CurentWindowSize += Size of the Input Video Sequence; 

WindowBottomIndex++; 

Record results into respective log files; 

Process Output:  

 1)  Video Index Table Update 

3) Log files recorded 

 

5.4.2.2 Video Hash Table Insertion 

Video hash table insertion involves the insertion of color moment strings of the input 

video sequence into the video hash table. For each color moment string of the input 

video sequence, calculate the hash bucket value containing the matching hashing key 

(the color moment string) and insert the sequence index information into the linked 

list pointed by the hash bucket. If there is no matching color moment string, find the 

next available hash bucket and insert the color moment string into the hash table and 

its sequence index information into its respective linked list.  Appendix D illustrates 

an example of the hash table insertion process.   
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5.4.3 Deleting Index Information of An Expired Video 

Sequence  
We implemented a sliding window mechanism (Figure 5.14) to allow the total video 

archive to grow until it contains 24 hours of sequences from video stream, after which 

the oldest sequences are dropped as the newer sequences are added.  The sliding 

window mechanism was implemented on a wrap-around fixed-size array.  Whenever 

an expired video sequence is removed from the video archive, two things must be 

done: 1) delete array element of the expired video sequence and update the sequence 

index information of the repeated sequences related to the expired video sequence; 

and 2) delete color moment strings of the expired video sequence from the video hash 

table. 
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Figure 5.14 Video hash table sliding window mechanism 
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 5.4.3.1 Deleting An Expired Video Sequence  

Whenever an expired video sequence is removed from the video index table, the 

index information of other video sequences in the video archive relating this expired 

video sequence should be updated.  There are two types of video sequences update 

scenarios: 

 

a) The expired sequence was a unique sequence with no repeated video sequences 

Since the expired video sequence is the only instance of this sequence in the video 

archive and there are no ‘newer’ video sequences that are repeats related of it, the 

system merely needs to erase the data stored in the array element indexed by 

WindowTopIndex (see Table 5.2 for definition) and increment WindowTopIndex to 

complete the sliding window process. The total number of unique sequences is 

decremented by 1.  

 

b) The expired sequence was new and has at least one related repeat video sequence 

If the removed expired video sequence was the first occurrence of video sequence 

that has at least one related repeat video sequence, (Repeat Video Linked List is not 

NULL), then the system needs to appoint a new Repeated Sequence Reference 

sequence for all the repeat sequences found in the Repeat Video Linked List.  We use 

the first sequence from the time ordered Repeat Video Linked List (the oldest 

sequence among the sequences recorded in the Repeat Video Linked List) as the new 

Repeated Sequence Reference sequence for all the others.  Hence, we reset both the 
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Repeated Sequence Reference data element and the Repeat Video Linked List of the 

newly selected Repeated Sequence Reference to NULL.  For each remaining 

sequence in the Repeat Video Linked List of the expired sequence, we change their 

Repeated Sequence Reference to the newly assigned reference sequence. At the same 

time, we append the information of these remaining sequences into the Repeat Video 

Linked List of the new Repeated Sequence Reference sequence.  The total number of 

unique sequences stored in the final video archive does not change.  Finally, we 

remove the expired sequence from the array element and increment 

WindowTopIndex to complete the sliding window process.  Please refer to Appendix 

D for an illustration of the expired sequence removal process. 

The following pseudo code describe the deletion process of a video sequence 

in the video index table: 

 

/*** Video Sequence Deletion from the Video Index Table ***/ 

Process Input:  1) The Expired Video Sequence  

 

Expired Sequence Array Element = WindowTopIndex; 

 

/* Video Archive Overflow Checking */ 

If (CurrentWindowSize > WindowSize )  // < 24 hours 

{ 

 /* The expired sequence is new and has related repeat sequences*/ 

   if  (Expired ->Repeated Sequence Reference == NULL ) //Expired Sequence is new 

       if (Expired->Repeat Video Linked List != NULL) // related repeat sequences 

      { 
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 /*Select first element of Repeated Linked List as the 

             new Repeated Sequence Reference */ 

 New Reference  = Expired->Repeat Video Linked List[0]; 

 New Reference->NumReplicatedClip =0; 

 

 // redirect encoded file index informaton 

 New Referecne->MappedFileName= Expired->MappedFileName; 

 New Reference->MappedFileSize = Expired->MappedFileSize; 

  

// redirect matching results 

 New Reference->Repeated Sequence Reference = NULL; 

 New Reference->Repeat Video Linked List = NULL; 

  

 /*reset related sequences’ repeat(matching) reference*/ 

For (each remaining sequences in Expired Sequence->Repeat Video 

Linked List) { 

  Remaining->Repeated Sequence Reference = New Reference; 

Append(New Reference->Repeat Video Linked List,  

Remaining); 

 } 

        } 

  

  

TotalUniqueClips--; 

