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ABSTRACT 

 

Using a non-uniformly distributed aperture radar system for forming a SAR 

image will result in data correlations between the SAR image resolution cells.  Thus, 

this requires that a more robust filter than the Matched Filter, i.e. the MMSE or 

Wiener Filter to be used in the receiver processing.  As the Wiener Filter involves a 

computationally expensive matrix inverse operation, it can be avoided by using the 

Kalman filter.  But the error covariance matrix computation in the Kalman filter can 

become unstable from finite machine precision in conjunction with large variations of 

the covariance matrix Eigen values.  However, this instability can be overcome by 

using the Square Root Covariance Filter (SRCF) that ensures that the resulting error 

covariance matrix will always remain positive definite after each measurement 

update. 

 Besides the Kalman filter, a recent algorithm, namely the Multi-Stage Wiener 

Filter (MSWF) has been developed to overcome the matrix inverse problem in the 

Wiener Filter as well.  Using orthogonal projections in each successive stage of 

decomposition, this filter is proven to achieve the same performance as the Wiener 

filter in a shorter computation period. 

 In this thesis, the performance of the SRCF and the MSWF used to form a 

SAR image is evaluated as compared to the Wiener filter and the Kalman filter using 

data from an existing radar model simulator.  In addition, the use of reduced rank 

techniques is applied to both algorithms so as to trade off between computation time 

 ix



 

and accuracy.  From the results obtained, the Reduced Rank Square Root Covariance 

Filter (RRSQRT) is able to achieve nearly the same performance as the Kalman filter 

in terms of accuracy even when the rank is reduced by 73%.  However, as the Eigen 

decomposition needed for the reduced rank technique in the RRSQRT takes quite a 

while, thus the computation time for the RRSQRT is worse off than the Kalman filter 

if the time needed for Eigen decomposition is taken into account.  At the same time, it 

is also shown that the MSWF is able to outperform the Wiener filter in terms of 

computation time while achieving the same accuracy level.  Furthermore, this 

increase in computation performance is more prominent as the length of the 

measurement data increases.  However, the computation time needed for the MSWF 

is still not able to match that of the Kalman filter although innovative implementation 

of the MSWF will help to narrow the gap between the 2 types of filter. 

 

 

 

 x



 

CHAPTER 1: INTRODUCTION 

 

1.1 BACKGROUND 

To obtain radar images from either ground based or airborne systems, there 

are clear advantages in replacing a large, monolithic, complex and single aperture 

radar system with much smaller but numerous distributed aperture radar sensors, (i.e., 

micro-sensors) in terms of cost, expansion capabilities as well as Mean Time 

Between Failures (MTBF) [1].  For example, let’s consider the situation where it is 

required to obtain radar images from a space based sensor system.  In terms of cost, 

building several small micro-satellites with lesser complex electronics as well as 

lower requirement of transmitter power per satellite will definitely be cheaper than 

building a large satellite that contains much complex electronics as well as high 

requirement of transmit power.  In terms of expansion capabilities, it is always 

possible to increase the capability of the distributed aperture satellite radar system by 

adding more micro-satellites such that finer image resolution or larger imaging area 

can be easily achieved.  In terms of failure rate, the malfunctioning of one single 

micro-satellite will not cripple the overall distributed aperture satellite radar system 

whereas any critical malfunctioning in the single aperture satellite radar system will 

render the complete failure of the system itself. 

However, in terms of deployment, controlling the orbital trajectory of a single 

satellite is definitely much easier than controlling that of a constellation of micro-

satellites.  Thus, in general, it is not possible to have a constellation of micro-satellites 
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flying in a regularly spaced orbit trajectory at all times as the orbital dynamics will 

make such a scenario near impossible.  Instead, the actual deployment scenario will 

likely be a cluster of satellites flying in a non-uniform irregular spaced manner such 

that the positions of all the satellites will not form a regular spaced regular grid etc.  

