
Design and ImplementationDesign and Implementation
ofof

Composite ProtocolsComposite Protocols

Magesh Kannan

Master’s Thesis Defense
The University of Kansas

12.16.2002

Committee:
Dr. Gary J. Minden (Chair)
Dr. Joseph B. Evans
Dr. Victor Frost

2

Outline

• Motivation
• Elements of a Protocol Component
• Composite Protocol (CP) Framework
• Implementation of CP Framework over Ensemble
• Performance Evaluation
• Summary & Future Work

3

Motivation for Composite Protocols

• Layering only a design principle
– Implementations usually less-structured

• Correctness as important as efficiency
– More so with active networks
– Typical implementations only tested; not proven correct

• Code reuse not prevalent in protocol software
• Few choices in configuring a protocol

– e.g. simple UDP or feature-rich TCP

• Developing variants not easy

4

Advantages of Composite Protocols

• Protocols implemented as collections of single-function
components
– Formal verification tasks more manageable
– Better scope for reuse of protocol functions
– Faster development of variants
– Better prospects for customization
– “Properties-in Protocol-out”

5

Definitions

• Protocol Component
– Single-function entity
– Not very useful stand-alone
– e.g. fragmentation, reliable delivery, neighbor discovery

• Composite Protocol
– Collection of components arranged in an orderly fashion
– Useful as a unit
– e.g. file transfer, web document retrieval, byte-stream transport

• Network Service
– Collection of cooperating composite protocols that offer a larger

communication service
– e.g. multicast, web caching

6

Composition Method: Linear Stacking

• Composite Protocol -> Linear arrangement of components
• Messages from application processed by a fixed sequence

of components
• Sequence decided at configuration time and does not

change during operation
• Regularity of processing sequence helpful for formal

reasoning
• Absence of multiplexing and demultiplexing

– Each application gets its private instance of a composite protocol

• Need for stack matching
– Identical sequence of components at endpoints and routers

7

Elements of a Protocol Component

• State machine representation
• Memory model
• Formal properties
• Parameters

– Knobs to tune component functionality

• Control interface

8

State Machine Representation

• Component functionality as an FSM
– Natural representation for protocols
– Facilitates automatic verification and validation

• Augmented state machine model
– Guard expression

• predicate that should hold TRUE for transition to be executable
– Synchronous transition

• “no-wait” transition
• triggered upon entry to a state

9

Component as a State Machine

• Transitions are atomic
• Events to busy SM are queued
• Component

– driven by two event queues
– actions generate events that are

deposited into one of two output
queues

– either one or a pair of state machines
(transmit and receive)

– pair of state machines if the transmit
and receive tasks are relatively
independent

TSM RSM

Outbound events

Inbound events

SM

10

State Machine Structure

• State Machine
– List of States

• State
– List of Transitions

• Transition
– current state
– next state
– event type
– guard expression: condition for this transition to be executable
– action: response of the SM for this event
– local memory update: changes to local memory objects

11

State Machine Execution

wait for next event

state := init_state

event1

event type?

Is ‘state’
 sync?

false

true

Transition block Transition block Transition block

event2 event x Guard1? Guard2?

action1

locmem_upd1

state := next_state1

action2

locmem_upd2

state := next_state2

actionx

locmem_updx

state := next_statex

true true true

false false false

signal error

Transition block for event y

Guardx?

12

State Machine Semantics

• Guard Expressions
– Only one of the guards shall be TRUE for any event occurrence
– None of the guards is TRUE

• under-specified state machine
– More than one guard is TRUE

• ambiguous state machine
– Purely functional

• no side-effects

• Synchronous Transitions
– If one of the transitions from a state is synchronous, all transitions

shall be synchronous

• Imperative behavior limited to local memory update
function

13

Example: Fragmentation TSM

WAIT SEND_FRAG

Event: PKT_TO_NET
Guard: PktSize <= MTU
Action: Xmit Pkt unfragmented
LM Update: --

Event: PKT_TO_NET
Guard: PktSize > MTU
Action: --
LM Update: Find no. of frags

Event: None
Guard: Any more frags to Xmit
Action: Xmit fragment
LM Update: Update running vars

Event: None
Guard: No more frags to Xmit
Action: --
LM Update: Update running vars