 TotalUniqueFrames -= Size of the Expired Sequence; 

  } 

 

NumVideoClip--; 

WindowTopIndex++; 
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CurrentWindowSize -= Size of the Expired Sequence; 

Remove Expired sequence from the table; 

} 

Process Output: Remove Expired Video Sequence from Video Archive (VSA) 

  

 

 

5.4.4 Deleting Color Moment Strings of An Expired Video 

Sequence 
Whenever an expired video sequence is removed from the video archive, the 

previously inserted color moment strings of the sequence should also be removed 

from the video hash table. This process involves hashing into the video hash table to 

locate the correct bucket and then traversing the linked list to remove the element in 

which the expired sequence is stored.  See Appendix D for an illustration of expired 

color moment string removal. 
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Chapter 6 

Experimental Results and Discussion 

 

 

We evaluated our video sequence identification technique by measuring the 

efficiency and accuracy of the technique and the storage compression achievable for 

the video archive using a test collection of 32 hours of continuous video stream 

captured from a television documentary channel.  Segmentation of this video stream 

created 2,831 video sequences.  To evaluate the system, we submitted each sequence 

to the identification software.  Each sequence is treated as a query against the video 

abstraction archive to see if any matching sequences can be found.  The archive is 

allowed to grow until it contains 24 hours of sequences from video stream, after 

which the oldest sequences are dropped as the newer sequences are added.  Viewing 

and tracking the video sequences manually produced a “ground truth” of 1,228 new 

video sequences and 1,603 repeats against which our algorithm is compared. 
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6.1 Measuring the Video Sequence Identification 

Accuracy and Efficiency 
 
 
6.1.1 Video Hashing Time 
We first studied the relationship between the size of the Video Sequence 

Abstraction’s hash table and the lookup time needed to find a similar sequence in the 

hash table.  The video sequence hashing time is calculated as the sum of the hash 

table lookup time during video frame hashing processing and the time measured 

during video sequence filtering process.  The video sequence hashing time for two 

different repeated sequences (one 895 frames long, the other 377 frames long) are 

shown in Figure 6.1.  Each data point represents the hash table lookup and video 

sequence filtering time for one occurrence of the repeated video sequences for a given 

video window size (or hash table size).  The shorter sequence occurred eight times.  

Its lookup and filtering took from 25ms (with a video archive size of 10,000 frames) 

to 80ms (with a video archive size of 1,100,000 frames), with an average of 40ms.  

The longer sequence occurred seven times.  Its lookup and filtering took from 55ms 

(with a video archive size of 900,000 frames) to 130ms (with a video archive size of 

1,000,000 frames), with an average of 85ms.  The results show that, as expected, the 

time taken is independent of the size of the hash table.  This experimental result is 

consistent with the mathematically derived total video hashing cost  (see section 

5.2.1.3), in which the total video sequence hashing cost can be estimated as the sum 

of a fixed hash table lookup and a fixed linked list traversed cost that is linearly 
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proportional to the size of the input video sequence (40ms for shorter sequence versus 

85 ms for longer sequence).   

 

Figure 6.1 Graph of video sequence hashing time versus video archive size 

  

 In order to better understand the effect of video sequence size on video 

sequence hashing time, we ran an experiment to measure the video sequence hashing 

time for nine video sequences of various sizes using the same video archive size. 

Figure 6.2 shows the video hashing time for these nine video sequences.  Each data 

point represents the video sequence hashing time for a video sequence.  Referring to 

the Figure, a video sequence with a size of 1,000 frames has a video hashing time of 

close to 100ms, followed by a video hashing time of 500ms for a sequence with a size 

of 2,800 frames.  The results in this figure show that the total video hashing time 
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increases gradually with the video sequence size.  In the other words, the 

experimental results shown in this figure suggest that the video hashing time for 

repeated video sequences is linearly proportional to the length of the video sequence.  

Although we capped the video archive size at 24 hours (1.296 million video frames) 

for our later experiments, these results imply that we could increase the video window 

size to support longer time periods without affecting the speed of the video hashing 

process. 

 

Figure 6.2 Graph of video sequence hashing time versus video sequence size 
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6.1.2 Video Sequence Comparison Cost 
 

The final step in our comparison process compares the input video sequence to the 

similar video sequence abstraction(s) frame by frame to calculate sum of the absolute 

moment different of the two sequences.  Figure 6.3 shows the comparison times for 

10 sequences where the sequence length varies from 1,000 frames to 10,000 frames. 

