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Outline

• Motivation
• Elements of a Protocol Component
• Composite Protocol (CP) Framework
• Implementation of CP Framework over Ensemble
• Performance Evaluation
• Summary & Future Work
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Motivation for Composite Protocols

• Layering only a design principle
– Implementations usually less-structured

• Correctness as important as efficiency
– More so with active networks
– Typical implementations only tested; not proven correct

• Code reuse not prevalent in protocol software
• Few choices in configuring a protocol

– e.g. simple UDP or feature-rich TCP

• Developing variants not easy
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Advantages of Composite Protocols

• Protocols implemented as collections of single-function
components
– Formal verification tasks more manageable
– Better scope for reuse of protocol functions
– Faster development of variants
– Better prospects for customization
– “Properties-in Protocol-out”
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Definitions

• Protocol Component
– Single-function entity
– Not very useful stand-alone
– e.g. fragmentation, reliable delivery, neighbor discovery

• Composite Protocol
– Collection of components arranged in an orderly fashion
– Useful as a unit
– e.g. file transfer, web document retrieval, byte-stream transport

• Network Service
– Collection of cooperating composite protocols that offer a larger

communication service
– e.g. multicast, web caching
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Composition Method: Linear Stacking

• Composite Protocol -> Linear arrangement of components
• Messages from application processed by a fixed sequence

of components
• Sequence decided at configuration time and does not

change during operation
• Regularity of processing sequence helpful for formal

reasoning
• Absence of multiplexing and demultiplexing

– Each application gets its private instance of a composite protocol

• Need for stack matching
– Identical sequence of components at endpoints and routers
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Elements of a Protocol Component

• State machine representation
• Memory model
• Formal properties
• Parameters

– Knobs to tune component functionality

• Control interface



8

State Machine Representation

• Component functionality as an FSM
– Natural representation for protocols
– Facilitates automatic verification and validation

• Augmented state machine model
– Guard expression

• predicate that should hold TRUE for transition to be executable
– Synchronous transition

• “no-wait” transition
• triggered upon entry to a state
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Component as a State Machine

• Transitions are atomic
• Events to busy SM are queued
• Component

– driven by two event queues
– actions generate events that are

deposited into one of two output
queues

– either one or a pair of state machines
(transmit and receive)

– pair of state machines if the transmit
and receive tasks are relatively
independent

TSM RSM

Outbound events

Inbound events

SM
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State Machine Structure

• State Machine
– List of States

• State
– List of Transitions

• Transition
– current state
– next state
– event type
– guard expression: condition for this transition to be executable
– action: response of the SM for this event
– local memory update: changes to local memory objects
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State Machine Execution

wait for next event

state := init_state

event1

event type?

Is ‘state’ 
      sync?

false

true

Transition block Transition block Transition block

event2 event x Guard1? Guard2?

action1

locmem_upd1

state := next_state1

action2

locmem_upd2

state := next_state2

actionx

locmem_updx

state := next_statex

true true true

false false false

signal error

Transition block for event y

Guardx?
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State Machine Semantics

• Guard Expressions
– Only one of the guards shall be TRUE for any event occurrence
– None of the guards is TRUE

• under-specified state machine
– More than one guard is TRUE

• ambiguous state machine
– Purely functional

• no side-effects

• Synchronous Transitions
– If one of the transitions from a state is synchronous, all transitions

shall be synchronous

• Imperative behavior limited to local memory update
function
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Example: Fragmentation TSM

WAIT SEND_FRAG

Event: PKT_TO_NET
Guard: PktSize <= MTU
Action: Xmit Pkt unfragmented
LM Update: --

Event: PKT_TO_NET
Guard: PktSize > MTU
Action: --
LM Update: Find no. of frags

Event: None
Guard: Any more frags to Xmit
Action: Xmit fragment
LM Update: Update running vars

Event: None
Guard: No more frags to Xmit
Action: --
LM Update: Update running vars
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Memory Model
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Memory Model: Packet Memory

• Term for header fields attached
to packets

• A kind of memory because it
transfers state info. across peer
components

• Accessible only to peer
component instances

• Read-only transparent access to
other lower-level components

• Extent same as transit time of
packet between peer
components

• e.g. checksum, sequence
numbers, fragment identifiers
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Memory Model: Local Memory

• Local to one instance of a
component

• Extent same as that of
component

• For TSM+RSM, accessible to
both state machines

• Only one of TSM and RSM
active at any time, hence no
concurrent access

• e.g. unacknowledged packets,
incomplete fragments, neighbor
identities
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Memory Model: Stack-local Packet Memory

• Pertains to a packet but is local
to a composite protocol instance

• Accessible to all components in
a composite protocol instance

• Extent same as that of the
packet

• Strong requirements to avoid
incompatibilities

• e.g. next hop network address,
time-to-live
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Memory Model: Global Memory

• Shared by more than one
composite protocol at an
endpoint

• Accessible to all components of
all composite protocol instances
at that endpoint

• Functional interface to manage
concurrent access

• Extent same as that of endpoint
OS

• e.g. routing table entries,
multicast group membership
info.
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Formal Properties

• Assertions about a condition being TRUE for a packet or a
sequence of packets

• e.g. bit-error free transmission, in-order delivery
• Requirement

– a property that shall hold for correct operation of a component
– e.g. no bit errors in packet memory fields

