
Feature-based Video Sequence Identification

Kok Meng Pua

B.Sc. (CoE), University of Kansas, 1993
M.Sc. (EE), University of Kansas, 1995

Submitted to the Department of Electrical Engineering and Computer Science and the
Faculty of the Graduate School of the University of Kansas in partial fulfillment of

the requirements for the degree of Doctor of Philosophy.

Thesis Cmmittee:

Chairman

Date dissertation defended: May/17/02

 ii

 Abstract

This dissertation reports on research, development, and evaluation of a color based

video sequence identification and tracking algorithm. We describe an automatic

video sequence identification and tracking algorithm that detects and extracts

repeated video sequences from a continuous video stream. Because our technique is

domain and video source independent, it is applicable to any video stream that is

repetitive and changes slowly over time.

We digitize and segment a continuous video stream into video sequences

using color histogram-based techniques. Our video sequence identification approach

groups individual frames together based on their color features. In particular, we use

the nine color moments, namely the mean, variance, and skew of each primary color

component of the RBG color format. Then, we identify similar video sequences

based on how many similar frames they contain. Finally, we compare the similar

video sequences frame by frame to identify repeated video sequences

We studied the efficiency and the effectiveness of our algorithms on 24 or

more hours of video data from two different sources. We found that the technique

accurately identifies repeated sequences, producing recall and precision values both

over 90%. We also evaluated the applicability of our technique as a lossless

compression algorithm. By removing repeated sequences from the video archive, we

achieve a compression gain ratio of 30% on each source.

 iii

Acknowledgements

 I would like to express my deepest gratitude to my advisor and mentor, Dr.

Susan Gauch, for her invaluable guidance and unwavering support throughout my

education at the University of Kansas. Without her encouragement and patience, this

work can not be done. I would also like to extent my gratitude to Dr. Joseph Evans,

Dr. Jerry James, and Dr. Tom Schreiber for serving on my thesis committee and their

encouragement.

 I would like to thank Dr. John Gauch, who is also serving on my thesis

committee, for valuable discussions and information sharing on issues of the image

and video processing.

 Finally, I want to express my gratitude and love to my wife, Mei Mei Fong,

for her loving support and encouragement.

 iv

Table of Contents

1. Introduction and Motivation 1

1.1 Driving Problem……………………………………………………… 1
1.2 Project Goals of the Thesis…………………………………………… 2
1.3 The Broader Picture…………………………………………………... 3

2. The Related Work 6

2.1 Image Abstraction and Similarity Measure…………………………... 7
2.2 Video Sequence Abstraction and Feature based Video Similarity

Measure………………………………………………………………10

2.3 Topical Video Event Detection……………………………………….15

3. The Pilot Work 18

3.1 The VISION Digital Video Library…………………………………..18
3.2 The VIDSEEK Project………………………………………………..20
3.3 The VIDWATCH Project…………………………………………….22

4. Video Sequence Identification and Tracking System 24

4.1 The Approach…………………………………………………………24
 4.1.1 Video Processing and Stream Segmentation Process…………..26

4.1.2 Video Sequence Hashing Process………………………………27
4.1.3 Video Sequence Comparison Process…………………………..29
4.1.4 Video Sequence Archiving and Tracking………………………29

4.2 System Architecture Design and Definition………………………….31

5. Design of Video Sequence Identification and Tracking 36

5.1 Video Processing and Segmentation Process………………………..36
5.1.1 Video Frame Abstraction………………………………………37

 v

5.1.1.1 Color Features ……………………………………….37
5.1.1.2 Texture Features……………………………………...40
5.1.1.3 Shape Features……………………………………….42

 5.1.2 Video Sequence Abstraction Using Color Moments………….44
 5.1.3 Creation of Video Sequences………………………………….45

 5.2 Video Sequence Hashing Process…………………………………….51
 5.2.1 Video Frame Hashing………………………………………….52
 5.2.1.1 Video Hash Table Design……………………………55
 5.2.1.2 Hash Index Generation………………………………58
 5.2.1.3 Video Frame Hashing Cost Estimation……………...63
 5.2.2 Video Sequence Filtering Process……………………………..64
 5.3 Video Sequence Comparison…………………………………………68
 5.3.1 The Absolute Moment Difference Calculation………………..71

5.3.2 Aligning Video Sequence for Best Comparison Result ………74
5.3.3 Video Sequence Comparison Cost Estimation………………..78

 5.4 Video Sequence Archiving and Tracking…………………………….79
5.4.1 Video Sequence Index Table………………………………….79
5.4.2 Inserting Index Information of an Input Video Sequence…….85
5.4.2.1 Video Index Table Insertion………………………………...85

5.4.2.2 Video Hash Table Insertion…………………………87
5.4.3 Deleting Index Information of An Expired Video Sequence…88

5.4.3.1 Deleting An Expired Video Sequence……………...89
5.4.4 Deleting Color Moment Strings of An Expired
 Video Sequence………………………………………………92

6. Experimental Results and Discussion 93

6.1Measuring the Video Sequence Identification Accuracy and
Efficiency…………………………………………………………..94

 6.1.1 Video Hashing Time…………………………………………94
6.1.2 Video Sequence Comparison Cost…………………………..97
6.1.3 Measuring Recall and Precision……………………………..98
6.1.4 Choosing An Optimum Overlap Threshold Value…………..99
6.1.5 Video Sequence Comparison Accuracy ……………………101

6.2 Measuring the Achievable Storage Compression Ratio………….103
6.3 Validating Video Identification Technique with Different Video

 Source……………………………………………………………105

 vi

7. Conclusion 108
 7.1 Summary…………………………………………………………..108
 7.2 Future Work……………………………………………………….111
 7.2.1 Technique Improvement……………………………………111
 7.2.2 User Application…………………………………………..112

Bibilography 114

Appendix 120
 Appendix A: Statistical Model of Image Texture

Representation…………………………………………………..120
 Appendix B: Moment Invariant Measurement………………….124
 Appendix C: Selection of Color Space………………………….126

 Appendix D: Illustration of Video Identification
Process…………………………………………………………..129

 Appendix E: Measuring Recall and Precision…………………..137

 vii

List of Figures

1.1 Functional Block Diagram of An Ideal Television News Topic
Tracking System……………………………………………………….4

3.1 The architecture of the VISION system………………………………19
3.2 The system block diagram of VIDSEEK Browsing System………….22
4.1 Block diagram of the Video Sequence Identification and

 Tracking System………………………………………………………25

4.2 System flow diagram of the Video Sequence Identification and

 Tracking System……………………………………………………….31

5.1 Image texture categorization model…………………………………..41
5.2 Shape features………………………………………………………...43
5.3 The Video Production Model…………………………………………46
5.4 Video Segmentation and Abstraction Extraction……………………..50

 5.5 Block diagram of Video Hashing Process……………………………52
5.6 The flow diagram of Video Frame Hashing……………………….…54
5.7 Hash table data structure for Video Frame Hashing…………...……..57
5.8 An example of color moment mapping process………………….…..60
5.9 Flow diagram of Video Sequence Filtering…………….……….……65
5.10 The flow diagram of the Video Sequence Comparison Process….....69
5.11 Video sequence alignment flow chart……………….………...….…75
5.12 Video sequence index table………………………………….……...80
5.13 The flow diagram of the video indexing process…………………...84
5.14 Video hash table sliding window mechanism……………….……...88
6.1 Graph of video sequence hashing time versus video archive size…...95
6.2 Graph of video sequence hashing time versus video sequence size…96
6.3 Graph of video comparison time versus video Sequence size……….98
6.4 Total video sequence in the video archive vs. total detected repeated
sequences……………………………………………………………….102
6.5 Ratio of achievable lossless storage Compression………………....102
6.6 Total sequences in video archive vs. total detected unique sequences
(Overlap Threshold=30 & Moment Difference Threshold =10.0)……..106
6.7 Total achievable storage compression ratio………………………..107
7.1 Functional block diagram of a ideal television news topic
tracking system…………………………………………………………113
A.1 Transform Feature Extraction……………………………………..122

 A.2 Slits and Apertures……………………………………………...…122
 C.1 The RGB Color Space Cube…………………………………...….127

 viii

List of Tables

Table 5.1 Error percentage of color moment string mis-mapping………62
Table 5.2 Video index header parameter definition………………….….81
Table 5.3 Video index array parameter definition………………………82
Table 6.1 Recall and precision versus a set of different overlap
threshold values………………………………………………………..100
Table 6.2 Recall and precision measurement
(Overlap Threshold=30)……………………………………………….102
Table 6.3 Recall and precision measurements
(Overlap threshold =30)…………………………………………….....105

 1

Chapter 1

Introduction and Motivation

1.1 Driving Problem

One of the main technology achievements in the mid-twentieth century was the

invention of the television set and hence the proliferation of video signal

broadcasting. In the late 1990s, we saw the technology of the late-twentieth century,

the Internet, used as a new broadcasting media, bringing video streams to personal

computers (PCs). Due to the combination of these two technologies, we are able to

see the latest events and stories happening around the world in real time by watching

television or video streams over the Internet. The easy availability of these media

transmissions has created repeated broadcast content that causes the ineffective use of

a viewer’s time and inefficient use of storage media in archives. Unlike earlier times

when there were only a few television channels, cable networks and Internet web sites

provide continuous program coverage of news and documentaries. However, if we

 2

watch the same channel at different times of the day to keep abreast of television

programs, we can spend hours only to discover that a large portion of the programs

and video sequences are repeated from the previous television program sessions.

What is needed is a video sequence tracking system that could combine, for

instance, a day’s worth of program coverage into one shorter program session

containing only the unique stories. In other words, we need an effective way to shrink

the length of a viewer’s television program session without losing any content. One

possibility is to compare continuous program coverage, remove repeated video

sequences and combine all and only the unique video. This should create a more

compact representation of the entire days. Shorter television program sessions could

lead to shorter broadcasting time and better bandwidth utilization. Viewers could use

the time saved to receive content from a wider variety of programs.

1.2 Project Goals of the Thesis

This dissertation describes an automatic video sequence identification and tracking

technique. The focus of the work is to design, implement, and test algorithms and

technologies to extract unique video sequences from repetitive continuous video

streams. Our technique is domain and video source independent so that it can be

used on any video stream that contains repeated sequences. For testing and

evaluation purposes, we have applied this technology to two television channel video

streams.

 3

Our work has three main goals: 1) design and implement an efficient real time

video sequence identification and tracking technique; 2) reduce the storage

requirements of video archive built from the stream by omitting repeated sequences;

and 3) reduce the amount of time a user needs to view a program by displaying only

new, unique material. We evaluated the accuracy of our video sequence

identification and tracking techniques using a collection of 32 hours of continuous

video. We evaluated the compression achievable in both the user’s viewing time and

the archive storage requirements. We have also evaluated how well the technique

performs on other video sources by testing the technique on a 24 hours of video

stream collected from a different television source.

1.3 The Broader Picture

This work could form one component of a video archive system for content-based

topic tracking. Figure 1 illustrates a function block diagram for a fully automated,

content-based story tracking system for television news programs. The question now

is: Is it feasible to build such a fully automated video content-based news story

tracking system that can represent continuous news coverage as a series of unique

topics/stories to achieve better content and compression efficiency?

 4

Video Features based
Repeated Video Sequence
Identification and Tracking

Continuous News
Coverage

Story Detection

Story Segregation

Series of Unique TV News
Stories

K
no

w
le

dg
e

an
d

C
on

te
nt

-b
as

ed
 N

ew
s

St
or

y
Id

en
tif

ic
at

io
n

an
d

Tr
ac

ki
ng

Content-based Video
Sequence Grouping

Video Sequence Organizer

Video Digitization

Stream Segmentation

Video Features Extraction

Text/Audio/Closed Captions Extraction

Vi
de

o
D

at
a

Pr
oc

es
si

ng

Video Sequences

Figure 1.1 Functional Block Diagram of An Ideal Television News Topic Tracking

System

 5

Given the current video signal processing technologies, without any human

intervention and manual editing, the solution to the above problem is still not

achievable. The fast growth of multimedia information in image and video databases

in the last ten years has triggered research on efficient video retrieval and processing

methods, but none of these projects concentrate on finding techniques for identifying

unique video sequences and tracking news stories from a given video source. In

order to detect and aggregate news stories from a video source, we need a fully

automated video signal processing system that can first apply content-based video

processing techniques to track and extract all the unique video sequences from the

input source. Then, video sequences must be grouped into different stories using

video abstractions such as closed captions, audio and video features. The research

presented in this dissertation has tried to answer some (indicated as grayed blocks in

Figure 1.1), although not all, of these problems. In particular, we concentrate on the

feature-based identification and tracking of unique video sequences, but not on the

knowledge-intensive activity of content-based aggregation into stories.

 6

Chapter 2

The Related Work

This research has its roots in image and video processing techniques and in topic

detection and tracking of text documents. Related digital image and video processing

problems include the abstraction and representation of a video content, the detection

and segmentation of the video shots and scenes, and the content-based video archive

retrieval and storage. Other ongoing areas of video processing research study video

similarity measurement, topical event detection in video sources, commercial

detection, and story-based video segmentation. The following sections discuss some

of this related work.

 7

2.1 Image Abstraction and Similarity Measure

A video sequence is made up of number of video frames captured in temporal order

in which each video frame can be treated as one single image. Hence, a video

sequence can be seen as an ordered stream of images with each image represented by

its own abstraction. Existing research on content-based image retrieval explores

multiple ways of representing these images for content-based similarity measurement

and retrieval. Images can be represented by properties of color, shape, and edge

features. One of the most popular ways of representing an image is to use its color

histogram. This feature-based image representation has been shown to be efficient

and effective in the content-based image retrieval [11][24][28]. A color histogram

describes the global color distribution in an image. The color histogram is extremely

easy to compute and insensitive to small changes in viewing positions and partial

occlusion. The degree of similarity between two represented images is calculated as

the distance between two color histograms. However, a color histogram only records

an image’s overall color composition, so images with very different appearances can

have similar color histograms. Pan and Zabih [26] show that the histogram method is

not robust to large appearance changes and is liable to produce false positives due to

the lack of any spatial information.

 Several approaches have attempted to incorporate spatial information with

color. Smith and Chang [36] propose dividing images into sub-regions and imposing

positional constraints on the image comparison (image partitioning). In their

research, an image is partitioned into binary color sets. The binary color sets,

 8

calculated using histogram back-projection [38], and their location information

constitute the feature for an image. This feature can be used to perform region-based

queries. Stricker and Dimai [37] divide an image into five fixed overlapping regions

and extract the first three color moments of each region to form a feature vector for

the image. The storage requirements for this method are very low. The use of

overlapping regions makes the feature vectors relatively insensitive to small rotations

or translations. Pass and Zabih [27] partition histogram bins by the spatial coherence

of pixels. In their work, a pixel is coherent if it is a part of some “sizable” similar-

colored region, and incoherent otherwise. A color coherence vector (CCV) is created

to represent this classification for each color in the image. CCVs are fast to compute

and appear to perform better than histograms. The notion of CCV is also extended in

[27] using additional features to further refine the CCV-refined histogram.

 Since histogram refinement methods depend on local properties, they are

unlikely to tolerate large image appearance changes. The same problem occurs in the

image partitioning approach that depends on pixel position. The correlogram method

proposed by Huang and Kumar [18][19] takes into account the local spatial

correlation between colors as well as the global distribution of this spatial correlation.

A color correlogram of an image is a table indexed by color pair, where the k-th entry

for (i, j) specifies the probability of finding a pixel of color j at a distance k from a

pixel of color i in the image. The correlogram is easy to compute and the size of the

feature is fairly small. It has also been shown to be robust to large image changes.

 9

 Other image features used for image similarity comparison are the shape and

invariant properties of the color image. Geusebroek and Koelma [17] demonstrate an

image retrieval system based on local color invariants. For each image stored in the

database, color edge invariants for shadow and highlights are extracted. Shape

invariant descriptors are computed from the edge map and the resulting shape features

are used to index the image. Swain and Ballard [38] use dominant colors to construct

an approximate representation of color distribution of a image and the results have

shown that using only a few dominant colors will not degrade the performance of

color image matching. In fact, since small histogram bins are likely to be the result of

noise, performance may even be enhanced. Rowe and Boreczky [34] represent an

image by the first three color moments for each color component and experimental

evidence has shown image similarity based on color moments is more robust than that

based on color histograms.
 In another approach, Kato and Zhang [22][42] derive edges from an image

using a technique such as Sobel filter to provide good cues for content. Two images

can be then compared for similarity measure by calculating a correlation between

their edge maps. However, these comparison methods are limited by their

dependency on image resolution, size and orientation.

 10

2.2 Video Sequence Abstraction and Feature based

Video Similarity Measure

The ease of capturing and encoding digital video has created the need for new

technologies able to handle multimedia information. One of the basic video

processing techniques needed to handle video is the representation of video

sequences. Typically, the video source is segmented into either shots or scenes. A

video shot is defined as a continuous roll of the camera while a video scene is a

collection of shots that occur in a single location or are temporally unified. Thus, a

scene is a sequence of video shots representing continuous action. In our research,

we define a video sequence as a video shot. One way of abstracting a video sequence

is to map the entire video segment to some small number of representative images,

usually called key frames [40][42][43]. Key frames are still images that best

represent the content of the video sequence. They may be either extracted or
constructed from the original video data. Index and video features can be constructed

from these key-frames using image abstraction techniques discussed in the previous

section to provide a key-frame similarity measure between two video sequences.

