

Web Based Concept Hierarchy Viewer

Author

Pavan Kumar Ganjam

Committee

Dr. Susan Gauch, Chairperson

Dr. Jerry James, Committee Member

Dr. Perry Alexander, Committee Member

Page 1 of 25

University of Kansas, Lawrence

Table of Contents

Abstract ..3

1. Introduction..4

1.1. Motivation...4
1.2. Problems with the existing system..4
1.3. Goals and Contributions ...5
1.4. Overview...5

1.4.1. Training the Classifier..5
1.4.2. Collecting the user data..6
1.4.3. Classifying the documents ...6

3. Design Issues ...8

4. Implementation Details..10

4.1. Profile Generation...12
4.1.1. CreateProfile.cc..12
4.1.2. Categorizedoclist.cc ...14
4.1.3. CalWeights.cc ..15

Table 3. CalWeights.cc ..16
4.2. Profile Viewer...17

4.2.1 tree.cpp..17
4.2.2. list.js ...19

5. Screenshots ..20

6. Conclusions and Future Work ...23

7. References..24

Appendix A..25

Directory Structure...25

Page 2 of 25

Abstract

The amount of web page content on the Internet has been increasing consistently. As a

result, it is becoming increasingly difficult to find documents of interest to the user. Since then,

there have been many attempts to improve search efficiency, some of which have been like

categorizing documents against a predefined set of categories. KeyConcept [Madrid 2002] was

one such project aimed at improving search by incorporating the concept matching into the

search criteria. Documents are automatically classified to determine the concepts to which they

belong. Query concepts are determined automatically either from their profile, from the short

description of the query or by the user explicitly selecting them. Documents are finally retrieved

based on both the keyword matching and the concept matching.

This project is aimed at building a dynamic navigation interface for the user profile of the

KeyConcept project. The user profile is dynamically built by “watching over the user’s shoulder”

as they browse the Web. The user profile, which is transmitted to the server, is a weighted

ontology. This ontology is now displayed on the client browser as an expanding tree with the

retrieved documents weighted and classified under the respective categories.

Page 3 of 25

1. Introduction

1.1. Motivation

As the number of available Web pages grows, users experience increasing difficulty finding

documents relevant to their interests. One of the underlying reasons for this is that most search

engines find matches based on keywords, regardless of their meanings. To provide the user with

more useful information, we need a system that includes information about the conceptual frame

of the queries as well as its keywords. This is the goal of KeyConcept, a search engine that

retrieves documents based on a combination of keyword and conceptual matching. Documents

are automatically classified to determine the concepts to which they belong. Query concepts are

explicitly entered by the user or automatically determined by means of a user profile; in this way,

the system will be able to provide search results more relevant to the user's current activities and

tasks.

1.2. Problems with the existing system

The existing version of KeyConcept uses a VC++ program to view the profile, limiting

the viewing option to users of the Windows platform only. Since the user profile is an ontology

or tree of concepts with associated weights, representing the profile as an expanding tree in the

browser would make it available to users of all platforms. Concept hierarchies are also used by

YAHOO, BIOT etc to present the information to the users

Page 4 of 25

1.3. Goals and Contributions

 To develop a new user profile viewing strategy that replaces the existing VC++ version

of the profile viewer that is limited to the Windows platform only.

 Make the profile creation generic so that it can be used by other applications also

 To change the existing profile directory structure to remove data redundancy.

1.4. Overview

The process of building the profile consists of 3 phases:

1) Training the classifier

2) Collecting user data and

3) Classifying the web pages from the collected URLs.

1.4.1. Training the Classifier

Training the classifier consists of indexing the training documents of each concept using the

traditional tf*idf method. The result of indexing is 3 files: dictionary, postings and documents.

Those files keep information about keyword frequencies for each concept and are used by the

classifying agent to match the user documents with the closest categories. Essentially, the

training phase creates an inverted index that stores, for each category, the centroid of the

category.

