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Abstract

There are thousands of colleges and universities offering common courses. Although 

courses may share elements in common it is rare to find two courses from two institutions that 

share the same, and only the same, set of elements. Identifying the common elements of similar 

courses, and having their descriptions in one centralized database so that they are available to 

every course on that subject, results in a significant reduction in both the development time and 

cost. 

For learning objects to be more widely used, a wide variety of learning objects must 

become readily available and educators need to learn more about them, knowing how to search 

for them and create them. The project aims to solve the first problem by automatically 

identifying and retrieving the most similar learning objects to the user query. Incremental 

Indexing is used for building a similarity matrix as opposed to batch processing which required 

the algorithm to be re-run whenever a new document was added to the collection.
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1. Introduction

1.1. Learning Objects 

According to the Institute for Higher Education Policy [1] 85 percent of four-year 

colleges offer courses online. A problem with the online courses is that they are not very flexible 

so they are difficult to repurpose. Many institutions offer similar courses with similar elements 

and each one ends up developing content for the course. As a result, there are probably hundreds 

of descriptions of similar topics floating around on the Internet. 

Educational content is not inexpensive to produce. Even a plain Web page authored by a 

professor can cost hundreds of dollars. When you include graphics and a little animation, the 

price is doubled. Add an interactive exercise and the price is quadrupled. Instead, a course can be 

made of smaller units of content called “learning objects”. Each learning object can be made 

such that it is self-contained so that it can be used without depending on other learning objects. 

These learning objects can be reused by the other courses that need to convey the same concept 

rather than requiring development of their own description. This can save both the time and the 

expense.

A learning object can be almost anything. Any stand alone piece of information capable 

of teaching something can be a learning object. It can be a chapter in a book, a video, an image, a 

wiring diagram, an interactive application, a simulation and so on. As well as being of a flexible 

type, a learning object can be any size. A learning object should be a self-contained, reusable, 

smaller unit of learning that can be aggregated with other learning objects to produce more 

substantial units of learning. They are generally tagged with meta-data to allow them to be easily 

retrieved by a search.
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The availability of computational power and network infrastructure that greatly facilitate

distribution and sharing of learning objects coupled with their flexibility and re-usability creates 

a compelling economic rationale for learning objects. 

In order to make such a system distributed and interoperable, we need to make sure that 

there is a common language that different systems understand and communicate in. eXtensible 

Markup Language, or XML, developed by the World Wide Web Consortium seems like the 

obvious solution for its two main reasons. First, it is structured so it is capable of representing an 

object hierarchy. Second, it is in plain text and easily machine-readable. Thus, it provides a 

means of distributing content to other systems no matter where they are located and no matter 

what program they are running. Thus, a piece of learning material, no matter where it is located, 

may be seamlessly integrated into an online course, provided the XML tags are employed 

consistently.

1.2. IKME

The Intelligent Knowledge Management Environment (IKME) is an ongoing project at 

the University of Kansas aimed at assisting the Defense Information Technology Testbed 

(DITT)/University After Next (UAN) by providing an advanced reach-back capability for 

commanders, staff, and other users who have time-critical needs. A knowledge management 

environment would facilitate the creation of extensible and reusable learning objects that would 

lead to faster delivery of content to knowledge users.

The project is based on the idea of using the Extensible Markup language as the data 

format for publishing. Knowledge creators use the environment to create learning objects which 

are stored as XML documents. These learning objects are based on an XML schema developed 
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by the “Center for Army Lessons Learned”. These learning objects can be in turn reused to 

create lesson objects, which in turn are used to create a manual. This setup facilitates ease of 

creation and also faster delivery of content to the end users. Another main advantage of using 

XML as the data format is the separation of content and style. The same XML document can be 

represented in various styles and data formats using style sheets. For example a manual can be 

published online using an XSLT style sheet and also converted to a PDF file (for printing) by 

using the XSL-FO style sheet.

IKME contains the following capabilities:

Create, modify, view and search learning objects.

Create, modify, view and search lesson objects.

Create, modify, view and search manual objects.

1.3. Goals and Contributions

To use a Memory based approach for indexing as opposed to File based approach used 

for the earlier version. 

To help the user find the related learning object content for the creation of lesson objects 

and manuals. 

To incorporate Incremental Indexing into the similarity search instead of batch 

processing which required the algorithm to be re-run every time a new document is added 

to the collection.
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2. Approach

2.1. Overview

The aim of the project is to generate similarity information between different documents 

so that the system can display the top N matching documents for a given document. Initially, 

each document is preprocessed and tokenized according to a set of predefined rules. Then these 

tokenized documents are indexed using the standard vector space model. As, a result Dictionary 

and Postings Files are created. Then the similarities between each document with all other 

documents in the collection are calculated. These results are stored as a similarity matrix on the 

disk for future use (when a new document is added). Then the top N similar documents to each 

document can be easily retrieved by a file look up operation. When new documents get added to 

the collection by create learning objects, the index and the similarity matrix get updated so that 

the changes to the similarities because of new documents are immediately reflected.