Zhang and Low [42] represent video sequences based on key-frame color, texture,

shape, and edge features.

 Instead of selecting still images as key-frames for video sequences, Arman [3]

represents each video sequence using a representative frame called an Rframe. Each

 11

Rframe consists of a body, which is the 10th frame of the video sequence, four

motion-tracking regions, and the video sequence length indicator. The shape and

color properties of these Rframes are calculated and used to measure similarity

between Rframes, and hence their respective video sequences. The shape property of

an Rframe is represented using the moment invariant while its color property is

represented by the color histogram. The output of the moment-based and color

histogram-based analyses are two floating numbers describing the similarity in shape

and in color of the Rframes’ body. A mapping function is used to map both entities

onto a common space in order to combine and compare these two different entities.

 Chueng and Zakhor [5] consider the use of meta-data and video domain

methods to detect similar videos on the web. In their work, meta-data is extracted

from the textual and hyperlink information associated with each video sequence while

in the video domain a video signature is created for video similarity measure. In the

meta-data method, each video sequence is represented by a set consisting of all the

distinct terms found in the associated meta-data. The degree of meta-similarity,

which determines the degree of video sequence similarity, is defined as the ratio

between the size of the intersection and the union of the two meta-data sets. The

video signature for each video sequence is constructed by selecting a small number of

frames that are most similar to a set of random seed images. In the video signature

method, the similarity between video sequences is based solely on the similarity

between individual signature frames selected. The degree of signature frame

similarity is determined by measuring visual feature distance between frames. Since

 12

it needs to be done for every seed and every pair of video in the database, they

propose a statistical pruning procedure [6] to the complexity of the frame distance

computation. Also, a new signature clustering algorithm [6] is proposed to further

improve similar video sequence retrieval performance by providing an efficient

organization of data that allows users to focus on relevant information. This

clustering algorithm treats all the signatures as an abstract threshold graph, where the

threshold is determined based on local data statistics. The experimental results show

that this algorithm outperforms the simple thresholding and hierarchical clustering

techniques proposed by Chueng [5].
 The VisualGREP project [18] includes a systematic method to compare and

retrieve video sequences at four levels of temporal resolution: frame, shot, scene and

video. At each level, features are employed to transform the video sequences into an

appropriate representation. Features used in this system are color, motion intensity

and frontal faces. A normalized measure of distance between the representations of

two video sequences is defined to capture their similarity. At the frame level, frames

are compared by any image feature. At shot levels, the image features derived from

their respective frames represent shots and hence the similarity is determined by

frame values and also the temporal order. A scene is represented by multiple shots

and hence they are compared based on the concepts developed for shots, resulting in a

recursive computation scheme. The same recursive computation scheme applies to

the video level. The system allows users to easily adjust a feature’s distance measure

to their actual desired similarity judgment. The method presented is capable of

 13

comparing temporally large entities such as scenes and full-length feature films for

general video.
 Dimitiova Abdel-Mottaleb [8][9] regards the average distance of all the

corresponding frames as two videos’ similarity and defines that video frame sequence

must obey temporal order. He introduces a novel approach for video similarity and

retrieval from a large archive of MPEG compressed video clips. The proposed

method takes a video clips as a query and searches the database for clips with similar
contents characterized by a sequence of representative frames signatures constructed

from the Discrete Cosine coefficient and motion information. In contrast, Wu [40]

combines color and textual features from key-frames for shot similarity measure. The

color feature is defined by histogram in HIS color space, represented as a 32-floating

point number. The texture feature is composed of three floating point: coarseness,

contrast and direction. On the whole, visual features of the key-frame are expressed

as a vector of 35-dimension. The Euclidean distance between two vectors and the
shot duration determines the degree of similarity between two shots represented by

these key-frames. The video similarity measure takes into account the temporal order

of similar shots and the number of scattered shots that cannot find a similar

counterpart to measure the final degree of similarity between two video sequences.
 The work by Rui and Huang [35] show that the similarity of two shots is an

increasing function of visual similarity and a decreasing function of shot size

difference. Visual similarity is measured based on the shots’ spatial and temporal

features. Their current algorithm uses the color histogram for the first and last frames

 14

as the spatial feature for the shot. The temporal feature is represented by calculating

the average of the color histogram difference between adjacent frames in the shot.

The VidWatch Project [12] demonstrates the use of the first three color

moments of the red, green, and blue color components to represent a video frame.

Thus, each video frame is represented by a vector of nine floating point numbers and

hence a video sequence is represented by multiple vectors of nine, one for each video

frame. Two video streams are compared by measuring the sum of the absolute

moment difference of video frames represented by the nine color moments. The

VidWatch project uses the same video frame abstraction and video sequence

comparison method to detect commercial replays on a television channel. The results

from both applications show that the color moment technique can be robustly

deployed to represent a large video archive. The feature storage requirements are

small, yet the nine color moment values are able to represent each video frame

uniquely and hence identify duplicate (or different) video sequences.

The goal of our video identification technique is to detect and identify

repeated video sequences from video archive captured from a continuous video

stream of a television channel. We have developed a sequential video frame

comparison technique that compares each video frame from two video sequences in

temporal order to decide if they are repeated or not. Since we need to select a method

of video frame feature abstraction that requires little data storage while creating a

unique abstraction for each video frame, we use the color moment feature proposed in

[12] as our video sequence abstraction.

 15

2.3 Topical Video Event Detection

Since they do attempt to model the semantic content of the video, the feature-based

video indexing, retrieval and similarity measure methods may not necessarily be
semantically meaningful or relevant. A more advanced video content analysis

method that is semantically meaningful is needed to more effectively identify and

label video content and help users find what they are looking for. The detection of

semantic events within video streams presents a new research area in content-based

video processing. The goal of event-based video detection methods proposed in and

implemented in [7][30][39][41] are to visually and semantically describe the content

of video so that it is meaningful and significant to viewers. Qian and Haering [30]

design an event-based video indexing, summarization and browsing for animal hunt

detection in wildlife documentaries. Texture, color, and motion features are extracted

and motion blobs are detected. A neural network is employed to verify whether the

motion blobs belong to objects of interest. Shot summaries are generated and are

used to detect video segments that contain events of interest.

The SmartWatch Project in [7] combines the use of textual (closed caption or

transcripts) and aural analysis to automatically detect truly “interesting” events in

video sequences. Tanveer and Srinivasan [39] use the image content of foils to detect

visual events in which the foil is displayed and captured in the video stream. The

textual phrases listed on a foil are used as an indication of a topic events, the audio

track is analyzed to detect where the best evidence for the topical phrases is heard.

The combined results of the visual and audio event detection determine the time

 16

occurrence of the video event. Yoon and DeMenthon [41] describe the use of motion

vectors to detect interesting dynamic events based on the information in the

compressed domain. Their method takes advantage of motion encoding without the

need for full frame decompression, and hence their approach has a lower computation

cost.
Instead of video sequence organization and detection, the Topic Detection and

Tracking Project (TDT) [1][10] sponsored by NIST aims to develop technologies for

retrieval and automatic organization of text and speech information such as news

coverage on television and radio. The purpose of this project is to advance the state

of the art in technologies required to segment, detect and track topical information in

a stream consisting of both text speeches from newswire, radio and television news

broadcast programs. Assuming the presence of textual information which can be

used to semantically abstract the content of it video source, technologies for topic and

event detection on text documents developed in TDT project can be extended for the

purpose of topic and event detection from video sources.
 One common requirement of all the event based video detection techniques

described above is that they are heavily dependent on specific artifacts and are

domain specific. This limits their effectiveness and applicability in different

domains. An ideal model of fully automated video content-based event or topic

tracking method will be an extensible computational approach that may be adapted to

detect different events in different domains. While we do not attempt to track

individual video stories through time, the first step in this process is the identification

 17

of new content. Thus, our work can be considered a first step towards domain

independent topic and tracking for video sources. In particular, we concentrate on

feature-based identification of video sequences, but not the knowledge-intensive

activity of content-based aggregation into stories or events.

 18

Chapter 3

Pilot Work

3.1 The VISION Digital Video Library

The acronym VISION stands for “Video Indexing and Searching Over the

Networks.” It is a system developed at the University of Kansas as a testbed for

evaluating automatic and comprehensive mechanisms for library creation and

content-based search, retrieval, filtering and browsing of video across networks with

a wide range of bandwidths [14][15]. The pilot system was populated with a

collection of news videos from CNN [16]. These videos were automatically

partitioned into story segments based on their content and stored in a multimedia

database. A client-server based graphical user interface was developed to enable

users to remotely search this library and view selected video segments over networks

of different bandwidths. Additionally, VISION classifies the incoming videos with

respect to a taxonomy of categories and will selectively send users videos which

 19

match their individual profiles. The archive can also be explored by browsing

through the taxonomy.

Client ClientClient

Server

Video Processing
System

Search EngineVideo StreamerArchive
Browser

query
category ID

scenes keyframes

scene IDsvideo
scene ID

scene IDs

Raw Video
(audio/video/closed captions)

category IDs keywords

Figure 3.1 The architecture of the VISION system

The architecture of the first version of VISION is summarized in Figure 3.1.

Although we originally developed our own client, server, and video streamer, the

later VISION system uses a World Wide Web server and an Internet browser for the

Server and Client, and the RealMedia Server and Client for video streaming. The

Search Engine is an implementation of the vector space model and the Archive

Browser is a cgi program which presents a browsable hierarchy of concepts (the

 20

taxonomy) or a clustered set of keyframes to the user. The Video Processing System

can continuously capture, segment, compress, classify, extract keyframes (and their

features) and store and index video clips from a live broadcast feed in real-time.

The VISION project has also been extended to support real-time video scene

detection and segmentation. A pipelined digital video processing architecture was

developed that is capable of digitizing, processing, indexing and compressing video

in real time on an inexpensive general purpose computer [13]. It uses a three-phase

segmentation algorithm that combines video, audio and closed captions to detect

scene changes. The videos were automatically partitioned into short scenes using

combination of video, audio and closed-caption information and the resulting scenes

are indexed based on their captions and stored in a multimedia database. An image

feature based algorithm produces over-segmentation because it detects camera shots

not just scene changes. Higher levels of video representation such as closed caption

and audio are used to merge some of these shots so the resulting scenes will be more

semantically unified. The studies of the effect of closed-caption based merging used

after image-based video segmentation in [32] shows that the method significantly

reduces the over-segmentation phenomenon and improves the accuracy of scene

detection.

3.2 The VIDSEEK Project

One of the goals of the VISION project was to develop a client-server-based

graphical user interface to enable users to remotely search the video archive and view

 21

selected video segments over networks of different bandwidths. The VIDSEEK

project [29] was designed to complement this goal by developing a web-enabled

digital video library browsing system. With the explosive growth of information

available in the World Wide Web, most queries result in many retrieved documents

only some of which are relevant. Accessing digital video information is an even

harder problem because content-based video indexing is difficult and the volume of

retrieved video data is enormous. VIDSEEK (Figure 2.1) is a dynamic Web-based

digital video library browsing system that allows users to preview the contents of the

VISION digital video library via automatically selected and organized key frames.

The focus of this system is the dynamic organization, i.e., categorization and

clustering, of the video abstractions to provide a sophisticated tool for video archive

exploration.

The system supports two main features, namely dynamic clustering-on-

demand and category-based browsing. The dynamic clustering-on-demand allows

users organize the digital video library clips into clusters based on multiple user-

specified video features. The category-based browsing allows users to interactively

and dynamically filter the VISION digital video library clips based on a given set of

constraints, such as video source, keywords, and date of capture. This hybrid of

browsing and searching system provides a powerful and flexible video archive

exploration tool. The need for video clip playback can be reduced by allowing users

to browse through video abstractions such as multiple key frames, category and

caption information which provide a summary of video clip content.

 22

Figure 3.2 The system block diagram of VIDSEEK Browsing System

3.3 The VIDWATCH Project

Whenever video content is licensed and broadcast by distributors such as cable

operators, the producers and owners of that content need to verify that their video is

reaching customers correctly. The goal of the VidWatch [12] project is to develop

methods to transmit and compare video features from two or more video streams in

real-time to determine if the video broadcasts are reaching customers unchanged in

each distributor’s market. In other words, the research group developed content-

based video analysis methods to provide video authentication. One of the main

achievements of this research work was the patented automated video information

Keyframe
Extraction

Video Processing System

RealMedia
Server

Category Based
Browse Module

Data Streaming

Video Clips
Categorization

Video Digitizing &
Segmentation

RealPlayer

Web Server
(CGI)

Dynamic Clustering
Browse Module

SQL Database
Server

Video Browser

Video Clip

Keyframe

Closed Caption

Video Clip info.

conceptual category

Vi
de

o
In

pu
t

image features

Video Archive

FilesIndex

 23

processing technique using features of color moments to characterize video content

continuously in real-time.

The VidWatch project utilizes a client-server architecture to provide 24 by 7

video content analysis and video authentication over a wide area network of PCs with

video digitizers. Whenever video differences are detected, the system digitizes and

encodes the broadcast video and the customer video, and uses this information to

generates daily video authentication reports for each channel and location being

monitored. The VidWatch product has been deployed and successfully field tested

for three years in cooperation with a major international television broadcasting

network company.

 This underlying video authentication technology can be used to compare any

two video streams that are being simultaneously transmitted to different locations.

For example, VidWatch could be used to monitor the “transmission quality” of digital

video sources being streamed over the Internet in any format. Alternatively, the

differences detected by VidWatch could be used to boost or correct a distorted video

signal.

 24

Chapter 4

Overview of Video Sequence

Identification and Tracking System

4.1 The Approach

The process flow of the Video Sequence Identification and Tracking System has four

main processes (Figure 4.1). First, during video processing and segmentation, we

extract video abstractions and segment the video stream into multiple video

sequences. Then, using video sequence hashing process, we identify similar video

sequences from the stream of input video sequences. Next, we compare the input

video sequences to any similar video sequences frame by frame to decide whether or

not the input video sequence is truly a repeat or if it is a new sequence. Finally, we

record temporal information for the video sequence that can be used to track video

sequence occurrences or to reproduce the original video stream. An overview of the

processes is given in this chapter and they are described in detail in Chapter 5.

 25

Video Input Stream

Input Video Sequences

Similar Video Sequences

Video Abstraction Extraction

Video Stream Segmentation

Video Sequence Filtering

Video Frame Hashing

Potential Similar
 Video Sequences

Labelled Repeat or New
 Video Sequences

Video Processing and
Stream Segmentation

Video Sequence Hashing

Video Sequence
Comparison

Video Sequence
Archiving & Tracking

Frame-by-Frame Video
Sequence Comparison

Video Sequence Archving &
Tracking

Figure 4.1 Block diagram of the Video Sequence Identification and Tracking System

 26

4.1.1 Video Processing and Stream Segmentation Process

Our primary goal is to develop real-time algorithms to compare the current video

sequence to a large archive of previously viewed video sequences. Since we do not

want to overlook video sequences that are longer, more complete, versions of earlier

sequences, we have chosen to compare abstractions for every image in the video

sequence rather than to develop an algorithm based on comparing sequence features

such as key frames. Since so many frames are to compared, the efficiency of the

sequence abstraction algorithm is of prime importance. Because the color moment

feature method [12] is compact, efficient, and accurate, we have adopted it as our

video frame abstraction. The color moments used are the mean, the standard

deviation and the skew of the Red, Blue and Green color components of the pixels in

each video frame. Thus, regardless of the size of the video frame, each frame in the

video sequence is represented by nine color moment values. The video broadcast

time, or start and end broadcasting time and duration for each video sequence, is also

stored. This temporal information about video sequences can be used as indices to

track occurrences for each video sequence processed.

In our research, we define a video sequence as a single video shot. A video

shot is an image sequence that represents continuous action and corresponds to a

single action of the camera. The video stream is separated into individual video

sequences using the video segmentation technique developed by the VISION project

[15]. It is a feature-based algorithm that uses color histogram, image differences, and

 27

average brightness to detect shot boundaries. It is able to recognize shot boundaries

in real-time with 94% accuracy [13].

4.1.2 Video Sequence Hashing Process

For an archive of documentary programs, individual video sequences average 60

seconds in length. Thus, approximately 1,440 video sequences will be created daily.

In order to determine if a video sequence is new or a previously broadcast sequence, a

total of 1,036,080 ((1,440-1)*(1,440/2)) video sequence comparisons are needed.

Other video sources, for example news, may have shorter sequences and thus required

more comparisons. Hence, it is important to do this video comparison efficiently.