• Guarantee
– a property provided by a component, given the requirements
– e.g. in-order delivery of packets

• Invariant
– a property preserved by a component
– e.g. encryption component preserves in-order delivery
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Control Interface

• Mechanism for inter-component and intra-composite
protocol communication

• Leads to development of smaller components that are
likely to be reused more often

• e.g. file transfer as FTP control and FTP data components
– FTP control and FTP data

• web caching
• file transfer

– FTP data alone
• streaming multimedia
• data logging



21

Design of Control Interface

• Modeled as exchange of messages between components
• Controlled component offers a service
• Controlling component uses the service
• Service

– Specification of service request
• unique name
• list of commands & parameters for each command

– Implementation
• transitions for every command of the service in the SM of controlled

component, one command at a time
• commands carried by CONTROL events

– Invocation
• creation of a service request and a CONTROL event to carry it
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Control Interface Example

File Transfer Client

Application

FTP Control

FTPControlCM
cmd = GET
local file = proto.txt
remote file = desc.txt

• Service specification
– name: FTPControlCM
– commands (parameters)

• user (name, pw),
• get (local, remote),
• put (local, remote),
• list (remote),
• quit

• Service Implementation
– peer-to-peer communication

initiated upon reception of
service request
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Composite Protocol Framework

• Infrastructure for composition and operation of composite
protocols

• Responsibilities
– Drive state machines of components
– Manage event queues between components
– Map packet receptions to state machine events and vice versa
– Implement primitives

• e.g. PktSend, PktDeliver, NewPktSend, NewPktDeliver etc.
– Provide an application interface
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Overview of Ensemble

• Group communication system developed at Cornell
• Unit of composition: Layer
• Supports linear stacking of layers
• Event handlers executed atomically
• Implements unbounded event queues between layers
• Implemented in OCaml

– Better prospects for formal analysis
– Prior reported results on analysis using NuPrl

• Layers offer a uniform interface
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FSM executor over Ensemble

TSM RSM

Ensemble events (ECast, ESend, ELeave…)

FSM events (PKT_TO_NET,TIMEOUT…)

TTL

Checksum

Forwarder

Fragmentation
FSM executor

Custom Composite Protocol
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Performance Evaluation: Test Setup

• Linux TCP/IP stack used as
benchmark

• Ensemble test applications
to mimic ping and ttcp

• Metrics: Round-trip
Latency and One-way
Throughput

testnode8 testnode7

testnode9

testnode10 testnode11

testnode12

eth1

eth1

eth1

eth1

eth1 eth1eth2

eth2 eth2

eth2

10.10.12.0/24

10.10.23.0/24

10.10.34.0/24

10.10.45.0/24

10.10.56.0/24

• Pentium III 533 MHz
• 128 MB RAM, 20 GB HDD
• 1 built-in 100 Mbps NIC
• 1-4 addl. 100 Mbps NICs
• RedHat 7.1, Linux 2.4.3-12
• OCaml v3.06, native code
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Test Composite Protocol: UDP-like

Endpoint BEndpoint A Router X

Router App.

FORWARD

TTL

FRAGMENT

CHECKSUM

Application

FORWARD

TTL

FRAGMENT

CHECKSUM

Application

FORWARD

TTL

FRAGMENT

CHECKSUM
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RT Latency vs. Message size

• 11 trials of 1000 messages each
• Machines directly connected
• Standard deviation < 34% of

mean
• Sharp increase after 1400 bytes

due to fragmentation
• CP ping worse than Linux ping

by a factor of 2 to 4
– SM execution adds overhead
– Strict layering in framework

prevents pointer arithmetic on
buffers

– Ensemble is a user-level
program
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RT Latency vs. Number of hops

• 11 trials of 1000 messages each
• Minimum message size (1 byte)
• Standard deviation < 40% of

mean
• One-hop latency ~ 340 usec
• Each additional hop adds ~ 320

usec
• Per-hop latency increment

almost same as one-hop latency
due to absence of components
above FORWARD at endpoints
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Throughput vs. Message size

• 11 trials of 10K messages each
• Machines directly connected
• Standard deviation < 9% of

mean
• Sender slowdown factor of 10
• Packet memory overheads

– 90 bytes by 4 components
– 28 bytes by framework

• Max. theoretical throughput of
88.04 Mbps at message size of
1354 bytes

• 68% of theoretical max.
throughput achieved
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Throughput vs. Number of hops

• 11 trials of 10K messages each
• Message size of 1300 bytes
• Standard deviation < 1% of

mean
• Sender slowdown factor of 10
• 33% throughput reduction with

inclusion of one router, no
further reduction with number
of routers

• 32% packet loss at first router
• Throughput sustained by a

router ~ 39 Mbps
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Summary

• New methodology to design modular protocol components
• Highlights

– State machine representation
– Emphasis on formal reasoning
– Explicit memory classification
– Control interface

• Composite protocol framework implemented over
Ensemble

• Components for functional equivalents of IP, UDP, TCP
and FTP specified and implemented

• Performance of UDP-like and TCP-like composite
protocols evaluated against Linux equivalents
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Future Work

• Formal reasoning of protocol component properties
• Tools for enforcing semantic restrictions

– Completeness of state machines
– Incompatibilities in SLPM access

• Automatic generation of code from specification
• “Properties-in Protocol-out” configuration tool
• Development of more components
• Efficiency improvements
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Questions?