2.1. Existing Version

The existing version of IKME uses a file based indexing method in which each file is 

tokenized into an output file. So, if the document collection has 50 files, (1.in, 2.in,…., 50.in), 

we create 50 tokenized files (1.out, 2.out,.…, 50.out). When the similarities are calculated, each 

tokenized file is opened, used for similarity calculation and closed. Once the similarity matrix is 

generated, it is stored to a persistent store and this matrix is used to display the top N most 

similar documents to a particular document.
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Formula:
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where

N = number of tokens in the vocabulary

wtid1 = tfid1 * idfi

tfid1= (frequency of token i in d1/ total number of unique tokens in d1)

idfi = log2 (total number of documents/number of documents in which token i appeared) 

2.2. Problems with the existing version

The above method suffers from three problems. First, it uses a File based Indexing which 

is not fast enough for large scale processing. Second, it creates many files for calculating the 

similarity information. Finally the most glaring problem of all is that whenever a new document 

is added to the collection the whole algorithm needs to be re-run. So, it creates a similarity 

matrix from the scratch after each document addition. Since the algorithm is N2, the problem 

2.3. Overview of my enhancements

The new version uses a Memory based approach as opposed to file based approach, so 

the process of indexing is faster than that of the previous version. Since memory is getting 

cheaper, we should have enough space to fit the inverted file in main memory and take the 

advantage of faster seek times.

Incremental Indexing is used, so even if a new document is added to the collection, the 

algorithm need not be run again from the scratch. It first updates the index files (Postings and 
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Dictionary) and then uses the existing similarity information for updating the similarity matrix 

because of updated index. 

Execution speed is the most important advantage gained by the enhancements which 

make it more suitable for large scale needs.
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3. System Architecture
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4. Implementation Details

4.1 Index.cc:

Inputs:

Path of the dictionary file to be created.

Path of the postings file to be created.

Path of the documents file to be crated.

Path to file specifying document pre-processing options.

Directory containing the documents to be indexed/Path to file that specifies the filenames 

and document ids.

Number of words expected in the document collection.

Number of documents.

Flag to turn on/off normalization.

Flag to print indexing execution statistics.

Flag to specify whether to read from the list of document name or to generate the file.

Outputs:

Dictionary File

Postings File

Documents File

Purpose: To index the documents using standard term frequency-inverse document frequency 

(tf-idf) approach.
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4.2 Categorize.cc:

Inputs:

Path of the dictionary file.

Path of the postings file.

Path of the documents file.

Path of the input document to be categorized.

Output file containing category ids and corresponding weights.

Number of words to be used for comparing documents.

Number of documents to be returned.

Outputs:

Returns a file that contains top n similar documents to the current document along with 

the weights. 

Its format is <docid> <weight>

 Purpose: Returns the top n similar documents to a given document in the descending order.

Sample Output:

Doc Id Weight
10 0.98
8 0.85
6 0.75
3 0.43
11 0.12
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4.3 WriteSim.cc:

Inputs:

The document collection.

The path where the resultant similarity matrix should be written.

Outputs:

The similarity matrix is created and is stored as a file. It has all the documents in the 

collection and the top 5 matching documents to the corresponding documents.

Purpose: This program is responsible for creation of the similarity file for the purpose of 

retrieving top n similar objects to a given document. The similarity matrix is a flat file with fixed 

record format, so that retrieval of a particular record can be done with ease.

Algorithm:

For all documents in the collection {

Process the document for tokenizing it.

Add the tokenized document to the index (Dictionary, Postings and Documents files).

Retrieve the top ‘n’ similar documents to the current document.

Eliminate the similarity value of a document with itself.

Open the temporary output file in Read Mode.

Open the similarity file in Write Mode.

Print the top n results from temporary file to the Similarity Matrix.

Close the temporary file.

Close the similarity file.

}

Close the Directory of documents.
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Sample Output:

4.4 CreateFile.cc:

Inputs:

New documents added to the document collection.

The Similarity Matrix file.

Outputs:

A file with the document names and the ids in the new directory.

Purpose: The resultant docID file has the document names and the docID (starting from the last 

document id in the docID file created by indexer). It is needed for updating the index files with 

the new documents.

Algorithm:

Open the Similarity Matrix in read mode.

