
Page 1 of 1

Identifying Similar Learning Objects Incrementally

by

Naveen Nelapudi

B.S (Computer Science), Osmania University, Hyderabad, India, 2001

Committee

Dr. SUSAN GAUCH (CHAIR)

Dr. JERZY-GRZYMALA BUSSE

 Dr. XUE-WEN CHEN

Submitted to the Department of Electrical Engineering and Computer Science and the
faculty of the Graduate School of the University of Kansas in partial fulfillment of the
requirements for the degree of Master of Science.

University of Kansas

Page 2 of 2

Table of Contents

Abstract ..3

1. Introduction...4

1.1. Learning Objects ..4
1.3. Goals and Contributions ...6

2. Approach ..7

2.1. Overview..7
2.1. Existing Version...7
2.2. Problems with the existing version ...8
2.3. Overview of my enhancements...8

3. System Architecture..10

4. Implementation Details ...11

4.1 Index.cc:..11
4.2 Categorize.cc:..12
4.3 WriteSim.cc: ...13

5. Evaluation...21

6. Screenshots ...23

7. Conclusions...26

8. Future Work..27

9. References...28

Page 3 of 3

Abstract

There are thousands of colleges and universities offering common courses. Although

courses may share elements in common it is rare to find two courses from two institutions that

share the same, and only the same, set of elements. Identifying the common elements of similar

courses, and having their descriptions in one centralized database so that they are available to

every course on that subject, results in a significant reduction in both the development time and

cost.

For learning objects to be more widely used, a wide variety of learning objects must

become readily available and educators need to learn more about them, knowing how to search

for them and create them. The project aims to solve the first problem by automatically

identifying and retrieving the most similar learning objects to the user query. Incremental

Indexing is used for building a similarity matrix as opposed to batch processing which required

the algorithm to be re-run whenever a new document was added to the collection.

Page 4 of 4

1. Introduction

1.1. Learning Objects

According to the Institute for Higher Education Policy [1] 85 percent of four-year

colleges offer courses online. A problem with the online courses is that they are not very flexible

so they are difficult to repurpose. Many institutions offer similar courses with similar elements

and each one ends up developing content for the course. As a result, there are probably hundreds

of descriptions of similar topics floating around on the Internet.

Educational content is not inexpensive to produce. Even a plain Web page authored by a

professor can cost hundreds of dollars. When you include graphics and a little animation, the

price is doubled. Add an interactive exercise and the price is quadrupled. Instead, a course can be

made of smaller units of content called “learning objects”. Each learning object can be made

such that it is self-contained so that it can be used without depending on other learning objects.

These learning objects can be reused by the other courses that need to convey the same concept

rather than requiring development of their own description. This can save both the time and the

expense.

A learning object can be almost anything. Any stand alone piece of information capable

of teaching something can be a learning object. It can be a chapter in a book, a video, an image, a

wiring diagram, an interactive application, a simulation and so on. As well as being of a flexible

type, a learning object can be any size. A learning object should be a self-contained, reusable,

smaller unit of learning that can be aggregated with other learning objects to produce more

substantial units of learning. They are generally tagged with meta-data to allow them to be easily

retrieved by a search.

Page 5 of 5

The availability of computational power and network infrastructure that greatly facilitate

distribution and sharing of learning objects coupled with their flexibility and re-usability creates

a compelling economic rationale for learning objects.

In order to make such a system distributed and interoperable, we need to make sure that

there is a common language that different systems understand and communicate in. eXtensible

Markup Language, or XML, developed by the World Wide Web Consortium seems like the

obvious solution for its two main reasons. First, it is structured so it is capable of representing an

object hierarchy. Second, it is in plain text and easily machine-readable. Thus, it provides a

means of distributing content to other systems no matter where they are located and no matter

what program they are running. Thus, a piece of learning material, no matter where it is located,

may be seamlessly integrated into an online course, provided the XML tags are employed

consistently.

1.2. IKME

The Intelligent Knowledge Management Environment (IKME) is an ongoing project at

the University of Kansas aimed at assisting the Defense Information Technology Testbed

(DITT)/University After Next (UAN) by providing an advanced reach-back capability for

commanders, staff, and other users who have time-critical needs. A knowledge management

environment would facilitate the creation of extensible and reusable learning objects that would

lead to faster delivery of content to knowledge users.