In order to identify new video sequences in real-time, we must be able to

compare the current video sequences to all archived video sequences efficiently. We

have designed a video comparison algorithm based on hashing. The video hashing

process consists of two major components, namely video frame hashing and similar

video sequence filtering. We use the video frame hashing component to identify

video sequences in the video archive that are potentially similar to the input video

sequence. We then use the video sequence filtering component to determine if these

potentially similar video sequences are truly similar to the input video sequence.

During video frame hashing, the nine color moments calculated for the current

video frame are mapped from floating point numbers to integers to remove noise and

group similar video frames together. These nine integer numbers are then

concatenated to create a fixed-length color moment string. The color moment string

 28

is used as the key for this video frame and also the hash value for this frame. The

color moment string of video frame, along with its video sequence identifier and size,

is stored in the hash bucket identified by the hash value. Thus, the color moment

string and sequence identifier for every frame from the digitized video stream is

stored in the hash table. All frames that share identical color moment strings are

grouped together in the same hash bucket. All video sequences that have at least one

frame in the same hash bucket as the input video sequence are considered potential

similar video sequences.

 While the video frame hashing process will detect similar video frames and

identify potential similar video sequences, we require the second component of the

video hashing process in order to identify truly similar video sequences. Potential

similar video sequences are filtered to remove those sequences whose degree of

similarity is below some threshold. Video sequence similarity is based on the lengths

of the potential similar and input sequences as well as the percentage of frames in the

two sequences that have identical color moment strings.

Based on informal observation, we consider two video sequences to be

dissimilar if their size difference is greater than 10%. For videos of roughly the same

size, we concluded experiments to establish a overlap threshold value to be used as

the ceiling for potential similar video sequence filtering (see section 6.1.4). The

overlap threshold is defined in term of the percentage of frames in the two video

sequences that have the same color moment string. Video sequences that fail to

 29

exceed the overlap threshold for any previously archived video sequence are deemed

to be new video sequences, the first occurrence in the video archive.

4.1.3 Video Sequence Comparison Process

The method described above might result in false positive matches. There are two

main sources of error. First, the color moment strings used for comparison are built

from approximate color moment values. Second, the video sequence filtering

technique considers only the percentage of similar video frames, ignoring their

temporal ordering. Thus, the final step of our algorithm performs a more accurate,

frame-by-frame, video sequence comparison. In the frame-by-frame video sequence

comparison process, the absolute moment differences between video frames from the

input video sequence and the similar video sequences are calculated. The original

floating point color moment values are used and the differences are aggregated over

the entire sequence. The absolute moment difference value calculated for each

similar video sequence is compared with a moment difference threshold to determine

whether or not the video abstractions are similar enough for the input video sequence

to be considered a repeated sequence.

4.1.4 Video Sequence Archiving and Tracking

The goals of the video sequence archiving and tracking process are to: 1) record

meta-information for each video sequence processed; 2) record the video

 30

identification process results, i.e., the total number of new and repeat video sequences

processed and whether or not each input video sequence is new or a repeat; and 3)

record and control the total working size of the video archive captured by the video

identification process.

In conjunction with the video sequence identification process, meta-

information for a video sequence is recorded and kept in a video sequence index table

data structure. The meta-information includes the video sequence identifier assigned,

the captured time of video sequence, the length of the video sequence (number of

frames extracted during the segmentation step), and also a video sequence

identification label assigned during the matching process. The video sequence

identification flag indicates whether the sequence is new or a repeat.

In our research, we designed a video sequence identification and tracking

system that can process and store an archive of at least 24 hours video worth of

continuous video broadcast in real time. Continuous processing in excess of 24 hours

is handled by using a sliding window wherein only the most recent 24 hours of video

are kept. Using the information stored in the index table, one can track video

sequences broadcast at any time within the defined 24 hours of time window, and

hence easily reproduce the whole video stream or find all repeats for a given

sequence.

 31

4.2 System Architecture Design and Definition

As described in Section 4.1, there are four main processes in our Video Sequence

Identification technique and Tracking System: 1) Video Processing and Stream

Segmentation; 2) Video Sequence Hashing; 3) Video Sequence Comparison; and 4)

Video Sequence Archiving and Tracking. We designed and developed two stand-

alone systems with a total of four main software component modules (Figure 4.2) to

support the four processes of the video identification and tracking system.

VPS

VSAVSS

VSI

Video Input

Video Processing and Stream
Segmentation Process

En
co

de
d

Se
qu

en
ce

Indexing

Se
qu

en
ce

 A
bs

tr
ac

tio
n

Sequence
Storing

Retrieval &
Tracking

 A
bs

tr
ac

tio
n

In
fo

New Sequence
 Input

Video Hashing Process
Video Sequence Comparison

Video Archiving & Tracking

Data Flow

Action Flow

VPS: Video Processing System
VSI: Video Sequence Identification
VSA: Video Sequence Abstraction
VSS: Video Sequence Storage

St
an

da
lo

ne
 S

ys
te

m
 B

St
an

da
lo

ne
 S

ys
te

m
 A

Figure 4.2 System flow diagram of the Video Sequence Identification and Tracking

System

 32

These four main components are: 1) Video Processing System (VPS); 2) Video

Sequence Identification module (VSI); 3) Video Sequence Abstraction Module

(VSA); and 4) Video Sequence Storage (VSS). The VPS component is one stand-

alone system and the other three components are modules of the second stand-alone

system. As shown in figure 4.2, video input is first digitized and segmented into

shots using the Video Processing System (VPS). The newly digitized video sequence

is then compared to all previously archived video sequences using the Video

Sequence Identification (VSI) module. If no matches are found, the video sequence is

deemed to be a new video sequence; i.e., the first occurrence of a video sequence.

The video sequence, together with its video abstractions, are sent to the Video

Sequence Abstraction (VSA) and the Video Sequence Storage (VSS) modules for

analysis and storage.

a. Video Processing System (VPS)
The main functions of the VPS are video signal digitization, video abstraction

extraction, and video shot detection and segmentation. The VPS receives a video

source, digitizes the video signal into individual images in RGB color format, and

segments the video stream into different shots. A video abstraction based on color

moments is extracted from each frame in the shot. The color moments and shot

boundaries are passed along to the Video Sequence Identification module (VSI). The

digitized video frames are encoded into RealMedia format and sent to the Video

Sequence Storage (VSS) for storage.

 33

b. Video Sequence Identification (VSI)

The main focus of this research is the design of video sequence identification

technique used by the Video Sequence Identification Module. To compare a new

shot’s video abstraction to a potentially large collection of stored video abstractions

efficiently, a technique combining hashing and filtering was designed.

c. Video Sequence Abstraction Module (VSA)

The video abstraction information for each video sequence is kept in the Video

Sequence Abstraction (VSA) Module. This video abstraction consists of the nine

color moment values of each video frame stored in color moment string format, and

meta-information such as the video sequence size and the temporal information of

video sequence. We also keep the raw nine color moment values of each frame that

are needed in the video sequence comparison process. The VSA module consists of a

video sequence index table, which captures the meta-information and results of the

identification process of each video sequence and the file index information to its

video abstraction and video clip.

d. Video Sequence Storage (VSS)

The Video Clip Storage (VCS) stores unique video clips encoded in RealMedia and

also their video abstraction (nine moment values per frame) in text format.

 34

The standalone Video Processing System (VPS) used in this research is a

modified version of the Video Processing Software Module designed and

implemented in the VISION project [15] for video shot detection and segmentation.

It was implemented in C with the OSPREY digitizer board on a Windows NT

platform. The second standalone system (standalone system B) containing the VSI,

VSA, and VSS modules, was also implemented using the C language on a Windows

NT platform. The main reasons for dividing the video segmentation and abstraction

process and video identification and tracking process into two separate standalone

systems are: 1) to provide system modularity and independence for future expansion

and enhancement of both systems; and 2) to interact easily with the VPS. Output

from the VPS is saved in disk files in a common folder that is accessible by multiple

systems for data access and sharing. The following pseudocode describes the overall

system flow of the video identification and tracking process :

/** The Overall Process Flow of Video Sequence Identification and Tracking System

**/

System Inputs :

1) an existing video hash table and video index table in text files

 2) system default parameters in a text file

 3) video sequences created by the VPS module that are stored in a common

 input folder accessible by both VPS standalone system and the

 identification system.

/* System Restart */

 35

system initialization and parameter reading;

/* Main video identification process infinite loop*/

for (; ;) {

if (there is input video sequence found in input folder) {

 /* Input Video Sequence reading */

 Read original moment values of each frame of the sequence;

 Create Color Moment String for each frame;

 /* Video Sequence Identification (VSI) Module – Phase II */

 Do video sequence hashing process;

 Do video sequence comparison;

 /* Video Sequence Abstraction (VSA) & Video Sequence Storage (VSS) –

 Phase III*/

 Record result and update video index table – remove any expired sequences;

 Update video hashing table – remove any expired video frames;

 }

 /* wait 5 seconds and then go back to input folder to check for any new input

 sequence */

 Wait 5 seconds;

 Go back to the input folder and check for any new input video sequence;

}

System Outputs:

 1) Result log files

 2) System standard log files

 3) Video hash table and video index table in text files

 – they are updated automatically in every user-defined interval during the

 continuously running process

 36

Chapter 5

Design of Video Sequence Identification

and Tracking

5.1 Video Processing and Segmentation Process

The video processing and segmentation process involves the abstraction and creation

of video sequences. Video data streams need to be processed and segmented into

video sequences before the process of video sequence identification. We first extract

video abstractions and segment the video stream into multiple video sequences. We

then process video sequences to identify new video sequences and record temporal

information that can be used to track video sequence occurrences or to reproduce the

original video stream. This section describes our methods of video sequence

abstraction and video segmentation in detail.

 37

5.1.1 Video Frame Abstraction

We represent video sequences using image features extracted from each video frame

for video processing and segmentation. A wide variety of possible features and

feature abstraction techniques have been used by the research community. The

following sub-sections describe abstracting video frames using properties of color,

texture, and shape. We conclude this section with a discussion of why, among the

various possibilities, we chose to use color moments as our video abstraction.

5.1.1.1 Color Features

Image abstraction based on color features has been studied extensively and there are

multiple ways of representing an image using color features. A few of the most

commonly used color measures are the color histogram, dominant colors, and

statistical color moments. The following subsections discuss each of these color

measures.

Color Histogram A color histogram is a function showing, for each color c, the

number of pixels in the image that have this color. In other words, it describes the

distribution of colors in an image or video frame. Let

F(x,y), = c , x ∈ [0..M-1] , y∈ [0..P-1] (Equation 5.1)

where M is the total number of row,

P is the total number of column,

c is a color value.

 38

be an image consisting of N colors. Then the normalized histogram is given as:

 (Equation 5.2)

where M*P is the total image size.

The color histogram is invariant to translation, rotation, change of angle of view,

change in scale, and small occlusions. The similarity between two images can be

computed using the following simple distance measurement:

 (Equation 5.3)

A color histogram only records an image’s overall color composition, so images with

very different appearances can have similar color histograms.

Dominant Colors Only a small number of colors are used to represent an image.

Swain and Ballard [38] have shown that using only a few dominant colors for image

comparison did not lower the performance. It could even enhance it by getting rid of

noise often represented by irrelevant colors.

Statistical Color Moments Another way of representing an image is the use of its first

three color moments, namely the mean, standard deviation and skew of each primary

|)()(|),(
1

chchBAD BA

N

c
−=

=

�
�

�
�
� =

=
otherwise

cyxFif
MP

ch
xy 0

),(11)(

 39

color component found in the RGB color space (see Appendix C). The mean of a set

of values is used to estimate the value around which central clustering occurs. The

standard deviation describes the “width” or “variability” around the mean value. The

skew characterizes the degree of asymmetry of a distribution around its mean. Skew

is non-dimensional and characterizes only the shape of the distribution. Higher

moments, involve more manipulations on the input data, are almost always less robust

than lower moments that involve only linear sums or, the lowest moment of all,

counting. Therefore, higher moments such as fourth moment or above are rarely used

to represent the content of an image.

Given I ∈ [R, G, B], the first three moment values are defined by the

following equations:

 (Equation 5.4)

 (Equation 5.5)

==
j

jii G
MP

Mean U ,
1

== −
j

SDeviationS ijii UG
MP

])(1[,

2/1

2..

 40

 (Equation 5.6)

where Gi,j is the value of the i-th color component of the j-th image pixel,

M*P is the total image size.

The distance between two color distributions representing two images (image A and

image B) is given as:

 (Equation 5.7)

Even with only nine moment values per image, studies in [12] and [43] have found

that this method of representing images is more robust than color histogram methods.

5.1.1.2 Texture Features

Texture is observed in the structural patterns of surfaces of objects such as wood,

grain, sand, grass, and cloth. The term texture generally refers to repetition of basic

texture elements called texels. A texel contains several pixels whose placement could

be periodic, quasi-periodic or random. Figure 5.1 lists several texture measures. In

image analysis, texture is broadly classified into two main categories, statistical and

structural. The mosaic model is based on the combination of the statistical and the

structural approaches.

|))()(||)()(||)()((|),(
,,

BSASBVAVBUAUBAD ii
BGRi

iiii −+−+−=
=

== −
j

SSkew ijii UG
MP

])(1[,

3/1

3

 41

ACF
Transforms
Edge-ness
Concurence Matrix
Texture Transforms
Random Field
Models

Primitives:
Gray Levels
Shape
Homogeneity

Placement Rules:
Period
Adjacency
Closest
Distnaces

Edge Density
Extreme Density
RUn Lengths

Mosaic Models

Classification of Texture

Statistical Structural Other

Periodic Random

Figure 5.1 Image texture categorization model

Statistical Approaches Textures that are random in nature, for example, the

realizations of random fields such as wood grain and sand, are well suited for

statistical characterization. Three common statistical models used for measuring

texture of an image are: 1) the autocorrelation function (ACF) to measure coarseness

of texture; 2) image transforms to estimate coarseness, fineness, and orientation of

texture; and 3) histogram features to measure coarseness and the orientation-

independent spread of the texture. Appendix A presents the mathematical description

of each model. The other statistical texture methods include the use of edge density

to measure the coarseness of the random texture in which the edge density is

measured by the average number of edge pixels per unit area.

 42

Structural Approaches Purely structural textures are deterministic texels, which

repeat according to some placement rules. A texel is isolated by identifying a group

of pixels having certain invariant properties that repeat in the given image. The texel

may be defined by its gray level, shape, or homogeneity of some local property such

as size, orientation, or second-order histogram. The placement rules define the spatial

relationships between the texels and these spatial relationships may be expressed in

terms of adjacency, closest distance, and periodicities. The texture is labeled as being

strong in the case of deterministic placement rules. In case of the randomly placed

texels, the associated texture is called weak and the placement rules may be expressed

in terms of measures such as edge density, run lengths of maximally connected texels,

and relative extrema density (the number of pixels per unit area showing gray levels

that are locally maxima or minima).

Mosaic Model The mosaic model, which combines statistical and structural

approaches, is used to represent random geometrical processes. A mosaic model

could define rules for partitioning a plane into different cells, where each cell contains

a geometric figure whose features have prescribed probability distributions.

5.1.1.3 Shape Features

The shape of an object refers to its profile and physical structure. These

characteristics can be represented by the boundary, region, moment, and structural

representations. These representations can be used for matching shapes, recognizing

 43

objects, or for making measurements of shapes. Figure 5.2 lists several useful

features of shape.

Boundaries
Regions
Moments
Structural and
Syntactic

Perimeter
Area
Max-min radii and
eccentricity
Corners
Roundness
Bending energy
Holes
Euler number
Symmetry

Center of mass
Orientation
Bounding rectangle
Best-fit-ellipse
Eccentricity

Shape Representation

Measurement Features

MomentsGeometry

Regenerative Features

Figure 5.2 Shape features

Many shape features can be conveniently represented in terms of moments (Figure

5.2). One of the common shape measurements using moment values is the moment

invariants. Moment invariants are spatial properties of connected region in images

that are invariant to translation, rotation and scale. They are useful because they

define a simple calculated set of region properties that can be used to perform image

similarity queries using the Euclidean distance given as:

−
=

��
�
�=

7

1

22))()((),(
i

iiimom BMAMWBAD (Equation 5.8)

 44

where Mi() , i=1….7, is the first seven moment invariants

(see Appendix B for the Moment Invariant Measurement),

A and B are the two comparing images,

Wi is a scale factor calculated such that all moments of all images are

normalized into [0…1] range.

5.1.2 Video Sequence Abstraction Using Color

Moments
Our primary goal is to develop real-time algorithms to compare an input video

sequence to a large archive of previously viewed video sequences. Since we do not

want to overlook video sequences that are longer, more complete versions of earlier

sequences, we have chosen to compare abstractions for every frame in the video

sequence rather than to develop an algorithm based on comparing key-frames only.

Since so many frames are to compared, our video abstraction must be able to

represent the content of each frame compactly while still preserving the individuality

of the frames as much as possible. We eliminated using either texture-based or

shape-based frame representations as our frame abstraction because they are input

domain dependent and only work well on a limited range of video sources. On the

other hand, a color-based abstraction, such as statistical moments, provides a good

description of the overall color characteristics of a frame and has been shown to work

well for video sources in general. We decided to use a set of nine color moments to

 45

represent the content of each video frame captured. These nine color moments are

the first three color moments of the Red, Blue and Green primary color component

for each video frame, namely the mean, the standard deviation and the skew.