Referring to the figure, a sequence of 1,000 frames requires a comparison time of 

400ms and a sequence size of 2,000 framers requires a comparison time of 550ms.  In 

other words, there is an increase of about 150ms in comparison time.  On the other 

hand, a sequence size of 9,000 frames requires a comparison time of 20,500ms and a 

sequence size of 10,000 frames requires a comparison time of 25,200ms.  So, the 

increase of comparison time between sequence with 9,000 frames and sequence with 

10,000 frames is 4,700ms.  As expected, these results indicate that the video 

comparison cost increases drastically as the video sequence size increases, growing 

faster than linear as sequence size gets larger.  Also, the cost for this process is greater 

than the video sequence hashing process.  This indicates that, to keep the entire 

repeated sequence identification cost low, we should use meta-data (e.g., sequence 

length) and a overlap threshold during the video sequence filtering process to keep 

the number of similar video sequences low by filtering out obviously dissimilar video 

sequences.  We should also keep the video sequences short, preferably segmenting at 

least every 200 – 400 seconds (3,000 – 6,000 frames).   
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Figure 6.3 Graph of video comparison time versus video Sequence size 

 

6.1.3 Measuring Recall and Precision 

We measure the accuracy of our results using true positives (correctly identifying the 

input video sequence as a repeat occurrence of an already stored video), false 

positives (incorrectly identifying a stored video sequence as a match for the input 

video sequence), true negatives (correctly identifying the input video sequence as the 

first occurrence of a new video sequence) and false negatives (incorrectly identifying 

a input video sequence as a new video sequence when it is actually a repeat of a video 

sequence stored in the archive).  These numbers are combined to calculate the two 

traditional information retrieval metrics:  1) Recall, the ratio of the number of 

correctly detected repeated sequences to the total number of repeated sequences in 
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test; and 2) Precision, the ratio of the number of correctly detected repeated 

sequences to the number of detected repeated sequences in the video archive. 

 Recall    = true positives / (true positives + false negatives) 

Precision  = true positives / (true positives + false positives) 

 

Appendix E demonstrates an example of how true positive, true negative, false 

positive, false negative are collected from the outputs of the video sequence 

identification process to calculate recall and precision. 

 

6.1.4 Choosing An Optimum Overlap Threshold Value 

A stored video sequence is considered similar to the input video sequence if the 

percentage of the frames in the two sequences with the same color moments exceeds 

the overlap threshold.  As the value of overlap threshold is raised, fewer video 

sequences are considered similar, and therefore the total video comparison cost is 

decreased.  However, higher overlap thresholds may result in more misses (i.e., false 

negatives) of repeated video sequences.   

We ran an experiment to evaluate the effect of varying the overlap threshold 

value to examine the tradeoff between speed and accuracy.  Each video sequence is 

submitted to the video hashing process and all similar sequence matches are reported.  

If no similar sequence matches are found, then the input video sequence is treated as 

the first occurrence of a new video sequence.  If there are similar sequence matches, 

the input video sequence is considered a repeat sequence of these detected similar 
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sequences.  This experiment measured how well the video hashing process performs 

under various overlap threshold values. 

    

 

Table 6.1 Recall and precision versus a set of different overlap threshold values 

 

Table 6.1 shows the recall and precision measured for video hashing process 

for various values of the overlap threshold.  The table captures the four numbers (true 

positive, true negative, false positive, false negative) used to measure the recall and 

precision.  As shown in this table, both true positives and false positives decrease 

with the increase of the overlap threshold value.  This result is expected since the 

tighter the similar sequence check is (higher hashing threshold value), the more true 

repeated video sequences are mistakenly removed during the similar video sequence 

filtering process, and hence fewer true positives are found.  Since fewer similar video 

sequences exceed the overlap threshold, the number of false positives (mistakenly 

detecting a first occurrence sequence as repeated sequence) is reduced.  On the other 

hand, true negatives and false negatives increase with the increase of the overlap 

threshold value.  This is also expected since fewer similar video sequences exceed the 
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higher overlap threshold, resulting in more true negatives (identifying the input video 

sequence as the first occurrence of a new video sequence) and also higher numbers of 

false negatives (identify the input video sequence as the first occurrence of a new 

video sequence when it is actually a repeat). 

The results shown in Table 6.1 indicate that an overlap threshold value of 30% 

yields a good tradeoff between accuracy and efficiency and it is used in our later 

experiments.  Compared to a overlap threshold of 0%, recall drops from 96% to 94% 

yet the total comparison time is cut tremendously (8,575 ms versus 547 ms).  The 

data indicates that the average video hashing time is independent of the value of 

overlap threshold used in selecting similar sequences.  The data also indicates a minor 

decrease in the average sequence comparison time is possible with a higher overlap 

threshold value, but recall is adversely affected.  For example, a threshold of 60% 

will decrease comparison time 12% (to 486ms from 536ms) but recall declines 20% 

(to 0.76 from 0.94). 

