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Abstract

There are thousands of colleges and universities offering common courses. Although
courses may share elements in common it is rare to find two courses from two institutions that
share the same, and only the same, set of elements. Identifying the common elements of similar
courses, and having their descriptions in one centralized database so that they are available to
every course on that subject, results in a significant reduction in both the development time and

cost.

For learning objects to be more widely used, a wide variety of learning objects must
become readily available and educators need to learn more about them, knowing how to search
for them and create them. The project aims to solve the first problem by automatically
identifying and retrieving the most similar learning objects to the user query. Incremental
Indexing is used for building a similarity matrix as opposed to batch processing which required

the algorithm to be re-run whenever a new document was added to the collection.
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1. Introduction

1.1. Learning Objects

According to the Institute for Higher Education Policy [1] 85 percent of four-year
colleges offer courses online. A problem with the online courses is that they are not very flexible
so they are difficult to repurpose. Many institutions offer similar courses with similar elements
and each one ends up developing content for the course. As a result, there are probably hundreds
of descriptions of similar topics floating around on the Internet.

Educational content is not inexpensive to produce. Even a plain Web page authored by a
professor can cost hundreds of dollars. When you include graphics and a little animation, the
price is doubled. Add an interactive exercise and the price is quadrupled. Instead, a course can be
made of smaller units of content called “learning objects”. Each learning object can be made
such that it is self-contained so that it can be used without depending on other learning objects.
These learning objects can be reused by the other courses that need to convey the same concept
rather than requiring development of their own description. This can save both the time and the
expense.

A learning object can be almost anything. Any stand alone piece of information capable
of teaching something can be a learning object. It can be a chapter in a book, a video, an image, a
wiring diagram, an interactive application, a simulation and so on. As well as being of a flexible
type, a learning object can be any size. A learning object should be a self-contained, reusable,
smaller unit of learning that can be aggregated with other learning objects to produce more
substantial units of learning. They are generally tagged with meta-data to allow them to be easily

retrieved by a search.
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The availability of computational power and network infrastructure that greatly facilitate
distribution and sharing of learning objects coupled with their flexibility and re-usability creates
a compelling economic rationale for learning objects.

In order to make such a system distributed and interoperable, we need to make sure that
there is a common language that different systems understand and communicate in. eXtensible
Markup Language, or XML, developed by the World Wide Web Consortium seems like the
obvious solution for its two main reasons. First, it is structured so it is capable of representing an
object hierarchy. Second, it is in plain text and easily machine-readable. Thus, it provides a
means of distributing content to other systems no matter where they are located and no matter
what program they are running. Thus, a piece of learning material, no matter where it is located,
may be seamlessly integrated into an online course, provided the XML tags are employed

consistently.

1.2. IKME

The Intelligent Knowledge Management Environment (IKME) is an ongoing project at
the University of Kansas aimed at assisting the Defense Information Technology Testbed
(DITT)/University After Next (UAN) by providing an advanced reach-back capability for
commanders, staff, and other users who have time-critical needs. A knowledge management
environment would facilitate the creation of extensible and reusable learning objects that would
lead to faster delivery of content to knowledge users.

The project is based on the idea of using the Extensible Markup language as the data
format for publishing. Knowledge creators use the environment to create learning objects which

are stored as XML documents. These learning objects are based on an XML schema developed

Page 5 of 5




by the “Center for Army Lessons Learned”. These learning objects can be in turn reused to
create lesson objects, which in turn are used to create a manual. This setup facilitates ease of
creation and also faster delivery of content to the end users. Another main advantage of using
XML as the data format is the separation of content and style. The same XML document can be
represented in various styles and data formats using style sheets. For example a manual can be
published online using an XSLT style sheet and also converted to a PDF file (for printing) by

using the XSL-FO style sheet.

IKME contains the following capabilities:
= (Create, modify, view and search learning objects.
= Create, modify, view and search lesson objects.

= Create, modify, view and search manual objects.

1.3. Goals and Contributions

» To use a Memory based approach for indexing as opposed to File based approach used

for the earlier version.

» To help the user find the related learning object content for the creation of lesson objects
and manuals.

» To incorporate Incremental Indexing into the similarity search instead of batch
processing which required the algorithm to be re-run every time a new document is added

to the collection.
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2. Approach

2.1. Overview

The aim of the project is to generate similarity information between different documents
so that the system can display the top N matching documents for a given document. Initially,
each document is preprocessed and tokenized according to a set of predefined rules. Then these
tokenized documents are indexed using the standard vector space model. As, a result Dictionary
and Postings Files are created. Then the similarities between each document with all other
documents in the collection are calculated. These results are stored as a similarity matrix on the
disk for future use (when a new document is added). Then the top N similar documents to each
document can be easily retrieved by a file look up operation. When new documents get added to
the collection by create learning objects, the index and the similarity matrix get updated so that

the changes to the similarities because of new documents are immediately reflected.