Equations 5.4, 5.5 and 5.6 presented in the previous section show the mathematical

calculation of these values.

We chose to use color moments [11] to represent video frames because they

are compact, efficient to calculate, effective for similarity computation and require

little storage, regardless of the size of the video frame. This video abstraction will be

used as the data input for our video sequence identification algorithm. The start and

end broadcasting time and duration for each video sequence are also stored. This

temporal information about video sequences can be used as indices to track

occurrences for each video sequence processed.

5.1.3 Creation of Video Sequences

In order to identify and track video sequences, we first must define the meaning of a

video sequence. In this paper, a video sequence is defined as a single video shot. A

video shot is an image sequence that represents continuous action. It corresponds to a

single action of the camera. The video stream is segmented into multiple shots using

the content-based video segmentation technique developed in VISION project [15].

When making a video for broadcast, three major steps are involved: 1) shot

creation; 2) editing; and 3) final cut assembly. Editing decides the ordering of the

shots and the choice of transitions between two consecutive shots, creating an edit

 46

decision list. The final process assembles the shots and transition effects into the

final cut. Figure 5.3 illustrates a sample of the video production model.

EDIT EFECTS SET

SHOT SET

EDITING Edit Decision List

ASSEMBLING Shot1 Shot1Transition Transition

Figure 5.3 The video product model

The creation of video shots from a video stream is in fact the reverse process of

assembling and detecting the transitions created during editing. We identify the

boundary between the shots as one frame in the middle of the transition. The

VISION system uses color histograms (Equation 5.11), intensity differences

(Equation 5.10) and average brightness (Equation 5.9) to detect the transitions

between video shots. The following three measurements had been defined in [4] for

video shot detection:

■ Average Brightness (B):

 (Equation 5.9)

 where t is the time coordinate (frame = t) of a video sequence,

 x is the horizontal coordinate of the frame,

=
xy

tyxItB),,()(

 47

 y is the vertical coordinate of the frame,

 I is the pixel value.

■ Intensity Difference (dP):

 (Equation 5.10)

where t is time coordinate (frame = t) of the video sequence,

 dt is the total time difference (number of frames),

 I is the pixel value,

 x & y are the horizontal and vertical coordinates of the frame.

■ Histogram Difference (dC) :

 (Equation 5.11)

 where

 (Equation 5.12)

 I is the pixel value,

 t is the time coordinate (tth frame) of the video sequence,

 x& y are the horizontal and vertical coordinates of the frame,

 c is one of the defined pixel values

−−=
xy

dttyxItyxIdttdP |),,(),,(|),(

−−=
c

dttchtchdttdC |),(),(|),(

�
�

�
�
� =

=
otherwise

ctyxIif
tch

xy 0
),,(1

),(

 48

Transitions may be fast and sharp, called a cut, or relatively long and gradual,

called a smooth edit. If we assume the transition frame does not belong to the shots,

there should be a large difference in pixel intensity and histogram between the last

frame of shot n and the first frame of shot n+1. Therefore, if we look at the

differences between two consecutive frames, then we should detect the cuts and

hence boundaries of the video shots. If we look at the differences between two

frames dt distant from each other, we should be able to detect smoother transitions,

assuming our choice for dt is correct. Usually, when there is a lot of motion in a

picture, the value dP(t,1) (pixel intensity difference) is high. Moreover, smooth edits

are applied on still images, so the dP(t,1) must be very small when we have a smooth

edit. In conclusion, in order to detect video shot boundaries with smooth edits, we

need to look at values of dC(t,dt) and dP(t,dt), where dt >1, but only if the values of

dC(t,1) and dP(t,1) are small enough.

The experimental results of VISION project in [13][15] suggested the use of

three values of dt: 1, 5, 10 to produce satisfactory video shot detection results. Three

threshold values, namely Bthresh, Cthresh, and Pthresh were defined for the video shot

detection process. There is a shot change if the following statement is true:

B(t) < Bthresh

(The brightness is too low, indicating a blank transition frame)

OR

((dC(t,1) > Cthresh) AND (dP(t,1) > Pthresh))

 49

(Both histogram difference and intensity difference are higher than a given

threshold values)

OR

(((dC(t,1) < Cthresh) AND (dP(t,1) < Pthresh)) AND

((dC(t,5) > Cthresh) AND (dP(t,5) > Pthresh)))

(Both histogram difference and intensity difference are below than a given

threshold values, and the both histogram difference and intensity difference

measured a distance of 5 frame away (dt=5) are higher than a given

thresholds)

OR

(((dC(t,1) < Cthresh) AND (dP(t,1) < Pthresh)) AND

((dC(t,5) < Cthresh) AND (dP(t,5) < Pthresh)) AND

((dC(t,10) < Cthresh) AND (dP(t,10) > Pthresh)))

(Both histogram difference and intensity difference measured for dt=0 and

dt=5 are lower than a given threshold, but are higher than the same given

threshold for measurement at dt=10)

 The values chosen for each threshold were experimentally selected [4].

 50

Figure 5.4 Video segmentation and abstraction extraction

 Figure 5.4 illustrates the video stream segmentation and processing

performed by the Video Processing System (VPS). The average brightness, pixel

intensity and color histogram of each frame from video stream is extracted and is

used to determine shot boundaries during the video sequence creation process. Each

created video sequence is uniquely named using the date and time of its creation.

Other information, such as size of each video sequence, representative key frames,

and the first three color moments are also extracted during the video processing and

segmentation process.

VS #1
ID#1

VS $5
ID#3

VS #3
ID#3

VS #2
ID#2

VS #4
ID#2

VS #6
ID#2

Segmentation

Video Stream

Video Sequences

Tstart Tend

TVS#1 TVS#4
TVS#5TVS#2 TVS#3 TVS#6

1. Video Indices:
Video Sequence ID (ID #)
Total # Frames,
Key Frames
2. Video Features:
Color Moments,
.....

Video Sequence Features

Feature Abstraction

2,....,6

 51

This dissertation will not go into depth into the design and implementation of

the Video Processing System (VPS). For details of the design and implementation

technique, please refer to Sylvain Bouix’s Master’s Thesis [4] and Gauch [13].

5.2 Video Sequence Hashing Process

Once we have a newly captured video sequence, we send its abstraction to the Video

Sequence Identification and Tracking Components (VSI and VSS) to determine if this

is a replay of a previously seen sequence or the first occurrence of a new sequence.

The first step of the video sequence identification technique is the video sequence

hashing process, which is designed to identify video sequences in the archive that are

similar to the input video sequence. Figure 5.5 illustrates the conceptual flow of the

video hashing process. Referring to the figure, the video sequence hashing technique

is divided into two main components: 1) video frame hashing to detect potential

similar video sequences; and 2) video sequence filtering to identify similar video

sequences. The following sections describe the design and implementation of each

component.

 52

Potential similar
 video sequences

No Potential Similar Video
Sequence

New Sequence Detected

 Similar Video Sequences
(to Video Sequence

Comparison Process)

Input Video Sequences
(frame Video Processing and

Stream Segmentation Process)

Video Frame
Hashing

Similar Video
Sequence
Filtering

 V
id

eo
 S

eq
ue

nc
e

H
as

hi
ng

 P
ro

ce
ss

No Similar Video Sequence

Figure 5.5 Block diagram of Video Hashing Process

5.2.1 Video Frame Hashing

During video frame hashing, the nine color moments for each frame extracted in VPS

are mapped from floating point values to integers and then concatenated to create a

fixed length color moment string. These color moment string is used as a hash key

for the frame. The frame’s color moment string, video sequence identifier, and video

sequence length are stored in the appropriate hash table bucket. This process groups

all video frames with similar color moment strings into the same bucket of the Video

 53

Sequence Abstraction Module. Figure 5.6 illustrates the flow diagram of the video

frame hashing. Referring to the flow diagram of the figure, the first step of the

process for each new input video sequence is to generate a hash key for each video

frame. Then, we perform video frame hashing for each hash key to collect potential

similar video sequences, defined as those having at least a single frame with the same

color moment string as a frame in the input video sequence.

 54

Color Moment Grouping
& Hah Index Creation

Collect video sequences with
similar video frames

Last Video
Frame?

Next Video
Frame

Color Moment
String Hashing

Input Video Sequences
(from video processing and stream

segmentation process)

Color Moment String (video Frame)

Yes

Vi
de

o
Fr

am
e

H
as

hi
ng

Potential Similar
Video Sequences

(to Video Sequence Filtering)

Potential Similar
Sequences found?

No

Yes

(Input Video Sequence
 is detected as new)

No

(T
hi

s
is

 m
or

e
vi

de
o

fra
m

es
 le

ft
fo

r t
hi

s
in

pu
t v

id
eo

 s
eq

ue
nc

e)

Figure 5.6 The flow diagram of Video Frame Hashing

 55

5.2.1.1 Video Hash Table Design

Figure 5.7 illustrates the video hash table data structure designed for the video

hashing process. Each hash table bucket contains a frame’s color moment string,

video sequence identifier, a clip counter that captures the total number of video

sequences containing this video frame, and a pointer that points to a sorted linked list.

The linked list captures the meta-information for each video sequence, namely: 1) the

video sequence identifier (ClipID); 2) the temporal order (frame position) of the index

video frame in this video sequence (FramePos); 3) the size of the video sequence

(Size); 4) the date when the video sequence was created (Time); and 5) a pointer that

points to the next linked list element. The linked list for each hash bucket is sorted by

the video sequence identifier.

For our experiments, we created a hash table large enough to store 24 hours of

video frames. A sliding window mechanism was used to control the maximum

number of video sequences stored in the hash table at one time. Assuming a 15

frame/second video stream, 24 hours of video will contain 24 hours * 3600

seconds/hour * 15 frames/second = 1.296 million video frames. The maximum

numbers of buckets required to handle the worst case (when all 24 hours worth of

video frames are unique) will be 1,296,000. In our work, we implemented a memory-

based hash table with a bucket size equals to 3,600,000 to handle a total of 24 hours

of video window hashing size. This will require nearly 110MB of memory to

perform the memory-based hashing. The following shows how the memory size

requirement for the memory-based hashing is calculated:

 56

(refer to Figure 5.7 for hash table structure description)

Memory size assigned for the Color Moment String field = 54 bytes

Memory size assigned for the Total Number of Clips field = 4 bytes

Total memory size assigned for other fields in each hash bucket field

= 8 bytes

Total memory size required for one hash bucket = 54+4+8 = 66 bytes

Total memory size assigned for one linked list element = 5*4 = 20 bytes

Therefore,

Total memory required for storing one video frame in a hash bucket

= Total memory size of one hash bucket + Total memory size required for one

 linked list = 66 + 20 = 88 bytes

Total memory size needed in order to store a 24 hours worth of unique video

 frames = 88 bytes * 3.6 million = 317 MB

For handling video hashing with a very large video window size, a disk-based

hash file could be used.

 57

Hash Index

Bucket
Number

Color
Moment

String
TimeClipID Frame

Pos Size

Video Hash Table

Total
Number
of Clips

Linked ListB
uc

ke
t S

iz
e

=
3.

6
M

Figure 5.7 Hash table data structure for Video Frame Hashing Process

Assume that the video hashing table contains n hours of previously stored

video sequences. A video sequence is captured and we want to whether or not this

video sequence is a new or repeat video sequence. The following pseudocode

describes steps performed during the video frame hashing process:

/*** Video Frame Hashing Process Pseudocode ***/

Component Input : A linked list containing color moment strings for each video

frame of the input video sequence

 58

/* Component 1 - Video Frame Hashing */

for (each color moment string of the input video sequence) {

 Do hash index generation;

 Do video table hashing to find similar video frames;

If there is a hit { // sequences with at least one similar video frame to the input

 video sequence

 Traverse the matching linked list { // record result

1. record meta-information for each video sequence stored in

each element of the linked list into an output linked list;

2. increment similar frame counter of a video sequence for

each color moment string matching;

 }

}

 next color moment string

}

Component Final Output: A linked list containing video sequences having at least

one video frame similar in the same bucket as a frame in the input video sequence

5.2.1.2 Hash Index Generation

An important element of the video frame hashing process is the creation of hash index

for each video frame of an input video sequence. The nine color moments calculated

in the video processing system are concatenated to form the color moment string as

shown below:

MNumber(n) = { M[Red(n)], M[Green(n)], M[Blue(n)]

 59

 S[Red(n)], S[Green(n)], S[Blue(n)]

 Skew[Red(n)], Skew[Green(n)], Skew[Blue(n)] }
where

Mnumber(n) = The color moment string of a video frame n,

 M[] = Mean value (0…256), (refer to Equation 5.4)

 S[] = Standard Deviation (0…256), (refer to Equation 5.5)

 Skew[] = Skew value (-256…256) (refer to Equation 5.6)

The color moment string is used as the hash index to determine the bucket in which

the video frame is stored. A hashing experiment using a concatenation of all digits of

the original float numbers of the nine moment values as the hashing key proved to be

ineffective due to noise introduced by both transmission and digitization of the video

source. A test of multiple passes of moment calculations for the same video frame

showed that the moment values calculated for a single video frame can vary

somewhat, making identical values unlikely for repeated video broadcasts. The test

results also showed that the error in moment values calculated from a single video

frame could range from –5.0 to +5.0. Therefore, we decided to ignore the least

significant digit for each color moment. This results in a 10 to 1 mapping of raw

moment values (see Table 6.1 for color moment mapping), e.g., the skew value will

be mapped from (-256…256) to (-25…25). Figure 5.8 illustrates a sample mapping of

the original nine color moments of a video frame into a color moment string.

 60

2 3 7 921-2 23-5-3

24.56 30.34 70.12 99.02210.20-20.02 230.02-50.21-32.23

Skew(Red) Skew(Green) Skew(Blue)M(Blue) S(Red)M(Red) S(Green)M(Green) S(Blue)

Mapping Process

237-2-3-521239

Integer Number
Concatenation

Color Moment String
(Hash Index)

Resulting Integer Numbers

Original nine Color Moment
Numbers

Figure 5.8 An example of color moment mapping process

The choice of the mapping ratio is important for the accuracy and speed of the

video identification process. If the mapping ratio is too small, then highly similar

video frames could fall into different buckets and hence actual repeated frames will

be missed. For example, due to both transmission and quantization error, the nine

color moment values for two identical video frames are calculated and are equal to

19.40 and 20.40 respectively. The absolute moment difference (1.0) between these

two video frames indicates that they are indeed identical. Nevertheless, with a 10 to 1

mapping ratio, we will get different values (19 versus 20) for the 9 integer

 61

components of their color moment strings and they will be hashed into different

buckets. Therefore, identical video frames having moment values close the any one

of the boundaries of the integer mapping numbers will tend to be mis-mapped into

different video bucket even though their difference moment values are small enough

to be considered as identical to each other.

A mapping ratio that is too large will result in dissimilar video frames ending

up in the same bucket, requiring more work to be done (increase in total video

comparison time) during video sequence comparison. However, a too large mapping

ratio will not adversely affect the final accuracy of the sequence identification

algorithm.

In order to select a mapping ratio that strikes a balance between speed and

accuracy, we conducted an experiment to measure the mis-mapping error rate for

‘identical’ frames for various mapping ratios. We randomly selected a total of 25,916

video frames from six video sequences in the video archive. For the purpose of this

experiment, two video frames were considered identical if the absolute moment

difference of these two video frames was lower than a moment difference threshold

of 10.0. A mis-mapping was recorded if the two video frames were identical but had

different color moment strings. With 25,916 test video frames, over 335 million video

frame pairs were compared. The mis-mapping error percentages for mapping ratios

were recorded and the results are shown in Table 5.1. As expected, a smaller

mapping ratio resulted in more similar video frames being mapped into different

buckets and hence a higher mis-mapping error percentage. With a mapping ratio of

 62

10 to 1, we recorded an error percentage of close to 1%, which was acceptable for our

video frame hashing technique.

Table 5.1 Error percentage of color moment string mis-mapping

The total possible number of color moment strings can be calculated as

follows:

Number of color moment strings = RM = 519 = 2.33 x 1015

 where,

R = Total possible integer value of each moment after mapping (-25…25)

M = Total number of color moments

The generation of the hash bucket index value using the hashing key is described by

the following pseudo code:

/* Hash Bucket Index Generation */

Index =0;

Sum =0;

TableSize = Size of Hash Table = 3.6M;

ColorString[M] = Color Moment String;

For (x=0; x < strlen(ColorString); x++)

 63

 Sum = (Sum*19) + ColorString[x]

Index = Sum% TableSize

Since the number of possible hash keys is many orders of magnitude larger than the

number of hash buckets (3,600,000), we ran a simulation to evaluate the distribution

of hash keys produced by our hash function. The simulation showed that the hash

keys produced from input video frames produced an acceptable collision rate of 2 to

1. The simulation results validated our choice of using color moment string as the

input to the hash function.