 

6.1.5 Video Sequence Comparison Accuracy 

The previous experiments show that while an overlap threshold can be used to 

improve speed and precision, precision remains somewhat low (78%).  To remove 

false positives and thereby increase precision, we compare the surviving similar video 

sequence abstractions to the input video sequence abstraction frame by frame.  Only 

if this comparison exceeds a moment difference threshold is the input video sequence 

considered a repeat occurrence of a sequence in the archive.   
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To evaluate the effect of the moment difference threshold on repeat sequence 

detection accuracy, we measured the recall and precision for a variety of moment 

difference thresholds and the results are shown in Table 6.2.  The recall and precision 

measured in video sequence hashing process (indicated as Initial) is included in this 

table for comparison purposes.  As expected, higher moment difference thresholds 

result in higher recall (fewer false negatives) but lower precision (more false 

positives).  The results suggest that a moment difference threshold of 10.0 represents 

a reasonable balance between recall and precision.  Comparing to recall and precision 

recorded for video sequence hashing process without the video sequence comparison, 

precision improves from 78% to 91% due to the removal of false positives.  Also, 

there is a slight drop in recall from 94% to 91% due to incorrect removal of a few true 

positives.  The results show that precision can be improved by performing the video 

sequence comparison to remove false positives at the expense of increasing false 

negatives and slightly decreasing recall.   

 

 

Table 6.2 Recall and precision measurement (Overlap Threshold=30) 
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There were a total of 2,831 video sequences created from the test collection of 

32 hours continuous video stream.  Using at a 24 hour sliding window of stored video 

abstractions, a perfectly operating system would identify 1,228 new sequences and 

1,603 repeat sequences.  Our system, with an overlap threshold of 30 and a moment 

difference threshold of 10, was able to identified 1,225 new sequences and 1,553 

repeat sequences.  

  

6.2 Measuring the Achievable Storage Compression Ratio 
Since repeated video sequences need only be stored once, our video sequence 

repetition identification can be used to achieve lossless storage compression.  Since 

this compression does not manipulate the video signal in any way, it can be used in 

addition to other compression techniques.  Figure 6.4 shows the number of sequences 

in the video archive versus number of detected new sequences for the entire 

identification process.  The compression gain can be calculated as the ratio of total 

size for repeated video sequences to the total size of video sequences stored in the 

video archive.  Clearly, for a video source that contains repeated sequences, the larger 

the video archive, the more repeats are likely to be found.  Figure 6.5 shows that 

compression increases as the size of the video archive is increased, up until the 1,261st 

sequence (approximately 13 hours), at which time it levels off at approximately 30% 

compression.  With a video window size of 24 hours, the video source used in this 

experiment contains an approximation of 8 hours of repeat programs during the 32 

hours span.  This data suggests that if our video identification technique was able to 
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correctly detect all repeated video sequences, we should be able to get a compression 

gain of 33%. 

 

 

Figure 6.4 Total video sequence in the video archive vs. total detected repeated 

sequences 

 

 

Figure 6.5 Ratio of achievable lossless storage Compression 
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6.3 Validating Video Identification Technique with Different 

Video Source 
Our previous experiments allowed us to identify an overlap threshold (30%) and a 

moment difference threshold (10.0) that provides accurate repeated video sequence 

identification.  To validate these results, we re-ran our algorithm using 24 hours of 

video (3,394 video sequences) collected from a different broadcast television channel.  

Using a sliding window of 24 hours, if the system worked perfectly, it would identify 

1,938 unique video sequences and 1,456 repeats.  Table 6.3 reports the recall and 

precision measurements for different values of a moment difference threshold using 

an overlap threshold of 30%.  With an overlap threshold of 30 and a moment 

difference threshold of 10, our system was able to identify 1,903 out of 1,903 true 

new sequences and 1,385 out of 1,456 true repeated sequences. 

 

 

Table 6.3 Recall and precision measurements with overlap threshold of 30 

 

The moment difference threshold of 10.0 provides comparable performance on this 

second video source.  Recall with the second source is slightly lower (89% versus 
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91%), however precision is slightly higher (93% versus 91%).  These consistent 

results validate that our technique and threshold settings generalize to other video 

sources.   

Figure 6.6 captures the total number of sequences in the video archive versus 

the total cumulative detected new sequences for the entire identification process. 

Figure 6.7 shows that we were also able to achieve a compression ratio of 30%, 

comparable to the compression ratio on the first video source.  Similar to the first 

video source, the second video source used in this experiment has approximately of 8 

hours of repeat programs over 24 hours span.  With a perfect video identification 

technique, we would get a compression gain of approximately 33%. 

 

 

Figure 6.6 Total sequences in video archive vs. total detected new sequences 

(Overlap Threshold=30 & Moment Difference Threshold =10.0) 
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Figure 6.7 Total achievable storage compression ratio 
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Chapter 7 

Conclusion 

 

 

7.1 Summary 

This dissertation reports on an automatic video sequence identification and tracking 

technique that can be used to process continuous video streams, identify unique video 

sequences and remove repeated video sequences.  The technique described here is 

efficient (it runs in real time) and effective.  Our technique is domain and video 

source independent so that they could be used on any video streams that are repeated 

and change slowly over time. 