The project is based on the idea of using the Extensible Markup language as the data

format for publishing. Knowledge creators use the environment to create learning objects which

are stored as XML documents. These learning objects are based on an XML schema developed

Page 6 of 6

by the “Center for Army Lessons Learned”. These learning objects can be in turn reused to

create lesson objects, which in turn are used to create a manual. This setup facilitates ease of

creation and also faster delivery of content to the end users. Another main advantage of using

XML as the data format is the separation of content and style. The same XML document can be

represented in various styles and data formats using style sheets. For example a manual can be

published online using an XSLT style sheet and also converted to a PDF file (for printing) by

using the XSL-FO style sheet.

IKME contains the following capabilities:

Create, modify, view and search learning objects.

Create, modify, view and search lesson objects.

Create, modify, view and search manual objects.

1.3. Goals and Contributions

To use a Memory based approach for indexing as opposed to File based approach used

for the earlier version.

To help the user find the related learning object content for the creation of lesson objects

and manuals.

To incorporate Incremental Indexing into the similarity search instead of batch

processing which required the algorithm to be re-run every time a new document is added

to the collection.

Page 7 of 7

2. Approach

2.1. Overview

The aim of the project is to generate similarity information between different documents

so that the system can display the top N matching documents for a given document. Initially,

each document is preprocessed and tokenized according to a set of predefined rules. Then these

tokenized documents are indexed using the standard vector space model. As, a result Dictionary

and Postings Files are created. Then the similarities between each document with all other

documents in the collection are calculated. These results are stored as a similarity matrix on the

disk for future use (when a new document is added). Then the top N similar documents to each

document can be easily retrieved by a file look up operation. When new documents get added to

the collection by create learning objects, the index and the similarity matrix get updated so that

the changes to the similarities because of new documents are immediately reflected.

2.1. Existing Version

The existing version of IKME uses a file based indexing method in which each file is

tokenized into an output file. So, if the document collection has 50 files, (1.in, 2.in,…., 50.in),

we create 50 tokenized files (1.out, 2.out,.…, 50.out). When the similarities are calculated, each

tokenized file is opened, used for similarity calculation and closed. Once the similarity matrix is

generated, it is stored to a persistent store and this matrix is used to display the top N most

similar documents to a particular document.

Page 8 of 8

Formula:





N

i
idid wtwtddSimilarity

1
21 *)2,1(

where

N = number of tokens in the vocabulary

wtid1 = tfid1 * idfi

tfid1= (frequency of token i in d1/ total number of unique tokens in d1)

idfi = log2 (total number of documents/number of documents in which token i appeared)

2.2. Problems with the existing version

The above method suffers from three problems. First, it uses a File based Indexing which

is not fast enough for large scale processing. Second, it creates many files for calculating the

similarity information. Finally the most glaring problem of all is that whenever a new document

is added to the collection the whole algorithm needs to be re-run. So, it creates a similarity

matrix from the scratch after each document addition. Since the algorithm is N2, the problem

2.3. Overview of my enhancements

The new version uses a Memory based approach as opposed to file based approach, so

the process of indexing is faster than that of the previous version. Since memory is getting

cheaper, we should have enough space to fit the inverted file in main memory and take the

advantage of faster seek times.

Incremental Indexing is used, so even if a new document is added to the collection, the

algorithm need not be run again from the scratch. It first updates the index files (Postings and

Page 9 of 9

Dictionary) and then uses the existing similarity information for updating the similarity matrix

because of updated index.

Execution speed is the most important advantage gained by the enhancements which

make it more suitable for large scale needs.