5.2.1.3 Video Frame Hashing Cost Estimation

For each video frame added to a bucket, a new node is added to the bucket’s linked

list to store the video sequence identifier, the frame occurrence position of the video

frame, the numbers of video frames in the video sequence, and the date the video

sequence was captured.

The total cost to hash one video sequence can be estimated as follow:

CH(m) = ∑ [H(n) + L(n)] for n = 1….m (Equation 5.13)

where
 m = size (total video frame count) of the video sequence

 H(n) = a fixed cost of one basic hashing pass

 L(n) = linked list traversal cost

Referring to equation 4, H(n) is a fixed cost for hashing key generation and table

lookup, while L(n) depends on the size of the linked list, or the total number of video

 64

sequences containing a same similar video frame. With a video window size of 1.296

million frames (i.e., 15 frames per second for 24 hours), the worst case for CH(m) is

when all the 1.296 million frames are similar. In this case, the video hash table will

contain only one bucket with a linked list of 1.296 million elements. On the other
hand, the best case for CH(m) will occur when the 1.296 million frames are unique.

In other words, the more unique video frames, the less total video hashing cost is

affected by L(n). The collision rate of 2 to 1 predicted by our simulation experiment

predicts that the linked lists will, on average, remain short. As we will see later in the

result discussion section, this is validated in practice and the linked list traversed does

not affect the overall hashing performance. We also verify that the total hashing cost

is independent of the total video window size, and hence is a fixed cost linearly

proportional to the size of the input video sequence (m).

5.2.2 Video Sequence Filtering Process

If, for all frames in the sequence, there are no matching video frames in the hash

table, we can stop the video identification process and conclude that the new input

video sequence is a new video sequence. This is based on the assumption that if both

the input video sequence and video archive have no similar frames in common, then

we can say that there should be no repetitive connection between them and hence they

must be different. If there are some video frame matches between the input video and

 65

Figure 5.9 Flow diagram of Video Sequence Filtering

the archive, we must develop a heuristic to determine how much overlap is required

to identify a similar sequence. We consider two video sequences to be candidates for

similarity (or similar video sequences) if the following two conditions are met:

1) the size difference of the matching video sequences is less than 10%, and

Size Difference <10% No

Yes

No

Yes

Similar Video Sequences
(to Video Sequence

Comparison Process)

V
id

eo
 S

eq
ue

nc
e

Fi
lte

ri
ng

Potential Similar
Video Sequnences

(from Video Frame Hashing)

similar video frame
matching ratio (Overlap

Threshold) > 30% ?

Unique Video Sequence Detected

 66

2) the total number of matching video frames is at least 30% of the total

number frames of smaller video sequence.

If no video sequences survive this filtering process, then the video sequence input is

identified as a new video sequence (see Figure 5.9). Video sequences pass this

filtering process are considered “similar”, but they are not necessarily identical to the

matching input video sequence. The video sequence comparison process then will be

used to determine if these qualified similar video sequences are indeed repeats of the

matching input video sequence.

In summary, the main purpose of the overall video hashing process is to

decrease the number of video sequence comparisons required by efficiently

identifying video sequences in the video archive that one similar to the input

sequences. Using this video hashing technique, we were able to reduce the video

identification computation time required during normalized video sequence

comparison tremendously (see Section 5.3.3). An example of video hashing process

is illustrated in Appendix D. The pseudocode for the final overall video hashing

process, including the video sequence filtering, is shown below:

/*** Final Video Hashing Process Pseudocode ***/

Process Input : A linked list containing color moment string for each video frame of

the input video sequence

 67

/* Component 1 - Similar Video Frame Hashing */

for (each color moment string of the input video sequence)

{

 Do hash bucket index number generation;

 Do hash table hashing;

 If (Hits)

Collect meta-information of video sequences & accumulate

occurrences of color moment string matching;

 Next color moment string – video frame;

}

/* Component 2 - Video Sequence Filtering */

/* potential similar sequence : video sequence having at least one similar video frame

to the input video sequence */

for (each potential similar video sequences captured)

{

Remove the video sequence having size difference > 10% when compared to

the input video sequence;

 Apply overlap threshold to screen out “dissimilar” video sequences;

}

 Process Final Output: A linked list containing similar video sequences passing both

the size difference and hashing threshold screening checks

 68

5.3 Video Sequence Comparison

The final step of our video sequence identification algorithm performs a more

accurate repeated video sequence identification using a frame-by-frame comparison

technique illustrated in Figure 5.10. This is to eliminate false positives created during

the video hashing process caused by color moment approximation and ignorance of

temporal ordering of the matching video sequences. The absolute moment

differences between video frames from the input video sequence and the similar video

sequences are calculated. The result is compared with a moment difference threshold

to determine whether or not the video sequences are similar enough for the input

video sequence to be considered a repeat sequence. Appendix D contains a detailed

example of the video sequence comparison process.

 69

Calculate Moment Averages
of Each Similar Video (S)

Sequences & Video Sequence
Input (Input)

Moment Difference
Normalization

ADiff =+ MA(Input) - MA(S)

More Video Sequence
Alignment?

Best Absolute Diff
< Difference Threshold

Calculate
Absolute Moment
Difference (ADiff)

Unique Video
Sequence
Detected

Store and
Update Video

Index and
Hashing
Tables

Detected Similar Video Sequences
from Video Hashing Process

N
ex

t S
im

ila
r V

id
eo

 S
eq

ue
nc

e

Figure 5. The Flow Diagram of Video Sequence Comparison Process

No

Summation of
Normalized Moment

Difference

Last Video
Frame

N
ex

t V
id

eo
 F

ra
m

e

For Each
Video Frame

Start Video
Comparison

Video
Sequence
Alignment

Yes

Repeated
Video

Sequence

Yes

No

M
or

e
V

id
eo

 A
lig

nm
en

t

Record Best
Moment

Difference

Yes

No

More Similar
Sequence

Yes

No

Figure 5.10 The flow diagram of the Video Sequence Comparison Process

 70

The following pseudocode describes steps performed during the video sequence

comparison process:

/*** Complete Video Sequence Comparison Process ***/

Process Input :

1) The Input Video Sequence

2) A list containing similar video sequences, Similar[M]

Output[];

Best Detected Repeated Sequence=NULL;

Best Moment Difference =1000; // captures the best moment difference

M = Total number of captured similar video sequences;

/* compare each similar sequence to the input video sequence*/

for (x=0;x< M, x++))

 {

Video Sequence Comparison Function(Input, Similar[x], Difference, Best

Frame Pos);

If (Difference < Best Moment Difference)

 {

 Best Moment Difference = Difference;

Best Sequence = Similar[x];

}

/* Insert Similar Sequence into Output[], sorted by Difference */

Insert(*Output, Similar[x], Difference, Best Frame Pos);

}

/* Moment Difference Threshold screening */

if (Best Moment Difference < Moment Difference Threshold)

 Detected Repeated = Best Sequence;

 71

Process Output:

1) Detected Repeated Sequence;

2) List of similar sequences with respective moment differences

5.3.1 The Absolute Moment Difference Calculation

During video sequence comparison, the absolute moment difference between video

frames from both the input video sequence and similar video sequences are

calculated. The absolute moment difference of two video sequences is calculated as

follows:

Moment Average of a video sequence for each moment number (c= 1…9):

 where

 m(c,n) = cth color moment in the nth frame,

 N=size of video sequence

 c = 1….9 (color moment) (Equation 5.14)

Normalized Absolute Moment Difference for each moment number:

 where

 v1 & v2 are video sequences being compared

=
=

N

n
ncm

N
cMomA

1
),(1)(

|))]()([),(),((|1)2,1(2121
1

cMomAcMomAncmncm
N

vvDiff vvvv

N

n
c −−−=

=

 72

 mv1(c,n) = c moment value of the nth frame n in video sequence v1

 N = sequence size of the smaller video sequence of v1 & v2

 n = video frame temporal order

 c = color moment index (1..9)

 (Equation 5.15)

Sum Absolute Moment Difference:

 where

M = total moment numbers (9)

v1 & v2 are the two video sequences being compared

c = color moment index (1…9)

Difc(v1,v2) = normalized absolute moment difference of sequence v1 & v2 for

color moment c

 (Equation 5.16)

The absolute moment difference value calculated between similar video

sequences is checked against a moment difference threshold (see Chapter 6 for

experimental results) to determine if it is close enough to the input to be considered

repeated. The following pseudocode describes the flow of the absolute moment

difference calculation function designed and implemented as part of the overall video

comparison process:

=

=
M

c
c vvDif

M
vvMomDiff

1

)2,1(1)2,1(

 73

/***** Video Sequence Comparison Function - Part of VSI Module****/

Function Input:

1) Original color moments of the input video sequence

2) Original color moments of a similar video sequence –output of the video

 hashing process

/* calculate moment average for each sequence – See Equation 5.13 */

Calculate average value of each 9 moments in the input video sequence ;

Calculate average value of each 9 moments in the similar video sequence;

/* calculate sum absolute moment difference for each possible sequence

alignment */

For (each sequence alignment shifting)

{

 For (each comparing frame)

{

 Calculate normalized absolute moment difference

- See Equation 5.14

 }

Accumulate Sum Absolute Moment Difference - See Equation 5.15

If (calculated new sum absolute difference < previous recorded sum absolute

difference)

{

Best Difference = new sum absolute difference;

Record the new sequence alignment position;

}

}

 74

Function Output:

 1) The best difference value

 2) The sequence alignment position creating the best difference value

5.3.2 Aligning Video Sequence for Best Comparison Result

Video Segmentation error due to noise might result in two repeated video sequences

having different video sequence size. So, we use a simple video sequence alignment

method (Figure 5.11) during the video sequence comparison to align the two video

sequences being compared into the proper position to achieve the best sum absolute

difference result. Sum absolute moment different is calculated for each of these

alignments, and the best value is recorded. We allow a total shifting of up to 10% of

video sequence size. Referring to Figure 5.11, the alignment process begins by

aligning the start of the larger sequence to the nth frame of the smaller sequence, in

which n frame is one tenth of the size of the smaller sequence. We slide the smaller

sequence, one frame at a time, to the right until it reaches a point where the last frame

of the larger sequence is aligned to the mth frame of the smaller sequence, in which

case the mth frame is 90% into the size of the smaller sequence (see Figure 5.11).

The sum of absolute moment difference for each alignment is calculated and the best

value is recorded.

 75

Sequence A Size (A) = M

Size (B) =N

Sequence A

Sequence A

Sequence B10%
of N

Sequence B

Sequence B 10%
of N

Shifting Direction

N >= M

Alignment Starts

 Alignment Ends

nth frame

mth frame

Figure 5.11 Video sequence alignment flow chart

 76

The following pseudocode describes the alignment process implemented as art

of the video comparison function:

/*** Video Sequence Alignment Process ***/

Process Input: Comparing Sequence A[M] and comparing sequence B[N] & M<N

Size Dif = (Size A) – (Size B);

/* Calculate the 10% size of the smaller sequence */

AlignShift = (Size A)/ 10;

/* find the proper frame position for both A & B for sequence comparison

 shift one frame at a time after each video comparison */

For (shiftframe= -AlignShift; shiftframe < (Size Dif +AlignShift); shiftframe++)

{

/* calculating correct start and end frame position of each sequence

alignment */

 If (shiftframe >0 && shiftframe< Size Dif)

{

 ShiftframeA =0;

 shiftsize =0;

 shiftframeB=0;

 }

 if (shiftframe <0)

{

 shiftframeB =0;

 shiftsize = shiftframe;

 shiftframeA = -shiftframe;

 77

}

 if (shiftframe > Size Dif)

{

 shiftsize = Size Dif – shiftframe;

 shiftframeA = 0;

 shiftframeB = shiftframe;

}

 /* now have the proper frame position for both sequences A & B,

 do sequence comparison */

for (frame=0; frame < Size(A) + shiftsize; frame++)

 {

 /* calculate Absolute Moment Difference */

Temp = A[frame+shiftframeA] – B[shiftframeB+frame];

Do Moment Difference Normalization;

Accumalte Moment Difference;

}

/* Record Sum Absolute Difference for this alignment */

Sum Difference;

Record best frame position;

Go to next alignment;

}

Process Output: Best Sum Absolute Moment Difference of this two sequence

comparison

 78

5.3.3 Video Sequence Comparison Cost Estimation

The total video comparison cost for one video sequence input, x, can be estimated as

follow:

where

 M = Total number of similar video sequences detected
Sn = size of nth video sequence (Equation 5.16)

 (Equation 5.17)

O[OneCompare(n,x)] represents the total one pass cost of summation of the absolute

moment difference between two video sequences and hence is linearly proportional to

the size of both video sequences. Equation 5.17 estimates the total cost of the video

comparison by a allowing video sequence alignment adjustment of 10% of the size of

the smaller video sequence. Both equations show that the comparison process is

heavily dependent on the number of similar video sequences and sequence size.

Therefore, it is our goal to reduce this total video comparison cost by reducing the

total numbers of similar video sequences (M) detected in the video hashing process.

)],([**1.0),,(xnOneCompareOSxSnAllCompare nn =

=
=

M

n
n xSnAllComparexTotalCost

1
,),()(

 79

5.4 Video Sequence Archiving and Tracking

The process of video sequence archiving and tracking works hand-in-hand with the

video sequence identification process. While the video sequence identification

process is the core function for the VSI module, video sequence archiving and

tracking is the responsibility of the VSA module. For each input video sequence, the

sequence identification or matching is performed in the VSI module. Results from

the video identification are used by the VSA module to record the sequence’s meta-

information, extracted by the VPS module, and its video identification outcome. The

VSA module will also decide whether or not to save the encoded video clip into the

VSS module, based on whether or not it is identified as a new sequence.

5.4.1 Video Sequence Index Table
Figure 5.12 illustrates the video index table data structure used while tracking and

indexing captured video sequences. The Video Sequence Index Table consists of a

video index header and a video index array. Each array element contains a data

structure called Input Sequence Information that is used to store the meta-information

of an input video sequence and two pointers pointing to two data elements (Repeated

Sequence Reference and Repeat Video Linked List).

 80

ClipID

Size

Repeated Sequence Reference

WindowTopIndex
WindowBottomIndex
MaxWindowSize
NumVideoClip
TableSize
CurrentWindowSize
TotalUniqueClips
TotalUniqueFrame

NewClipID
Size
Time
NumReplicatedClip
MappedFileName
MappedFileSize
VideoNodePtr
TVideoNodePtr

Array
Number

Video Index Array

Video Index Table Header

Input Sequence Information

TimeFrame
PosClipID

Repeat Video Linked List

Figure 5.12 Video sequence index table

 81

1)Video Index Header

Table 5.2 contains the definition of each parameter found in the video index header.

The video index header keeps track of the overall process information for the video

index table such as numbers of sequences captured and total unique sequences

detected.

Table 5.2 Video index header parameter definition

2) Input Sequence Information Data Structure

The Input Sequence Information data structure found in each array element is used to

store the meta-information of each input video sequence. In the other words, we will

need to have one entry of the Input Sequence Information data structure for every

Variables Definition

WindowTopIndex Video Array index number of the ‘oldest’

video sequence captured

WindowBottomIndex Table index number of the next available

video index array element

MaxWindowSize The allowable maximum size of the video

archive (Sliding Video Window Size)

NumVideoClip Total number of video sequences stored

TableSize Size of the video index array

CurrentWindowSize Total size of the video archive

TotalUniqueClips Total number of unique sequence captured

TotalUniqueFrames Total number frames of the unique

sequences captured

 82

input video sequence. Table 5.3 contains the definition of each parameter found in

the Input Sequence Information data structure. For each Input Sequence Information

data structure of an input video sequence, the Repeated Sequence Reference data

element (see Figure 5.12) is used to record information of an “old” sequence if the

input video sequence stored in this Input Sequence Information data structure is

detected as a repeat of the “old” sequence. The Repeat Video Linked List is a sorted

linked list that is used to record information for repeat occurrences for the input video

sequence

Variable Definition

Array Number The video array index number

NewClipID The video sequence identifier

Size The size of video sequence

Time The year video sequence is captured

NumReplicatedClip Repeated sequence indicator.

1 means repeated sequence, 0 otherwise

MappedfileName Filename of Real video sequence file

MappedFileSize Size of Real video sequence file

VideoNodePtr Pointer to Repeated Sequence Reference

data element

TvideoNodePtr Pointer to a linked list containing

information of related repeated video

sequences

Table 5.3 Video index array parameter definition

 83

For every pass of input video sequence identification, the index information of

the input video sequence is stored and indexed based on whether it is identified as a

repeat video sequence or as the first occurrence of a new video sequence. If the input

video sequence is considered a new sequence, then the Repeated Sequence Reference

data element will be set to NULL. If the input video sequence is detected as a repeat,

then the detected ‘older’ matching video sequence will be identified as the input

sequence’s Repeated Sequence Reference and its information will be stored in the

Repeated Video Sequence Reference data element. The information kept in the

Repeated Video Sequence Linked List is needed in order to select a new Repeated

Sequence Reference whenever an expired video sequence is removed during the

sliding window process. The parameters in the video index header are updated based

on the outcome of the video identification process.