14

Memory Model

Composite
Protocol X

Composite
Protocol Y

ENDPOINT A

Composite
Protocol Y

Composite
Protocol X

ENDPOINT B

Packet
 Memory

Packet
 Memory

Packet
 Memory

SLP SLP

SLP SLP

SLP SLP

SLP SLP

SLP SLP

SLP SLP

SLP SLP

SLP SLP

G
lo

ba
l M

em
or

y

G
lo

ba
l M

em
or

y

RSM

RSM RSM RSM

RSM

RSM

TSM

SM

TSM

SM

SM

TSM

SM

SM

TSM

TSM

SM

TSM

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

15

Memory Model: Packet Memory

• Term for header fields attached
to packets

• A kind of memory because it
transfers state info. across peer
components

• Accessible only to peer
component instances

• Read-only transparent access to
other lower-level components

• Extent same as transit time of
packet between peer
components

• e.g. checksum, sequence
numbers, fragment identifiers

Composite
Protocol X

Composite
Protocol Y

ENDPOINT A

Packet
 Memory

Packet
 Memory

Packet
 Memory

SLP SLP

SLP SLP

SLP SLP

SLP SLP

G
lo

ba
l M

em
or

y

RSM

RSM RSM

TSM

SM

TSM

SM

SM

TSM

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

16

Memory Model: Local Memory

• Local to one instance of a
component

• Extent same as that of
component

• For TSM+RSM, accessible to
both state machines

• Only one of TSM and RSM
active at any time, hence no
concurrent access

• e.g. unacknowledged packets,
incomplete fragments, neighbor
identities

Composite
Protocol X

Composite
Protocol Y

ENDPOINT A

Packet
 Memory

Packet
 Memory

Packet
 Memory

SLP SLP

SLP SLP

SLP SLP

SLP SLP

G
lo

ba
l M

em
or

y

RSM

RSM RSM

TSM

SM

TSM

SM

SM

TSM

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

17

Memory Model: Stack-local Packet Memory

• Pertains to a packet but is local
to a composite protocol instance

• Accessible to all components in
a composite protocol instance

• Extent same as that of the
packet

• Strong requirements to avoid
incompatibilities

• e.g. next hop network address,
time-to-live

Composite
Protocol X

Composite
Protocol Y

ENDPOINT A

Packet
 Memory

Packet
 Memory

Packet
 Memory

SLP SLP

SLP SLP

SLP SLP

SLP SLP

G
lo

ba
l M

em
or

y

RSM

RSM RSM

TSM

SM

TSM

SM

SM

TSM

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

18

Memory Model: Global Memory

• Shared by more than one
composite protocol at an
endpoint

• Accessible to all components of
all composite protocol instances
at that endpoint

• Functional interface to manage
concurrent access

• Extent same as that of endpoint
OS

• e.g. routing table entries,
multicast group membership
info.

Composite
Protocol X

Composite
Protocol Y

ENDPOINT A

Packet
 Memory

Packet
 Memory

Packet
 Memory

SLP SLP

SLP SLP

SLP SLP

SLP SLP

G
lo

ba
l M

em
or

y

RSM

RSM RSM

TSM

SM

TSM

SM

SM

TSM

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

Local Memory

19

Formal Properties

• Assertions about a condition being TRUE for a packet or a
sequence of packets

• e.g. bit-error free transmission, in-order delivery
• Requirement

– a property that shall hold for correct operation of a component
– e.g. no bit errors in packet memory fields

• Guarantee
– a property provided by a component, given the requirements
– e.g. in-order delivery of packets

• Invariant
– a property preserved by a component
– e.g. encryption component preserves in-order delivery

20

Control Interface

• Mechanism for inter-component and intra-composite
protocol communication

• Leads to development of smaller components that are
likely to be reused more often

• e.g. file transfer as FTP control and FTP data components
– FTP control and FTP data

• web caching
• file transfer

– FTP data alone
• streaming multimedia
• data logging

21

Design of Control Interface

• Modeled as exchange of messages between components
• Controlled component offers a service
• Controlling component uses the service
• Service

– Specification of service request
• unique name
• list of commands & parameters for each command

– Implementation
• transitions for every command of the service in the SM of controlled

component, one command at a time
• commands carried by CONTROL events

– Invocation
• creation of a service request and a CONTROL event to carry it

22

Control Interface Example

File Transfer Client

Application

FTP Control

FTPControlCM
cmd = GET
local file = proto.txt
remote file = desc.txt

• Service specification
– name: FTPControlCM
– commands (parameters)