Page 10 of 10

3. System Architecture

 Document

 Collection

 Create similarity matrix

 Similarity Matrix

 Create Index

 Update index

 Update Similarity Information

 New Similarity information
 Create doc ID file

 New Documents

System Architecture

0 1 0.98 7 0.86 9 0.73
1 4 0.85 3 0.73 8 0.32
. ……………………
. ……………………
. ……………………
. ……………………
n 3 0.99 5 0.97 1 0.88

Write
Similarity

Matrix

Indexer

1.xml
2.xml
…….
…….
50.xml

Categorizer

51.xml
52.xml
…….
…….
70.xml

Update
Similarity

Matrix

Create
File

Top n similar documents

Page 11 of 11

4. Implementation Details

4.1 Index.cc:

Inputs:

Path of the dictionary file to be created.

Path of the postings file to be created.

Path of the documents file to be crated.

Path to file specifying document pre-processing options.

Directory containing the documents to be indexed/Path to file that specifies the filenames

and document ids.

Number of words expected in the document collection.

Number of documents.

Flag to turn on/off normalization.

Flag to print indexing execution statistics.

Flag to specify whether to read from the list of document name or to generate the file.

Outputs:

Dictionary File

Postings File

Documents File

Purpose: To index the documents using standard term frequency-inverse document frequency

(tf-idf) approach.

Page 12 of 12

4.2 Categorize.cc:

Inputs:

Path of the dictionary file.

Path of the postings file.

Path of the documents file.

Path of the input document to be categorized.

Output file containing category ids and corresponding weights.

Number of words to be used for comparing documents.

Number of documents to be returned.

Outputs:

Returns a file that contains top n similar documents to the current document along with

the weights.

Its format is <docid> <weight>

 Purpose: Returns the top n similar documents to a given document in the descending order.

Sample Output:

Doc Id Weight
10 0.98
8 0.85
6 0.75
3 0.43
11 0.12

Page 13 of 13

4.3 WriteSim.cc:

Inputs:

The document collection.

The path where the resultant similarity matrix should be written.

Outputs:

The similarity matrix is created and is stored as a file. It has all the documents in the

collection and the top 5 matching documents to the corresponding documents.

Purpose: This program is responsible for creation of the similarity file for the purpose of

retrieving top n similar objects to a given document. The similarity matrix is a flat file with fixed

record format, so that retrieval of a particular record can be done with ease.

Algorithm:

For all documents in the collection {

Process the document for tokenizing it.

Add the tokenized document to the index (Dictionary, Postings and Documents files).

Retrieve the top ‘n’ similar documents to the current document.

Eliminate the similarity value of a document with itself.

Open the temporary output file in Read Mode.

Open the similarity file in Write Mode.

Print the top n results from temporary file to the Similarity Matrix.

Close the temporary file.

Close the similarity file.

}

Close the Directory of documents.

Page 14 of 14

Sample Output:

4.4 CreateFile.cc:

Inputs:

New documents added to the document collection.

The Similarity Matrix file.

Outputs:

A file with the document names and the ids in the new directory.

Purpose: The resultant docID file has the document names and the docID (starting from the last

document id in the docID file created by indexer). It is needed for updating the index files with

the new documents.

Algorithm:

Open the Similarity Matrix in read mode.

Open the docID file in write mode.

Document Id Weight Id Weight Id Weight Id Weight Id Weight

0 1 0.2213 13 0.2122 35 0.0632 54 0.0570 4 0.0529

1 0 0.5287 13 0.4383 7 0.2250 25 0.1844 21 0.1839

2 52 0.1439 17 0.1351 14 0.1057 13 0.0987 12 0.0812

3 57 0.2211 50 0.1459 55 0.1385 7 0.1305 51 0.0979

Page 15 of 15

Seek till the end of Similarity File to find the last document id.

Open the directory or newly added documents.

For all the documents in the directory {

Print the location of the file and the incremented document id into the docID file.

}

Close the directory.

Close the docID file.

Close the Similarity File.

Sample Output:

Doc Name Doc Id
../inputfiles/urban_energy.xml 51

../inputfiles/urban_environment.xml 52
../inputfiles/urban_finance.xml 53

../inputfiles/urban_infrastructure.xml 54
../inputfiles/urban_population.xml 55
../inputfiles/urban_network.xml 56
../inputfiles/urban_satellite.xml 57

../inputfiles/urban_segments.xml 58
../inputfiles/urban_supersurface.xml 59

../inputfiles/urban_systems.xml 60

Page 16 of 16

4.5 Update.cc:

Inputs:

The location of Similarity Matrix.