2.1. Existing Version

The existing version of IKME uses a file based indexing method in which each file is
tokenized into an output file. So, if the document collection has 50 files, (1.in, 2.in,...., 50.in),
we create 50 tokenized files (1.out, 2.out,...., 50.out). When the similarities are calculated, each
tokenized file is opened, used for similarity calculation and closed. Once the similarity matrix is
generated, it is stored to a persistent store and this matrix is used to display the top N most

similar documents to a particular document.
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Formula:

N
Similaritgdl,d?2) = Z:wtid1 *wt.,,

i1
where

N = number of tokens in the vocabulary

Whia1 = tfiar * idf;

tfia1= (frequency of token i in d1/ total number of unique tokens in dl)

idf; = log; (total number of documents/number of documents in which token i appeared)

2.2. Problems with the existing version

The above method suffers from three problems. First, it uses a File based Indexing which
is not fast enough for large scale processing. Second, it creates many files for calculating the
similarity information. Finally the most glaring problem of all is that whenever a new document
is added to the collection the whole algorithm needs to be re-run. So, it creates a similarity
matrix from the scratch after each document addition. Since the algorithm is N*, the problem
2.3. Overview of my enhancements

The new version uses a Memory based approach as opposed to file based approach, so
the process of indexing is faster than that of the previous version. Since memory is getting
cheaper, we should have enough space to fit the inverted file in main memory and take the
advantage of faster seek times.

Incremental Indexing is used, so even if a new document is added to the collection, the

algorithm need not be run again from the scratch. It first updates the index files (Postings and
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Dictionary) and then uses the existing similarity information for updating the similarity matrix
because of updated index.
Execution speed is the most important advantage gained by the enhancements which

make it more suitable for large scale needs.
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4. Implementation Details

4.1 Index.cc:
Inputs:
= Path of the dictionary file to be created.
= Path of the postings file to be created.
= Path of the documents file to be crated.
= Path to file specifying document pre-processing options.
= Directory containing the documents to be indexed/Path to file that specifies the filenames
and document ids.
= Number of words expected in the document collection.
=  Number of documents.
= Flag to turn on/off normalization.
= Flag to print indexing execution statistics.
* Flag to specify whether to read from the list of document name or to generate the file.
Outputs:
= Dictionary File
= Postings File
= Documents File
Purpose: To index the documents using standard term frequency-inverse document frequency

(tf-idf) approach.
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4.2 Categorize.cc:
Inputs:
= Path of the dictionary file.
= Path of the postings file.
= Path of the documents file.
= Path of the input document to be categorized.
= Qutput file containing category ids and corresponding weights.
=  Number of words to be used for comparing documents.

= Number of documents to be returned.

Outputs:
= Returns a file that contains top n similar documents to the current document along with
the weights.
Its format is <docid> <weight>
Purpose: Returns the top n similar documents to a given document in the descending order.

Sample Output:

Doc Id | Weight
10 0.98
8 0.85
6 0.75
3 0.43
11 0.12
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4.3 WriteSim.cc:
Inputs:
* The document collection.
= The path where the resultant similarity matrix should be written.
Outputs:
» The similarity matrix is created and is stored as a file. It has all the documents in the
collection and the top 5 matching documents to the corresponding documents.
Purpose: This program is responsible for creation of the similarity file for the purpose of
retrieving top n similar objects to a given document. The similarity matrix is a flat file with fixed
record format, so that retrieval of a particular record can be done with ease.
Algorithm:
For all documents in the collection {
Process the document for tokenizing it.
Add the tokenized document to the index (Dictionary, Postings and Documents files).
Retrieve the top ‘n’ similar documents to the current document.
Eliminate the similarity value of a document with itself.
Open the temporary output file in Read Mode.
Open the similarity file in Write Mode.
Print the top n results from temporary file to the Similarity Matrix.
Close the temporary file.
Close the similarity file.

}

Close the Directory of documents.
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Sample Output:

Document | Id | Weight | Id | Weight | Id | Weight | Id | Weight | Id | Weight
0 1 0.2213 | 13 | 0.2122 | 35 | 0.0632 | 54 | 0.0570 | 4 0.0529
1 0 0.5287 | 13 | 0.4383 7 0.2250 | 25 | 0.1844 | 21 | 0.1839
2 52 1 0.1439 | 17 | 0.1351 | 14 | 0.1057 | 13 | 0.0987 | 12 | 0.0812
3 57 | 0.2211 | 50 | 0.1459 | 55 | 0.1385 7 0.1305 | 51 | 0.0979

4.4 CreateFile.cc:

Inputs:

=  New documents added to the document collection.