Open the docID file in write mode.

Document Id Weight Id Weight Id Weight Id Weight Id Weight

0 1 0.2213 13 0.2122 35 0.0632 54 0.0570 4 0.0529

1 0 0.5287 13 0.4383 7 0.2250 25 0.1844 21 0.1839

2 52 0.1439 17 0.1351 14 0.1057 13 0.0987 12 0.0812

3 57 0.2211 50 0.1459 55 0.1385 7 0.1305 51 0.0979
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Seek till the end of Similarity File to find the last document id.

Open the directory or newly added documents.

For all the documents in the directory {

Print the location of the file and the incremented document id into the docID file.

}

Close the directory.

Close the docID file.

Close the Similarity File.

Sample Output:

Doc Name Doc Id
../inputfiles/urban_energy.xml 51

../inputfiles/urban_environment.xml 52
../inputfiles/urban_finance.xml 53

../inputfiles/urban_infrastructure.xml 54
../inputfiles/urban_population.xml 55
../inputfiles/urban_network.xml 56
../inputfiles/urban_satellite.xml 57

../inputfiles/urban_segments.xml 58
../inputfiles/urban_supersurface.xml 59

../inputfiles/urban_systems.xml 60
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4.5 Update.cc:

Inputs: 

The location of Similarity Matrix.

New documents added to the document collection.

Outputs:

Updated Similarity Matrix with corresponding changes made to all the corresponding 

documents.

Purpose: Update the Similarity Information, because of the newly added documents to the 

collection. 

Algorithm: 

typedef struct {

int id;

            float wt;

} recordtype;

recordtype UPDATERECORD [UPDATERECORDSIZE];

recordtype RECORD [RECORDSIZE];

Open the Similarity Matrix in read and write mode.

Seek till the end to find the last document id and save it in the memory.

For all the files in the newly added directory {

Process the document for tokenizing it.

Retrieve the top ‘n’ similar documents to the current document.

Open the output stored in the temporary file in Read Mode.
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Open the similarity file in Write Mode.

Print the top n results from temporary file along with the document id, to the Similarity 

Matrix.

Copy the top 3n results into the UPDATERECORD Array of doc_ids and weights. 

Close the temporary file.

For all the elements in UPDATERECORD (i=0 to 3n) {

If the doc id of the ith element of UPDATERECORD is greater than or equal to 

current document id 

Continue

Seek to the start of the record of the corresponding document according to the ith

location in the UPDATERECORD Array.

Store the record entries and the current docid and weight into the RECORD array.

Perform Insertion Sort on the weights of the 6 entries in RECORD array.

Seek to the start of that record again and write the top 5 entries of the sorted 

Array.

Close the temporary file.

}

Close the similarity file.

}
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Step 1: Adding new record(s) to the similarity matrix



Page 19 of 19

Step 2: Updating the corresponding records’ similarity information
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New Similarity Matrix
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5. Evaluation

Comparisons between the existing version and the new version when new documents are added 

to the collection:

Number of Documents New Version

Time (in seconds)

Earlier Version

Time (in seconds)

54 26 (7.31u, 12.28s) 52

72 (18 documents added) 11 (2.48u,   3.98s) 62

172 (100 documents added) 52 (14.13u, 23.10s) 220

For 500 documents (450 added to an initial collection of 50), it took around 243 seconds (68.34u, 

124.36s) for the new version.

The execution speeds stand as a testimony for the efficiency and the need for Incremental 

Indexing in real-time searches for learning objects stored in huge databases.
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Comparisons between the existing version and the new version when new documents are added 

to the collection but the similarity information is calculated at once, instead of using the 

incremental update:

Number of Documents New Version

Time (in seconds)

Earlier Version

Time (in seconds)

54 26 (6.98u, 12.09s) 52

72 37 (9.418u,   15.85 s) 62

172 91 (24.21u, 38.09s) 220

Clearly the usage of memory based method is an improvement over the file based method. The 

decrease in the execution time validates the efficiency of new version.
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6. Screenshots 

List of Learning Objects stored in the repository.
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Top 5 similar learning objects to a particular learning object
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Top similar learning object to a particular object
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7. Conclusions

The primary goal of incorporating Incremental Indexing into the similarity search has 

been achieved. 

The algorithm need not be re-run even if a single document is added to the collection. 

Only the required parts of the index and the similarity matrix are updated.

This will provide a faster way to search for similar learning objects and help the 

educators in creating new lessons using existing learning objects rapidly and 

inexpensively.
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8. Future Work

Investigating similarity formula (i.e., weighting different fields differently when

calculating the match between the objects) 

Learning best differential weighting scheme.
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