We have developed a system to digitize and segment video streams into video 

sequences using histogram-based techniques.  Each video frame of video sequences is 

represented by values of the nine color moments, namely the mean, standard 

deviation, and the skew of the three main color components.  The Color Moment 

String, created by mapping the nine color moment values into nine integers and 
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concatenating them into a string, is used as the basis of our video sequence 

identification technique. 

Our video sequence identification solution employs the combination of similar 

video sequence hashing and frame by frame video sequence comparison to detect and 

identify repeated video sequences.  In the similar video sequence hashing process, 

each video frame is represented by a color moment string.  The similarity of two 

video sequences is measured by considering the percent of frames in the two 

sequences that have similar video frames ignoring the temporal order of the similar 

frames.  The purpose of the similar video sequence hashing process is to reduce the 

size of the number of sequences requiring frame by frame matches by selecting only 

video sequences which have many similar frames.  

During frame-by-frame video sequence comparison, each video frame is 

represented by the full values of the nine color moments extracted during the video 

processing and stream segmentation process.  The sum absolute moment differences 

between video frames from the input video sequence and the similar sequences 

identified by the video hashing process are calculated.  The absolute moment 

difference value calculated for each similar video sequence is compared with a 

moment difference threshold to determine whether or not the video abstractions are 

similar enough for the input video sequence to be considered a repeated sequence.  In 

this video sequence comparison process, each pair of video frames is compared in 

their temporal order. 
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The total cost of performing a video sequence comparison using our video 

sequence identification is the sum of the hashing process and the absolute color 

moment difference calculation during video sequence comparison process.  The 

experimental results suggested that the cost of our video sequence identification 

technique increases logarithmically with video archive size and hence is able to 

handle a large video archive size.   

Using a maximum video abstraction archive size of 24 hours, we evaluated 

our approach on two different video continuous streams, (one 32 hours long and the 

other 24 hours long).  We were able to achieve good recall and precision (over 90%) 

on both inputs and hence validated the accuracy of our technique.  The experimental 

results measured on both inputs also justified our claims that the technique is domain 

and video source independent. 

We also evaluated the achievable video archive storage compression by 

measuring the total amount of video data consisting of repeated video sequences.  By 

not storing the repeated video sequences, we achieved a lossless compression gain 

factor of approximately 30% for both video streams.   

Finally, this system can be used as the first step of a topic tracking system for 

video streams and/or to compress the viewing time needed for end users, allowing 

them to quickly find out “what’s new”. 
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7.2 Future Work 

Future work falls in two broad categories: 1) technique improvement, and 2) user 

application development. 

 

7.2.1 Technique Improvement 

a) Partial Mapping We can improve the quality of the tracking by incorporating 

partial mapping.  We get a partial match whenever one video sequence partially 

overlaps another.  The processed video sequence could be a subset of a known video 

sequence or it could be a superset of few video sequences overlapping one another.  

Our current video identification algorithm was designed in such a way that it can be 

easily extended to support the partial matching of video sequences.  One of the main 

algorithm enhancements will be to include adjustable video sequence size difference 

screening during the similar video sequence filtering process, allowing similar video 

sequence matching for difference sizes.  The final video sequence comparison process 

will then be divided into three steps: 1) compare video sequences with the same size 

(size difference is less than 10%) for exact match; 2) compare video sequences that 

are longer than the input video (i.e., consider the input as subset of a known video 

sequence); and 3) compare video sequences that are smaller than input video 

sequence (i.e., the input as superset of known video sequences). 
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b) Disk based hashing In order to handle a very large video window size, a disk based 

hashing technique should be used.  A disk based hashing technique will allow the 

video identification algorithm to grow to larger video archive, for example seven 

days, to detect and track repeated video sequences that occur farther apart in time. 

 

7.2.2 User Application  

a) Web-enabled Video Stream Browsing System A web-enabled client-server-based 

graphical user interface could be built on top of our system to enable users to search 

the video archive and view selected video sequences.  The system can be used to 

compress the viewing time needed for end users, allowing them to quickly find out 

“what’s new”.  The system will support dynamic reproduction of video stream for 

select broadcast using the video sequence tracking information captured in the video 

identification process.  
 

b) Story based Video Sequence Identification This research work could form one 

component of a video archive system for content-based topic tracking.  Figure 9.1 

illustrates a function block diagram for an ideal model of fully automated video 

content-based story tracking system for television news programs.  In order to detect 

and aggregate unique news stories from a video source, we have to have a fully 

automated video signal processing system that can first apply content-based video 

processing technique to track and extract all the unique video sequences from the 

input source.  Then video sequences must be grouped into different stories using 
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video abstractions such as closed caption, audio and video content.  Hence, the next 

possible step of our research could be designing story-based video sequences 

identification technique by combining semantic information extracted from both 

video content and a possible text input. We could be concentrating on the knowledge 

intensive activity of content-based aggregation into stories. 