Figure 5.13 illustrates a flow diagram of the video indexing process.

Referring to the figure, the main function of the indexing process is to store and keep

track of meta-information and video sequence identification results of input video

sequences. Another main function of the indexing process is to control and enable

the video sliding window mechanism by keeping track of the total video sequences

processed and their captured time stamps. Since the video index array was

implemented as a fixed-size array structure, we use an array wrap-around indexing

mechanism.

 84

Figure 5.13 The flow diagram of the video indexing process

Video Identification Process
(Hashing & Comparison)

Unique
Sequence?

Increment Total Unique
Frame & video

Sequence captured

ClipReplicated
Flag =0

ClipReplicated
Flag=1

Yes

No

> MaxWindowSize
Yes

Capture New
Video Index

Ino.

Create Unique Clip
linked list Node &
Capture Index Info

Create repeated clip
node and append into

repeated link list

Update Total Video Sequence
and Frames Captured

Increment
WindowBottomIndex

Remove Index Info in Video
Index Table for clip stored in

WindowTopIndex

Remove all hashing info in
Video Hashing Table of clip
stored in WindowTopIndex

Insert hashing info of the new
clip into the Video Hashing

Table

Update Video Index
HeaderIncrement
WindowTopIndex

Ends

 85

5.4.2 Inserting Index Information of a Input Video Sequence

Whenever the Video Sequence Identification Module (VSI) completes the processing

for an input video sequence, the results and the meta-information for that video

sequence is saved in the video index table. Color moment strings of the input video

sequence are also inserted into the video hash table.

5.4.2.1 Video Index Table Insertion

The index information for the input video sequence is stored in the

WindowBottomIndex (next available array element) (see Table 5.2 for definition).

We store the meta-data in the Input Sequence information data element of the

assigned array element. If the input video sequence is considered to be new, the

Repeated Sequence Reference data element and the Repeat Video Linked List are set

to NULL. If the input video sequence is considered to be a repeat, we insert its index

information into its respective Repeated Sequence Reference data element. The

Repeat Linked List of the selected Repeated Sequence Reference sequence is also

updated. The Repeat Linked List of a video sequence in an array element keeps track

of indices for the ‘newer’ video sequences that are considered to be repeats of the

sequence recorded in this array element. These newer video sequences consider the

video sequence recorded in this array element as their Repeat Sequence Reference.

Updates of related parameters in the video index table complete the input video

sequence insertion. An example of video index table insertion is illustrated in

Appendix D.

 86

The following pseudo code describes the overall video sequence insertion

process:

/*** Video Index Table Insertion Process***/

Process Input:

1) Input Video Sequence meta-information

2) Input Video Sequence Identification Results

ArrayIndex = WindowBottomIndex;

Copy meta-information and matching results into array elements;

/* Unique Sequence Detected */

If (Input Video Sequence is New – Unique)

{

 Set NumReplicatedClip =0;

 Set Repeated Sequence Reference element to Null; // a new unique sequence

 Set Repeat Video Linked List to Null; // no related sequences exists yet

 Move sequence encoded clip into the Video Sequence Storage (VSS);

 TotalUniqueClip++;

 TotalUniqueFrames += Size of the Input Video Sequence;

}

/* Repeated Sequence Detected */

If (Input Video Sequence is Repeated)

{

 Set NumReplicatedClip =1;

Insert the detected matching video sequence into the Repeated Sequence

Reference data element; // matching is found

 Search array index of the detected matching sequence;

 87

 Insert the input video sequence into its Repeat Video Linked List (sorted by

sequence identifiers)

 Remove encoded sequence file from the input common folder

}

NumVideoClip++;

CurentWindowSize += Size of the Input Video Sequence;

WindowBottomIndex++;

Record results into respective log files;

Process Output:

 1) Video Index Table Update

3) Log files recorded

5.4.2.2 Video Hash Table Insertion

Video hash table insertion involves the insertion of color moment strings of the input

video sequence into the video hash table. For each color moment string of the input

video sequence, calculate the hash bucket value containing the matching hashing key

(the color moment string) and insert the sequence index information into the linked

list pointed by the hash bucket. If there is no matching color moment string, find the

next available hash bucket and insert the color moment string into the hash table and

its sequence index information into its respective linked list. Appendix D illustrates

an example of the hash table insertion process.

 88

5.4.3 Deleting Index Information of An Expired Video

Sequence
We implemented a sliding window mechanism (Figure 5.14) to allow the total video

archive to grow until it contains 24 hours of sequences from video stream, after which

the oldest sequences are dropped as the newer sequences are added. The sliding

window mechanism was implemented on a wrap-around fixed-size array. Whenever

an expired video sequence is removed from the video archive, two things must be

done: 1) delete array element of the expired video sequence and update the sequence

index information of the repeated sequences related to the expired video sequence;

and 2) delete color moment strings of the expired video sequence from the video hash

table.

A rra y[T]

In d ex w ra p a ro u n d to th e
to p o f th e in d ex ta b le

(T o ta l A rch ive = C u rren tW in d o w S ize) < =
(M a xW o n d o w S ize = 2 4 h o u rs)

V id eo In d ex T a b le

M = m a x im u m in d ex ta b le s ize

slid in g d irec tio n

E xp ired (o ld est)S eq u en ce

N ew A d d ed
S eq u en ce

A rra y[B]

A rra y[T -2]

A rra y[M]

A rra y[1]

A rra y[2]

W in d o w T o p In d e x = T -1

W in d o w B o tto m In d e x = B -1

Sl
id

in
g

W
in

do
w

Figure 5.14 Video hash table sliding window mechanism

 89

 5.4.3.1 Deleting An Expired Video Sequence

Whenever an expired video sequence is removed from the video index table, the

index information of other video sequences in the video archive relating this expired

video sequence should be updated. There are two types of video sequences update

scenarios:

a) The expired sequence was a unique sequence with no repeated video sequences

Since the expired video sequence is the only instance of this sequence in the video

archive and there are no ‘newer’ video sequences that are repeats related of it, the

system merely needs to erase the data stored in the array element indexed by

WindowTopIndex (see Table 5.2 for definition) and increment WindowTopIndex to

complete the sliding window process. The total number of unique sequences is

decremented by 1.

b) The expired sequence was new and has at least one related repeat video sequence

If the removed expired video sequence was the first occurrence of video sequence

that has at least one related repeat video sequence, (Repeat Video Linked List is not

NULL), then the system needs to appoint a new Repeated Sequence Reference

sequence for all the repeat sequences found in the Repeat Video Linked List. We use

the first sequence from the time ordered Repeat Video Linked List (the oldest

sequence among the sequences recorded in the Repeat Video Linked List) as the new

Repeated Sequence Reference sequence for all the others. Hence, we reset both the

 90

Repeated Sequence Reference data element and the Repeat Video Linked List of the

newly selected Repeated Sequence Reference to NULL. For each remaining

sequence in the Repeat Video Linked List of the expired sequence, we change their

Repeated Sequence Reference to the newly assigned reference sequence. At the same

time, we append the information of these remaining sequences into the Repeat Video

Linked List of the new Repeated Sequence Reference sequence. The total number of

unique sequences stored in the final video archive does not change. Finally, we

remove the expired sequence from the array element and increment

WindowTopIndex to complete the sliding window process. Please refer to Appendix

D for an illustration of the expired sequence removal process.

The following pseudo code describe the deletion process of a video sequence

in the video index table:

/*** Video Sequence Deletion from the Video Index Table ***/

Process Input: 1) The Expired Video Sequence

Expired Sequence Array Element = WindowTopIndex;

/* Video Archive Overflow Checking */

If (CurrentWindowSize > WindowSize) // < 24 hours

{

 /* The expired sequence is new and has related repeat sequences*/

 if (Expired ->Repeated Sequence Reference == NULL) //Expired Sequence is new

 if (Expired->Repeat Video Linked List != NULL) // related repeat sequences

 {

 91

 /*Select first element of Repeated Linked List as the

 new Repeated Sequence Reference */

 New Reference = Expired->Repeat Video Linked List[0];

 New Reference->NumReplicatedClip =0;

 // redirect encoded file index informaton

 New Referecne->MappedFileName= Expired->MappedFileName;

 New Reference->MappedFileSize = Expired->MappedFileSize;

// redirect matching results

 New Reference->Repeated Sequence Reference = NULL;

 New Reference->Repeat Video Linked List = NULL;

 /*reset related sequences’ repeat(matching) reference*/

For (each remaining sequences in Expired Sequence->Repeat Video

Linked List) {

 Remaining->Repeated Sequence Reference = New Reference;

Append(New Reference->Repeat Video Linked List,

Remaining);

 }

 }

TotalUniqueClips--;

 TotalUniqueFrames -= Size of the Expired Sequence;

 }

NumVideoClip--;

WindowTopIndex++;

 92

CurrentWindowSize -= Size of the Expired Sequence;

Remove Expired sequence from the table;

}

Process Output: Remove Expired Video Sequence from Video Archive (VSA)

5.4.4 Deleting Color Moment Strings of An Expired Video

Sequence
Whenever an expired video sequence is removed from the video archive, the

previously inserted color moment strings of the sequence should also be removed

from the video hash table. This process involves hashing into the video hash table to

locate the correct bucket and then traversing the linked list to remove the element in

which the expired sequence is stored. See Appendix D for an illustration of expired

color moment string removal.

 93

Chapter 6

Experimental Results and Discussion

We evaluated our video sequence identification technique by measuring the

efficiency and accuracy of the technique and the storage compression achievable for

the video archive using a test collection of 32 hours of continuous video stream

captured from a television documentary channel. Segmentation of this video stream

created 2,831 video sequences. To evaluate the system, we submitted each sequence

to the identification software. Each sequence is treated as a query against the video

abstraction archive to see if any matching sequences can be found. The archive is

allowed to grow until it contains 24 hours of sequences from video stream, after

which the oldest sequences are dropped as the newer sequences are added. Viewing

and tracking the video sequences manually produced a “ground truth” of 1,228 new

video sequences and 1,603 repeats against which our algorithm is compared.

 94

6.1 Measuring the Video Sequence Identification

Accuracy and Efficiency

6.1.1 Video Hashing Time
We first studied the relationship between the size of the Video Sequence

Abstraction’s hash table and the lookup time needed to find a similar sequence in the

hash table. The video sequence hashing time is calculated as the sum of the hash

table lookup time during video frame hashing processing and the time measured

during video sequence filtering process. The video sequence hashing time for two

different repeated sequences (one 895 frames long, the other 377 frames long) are

shown in Figure 6.1. Each data point represents the hash table lookup and video

sequence filtering time for one occurrence of the repeated video sequences for a given

video window size (or hash table size). The shorter sequence occurred eight times.

Its lookup and filtering took from 25ms (with a video archive size of 10,000 frames)

to 80ms (with a video archive size of 1,100,000 frames), with an average of 40ms.

The longer sequence occurred seven times. Its lookup and filtering took from 55ms

(with a video archive size of 900,000 frames) to 130ms (with a video archive size of

1,000,000 frames), with an average of 85ms. The results show that, as expected, the

time taken is independent of the size of the hash table. This experimental result is

consistent with the mathematically derived total video hashing cost (see section

5.2.1.3), in which the total video sequence hashing cost can be estimated as the sum

of a fixed hash table lookup and a fixed linked list traversed cost that is linearly

 95

proportional to the size of the input video sequence (40ms for shorter sequence versus

85 ms for longer sequence).

Figure 6.1 Graph of video sequence hashing time versus video archive size

 In order to better understand the effect of video sequence size on video

sequence hashing time, we ran an experiment to measure the video sequence hashing

time for nine video sequences of various sizes using the same video archive size.

Figure 6.2 shows the video hashing time for these nine video sequences. Each data

point represents the video sequence hashing time for a video sequence. Referring to

the Figure, a video sequence with a size of 1,000 frames has a video hashing time of

close to 100ms, followed by a video hashing time of 500ms for a sequence with a size

of 2,800 frames. The results in this figure show that the total video hashing time

 96

increases gradually with the video sequence size. In the other words, the

experimental results shown in this figure suggest that the video hashing time for

repeated video sequences is linearly proportional to the length of the video sequence.

Although we capped the video archive size at 24 hours (1.296 million video frames)

for our later experiments, these results imply that we could increase the video window

size to support longer time periods without affecting the speed of the video hashing

process.

Figure 6.2 Graph of video sequence hashing time versus video sequence size

 97

6.1.2 Video Sequence Comparison Cost

The final step in our comparison process compares the input video sequence to the

similar video sequence abstraction(s) frame by frame to calculate sum of the absolute

moment different of the two sequences. Figure 6.3 shows the comparison times for

10 sequences where the sequence length varies from 1,000 frames to 10,000 frames.

Referring to the figure, a sequence of 1,000 frames requires a comparison time of

400ms and a sequence size of 2,000 framers requires a comparison time of 550ms. In

other words, there is an increase of about 150ms in comparison time. On the other

hand, a sequence size of 9,000 frames requires a comparison time of 20,500ms and a

sequence size of 10,000 frames requires a comparison time of 25,200ms. So, the

increase of comparison time between sequence with 9,000 frames and sequence with

10,000 frames is 4,700ms. As expected, these results indicate that the video

comparison cost increases drastically as the video sequence size increases, growing

faster than linear as sequence size gets larger. Also, the cost for this process is greater

than the video sequence hashing process. This indicates that, to keep the entire

repeated sequence identification cost low, we should use meta-data (e.g., sequence

length) and a overlap threshold during the video sequence filtering process to keep

the number of similar video sequences low by filtering out obviously dissimilar video

sequences. We should also keep the video sequences short, preferably segmenting at

least every 200 – 400 seconds (3,000 – 6,000 frames).

 98

Figure 6.3 Graph of video comparison time versus video Sequence size

6.1.3 Measuring Recall and Precision

We measure the accuracy of our results using true positives (correctly identifying the

input video sequence as a repeat occurrence of an already stored video), false

positives (incorrectly identifying a stored video sequence as a match for the input

video sequence), true negatives (correctly identifying the input video sequence as the

first occurrence of a new video sequence) and false negatives (incorrectly identifying

a input video sequence as a new video sequence when it is actually a repeat of a video

sequence stored in the archive). These numbers are combined to calculate the two

traditional information retrieval metrics: 1) Recall, the ratio of the number of

correctly detected repeated sequences to the total number of repeated sequences in

 99

test; and 2) Precision, the ratio of the number of correctly detected repeated

sequences to the number of detected repeated sequences in the video archive.

 Recall = true positives / (true positives + false negatives)

Precision = true positives / (true positives + false positives)

Appendix E demonstrates an example of how true positive, true negative, false

positive, false negative are collected from the outputs of the video sequence

identification process to calculate recall and precision.

6.1.4 Choosing An Optimum Overlap Threshold Value

A stored video sequence is considered similar to the input video sequence if the

percentage of the frames in the two sequences with the same color moments exceeds

the overlap threshold. As the value of overlap threshold is raised, fewer video

sequences are considered similar, and therefore the total video comparison cost is

decreased. However, higher overlap thresholds may result in more misses (i.e., false

negatives) of repeated video sequences.

We ran an experiment to evaluate the effect of varying the overlap threshold

value to examine the tradeoff between speed and accuracy. Each video sequence is

submitted to the video hashing process and all similar sequence matches are reported.

If no similar sequence matches are found, then the input video sequence is treated as

the first occurrence of a new video sequence. If there are similar sequence matches,

the input video sequence is considered a repeat sequence of these detected similar

 100

sequences. This experiment measured how well the video hashing process performs

under various overlap threshold values.

Table 6.1 Recall and precision versus a set of different overlap threshold values

Table 6.1 shows the recall and precision measured for video hashing process

for various values of the overlap threshold. The table captures the four numbers (true

positive, true negative, false positive, false negative) used to measure the recall and

precision. As shown in this table, both true positives and false positives decrease

with the increase of the overlap threshold value. This result is expected since the

tighter the similar sequence check is (higher hashing threshold value), the more true

repeated video sequences are mistakenly removed during the similar video sequence

filtering process, and hence fewer true positives are found. Since fewer similar video

sequences exceed the overlap threshold, the number of false positives (mistakenly

detecting a first occurrence sequence as repeated sequence) is reduced. On the other

hand, true negatives and false negatives increase with the increase of the overlap

threshold value. This is also expected since fewer similar video sequences exceed the

 101

higher overlap threshold, resulting in more true negatives (identifying the input video

sequence as the first occurrence of a new video sequence) and also higher numbers of

false negatives (identify the input video sequence as the first occurrence of a new

video sequence when it is actually a repeat).

The results shown in Table 6.1 indicate that an overlap threshold value of 30%

yields a good tradeoff between accuracy and efficiency and it is used in our later

experiments. Compared to a overlap threshold of 0%, recall drops from 96% to 94%

yet the total comparison time is cut tremendously (8,575 ms versus 547 ms). The

data indicates that the average video hashing time is independent of the value of

overlap threshold used in selecting similar sequences. The data also indicates a minor

decrease in the average sequence comparison time is possible with a higher overlap

threshold value, but recall is adversely affected. For example, a threshold of 60%

will decrease comparison time 12% (to 486ms from 536ms) but recall declines 20%

(to 0.76 from 0.94).