Page 5 of 25

1.4.2. Collecting the user data

In this phase, the URLs time when visited, and web page sizes are stored in a log file by a

proxy server. The program extracts the URLs for each user, spiders the web sites that are

considered to be relevant, and saves the web pages locally. A classifying agent processes all the

html files collected by spidering the URLs the user has visited. The classifying agent is an

expanded and improved Local Categorizing Agent (LCA) from the OBIWAN project [Zhu99]. It

uses the dictionary, postings and documents files created in the training process. Each web page

is treated as query and matched to the super document representing each concept. The classifying

agent finds the top-matching super document and returns the corresponding concept ID from the

ontology along with the weight of the match. For each concept in the ontology, its weight is

calculated as sum of all its children’s weights and its own weight. At the end of this process, the

classifying agent returns the concepts with non- zero weights as the user profile.

1.4.3. Classifying the documents

All the html files collected by spidering the URLs the user has visited are processed by a

classifying agent. The classifying agent is an expanded and improved Local Categorizing Agent

(LCA) from the OBIWAN project [Zhu99]. It uses the dictionary, postings and documents files

created in the training process. Each web page is treated as query and matched to the super

document representing each concept.

Page 6 of 25

Figure 1. System Architecture

Page 7 of 25

3. Design Issues

The screenshot of the Profile Viewer is shown below:

Figure 2. Profile Viewer

Page 8 of 25

The objective of the Profile Viewer is to allow users to reach Web pages of interest to

them. It uses the user profile represented as ontology to allow concept-based browsing of the

indexed documents. The frame on the left of the screen contains the hierarchy of the user profile

and the frame on the right of the screen will contain the actual Web pages and their summaries

that were classified into that particular concept.

The user is able to click on concepts of interest and expand the tree to view lower levels

until they reach a sub-concept that has Web pages classified into it. A relative weighting scheme

is used to display the amount of content in each concept. The total weight of each concept is

divided by the total weight of all sibling concepts. This relative weight is then used to assign

anywhere from zero stars, little content compared to siblings, to five stars, a lot of content

compared to siblings.

When the user profile becomes deep, it becomes inappropriate for display in a frame as

shown in the screenshot. So, the viewer must be able to render the depth of the profile to n levels

as specified by the user. The viewer must also be able to display parent concepts for back

navigation when the profile is rendered to n levels.

Page 9 of 25

4. Implementation Details

The system consists of two components.

1. Profile Generator

2. Profile Viewer

Profile Generator is a program on the client machine that monitors the user activities and

generates the profile that is characteristic of the user. The user profile consists of a list of

concepts and weights that represent the users interest in those concepts. The profile is now

transmitted to the server where it is brought into the form of Standard Tree plus Weight.

Input
User Directory
Profile Generator

Figure 3. Profile Generator

Page 10 of 25

categorize_doclist.cc

calWeights.cc

createprofile.sh
profile

profile_extended

Output
1. Profile
2. Extended Profile

Standard Tree

Profile Viewer uses the user profile represented as an ontology to allow concept-based browsing

of the indexed documents.

Figure 4. Profile Viewer

Page 11 of 25

CGI
Tree.cpp

Profile.pl TreeForward.pl

Provides the
Username

Provides the tree level and
the username

User Profile

Submits the
username

DHTML
Profile.html

4.1. Profile Generation

4.1.1. CreateProfile.cc
Purpose: This program generates the user profile in the form of category plus weights.

Page 12 of 25

Main program source file

createprofile/createprofilepgm.cc

API Definition source file

createprofile/createprofile.cc

Include file

include/createprofile.h

API Function

void create_profile(prefilename, dict, post, docs, inputType,
input, level, subjectTree, lcaHTMLsDir, output, maxURLs,
numWords, numCat, prune_threshold, min_weightThold, update,
date_processed)
dict

Path of the training dictionary file

post Path of the training postings file

docs Path of the training documents file

prefilename Path to file specifying document pre-
processing options

inputType Specifies the format of the input
 1 -- the input is a file containing a list of
urls
 2 -- the input is a file listing HTML files
 3 -- the input is is a weight file

input Location of input (its type specified by
inputType parameter)

level Level of the Standard tree

subjectTree Location of the Standard tree

lcaHTMLsDir Directory to store created file

output Path of the weighted standard tree to be
created

Input Parameters

maxURLs Maximum number of URLs

prune_threshold Minimum weight threshold for categories to
be recorded in the output weighted std tree
file

min_weightThold Minimum weight threshold (expressed as %
to the weight of the most important
category)

update 1 - Update existing profile, 0 - Create new
profile.

date_processed String specifying date when profile was
created

Compilation instructions In the root directory, type 'make profile'

Execution instructions Run the shell script bin/createprofile.sh

Output file format 58635 3.0700
 30155 2.0816
 6380 1.0708
 9609 0.1830
 1033 0.1262
 1038 0.1022
 1036 0.0738
 120812 0.0525

Table 1. CreateProfile.cc

Comments: createprofile.cc uses urlFileNames, which is a list of document paths that the user

has browsed. The urlFileNames file must be put in the user directory that also contains the

urlFile.