 

Figure 7.1.  Functional block diagram of a ideal television news topic tracking 

system  
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Appendix A 

 
Statistical Model of Image Texture 
Representation 
 
 
 

I. The Autocorrelation Function (ACF) 

The width of the spatial ACF  r(k,l) = m2(k,l) / m2(0,0) represents the spatial size of 

texels in the texture.  m2(k,l) is the second moment or the mean square value or 

average energy and is defined as follow: 
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The coarseness of texture is expected to be proportional to the width of the ACF 

which can be represented by distances x0, y0, such that r(x0, 0) = r(0,y0) = ½.  The 

calibration of the ACF spread on a fine-coarse texture scale depends on the resolution 

of the image.  This is because a seemingly flat region (no texture) at a given 

resolution could appear as fine texture at a higher resolution and coarse texture at 

lower resolution.  Therefore, the ACF by itself is not sufficient to distinguish among 
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several texture fields because many different image ensembles can have the same 

ACF. 

 

II. Image Transforms 

 

Texture features such as coarseness, fineness, and orientation can be estimated by 

generalized linear filtering techniques utilizing image transforms (Figure A.1).   

Image transforms provide the frequency domain information in the data.  Transform 

features are extracted by zonal-filtering or feature masking the image in the selected 

transform space.  Referring to Figure A.1, a two-dimensional transform V(k,l) of the 

input image is passed through several band-pass filter g(k,l).  The energy in this 

V^(k,l) represents a transform feature.   

 The feature mask is simply a slit or an aperture shown in Figure A.2.  

Generally, the high-frequency features can be used for edge and boundary detection, 

and angular slits can be used for detection of orientation.  Fore example, an image 

containing several parallel lines with orientation θ will exhibit strong energy along a 

line at angle π/2 + θ passing through the origin of its two-dimensional Fourier 

transform.  The combination of these two types of masks is useful for periodic or 

quasi-periodic textures.  Image transforms have been applied for discrimination of 

terrain types such as deserts, farms, mountains, and riverbeds to name a few.   
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Figure A.1 Transform Feature Extraction 

 

 

Slits and Apertures  

 

Figure A.2 Slits and Apertures 
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III. Histogram Features. 

Some useful texture features based on the histogram measures are: 
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where f(r,θ;x1,x2) is the distribution function of two pixels x1 and x2 at relative 

distance r and orientation θ.  The inertia is used to represent the spread of the function 

f(r,θ;x1,x2) for a given set of (r,θ) values.  I(r,θ) becomes proportional to the 

coarseness of the texture at different distances and orientations.  The mean 

distribution is useful when angular variations in textural properties are unimportant.  

The variance indicates the angular fluctuations of textural properties while spread 

distribution is used to measure the orientation-independent spread. 
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Appendix B 

Moment Invariant Measurements 

 

The moment of a gray-level image f(x,y) is defined as: 

),( yxfm yx
qp

pq =  

If we considered the gray-level as the weight of the pixel, m00 can be viewed as the 

total mass of the image, m10 and m01 the centroids, and m20 and m02 would represent 

the moments of inertia around  the x and y axes.  Moment invariants are calculated 

with the following steps: 

1. Computer central moments: 
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2. Normalize them: 
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3. The first seven moment invariants are defined as: 

02201 uuM +=  

 

11
2

0220
2

2 4)( uuuM += +  

 

)3()3( 0321
2

1230
2

3 uuuuM −− +=  

 

)()( 0321
2

1230
2

4 uuuuM ++ +=  

 

]3)[)(3(

]3)[)(3(

)()(
)()(

0321
2

1230
2

03210321

0321
2

1230
2

123012305

uuuu
uuuuM

uuuu
uuuu

++
++

−+−

+−+−=
 

 

))((4

]3)[(

1230123011

0321
2

1230
2

02206 )()(
uuuum

uu uuuuM
++

+−+= ++  

 

]3)[)(3(

]3)[)(3(

)()(
)()(

0321
2

1230
2

03121230

0321
2

1230
2

301203217

uuuu
uuuuM

uuuu
uuuu

++
++

−+−

−−+−=
 

 



 126

 

Appendix C 

Selection of Color Space  

Electro-magnetic radiation F(λ) in the range of light (λ є [380nm..780nm]) is 

perceived as colored light.  The human eye color receptors divide the visible portion 

of the electro-magnetic spectrum into three bands: Red, Green, and Blue.  For this 

reason, these three colors are referred to as the primary colors of human vision.  By 

assigning each primary color receptor, k є r,g,b, a response function ck(λ), visible 

light of any color F(λ), can be expressed as a linear combination of the ck’s, as 

follows: 

Normalizing ck’s to the reference white light W(λ) such that: 

 

 W(λ) = cr(λ) + cg(λ) + cb(λ)           

F(λ) can be expressed from (R,G,B) as: 

  F(λ) = Rcr(λ) + Gcg(λ)+ Bcb(λ)    

Thus, any color can be represented as a linear combination of the three primary 

colors.   