New documents added to the document collection.

Outputs:

Updated Similarity Matrix with corresponding changes made to all the corresponding

documents.

Purpose: Update the Similarity Information, because of the newly added documents to the

collection.

Algorithm:

typedef struct {

int id;

 float wt;

} recordtype;

recordtype UPDATERECORD [UPDATERECORDSIZE];

recordtype RECORD [RECORDSIZE];

Open the Similarity Matrix in read and write mode.

Seek till the end to find the last document id and save it in the memory.

For all the files in the newly added directory {

Process the document for tokenizing it.

Retrieve the top ‘n’ similar documents to the current document.

Open the output stored in the temporary file in Read Mode.

Page 17 of 17

Open the similarity file in Write Mode.

Print the top n results from temporary file along with the document id, to the Similarity

Matrix.

Copy the top 3n results into the UPDATERECORD Array of doc_ids and weights.

Close the temporary file.

For all the elements in UPDATERECORD (i=0 to 3n) {

If the doc id of the ith element of UPDATERECORD is greater than or equal to

current document id

Continue

Seek to the start of the record of the corresponding document according to the ith

location in the UPDATERECORD Array.

Store the record entries and the current docid and weight into the RECORD array.

Perform Insertion Sort on the weights of the 6 entries in RECORD array.

Seek to the start of that record again and write the top 5 entries of the sorted

Array.

Close the temporary file.

}

Close the similarity file.

}

Page 18 of 18

Step 1: Adding new record(s) to the similarity matrix

Page 19 of 19

Step 2: Updating the corresponding records’ similarity information

Page 20 of 20

New Similarity Matrix

Page 21 of 21

5. Evaluation

Comparisons between the existing version and the new version when new documents are added

to the collection:

Number of Documents New Version

Time (in seconds)

Earlier Version

Time (in seconds)

54 26 (7.31u, 12.28s) 52

72 (18 documents added) 11 (2.48u, 3.98s) 62

172 (100 documents added) 52 (14.13u, 23.10s) 220

For 500 documents (450 added to an initial collection of 50), it took around 243 seconds (68.34u,

124.36s) for the new version.

The execution speeds stand as a testimony for the efficiency and the need for Incremental

Indexing in real-time searches for learning objects stored in huge databases.

Page 22 of 22

Comparisons between the existing version and the new version when new documents are added

to the collection but the similarity information is calculated at once, instead of using the

incremental update:

Number of Documents New Version

Time (in seconds)

Earlier Version

Time (in seconds)

54 26 (6.98u, 12.09s) 52

72 37 (9.418u, 15.85 s) 62

172 91 (24.21u, 38.09s) 220

Clearly the usage of memory based method is an improvement over the file based method. The

decrease in the execution time validates the efficiency of new version.

Page 23 of 23

6. Screenshots

List of Learning Objects stored in the repository.

Page 24 of 24

Top 5 similar learning objects to a particular learning object

Page 25 of 25

Top similar learning object to a particular object

Page 26 of 26

7. Conclusions

The primary goal of incorporating Incremental Indexing into the similarity search has

been achieved.

The algorithm need not be re-run even if a single document is added to the collection.

Only the required parts of the index and the similarity matrix are updated.

This will provide a faster way to search for similar learning objects and help the

educators in creating new lessons using existing learning objects rapidly and

inexpensively.

Page 27 of 27

8. Future Work

Investigating similarity formula (i.e., weighting different fields differently when

calculating the match between the objects)

Learning best differential weighting scheme.

Page 28 of 28

9. References

[1] All About Learning Objects.

http://www.eduworks.com/LOTT/tutorial/learningobjects.html

[2] Learning Objects 101: A Primer for Neophytes

http://online.bcit.ca/sidebars/02november/inside-out-1.htm

[3] Introducing Reusable Learning Objects

http://media.wiley.com/product_data/excerpt/56/07879649/0787964956.pdf

[4] “Automatically Identifying Related Learning Objects” Mahesh Vulpala, Masters

Project. University of Kansas 2003.