Algorithm:

{

If UPDATE flag is set

{

 Update the existing profile

}

Page 13 of 25

else

{

 Create a new profile

}

Call categorizeDocList function

Call calWeights function

Create a new directory with the current date.

Move url and urlfilenames files into that directory.

Make a copy of the extended_profile in that directory.

}

4.1.2. Categorizedoclist.cc
Purpose: This program categorizes the input document into the top n categories of the standard

tree.

Page 14 of 25

Main program source file

createprofile/categorizedoclist.cc

Include file

include/categorizedoclist.h

API Function

void
categorize_doclist (char *prefilename, char *tdict, char *tpost,
char *tdocs, char *urlFilenames, char *urlFile, char
*lcaHTMLsDir, int inputType, char *results, int numTopWords,
int numCat, int threshold, long &count, float &avgWt, int update)
prefilename Path to file specifying document pre-

processing options

tdict

Path of the training dictionary file

tpost Path of the training postings file

tdocs Path of the training documents file

urlFilenames Path of the file that has the listing of all
documents that the user visited.

Input Parameters

urlFile Path of the file that lists the urls visited

inputType Specifies the format of the input
 1 -- the input is a file containing a list of urls
 2 -- the input is a file listing HTML files
 3 -- the input is a weight file

lcaHTMLsDir Directory to store created file

results Path of the file that stores the categorizer
results.

numTopWords Total number of words used to categorize the
documents

numCat Number of levels of the standard tree to be
considered when categorizing the document.

threshold Threshold to be used when categorizing a
document

count The count of categories into which the
document was categorized

avgWeight Average weight of all category weights

Update Update Flag

Execution instructions Called by createprofile

Output file format 58635 3.0700
 30155 2.0816
 6380 1.0708
 9609 0.1830
 1033 0.1262
 1038 0.1022
 1036 0.0738
 120812 0.0525

Table 2. Categorizedoclist.cc

4.1.3. CalWeights.cc
Purpose: This program modifies the profile into the form of standard tree plus weight that is

suitable for display.

Page 15 of 25

API Definition
source file

createprofile/calWeights.cc

Include file

include/calWeights.h

API Function

void calWeights(stdTree, weightsFile, results)

stdTree

Location of the Standard tree

weightsFile Path of the raw profile file generated.

Parameters

results Path of the extended profile to be created for display

Output file format Top/Home/Cooking/Baking_and_Confections 006005052000000000 58635 100
Top/Home/Cooking 006005000000000000 201 100
Top/Home 006000000000000000 7 45.4135
Top 000000000000000000 1 100
Top/Sports/Basketball/Professional 014011002000000000 30155 100
Top/Sports/Basketball 014011000000000000 404 100
Top/Sports 014000000000000000 15 30.7924
Top/Computers/Programming/Compilers 003016006000000000 6380 100
Top/Computers/Programming 003016000000000000 126 100
Top/Computers 003000000000000000 4 15.84
Top/Reference/Education/Colleges_and_Universities 009001012000000000 9609 100
Top/Reference/Education 009001000000000000 243 100
Top/Reference 009000000000000000 10 2.70706
Top/Arts/Music/Styles 001001001000000000 1033 41.7604
Top/Arts/Music 001001000000000000 27 100
Top/Arts 001000000000000000 2 4.47035
Top/Arts/Music/Instruments 001001006000000000 1038 33.8187
Top/Arts/Music/Collecting 001001004000000000 1036 24.4209
Top/Shopping/Tools/Gardening 012019002000000000 120812 100
Top/Shopping/Tools 012019000000000000 96725 100
Top/Shopping 012000000000000000 13 0.776616

Table 3. CalWeights.cc

Algorithm:

{

Store Standard Tree as a Hash table indexed on the location field.

Store the location fields in a lookup array indexed on the Category ID’s.