In this research work, we choose to use RGB format system to represent color 

of the video input.  The RGB format is considered the most straightforward way to 

represent color using red, green and blue brightness values, scaled between 0 and 255.  
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It is possible to represent any color using a point in the color cube shown in Figure 

C.1.  The origin of the RGB color space represents no brightness of any of the 

primary colors, i.e. black.     Full brightness of all three colors appears as white.  

Three of the corners of the color cube are the primary color and the three others are 

yellow, cyan, and magenta.  The diagonal going from the black corner to the white 

corner corresponds to the shades of gray and is called the gray line. 

 

 

  Figure C.1 The RGB Color Space Cube 
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The RGB format system has been extensively used.  Our television monitors 

use this system of overlaying Red, Green and Blue brightness values.  The system can 

represent all colors that are visible to human eye and hence is a complete solution.       
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Appendix D 

Illustration of Video Identification 

Process 

 

In order to provide a better description and understanding of the video sequence 

identification technique described in this chapter, this section steps through a working 

example of the overall process of the identification technique: 

Given an input video sequence Q1 with a size of 10 video frames, we want to 

compare this sequence to a video archive to find out if the input is a new video 

sequence or a repeat of a video sequence already in the archive.  Assume that the 

current video archive contains 3 ‘old’ video sequences: video sequences A1, B1 and 

C1, and each has a size of 9 video frames.  In this example, assume that input video 

sequence Q1 is a repeat of video sequence B1 and that video sequence C1 is a repeat 

of video sequence A1.  The following drawing illustrates the content of these 4 video 

sequences with their respective color moment strings of each video frame.   
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The content of the video frame hash table will look like this:  

A

G

F

E

D

C

B

I

H

B1

B1

B1

B1

A1

B1

A1

B1

B1

B1

C1

C1

R

T

U

M

Z

P

A1

C1

C1

C1

C1

A1

A1

A1

A1

B1

B1

Hash Bucket
(Color Moment String) Linked list of Sequence Index Data

Video Hash Table

Video Index Table
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Step 1. Video Frame Hashing 

The output after the video frame hashing process will have 4 potential similar 

sequences having at least one similar frame to the input video sequence Q1.  

Hashing Output List
(Sequence Q1)

Sequence
C1

Matching Similar
Frames =2

Sequence
A1

Matching Similar
Frames =2

Sequence
B1

Matching Similar
Frames =8

Video Frame Hashing Output List

 

 

Step 2. Video Sequence Filtering 

With an overlap threshold set to 30 and sequence size difference <10%, only 

sequence B1 will pass the filtering and hence qualify as similar sequence for final 

step of the video identification process which is frame-by-frame video sequence 

comparison process 

. 

Filtering Output List
(Sequence Q1)

Sequence
B1

Video Sequence Filtering Output List
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Step 3. Video Sequence Comparison 
 
With a moment difference threshold set to 10.0, the system should identify video 

sequence B1 as the only sequence of which Q1 could be a repeat.  The meta-data of 

sequence Q1 together with its matching result will be recorded into the video index 

table. 

Step 4. Video Archiving and Tracking  
Using the same input example scenario, the following example of video index table 

update provide a better understanding and graphical description of the whole process 

which include insertion of the input video sequence Q1 and a deletion of the expired 

sequence A1. Assume that our identification system has a sliding window size of 3 

video sequences. That means that the video archive is allowed to grow to a maximum 

size of 3 video sequences.  

 I. The current video index table before the input video sequence insertion  

Sequence A1

WindowTopIndex = 0
WindowBottomIndex = 3
NumVideoClip =3
CurrentWindowSize =3
MaxWindowSize=3
TotalUniqueClips=2

0
NumReplicatedClip=0 C1

Sequence B1
1

NumReplicatedClip=0

Sequence C1
2

NumReplicatedClip=1

NULL

NULL

NULL

A1

NULL

Repeated Sequence Reference

Repeat Video Linked List
Sequence Information

Array Element

Video Index Table

3
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II. Insertion of the Input Video Sequence Q1 into the Video Index Table 

Video sequence Q1 will be inserted into Array Element 3 as repeat sequence. 

Increment WindowBottomIndex and add Sequence Q1 into Sequence B1’s Repeat 

Video Linked List.  Now the total sequences in the video archive (NumVideoClip) is 4 

and the number of unique sequences detected (TotalUniqueClips) remains at 2.   