• user (name, pw),
• get (local, remote),
• put (local, remote),
• list (remote),
• quit

• Service Implementation
– peer-to-peer communication

initiated upon reception of
service request

23

Composite Protocol Framework

• Infrastructure for composition and operation of composite
protocols

• Responsibilities
– Drive state machines of components
– Manage event queues between components
– Map packet receptions to state machine events and vice versa
– Implement primitives

• e.g. PktSend, PktDeliver, NewPktSend, NewPktDeliver etc.
– Provide an application interface

24

Overview of Ensemble

• Group communication system developed at Cornell
• Unit of composition: Layer
• Supports linear stacking of layers
• Event handlers executed atomically
• Implements unbounded event queues between layers
• Implemented in OCaml

– Better prospects for formal analysis
– Prior reported results on analysis using NuPrl

• Layers offer a uniform interface

25

FSM executor over Ensemble

TSM RSM

Ensemble events (ECast, ESend, ELeave…)

FSM events (PKT_TO_NET,TIMEOUT…)

TTL

Checksum

Forwarder

Fragmentation
FSM executor

Custom Composite Protocol

26

Performance Evaluation: Test Setup

• Linux TCP/IP stack used as
benchmark

• Ensemble test applications
to mimic ping and ttcp

• Metrics: Round-trip
Latency and One-way
Throughput

testnode8 testnode7

testnode9

testnode10 testnode11

testnode12

eth1

eth1

eth1

eth1

eth1 eth1eth2

eth2 eth2

eth2

10.10.12.0/24

10.10.23.0/24

10.10.34.0/24

10.10.45.0/24

10.10.56.0/24

• Pentium III 533 MHz
• 128 MB RAM, 20 GB HDD
• 1 built-in 100 Mbps NIC
• 1-4 addl. 100 Mbps NICs
• RedHat 7.1, Linux 2.4.3-12
• OCaml v3.06, native code

27

Test Composite Protocol: UDP-like

Endpoint BEndpoint A Router X

Router App.

FORWARD

TTL

FRAGMENT

CHECKSUM

Application

FORWARD

TTL

FRAGMENT

CHECKSUM

Application

FORWARD

TTL

FRAGMENT

CHECKSUM

28

RT Latency vs. Message size

• 11 trials of 1000 messages each
• Machines directly connected
• Standard deviation < 34% of

mean
• Sharp increase after 1400 bytes

due to fragmentation
• CP ping worse than Linux ping

by a factor of 2 to 4
– SM execution adds overhead
– Strict layering in framework

prevents pointer arithmetic on
buffers

– Ensemble is a user-level
program

29

RT Latency vs. Number of hops

• 11 trials of 1000 messages each
• Minimum message size (1 byte)
• Standard deviation < 40% of

mean
• One-hop latency ~ 340 usec
• Each additional hop adds ~ 320

usec
• Per-hop latency increment

almost same as one-hop latency
due to absence of components
above FORWARD at endpoints

30

Throughput vs. Message size

• 11 trials of 10K messages each
• Machines directly connected
• Standard deviation < 9% of

mean
• Sender slowdown factor of 10
• Packet memory overheads

– 90 bytes by 4 components
– 28 bytes by framework

• Max. theoretical throughput of
88.04 Mbps at message size of
1354 bytes

• 68% of theoretical max.
throughput achieved

31

Throughput vs. Number of hops

• 11 trials of 10K messages each
• Message size of 1300 bytes
• Standard deviation < 1% of

mean
• Sender slowdown factor of 10
• 33% throughput reduction with

inclusion of one router, no
further reduction with number
of routers

• 32% packet loss at first router
• Throughput sustained by a

router ~ 39 Mbps

32

Summary

• New methodology to design modular protocol components
• Highlights

– State machine representation
– Emphasis on formal reasoning
– Explicit memory classification
– Control interface

• Composite protocol framework implemented over
Ensemble

• Components for functional equivalents of IP, UDP, TCP
and FTP specified and implemented

• Performance of UDP-like and TCP-like composite
protocols evaluated against Linux equivalents

33

Future Work

• Formal reasoning of protocol component properties
• Tools for enforcing semantic restrictions

– Completeness of state machines
– Incompatibilities in SLPM access

• Automatic generation of code from specification
• “Properties-in Protocol-out” configuration tool
• Development of more components
• Efficiency improvements

34

Questions?