6.1.5 Video Sequence Comparison Accuracy

The previous experiments show that while an overlap threshold can be used to

improve speed and precision, precision remains somewhat low (78%). To remove

false positives and thereby increase precision, we compare the surviving similar video

sequence abstractions to the input video sequence abstraction frame by frame. Only

if this comparison exceeds a moment difference threshold is the input video sequence

considered a repeat occurrence of a sequence in the archive.

 102

To evaluate the effect of the moment difference threshold on repeat sequence

detection accuracy, we measured the recall and precision for a variety of moment

difference thresholds and the results are shown in Table 6.2. The recall and precision

measured in video sequence hashing process (indicated as Initial) is included in this

table for comparison purposes. As expected, higher moment difference thresholds

result in higher recall (fewer false negatives) but lower precision (more false

positives). The results suggest that a moment difference threshold of 10.0 represents

a reasonable balance between recall and precision. Comparing to recall and precision

recorded for video sequence hashing process without the video sequence comparison,

precision improves from 78% to 91% due to the removal of false positives. Also,

there is a slight drop in recall from 94% to 91% due to incorrect removal of a few true

positives. The results show that precision can be improved by performing the video

sequence comparison to remove false positives at the expense of increasing false

negatives and slightly decreasing recall.

Table 6.2 Recall and precision measurement (Overlap Threshold=30)

 103

There were a total of 2,831 video sequences created from the test collection of

32 hours continuous video stream. Using at a 24 hour sliding window of stored video

abstractions, a perfectly operating system would identify 1,228 new sequences and

1,603 repeat sequences. Our system, with an overlap threshold of 30 and a moment

difference threshold of 10, was able to identified 1,225 new sequences and 1,553

repeat sequences.

6.2 Measuring the Achievable Storage Compression Ratio
Since repeated video sequences need only be stored once, our video sequence

repetition identification can be used to achieve lossless storage compression. Since

this compression does not manipulate the video signal in any way, it can be used in

addition to other compression techniques. Figure 6.4 shows the number of sequences

in the video archive versus number of detected new sequences for the entire

identification process. The compression gain can be calculated as the ratio of total

size for repeated video sequences to the total size of video sequences stored in the

video archive. Clearly, for a video source that contains repeated sequences, the larger

the video archive, the more repeats are likely to be found. Figure 6.5 shows that

compression increases as the size of the video archive is increased, up until the 1,261st

sequence (approximately 13 hours), at which time it levels off at approximately 30%

compression. With a video window size of 24 hours, the video source used in this

experiment contains an approximation of 8 hours of repeat programs during the 32

hours span. This data suggests that if our video identification technique was able to

 104

correctly detect all repeated video sequences, we should be able to get a compression

gain of 33%.

Figure 6.4 Total video sequence in the video archive vs. total detected repeated

sequences

Figure 6.5 Ratio of achievable lossless storage Compression

 105

6.3 Validating Video Identification Technique with Different

Video Source
Our previous experiments allowed us to identify an overlap threshold (30%) and a

moment difference threshold (10.0) that provides accurate repeated video sequence

identification. To validate these results, we re-ran our algorithm using 24 hours of

video (3,394 video sequences) collected from a different broadcast television channel.

Using a sliding window of 24 hours, if the system worked perfectly, it would identify

1,938 unique video sequences and 1,456 repeats. Table 6.3 reports the recall and

precision measurements for different values of a moment difference threshold using

an overlap threshold of 30%. With an overlap threshold of 30 and a moment

difference threshold of 10, our system was able to identify 1,903 out of 1,903 true

new sequences and 1,385 out of 1,456 true repeated sequences.

Table 6.3 Recall and precision measurements with overlap threshold of 30

The moment difference threshold of 10.0 provides comparable performance on this

second video source. Recall with the second source is slightly lower (89% versus

 106

91%), however precision is slightly higher (93% versus 91%). These consistent

results validate that our technique and threshold settings generalize to other video

sources.

Figure 6.6 captures the total number of sequences in the video archive versus

the total cumulative detected new sequences for the entire identification process.

Figure 6.7 shows that we were also able to achieve a compression ratio of 30%,

comparable to the compression ratio on the first video source. Similar to the first

video source, the second video source used in this experiment has approximately of 8

hours of repeat programs over 24 hours span. With a perfect video identification

technique, we would get a compression gain of approximately 33%.

Figure 6.6 Total sequences in video archive vs. total detected new sequences

(Overlap Threshold=30 & Moment Difference Threshold =10.0)

 107

Figure 6.7 Total achievable storage compression ratio

 108

Chapter 7

Conclusion

7.1 Summary

This dissertation reports on an automatic video sequence identification and tracking

technique that can be used to process continuous video streams, identify unique video

sequences and remove repeated video sequences. The technique described here is

efficient (it runs in real time) and effective. Our technique is domain and video

source independent so that they could be used on any video streams that are repeated

and change slowly over time.

We have developed a system to digitize and segment video streams into video

sequences using histogram-based techniques. Each video frame of video sequences is

represented by values of the nine color moments, namely the mean, standard

deviation, and the skew of the three main color components. The Color Moment

String, created by mapping the nine color moment values into nine integers and

 109

concatenating them into a string, is used as the basis of our video sequence

identification technique.

Our video sequence identification solution employs the combination of similar

video sequence hashing and frame by frame video sequence comparison to detect and

identify repeated video sequences. In the similar video sequence hashing process,

each video frame is represented by a color moment string. The similarity of two

video sequences is measured by considering the percent of frames in the two

sequences that have similar video frames ignoring the temporal order of the similar

frames. The purpose of the similar video sequence hashing process is to reduce the

size of the number of sequences requiring frame by frame matches by selecting only

video sequences which have many similar frames.

During frame-by-frame video sequence comparison, each video frame is

represented by the full values of the nine color moments extracted during the video

processing and stream segmentation process. The sum absolute moment differences

between video frames from the input video sequence and the similar sequences

identified by the video hashing process are calculated. The absolute moment

difference value calculated for each similar video sequence is compared with a

moment difference threshold to determine whether or not the video abstractions are

similar enough for the input video sequence to be considered a repeated sequence. In

this video sequence comparison process, each pair of video frames is compared in

their temporal order.

 110

The total cost of performing a video sequence comparison using our video

sequence identification is the sum of the hashing process and the absolute color

moment difference calculation during video sequence comparison process. The

experimental results suggested that the cost of our video sequence identification

technique increases logarithmically with video archive size and hence is able to

handle a large video archive size.

Using a maximum video abstraction archive size of 24 hours, we evaluated

our approach on two different video continuous streams, (one 32 hours long and the

other 24 hours long). We were able to achieve good recall and precision (over 90%)

on both inputs and hence validated the accuracy of our technique. The experimental

results measured on both inputs also justified our claims that the technique is domain

and video source independent.

We also evaluated the achievable video archive storage compression by

measuring the total amount of video data consisting of repeated video sequences. By

not storing the repeated video sequences, we achieved a lossless compression gain

factor of approximately 30% for both video streams.

Finally, this system can be used as the first step of a topic tracking system for

video streams and/or to compress the viewing time needed for end users, allowing

them to quickly find out “what’s new”.

 111

7.2 Future Work

Future work falls in two broad categories: 1) technique improvement, and 2) user

application development.

7.2.1 Technique Improvement

a) Partial Mapping We can improve the quality of the tracking by incorporating

partial mapping. We get a partial match whenever one video sequence partially

overlaps another. The processed video sequence could be a subset of a known video

sequence or it could be a superset of few video sequences overlapping one another.

Our current video identification algorithm was designed in such a way that it can be

easily extended to support the partial matching of video sequences. One of the main

algorithm enhancements will be to include adjustable video sequence size difference

screening during the similar video sequence filtering process, allowing similar video

sequence matching for difference sizes. The final video sequence comparison process

will then be divided into three steps: 1) compare video sequences with the same size

(size difference is less than 10%) for exact match; 2) compare video sequences that

are longer than the input video (i.e., consider the input as subset of a known video

sequence); and 3) compare video sequences that are smaller than input video

sequence (i.e., the input as superset of known video sequences).

 112

b) Disk based hashing In order to handle a very large video window size, a disk based

hashing technique should be used. A disk based hashing technique will allow the

video identification algorithm to grow to larger video archive, for example seven

days, to detect and track repeated video sequences that occur farther apart in time.

7.2.2 User Application

a) Web-enabled Video Stream Browsing System A web-enabled client-server-based

graphical user interface could be built on top of our system to enable users to search

the video archive and view selected video sequences. The system can be used to

compress the viewing time needed for end users, allowing them to quickly find out

“what’s new”. The system will support dynamic reproduction of video stream for

select broadcast using the video sequence tracking information captured in the video

identification process.

b) Story based Video Sequence Identification This research work could form one

component of a video archive system for content-based topic tracking. Figure 9.1

illustrates a function block diagram for an ideal model of fully automated video

content-based story tracking system for television news programs. In order to detect

and aggregate unique news stories from a video source, we have to have a fully

automated video signal processing system that can first apply content-based video

processing technique to track and extract all the unique video sequences from the

input source. Then video sequences must be grouped into different stories using

 113

video abstractions such as closed caption, audio and video content. Hence, the next

possible step of our research could be designing story-based video sequences

identification technique by combining semantic information extracted from both

video content and a possible text input. We could be concentrating on the knowledge

intensive activity of content-based aggregation into stories.

Figure 7.1. Functional block diagram of a ideal television news topic tracking

system

Video
Digitization

Video/Audio
Processing

Speech
Recognition

Topic
Detection

Continous News
Coverage

News Topic
Organizer

Unique Topic
Segregation

Topic Tracking and Dectection Engine

Series of Unique TV
News Topics

 114

Bibilography

[1] Allan, J., Carbonell, J., Doddington, G., Yamron, J., and Yang, Y., (1998). Topic

Detection and Tracking Pilot Study Final Report. In Proceedings of the DARPA

Broadcast News Transcription and Understanding Workshop, February, 1998.

[2] Allan, J., Lavrenko, V., and Jun, H., (2000). First Story Detection In TDT Is Hard.

In ACM CIKM 2000, pages 374-381.

[3] Arman, F., Depommier, R., Hsu, A., and Chiu, M.Y., (1004). Content-based

Browsing of Video Sequences. In ACM Multimedia 1994, San Francisco.

[4] Bouix, S. (1998). VISION: Segmentation, Indexing and Retrieval of Digital

Videos. Master Thesis of EECS, The University of Kansas.

[5] Chueng, S.C., and Zakhor, A., (2000). Efficient Video Similarity Measurement

and Search. In International Conference on Image Processing Vol 1, pp. 85-89,

British Columbia.

[6] Chueng, S.C., and Zakhor, A., (2000). Estimation of Web Video Multiplicity. In

Proceeding of The SPIE on Internet Imaging Vol 3964, pp.34-46, San Jose.

[7] Dagtas, S., McGee, T., and Mohamed, A.M. (2000). SmartWatch: An Automated

Video Event Finder. In ACM Multimedia 2000, Los Angeles.

[8] Dimitrova, N., (1997). Content-based Video Retrieval by Example Video Clip. In

the Proceeding of SPIE on Storage and Retrieval for Image and Video Database V,

1997, Vol. 3022. San Jose.

 115

[9] Dimitrova, N., (1995). The Myth of Semantic Video Retrieval. In ACM

Computing Surveys, Vol 27, No. 4, December 1995

[10] Fiscus, J., Doddington, G., Garofolo, J., and Martin, A., (1998). NIST’s 1998

Topic Detection and Tracking Evaluation (TDT2). National Institute of Standards and

Technology, Gaithersbury, MD, 1998.

[11] Flickner, M., Sawhney, J.A., Huang, Q., Dom, B., Gorkani, M., Lee, D.,

Petkovic, D., Steele, D., and Yanker, P., (1995). Query by image and video content:

The QBIC System. In IEEE Computer, 28(9):23-32, Spetember 1995.

[12] Gauch, J., (2000). Video Authentication: Overview.

http://www.ittc.ukans.edu/~jgauch/research/video/vidwatch_overview.html

[13] Gauch, J., Gauch, S., Bouix, S., Zhu, X., (1999). Real Time Video Scence

Detection and Classification, Information Processing and Management 33 ’99.

[14] Gauch, S., Gauch, J., Pua, K.M., (1996). VISION : A digital Video Library,

ACM Digital Libraries ’96, Bethesda, MD, 19-27

[15] Gauch, S., Gauch, J., Pua, K.M., (1998). The VISION Digital Video Library

Project, Encyclopedia of Library and Information Science, ’98.

[16] Gauch, S., Li, W., Gauch, J., (1997). The VISION Digital Video Library System,

Information Processing & Management, 33(4), 413-426.

http://www.ittc.ukans.edu/~jgauch/research/video/vidwatch_overview.html

 116

[17] Geusebroek, J.M., Koelma, D., and Smeulders, A.W.M., (2000). Image Retrieval

and Segmentation Based On Color Invariants. In Computer Vision and Pattern

Recognition 2000, Hilton Head, South Carolina.

[18] Huang, J., Kumar, S.R., Mitra, M., (1997). Combining Supervised Learning

With Color Correlograms For Content-Based Image Retrieval. In ACM Multimedia

1997, Seatle.

[19] Huang, J., Kumar, S.R., Mitra, M. et al., (1997). Image Indexing Using Color

Correlograms. In Proceedings of Computer Vision and Pattern Recognition, page

762-768, 1997.

[20] Jain, A.K., (1989). Fundamentals of Digital Image Processing. Prentice Hall,

USA 1989.

[21] Kobla, V., Doermann, D., (1997). VideoTrails: Representing and Visualizing

Structure In Video Sequences. In ACM Multimedia 1997, Seattle.

[22] Kato, T., et al (1992). A Sketch Retrieval Method for Full Color Image

Database: Query by Visual Example. In Proc. 11th International Conference on

Pattern Recognition, Amsterdam, Holland, 1992.

[23] Lienhart, R., Effelsberg, W., and Jain, Ramesh. (1998). VisualGREP: A

Systematic Method to Compare and Retrieve Video Sequences. In the Proceedings of

SPIE on Storage and Retrieval for Image and Video Database VI, Vol. 3312. Jan.

1998.

 117

[24] Ogle, V., and Stonebraker, M., (1995). Chabot: Retrieval from a relational

database of images. In IEEE Computer, 28(9):40-48, September 1995.

[25] Pan, J.Y., and Faloutsos, C., (1999). VideoGraph: A New Tool for Video Mining

and Classification.

[26] Pass,G., and Zabih, R., (1998). Comparing Images Using Joint Histograms.

ACM Journal of Multimedia System, 1998.

[27] Pass, G., and Zabih, R., (196). Histogram Refinement for Content-Based Image

Retrieval. In Proceedings of the 3rd IEEE Workshop on Applications of Computer

Vision,1996.

[28] Pentland, A., Picard, R., and Sclaroff, S., (1996). Photobook: Content-based

manipulation of image databases. In International Journal of Computer Vision,

18(3):233-254, 1996

[29] Pua, K.M., Gauch, S., Gauch, J., (1999). VIDSEEK: Dynamic Multi-

dimensional Browsing of Video Archives, Multimedia Indexing and Retrieval

Workshop, ACM SIGIR ’99, Berkeley, CA, USA.

[30] Qian, R., Haering, H., and Sezan, I., (1999). A Computational Approach to

Semantic Event Detection. In IEEE Computer Vision and Pattern Recognition, June

1999, Fort Collins, Col.

[31] Rao., A., Srihari, R.K., Zhang, A., (1999). Spatial Color Histogram For Content-

Based Image Retrieval. In 11th IEEE International Conference on Tools with

Artificial Intelligence,1999, Chicago.

 118

[32] Ray, B., (1998). Analysis of Closed Caption Based Segmentation of Digital

Video, Master Thesis, The University of Kansas, KS.

[33] Rickman, R., and Stonham, J., (1996). Content-based Image Retrieval Using

Color Tuple Histograms. In SPIE Proceedings, 2670:2-7, 1996

[34] Rowe, L.A., Boreczky, J.S., and Eads, C.A., (1994). Indexes for User Access to

Large Video Databases. In Proc. IS&T/SPIE Conf. On Storage and Retrieval for

Image and Video Database II, pp. 150-161, San Jose, CA, 1994.

[35] Rui, Y., Huang, T.S., and Mehotra, S., (1998). Exploring Video Structure

Beyond The Shots. In Proceedings of The IEEE International Conference on

Multimedia Computing and Systems, 1998.

[36] Smith, J., and Chang, S.F., (1996). Tools and techniques for Color Image

Retrieval. In SPIE Proceedings, 2670:1630-1639, 1996

[37] Stricker, M., and Dimai, A., (1996). Color Indexing with Weak Spatial

Constraints. In SIPE Proceedings , 2670:29-40, 1996.

[38] Swain, M.J., and Ballard, D.H., (1991). Color Indexing. In International Journal

of Computer Vision Vol 7, pp. 11-32, 1991.