 

 

 

Sequence A1

WindowTopIndex = 0
WindowBottomIndex = 4
NumVideoClip =4
CurrentWindowSize =4
MaxWindowSize=3
TotalUniqueClips=2

0
NumReplicatedClip=0 C1

Sequence B1
1

NumReplicatedClip=0

Sequence C1
2

NumReplicatedClip=1

NULL

NULL

Q1

A1

NULL

Repeated Sequence Reference

Repeat Video Linked List
Sequence Information

Array Element

Video Index Table  after Insertion

Sequence Q1
3

NumReplicatedClip=1 NULL
B1

Added or
Updated Fields
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III. Insertion of Color Moment String of Sequence Q1 into the hash table 
Hash Bucket

(Color Moment String) Linked list of Sequence Index Data

Video Hash Table after Insertion

Q1

Q1

B1

R

T

U

M

Z

P

A1

C1

C1

C1

C1

A1

A1

A1

A1

B1

B1

A

G

F

E

D

C

B

I

H

B1

B1

B1

A1

A1

B1

B1

B1

B1

C1

C1

Q1

Q1

Q1

Q1

Q1

Q1

Q1

Q1

J

New Added Hash Bucket
& Linked List Elements
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IV. Deletion of Expired Video Sequence from the Video Index Table 

Since there is a size overflow of the video archive, the expired sequence (sequence 

A1) stored in Array Element 0 needs to be removed.  With the removal of sequence 

A1, sequence C1 will now become “new” and hence its Repeated Sequence Reference 

field is set to NULL. The NumReplicatedClip field is set to 0 because it is a new 

sequence after the deletion of the expired sequence. 

 

 
WindowTopIndex = 1
WindwoBottomIndex = 4
NumVideoClip =3
CurrentWindowSize =3
MaxWindowSize=3
TotalUniqueClips=2

0

Sequence B1
1

NumReplicatedClip=0

Sequence C1
2

NumReplicatedClip=0 NULL

Q1

NULL

NULL

Repeated Sequence Reference

Repeat Video Linked List

Video Index Table
After Expired Sequence Deletion

Sequence Q1
3

NumReplicatedClip=1 NULL
B1 Updated

Fields
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V. Deletion of Color Moment Strings of the Expired Video Sequence from the 

Video Hashing Table 

 
Hash Bucket

(Color Moment String) Linked list of Sequence Index Data

Video Hash Table Deletion

Q1

Q1

B1

R

T

U

M

Z

P

A1

C1

C1

C1

C1

A1

A1

A1

A1

B1

B1

A

G

F

E

D

C

B

I

H

B1

B1

B1

A1

A1

B1

B1

B1

B1

C1

C1

Q1

Q1

Q1

Q1

Q1

Q1

Q1

Q1

J

Elements to be removed from
linked lists
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Appendix E 

Measuring Recall and Precision 
 

Assume we start the video identification process with zero video archive. There are a 

total of 7 new input video sequences, namely S1.1, S1.2, S1.3, S1.4, S2.1, S2.2, and 

S2.3.  Sequences S1.2, S1.3, and S1.4 are repeats of sequence S1.1. Also, sequences 

S2.2 and S2.3 are repeats of S2.1.  The results for each input video sequence are as 

such: 

 

1. Sequence S1.1: 

It is detected as a new sequence. 

Since it is the first occurrence of this sequence, the system is credited with a 

true negative. 

2. Sequence S1.2 

It was detected as a repeat of sequence S1.1. 

 S1.2 is a repeat of S1.1 and hence the system scores a true positive. 

3. Sequence S1.3 

It was detected as a new sequence. 

S1.3 is a repeat of S1.1 and S1.2.  This is scored as two false negatives since 

S1.3 is incorrectly identified as new when in fact there are two matching 

sequences in the archive. 

4. Sequence S1.4 

It was detected as a repeat sequence to Sequence S1.1, S1.2 and S1.3. 
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S1.4 is a repeat of sequences S1.1, S1.2 and S1.3.  Thus, the result is scored as 

three true positives. 

5. Sequence S2.1 

It was detected as a new sequence. 

S2.1 is the first occurrence of a new sequence; therefore, the result scores one 

true negative. 

6. Sequence S2.2 

It was detected as repeat sequence for S2.1. 

Since this is correct, the result scored as one true positive. 

7. Sequence S2.3. 

It was detected as a repeat of sequences S2.1 and S1.4. 

Sequence S2.3 is only a repeat of S2.1.  Therefore, the result is scored as a 

true positive on sequence S2.1 and a false positive on sequence S1.4. 

 

The following table records results of the identification of these 7 input sequences: 

  

With a video archive size of 7 video sequences, the recall and precision can be 

calculated as below: 

Recall = true positives / (true positives + false negatives)  = 6 / (6+2) = 0.75 
 
Precision = true positives / (true positives + false positives) = 6 / (6+1) = 0.85 
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