* The Similarity Matrix file.

Outputs:

= A file with the document names and the ids in the new directory.

Purpose: The resultant docID file has the document names and the docID (starting from the last

document id in the docID file created by indexer). It is needed for updating the index files with

the new documents.

Algorithm:

Open the Similarity Matrix in read mode.

Open the doclD file in write mode.

Page 14 of 14




Seek till the end of Similarity File to find the last document id.
Open the directory or newly added documents.
For all the documents in the directory {
Print the location of the file and the incremented document id into the docID file.
}
Close the directory.
Close the doclD file.
Close the Similarity File.

Sample Output:

Doc Name Doc Id

../inputfiles/urban _energy.xml 51
../inputfiles/urban_environment.xml 52
../inputfiles/urban_finance.xml 53
../inputfiles/urban_infrastructure.xml 54
../inputfiles/urban_population.xml 55
../inputfiles/urban_network.xml 56
./inputfiles/urban_satellite.xml 57
../inputfiles/urban_segments.xml 58
../inputfiles/urban_supersurface.xml 59
../inputfiles/urban_systems.xml 60
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4.5 Update.cc:
Inputs:
* The location of Similarity Matrix.
= New documents added to the document collection.
Outputs:
= Updated Similarity Matrix with corresponding changes made to all the corresponding
documents.
Purpose: Update the Similarity Information, because of the newly added documents to the
collection.
Algorithm:
typedef struct {
int id;
float wt;
} recordtype;
recordtype UPDATERECORD [UPDATERECORDSIZE];

recordtype RECORD [RECORDSIZE];

Open the Similarity Matrix in read and write mode.
Seek till the end to find the last document id and save it in the memory.
For all the files in the newly added directory {

Process the document for tokenizing it.

Retrieve the top ‘n’ similar documents to the current document.

Open the output stored in the temporary file in Read Mode.
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Open the similarity file in Write Mode.
Print the top n results from temporary file along with the document id, to the Similarity
Matrix.
Copy the top 3n results into the UPDATERECORD Array of doc_ids and weights.
Close the temporary file.
For all the elements in UPDATERECORD (i=0 to 3n) {
If the doc id of the i element of UPDATERECORD is greater than or equal to
current document id
Continue
Seek to the start of the record of the corresponding document according to the i"
location in the UPDATERECORD Array.
Store the record entries and the current docid and weight into the RECORD array.
Perform Insertion Sort on the weights of the 6 entries in RECORD array.
Seek to the start of that record again and write the top 5 entries of the sorted
Array.

Close the temporary file.

}

Close the similarity file.

}
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Step 1: Adding new record(s) to the similarity matrix

Doc Id | Doc Id Weight | Doc Id Weight Doc Id | Weight | Doc Id Weight | Doc Id Weight
1 il 0.231273 13 0.214116 46 0.075542 5 0.055138 7 0.0527350
2 7 0.537214 13 0445968 9 0.2264049 46 0.223908 a5 0.155427
3 44 0.125524 17 0.125532 13 0.092650 12 0.0&0430 50 0.075375
49 47 0475450 7 0405528 43 0.300528 43 0269644 43 0.255155
50 12 0. 243636 47 0155142 46 0.180350 7 0155472 43 0.134855
51 1 0422716 44 0.412513 31 0.331092 42 0.290143 23 0.271103
52 2 0610218 33 0.531274 41 0442091 a7 0.301208 g 0.200172
53 36 0.312052 3 0.229142 24 0.220051 46 0.193542 5 0.184032
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Step 2: Updating the corresponding records’ similarity information