[39] Tanveer, S.M., and Srinivasan, S. (2000). Detecting Topical Events in Digital

Video. In ACM Multimedia 2000, Los Angeles.

[40] Wu, Y., Zhuang, Y., and Pan, Y., (2000). Content-based Video Similarity

Model. In ACM Multimedia 2000, Los Angelas, CA

 119

[41] Yoon, K., DeMenthon, D., and Doermann, D. (2000). Event Detection from

MPEG Video in the Compressed Domain. In Proceedings of the International

Conference on Pattern Recognition 2000.

[42] Zhang, H.J., Low, C.Y., Smoliar, S.W., and Wu, J.H., (1995). Video Parsing,

Retrieval and Browsing: An Integrated and Content-Based Solution. In ACM

Multimedia 1995, San Francisco, CA.

[43] Zhang, H.J., Tan, S.Y., Smoliar, S.W., and Gong, Y.H., (1995). Automatic

Parsing and Indexing of News Video. In Multimedia System 1995, Vol 2: 256-266.

 120

Appendix A

Statistical Model of Image Texture
Representation

I. The Autocorrelation Function (ACF)

The width of the spatial ACF r(k,l) = m2(k,l) / m2(0,0) represents the spatial size of

texels in the texture. m2(k,l) is the second moment or the mean square value or

average energy and is defined as follow:

−−
∈

=
),(

2
2)],([1),(

nm ww
lnkmuN

lkm

The coarseness of texture is expected to be proportional to the width of the ACF

which can be represented by distances x0, y0, such that r(x0, 0) = r(0,y0) = ½. The

calibration of the ACF spread on a fine-coarse texture scale depends on the resolution

of the image. This is because a seemingly flat region (no texture) at a given

resolution could appear as fine texture at a higher resolution and coarse texture at

lower resolution. Therefore, the ACF by itself is not sufficient to distinguish among

 121

several texture fields because many different image ensembles can have the same

ACF.

II. Image Transforms

Texture features such as coarseness, fineness, and orientation can be estimated by

generalized linear filtering techniques utilizing image transforms (Figure A.1).

Image transforms provide the frequency domain information in the data. Transform

features are extracted by zonal-filtering or feature masking the image in the selected

transform space. Referring to Figure A.1, a two-dimensional transform V(k,l) of the

input image is passed through several band-pass filter g(k,l). The energy in this

V^(k,l) represents a transform feature.

 The feature mask is simply a slit or an aperture shown in Figure A.2.

Generally, the high-frequency features can be used for edge and boundary detection,

and angular slits can be used for detection of orientation. Fore example, an image

containing several parallel lines with orientation θ will exhibit strong energy along a

line at angle π/2 + θ passing through the origin of its two-dimensional Fourier

transform. The combination of these two types of masks is useful for periodic or

quasi-periodic textures. Image transforms have been applied for discrimination of

terrain types such as deserts, farms, mountains, and riverbeds to name a few.

 122

Forward
Transform

Inverse
TransformInput

Image

U(m,n)

Mask
g(k,l)

U^(m,n)V(k,l) V^(k,l)
X

Figure A.1 Transform Feature Extraction

Slits and Apertures

Figure A.2 Slits and Apertures

 123

III. Histogram Features.

Some useful texture features based on the histogram measures are:

−≅
1 2

2121
2

),;,(|),(: ||
x x

xxrfxxrIInertia θθ

=
θ

θµ),;,(1),;(: 21
0

21 xxrf
N

xxrMean

−=
θ

µθσ)],;(),;,([2121
2

0
21

2 1),;(: xxrxxrfN
xxrVariance

)},;,({min)},;,({max),;(: 212121 xxrfxxrfxxrSpread θθη
θθ

−=

where f(r,θ;x1,x2) is the distribution function of two pixels x1 and x2 at relative

distance r and orientation θ. The inertia is used to represent the spread of the function

f(r,θ;x1,x2) for a given set of (r,θ) values. I(r,θ) becomes proportional to the

coarseness of the texture at different distances and orientations. The mean

distribution is useful when angular variations in textural properties are unimportant.

The variance indicates the angular fluctuations of textural properties while spread

distribution is used to measure the orientation-independent spread.

 124

Appendix B

Moment Invariant Measurements

The moment of a gray-level image f(x,y) is defined as:

),(yxfm yx
qp

pq =

If we considered the gray-level as the weight of the pixel, m00 can be viewed as the

total mass of the image, m10 and m01 the centroids, and m20 and m02 would represent

the moments of inertia around the x and y axes. Moment invariants are calculated

with the following steps:

1. Computer central moments:

),()()((
yxfyyxx qp

pq −−=η

where 000100 /,/10 mmymmx ==

2. Normalize them:

)00(m
pq

pqu γ
η

=

where)1
2

(++= qpγ

 125

3. The first seven moment invariants are defined as:

02201 uuM +=

11
2

0220
2

2 4)(uuuM += +

)3()3(0321
2

1230
2

3 uuuuM −− +=

)()(0321
2

1230
2

4 uuuuM ++ +=

]3)[)(3(

]3)[)(3(

)()(
)()(

0321
2

1230
2

03210321

0321
2

1230
2

123012305

uuuu
uuuuM

uuuu
uuuu

++
++

−+−

+−+−=

))((4

]3)[(

1230123011

0321
2

1230
2

02206)()(
uuuum

uu uuuuM
++

+−+= ++

]3)[)(3(

]3)[)(3(

)()(
)()(

0321
2

1230
2

03121230

0321
2

1230
2

301203217

uuuu
uuuuM

uuuu
uuuu

++
++

−+−

−−+−=

 126

Appendix C

Selection of Color Space

Electro-magnetic radiation F(λ) in the range of light (λ є [380nm..780nm]) is

perceived as colored light. The human eye color receptors divide the visible portion

of the electro-magnetic spectrum into three bands: Red, Green, and Blue. For this

reason, these three colors are referred to as the primary colors of human vision. By

assigning each primary color receptor, k є r,g,b, a response function ck(λ), visible

light of any color F(λ), can be expressed as a linear combination of the ck’s, as

follows:

Normalizing ck’s to the reference white light W(λ) such that:

 W(λ) = cr(λ) + cg(λ) + cb(λ)

F(λ) can be expressed from (R,G,B) as:

 F(λ) = Rcr(λ) + Gcg(λ)+ Bcb(λ)

Thus, any color can be represented as a linear combination of the three primary

colors.

In this research work, we choose to use RGB format system to represent color

of the video input. The RGB format is considered the most straightforward way to

represent color using red, green and blue brightness values, scaled between 0 and 255.

 127

It is possible to represent any color using a point in the color cube shown in Figure

C.1. The origin of the RGB color space represents no brightness of any of the

primary colors, i.e. black. Full brightness of all three colors appears as white.

Three of the corners of the color cube are the primary color and the three others are

yellow, cyan, and magenta. The diagonal going from the black corner to the white

corner corresponds to the shades of gray and is called the gray line.

 Figure C.1 The RGB Color Space Cube

Cyan

Blue

Black Red

Yellow

White

Magenta

Green

 128

The RGB format system has been extensively used. Our television monitors

use this system of overlaying Red, Green and Blue brightness values. The system can

represent all colors that are visible to human eye and hence is a complete solution.

 129

Appendix D

Illustration of Video Identification

Process

In order to provide a better description and understanding of the video sequence

identification technique described in this chapter, this section steps through a working

example of the overall process of the identification technique:

Given an input video sequence Q1 with a size of 10 video frames, we want to

compare this sequence to a video archive to find out if the input is a new video

sequence or a repeat of a video sequence already in the archive. Assume that the

current video archive contains 3 ‘old’ video sequences: video sequences A1, B1 and

C1, and each has a size of 9 video frames. In this example, assume that input video

sequence Q1 is a repeat of video sequence B1 and that video sequence C1 is a repeat

of video sequence A1. The following drawing illustrates the content of these 4 video

sequences with their respective color moment strings of each video frame.

 130

A GFEDCB JIH

A GFERCB IH

T

T

Input Video Sequence Q1

Video Sequence A1

Video Sequence B1

Video Sequence C1

Note :
Each block is a video frame with its color moment string
represented by an alphabetic letter

Starting
Frame

Ending
Frame

D UH M Z P

D UH M Z P

The content of the video frame hash table will look like this:

A

G

F

E

D

C

B

I

H

B1

B1

B1

B1

A1

B1

A1

B1

B1

B1

C1

C1

R

T

U

M

Z

P

A1

C1

C1

C1

C1

A1

A1

A1

A1

B1

B1

Hash Bucket
(Color Moment String) Linked list of Sequence Index Data

Video Hash Table

Video Index Table

 131

Step 1. Video Frame Hashing

The output after the video frame hashing process will have 4 potential similar

sequences having at least one similar frame to the input video sequence Q1.

Hashing Output List
(Sequence Q1)

Sequence
C1

Matching Similar
Frames =2

Sequence
A1

Matching Similar
Frames =2

Sequence
B1

Matching Similar
Frames =8

Video Frame Hashing Output List

Step 2. Video Sequence Filtering

With an overlap threshold set to 30 and sequence size difference <10%, only

sequence B1 will pass the filtering and hence qualify as similar sequence for final

step of the video identification process which is frame-by-frame video sequence

comparison process

.

Filtering Output List
(Sequence Q1)

Sequence
B1

Video Sequence Filtering Output List

 132

Step 3. Video Sequence Comparison

With a moment difference threshold set to 10.0, the system should identify video

sequence B1 as the only sequence of which Q1 could be a repeat. The meta-data of

sequence Q1 together with its matching result will be recorded into the video index

table.

Step 4. Video Archiving and Tracking
Using the same input example scenario, the following example of video index table

update provide a better understanding and graphical description of the whole process

which include insertion of the input video sequence Q1 and a deletion of the expired

sequence A1. Assume that our identification system has a sliding window size of 3

video sequences. That means that the video archive is allowed to grow to a maximum

size of 3 video sequences.

 I. The current video index table before the input video sequence insertion

Sequence A1

WindowTopIndex = 0
WindowBottomIndex = 3
NumVideoClip =3
CurrentWindowSize =3
MaxWindowSize=3
TotalUniqueClips=2

0
NumReplicatedClip=0 C1

Sequence B1
1

NumReplicatedClip=0

Sequence C1
2

NumReplicatedClip=1

NULL

NULL

NULL

A1

NULL

Repeated Sequence Reference

Repeat Video Linked List
Sequence Information

Array Element

Video Index Table

3

 133

II. Insertion of the Input Video Sequence Q1 into the Video Index Table

Video sequence Q1 will be inserted into Array Element 3 as repeat sequence.

Increment WindowBottomIndex and add Sequence Q1 into Sequence B1’s Repeat

Video Linked List. Now the total sequences in the video archive (NumVideoClip) is 4

and the number of unique sequences detected (TotalUniqueClips) remains at 2.

Sequence A1

WindowTopIndex = 0
WindowBottomIndex = 4
NumVideoClip =4
CurrentWindowSize =4
MaxWindowSize=3
TotalUniqueClips=2

0
NumReplicatedClip=0 C1

Sequence B1
1

NumReplicatedClip=0

Sequence C1
2

NumReplicatedClip=1

NULL

NULL

Q1

A1

NULL

Repeated Sequence Reference

Repeat Video Linked List
Sequence Information

Array Element

Video Index Table after Insertion

Sequence Q1
3

NumReplicatedClip=1 NULL
B1

Added or
Updated Fields

 134

III. Insertion of Color Moment String of Sequence Q1 into the hash table
Hash Bucket

(Color Moment String) Linked list of Sequence Index Data

Video Hash Table after Insertion

Q1

Q1

B1

R

T

U

M

Z

P

A1

C1

C1

C1

C1

A1

A1

A1

A1

B1

B1

A

G

F

E

D

C

B

I

H

B1

B1

B1

A1

A1

B1

B1

B1

B1

C1

C1

Q1

Q1

Q1

Q1

Q1

Q1

Q1

Q1

J

New Added Hash Bucket
& Linked List Elements

 135

IV. Deletion of Expired Video Sequence from the Video Index Table

Since there is a size overflow of the video archive, the expired sequence (sequence

A1) stored in Array Element 0 needs to be removed. With the removal of sequence

A1, sequence C1 will now become “new” and hence its Repeated Sequence Reference

field is set to NULL. The NumReplicatedClip field is set to 0 because it is a new

sequence after the deletion of the expired sequence.

WindowTopIndex = 1
WindwoBottomIndex = 4
NumVideoClip =3
CurrentWindowSize =3
MaxWindowSize=3
TotalUniqueClips=2

0

Sequence B1
1

NumReplicatedClip=0

Sequence C1
2

NumReplicatedClip=0 NULL

Q1

NULL

NULL

Repeated Sequence Reference

Repeat Video Linked List

Video Index Table
After Expired Sequence Deletion

Sequence Q1
3

NumReplicatedClip=1 NULL
B1 Updated

Fields

 136

V. Deletion of Color Moment Strings of the Expired Video Sequence from the

Video Hashing Table

Hash Bucket

(Color Moment String) Linked list of Sequence Index Data

Video Hash Table Deletion

Q1

Q1

B1

R

T

U

M

Z

P

A1

C1

C1

C1

C1

A1

A1

A1

A1

B1

B1

A

G

F

E

D

C

B

I

H

B1

B1

B1

A1

A1

B1

B1

B1

B1

C1

C1

Q1

Q1

Q1

Q1

Q1

Q1

Q1

Q1

J

Elements to be removed from
linked lists

 137

Appendix E

Measuring Recall and Precision

Assume we start the video identification process with zero video archive. There are a

total of 7 new input video sequences, namely S1.1, S1.2, S1.3, S1.4, S2.1, S2.2, and

S2.3. Sequences S1.2, S1.3, and S1.4 are repeats of sequence S1.1. Also, sequences

S2.2 and S2.3 are repeats of S2.1. The results for each input video sequence are as

such:

1. Sequence S1.1:

It is detected as a new sequence.

Since it is the first occurrence of this sequence, the system is credited with a

true negative.

2. Sequence S1.2

It was detected as a repeat of sequence S1.1.

 S1.2 is a repeat of S1.1 and hence the system scores a true positive.

3. Sequence S1.3

It was detected as a new sequence.

S1.3 is a repeat of S1.1 and S1.2. This is scored as two false negatives since

S1.3 is incorrectly identified as new when in fact there are two matching

sequences in the archive.

4. Sequence S1.4

It was detected as a repeat sequence to Sequence S1.1, S1.2 and S1.3.

 138

S1.4 is a repeat of sequences S1.1, S1.2 and S1.3. Thus, the result is scored as

three true positives.

5. Sequence S2.1

It was detected as a new sequence.

S2.1 is the first occurrence of a new sequence; therefore, the result scores one

true negative.

6. Sequence S2.2

It was detected as repeat sequence for S2.1.

Since this is correct, the result scored as one true positive.

7. Sequence S2.3.

It was detected as a repeat of sequences S2.1 and S1.4.

Sequence S2.3 is only a repeat of S2.1. Therefore, the result is scored as a

true positive on sequence S2.1 and a false positive on sequence S1.4.

The following table records results of the identification of these 7 input sequences:

With a video archive size of 7 video sequences, the recall and precision can be

calculated as below:

Recall = true positives / (true positives + false negatives) = 6 / (6+2) = 0.75

Precision = true positives / (true positives + false positives) = 6 / (6+1) = 0.85

	Kok Meng Pua
	We studied the efficiency and the effectiveness of our algorithms on 24 or more hours of video data from two different sources. We found that the technique accurately identifies repeated sequences, producing recall and precision values both over 90%. W
	Acknowledgements
	I would like to express my deepest gratitude to my advisor and mentor, Dr. Susan Gauch, for her invaluable guidance and unwavering support throughout my education at the University of Kansas. Without her encouragement and patience, this work can not be

	I would like to thank Dr. John Gauch, who is also serving on my thesis committee, for valuable discussions and information sharing on issues of the image and video processing.
	Table of Contents
	
	
	
	
	
	Measure………………………………………………………………10
	7. Conclusion								 108

	Bibilography								 114
		Appendix C: Selection of Color Space………………………….126

	Functional Block Diagram of An Ideal Television News Topic
	5.2 Shape features………………………………………………………...43
	5.3 The Video Production Model…………………………………………46
	A.1 Transform Feature Extraction……………………………………..122

	List of Tables
	Table 5.1 Error percentage of color moment string mis-mapping………62
	Table 6.1 Recall and precision versus a set of different overlap
	Table 6.2 Recall and precision measurement
	(Overlap Threshold=30)……………………………………………….102
	Introduction and Motivation
	Pilot Work

	Appendix A
	Appendix B
	Appendix C
	Selection of Color Space
	Appendix D

	Step 3. Video Sequence Comparison
	
	
	
	
	
	Step 4. Video Archiving and Tracking
	
	Appendix E

	Recall = true positives / (true positives + false negatives) = 6 / (6+2) = 0.75
	Precision = true positives / (true positives + false positives) = 6 / (6+1) = 0.85