Open the profile file

For each row entry in the input file

 {

Add the weight value to the existing value in the hash table for the corresponding

category and its parent categories.

Page 16 of 25

}

Close the profile file.

Update the weight values with the percentage per-sibling weight or the total weight based

on the WEIGHT_FLAG.

Write the extended profile file to the output directory

Sort the extended profile file based on the location field.

}

4.2. Profile Viewer

4.2.1 tree.cpp
Purpose: Generates the DHTML for display in the browser.

Algorithm:

{

 Initialize item_clicked with the value read from the standard Input

 If the value read is “000”

 {

 MIN_SIZE = 3

 MAX_SIZE = nLevels * 3

 }

 Else

 {

 MAX_SIZE = item_clicked.size() + 3;

 MIN_SIZE = MAX_SIZE - (nLevels-1)*3;

Page 17 of 25

 }

 Read current node from the file

 While (Read next node from the file)

 {

 If current node location prefix > MAX_SIZE

 Continue;

 If next node is child of current node

 {

 Case LEVEL #1 node:

If current nodes prefix size == MAX_SIZE

 Add Current Node to the ROOT Node as leaf

Else

 Add Current Node to the ROOT Node as list

 Case NON-LEAF other node:

 If current nodes prefix size == MAX_SIZE

 Add Current Node to its parent node as leaf

Else

 Add Current Node to its parent node as list

 Case LEAF NODE

Add Current Node to its parent node as leaf

 }

 }

 Add Current Node to its parent node as leaf

Page 18 of 25

}

4.2.2. list.js

Script File

profileviewer/list.js

Purpose The JavaScript extension contains functions that are responsible for the expansion of the
tree as the user navigates through the profile. It also contains calls to refresh the page for
nodes on the tree that go beyond the specified depth.

 Table 4. List.js

Page 19 of 25

5. Screenshots

Comments: The user profile is represented as an ontology to allow concept-based browsing of

the indexed documents. The user can browse the ontology to reach topics of his interest.

Page 20 of 25

Comments: The depth of the profile viewer being set to 2, the system must render the viewer to

two levels only

Page 21 of 25

Comments: When the depth of the tree goes beyond the specified level, the tree is rendered and

the parent concepts are displayed on the top of the page for back navigation.

Page 22 of 25

6. Conclusions and Future Work

The primary goal of building a web based concept hierarchy has been achieved. A

generic and smaller profile has been implemented. The project can be used as a tool for viewing

ontologies. Representing the user as an expanding tree is in keeping with the ontology structure

of the user profile. Different methods to transfer the profile to the server were studied and the

profile was decided to be sent via ftp.

Better approaches to find similarity based on ontology matching can be explored. The

ontology viewer currently uses the profile format used by the Keyconcept project. Ontologies are

popularly represented using the OWL language. So to be able to view ontologies written in the

OWL language a plugin may be developed.

Page 23 of 25

7. References

1. “Ontology-Based User Profiles for Search and Browsing”, Susan Gauch, Jason
Chaffee, Alexander Pretschner. Submitted to User Modeling and User-Adapted
Interaction (UMUAI) journal, June 2002.

2 "User Profiles for Browsing Biodiversity Information", Susan Gauch, BDEI PI

meeting, Washington, D.C., Feb. 10 - 11, 2003.

3 “Personalization on the Web”, Alexander Pretschner, Susan Gauch, 1999

4 “Ontology Based Personalized Search”, Alexander Pretschner, MSc. Thesis. Kansas

University 1999

Page 24 of 25

Appendix A

Directory Structure

KeyConcept-v2.1
|…….. CreateProfile
| |…….. CreateProfile.cc
| |…….. CalWeights.cc
| |…….. ScanWeights.cc

 |
|…….. ProfileTestFiles
| |…….. Users

 | | |……..User1
 | | |……..User2
 | | |……..User3
 | |…….. Files

| |…….. Dict
 | |…….. Post
 | |…….. Docs
 | |…….. StdTree
 |
 |…….. ProfileViewer
 | |……..Tree.cc
 | |……..Profile.pl
 | |……..TreeForward.pl
 |
 |…….. Webcode
 | |……..tree.html
 | |……..list.js

|
 |…….. Binary
 | |…….. Binaries and Shell Scripts
 |
 |…….. MakeFile

Page 25 of 25