51 1 0422716 40 0412513 53 0.331002 42 0.290143 28 0.271103
| |
Similarity (1,513 =0.422714 Similarity (49,517 = 0412513
Do¢ Id | Doc Id Weight | Doc Id Weight Doc Id | Weight Dac Id Weight | Doc Id Weight
1 31 0.231273 13 0.214116 46 0.078542 5 0.058139 % 0.052780
2 T 0.537214 13 0.448968 a 0.226499 46 0.223909 25 0158427
3 49 0.128824 17 0.128532 13 0.092650 12 0.080430 50 0.075375
49 47 0.478480 7 0.405528 42 0.300528 42 0.260646 43 0.253155
50 12 0.248636 47 0.188142 46 0.150350 ¥ 0.158472 43 0.134855
51 1 0.422716 49 0.412513 31 0.331002 42 0.290143 28 0.271103
52 2 0.610218 33 0.531274 41 0.442001 7 0.301208 g 0.200172
53 36 0.312082 3 0.229142 24 0.220081 46 0.193842 5 0.164032
OLD RECORD OFDOC 1
Doc Id | Doc Id Weight | Doc Id Weight Doc Id | Weight | Doc Id Weight | Doc Id Weight
1 31 0.231273 13 0.214116 46 0.078542 5 0.055139 7 0.052780
With the addition of new document 51 with Similanty (1,51) = 0422716
NEW RECORD OF DOC 1
DocId | Doc Id | Weight |DocId | Weight | DocId | Weight | Doc Id Weight | Doc Id Weight
1 51 0424716 31 0231473 13 0.2141146 46 0.075542 5 0.055139
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New Similarity Matrix

Doc Id | Doc Id | Weight | Doc Id | Weight | Doc Id | Weight | Doc Id Weight | Doc Id Weight
1 51 0.4227146 il 0.231273 13 0.214116 44 0.075542 3 0.055139
2 51 0.610218 7 0.537214 13 0.448963 ] 0.226499 46 0.223909
3 53 0.229142 49 0125824 17 0.128532 13 0.092650 12 0.030430
49 47 0.478480 51 0412513 7 0.405523 42 0.300523 42 0.269646
50 12 0.248636 47 0.158142 44 0.1580350 7 0.158472 43 0.134855
| 1 0.4227146 49 0.412513 £ 0.331092 42 0.200143 28 0.271103
52 2 0.610218 33 0.531274 41 0.442091 T 0.301208 ] 0.200172
53 36 0.312082 3 0.229142 4 0.220081 44 0.193342 5 0.164032
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5. Evaluation

Comparisons between the existing version and the new version when new documents are added

to the collection:

Number of Documents New Version Earlier Version
Time (in seconds) Time (in seconds)
54 26 (7.31u, 12.28s) 52
72 (18 documents added) 11 (2.48u, 3.98s) 62
172 (100 documents added) 52 (14.13u, 23.10s) 220

For 500 documents (450 added to an initial collection of 50), it took around 243 seconds (68.34u,

124.36s) for the new version.

The execution speeds stand as a testimony for the efficiency and the need for Incremental

Indexing in real-time searches for learning objects stored in huge databases.
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Comparisons between the existing version and the new version when new documents are added

to the collection but the similarity information is calculated at once, instead of using the

incremental update:

Number of Documents New Version Earlier Version
Time (in seconds) Time (in seconds)

54 26 (6.98u, 12.09s) 52

72 37 (9.418u, 15.855) 62

172 91 (24.21u, 38.09s) 220

Clearly the usage of memory based method is an improvement over the file based method. The

decrease in the execution time validates the efficiency of new version.
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6. Screenshots
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3 The IKME Project - Microsoft Internet Explorer =1k
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Heowrewver, commtmanders must understand that destroving or disrmupting any portion of the urban
infrastructure can have a cascading effect (either intentional or unintentional) on the other
elements of the infrastructure. Yet, they may be able to gain an operational advantage while
minimizing unwanted effects using precision mumnitions, electronic disruption of communications,
or 2OF and conventional ground forces to seize or secure an essental facility or structure. To
gain this advantage, commanders will rely more on the expertise of engineer and C4& units, local
urban engineers and planners, and others with mfrastructure-specific expertise. After
understanding the techrical aspects of the area’s systems, they can develop the most
approptiate course of action,
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As discussed earlier, each element of the mfrastructure consists of both a terrain (physical) and
human component. For example, the physical component of the electrnical segment of the
energy mrastructure consists of power stations, substabons, a distribution networle of hnes and
wires, and necessary vehicles and repar supplies and equipment. The human component of this
samne segment consists of the supervisors, engineers, linemen, and electricians who keep the
system operating. Commanders must understand and recognize the physical components and
human components mn thewr assessments.
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7. Conclusions

The primary goal of incorporating Incremental Indexing into the similarity search has
been achieved.

The algorithm need not be re-run even if a single document is added to the collection.
Only the required parts of the index and the similarity matrix are updated.

This will provide a faster way to search for similar learning objects and help the
educators in creating new lessons using existing learning objects rapidly and

inexpensively.
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8. Future Work

» Investigating similarity formula (i.e., weighting different fields differently when
calculating the match between the objects)

= Learning best differential weighting scheme.
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