When the distributed aperture radar system is operating in such a manner, this will 

greatly impact the Total Ambiguity Function (TAF) as the range-Doppler ambiguities 

will still be present in the Total Ambiguity Function of the system [1].  Refer to 

figure 1.1 and figure 1.2 below for the Total Ambiguity Function for a uniformly 

distributed aperture radar system versus that of a non-uniformly distributed aperture 

radar system.  Note that both figures are obtained from [1] and reproduced in this 

document in order to illustrate the point mentioned above.   

 

Figure 1-1: TAF for Regularly Spaced Distributed Apertures 
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Figure 1-2: TAF for Non-Uniformly Spaced Distributed Apertures 
 

Now, when the system’s Total Ambiguity Function is as shown in figure 1.2, 

this will imply that each image resolution cell in a SAR image will be highly 

correlated to its neighboring resolution cells.  As such, using a Matched Filter (MF) 

for the receiver channel processing will not produce a good quality image since the 

MF does not take data correlations between resolution cells into account.  Thus, a 

more intelligent and robust filter will need to be used for the non-uniformly spaced 

distributed aperture radar system.  From previous work in [1], it has been ascertained 

that the Minimum Mean Square Error filter (MMSE) or Wiener filter, is the 

appropriate filter choice. 

Next, the MMSE filter is a much more complex filter than the standard 

Matched filter.  Furthermore, the MMSE filter contains a matrix inverse operation on 

the correlation matrix of the measurement data.  When the size of the measurement 
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data is significant, i.e. in terms of thousands of measurements, the time needed for the 

matrix inverse operation will be computationally very expensive and may be 

impossible to execute for some hardware systems.  Thus, we may ask whether it is 

possible to develop a more efficient MMSE filter for implementation.  One answer to 

the above question is the Kalman filter that was developed during 1960.  Essentially, 

the Kalman filter is like a recursive or iterative version of the MMSE filter in that the 

total measurement data set can be broken into many smaller blocks and the Kalman 

filter then performs the filter operation iteratively on each of the smaller block of data 

until all the available measurement data are utilized.  In addition, when there are new 

incoming measurement data, the Kalman filter can refine the answers obtained from 

the previous measurement data using just this new information without having to 

rerun the whole set of measurement data again.  As a result, the Kalman filter 

becomes very popular in many signal processing applications. 

 However, based on the findings in [2], [3] and various other literatures, it has 

been found that the results obtained from the Kalman filter can diverge or even the 

total failure of the Kalman recursion can occur as a result of finite computer 

precision.  As a result of round-off errors due to finite precision, the error covariance 

matrix in the Kalman filter may end up having negative Eigen values although it is 

not possible for this condition to occur in theory.  This ill condition is further 

magnified in instances when the measurements are very accurate or when there is a 

large range in magnitudes of the error covariance matrix’s Eigen values.  Thus, this 

motivates researchers to look into alternative recursive structures for propagating and 
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updating the state estimates and the error covariance matrix.  One of such alternative 

approach is to update the square root of the error covariance matrix at each iteration 

step instead of the error covariance matrix as in the Kalman filter.  This approach, 

term the Square Root Covariance Filter (SRCF), is found to be able to yield two times 

as much effective precision as the Kalman filter in ill-conditioned problems [2].  

Furthermore, the SRCF is also able to maintain the positive semi-definiteness of the 

error covariance matrix after each iteration step. 

 Nevertheless, the advantages of the square root covariance filter over the 

Kalman filter comes with the price of longer computation time for the same level of 

accuracy in the results obtained.  Thus, this motivates researchers to examine the 

structure of the SRCF so as to further reduce its computational time such that it is 

comparable to that of the Kalman filter without any significant loss in the accuracy of 

the results obtained.  One possibility is to compute a reduced rank of the square root 

of the error covariance matrix at each iteration step rather than the full rank at the 

expense of some slight loss in accuracy. 

 Besides utilizing the Kalman filter as a more efficient version of the MMSE 

filter for implementation, in recent years there are also other developments in the 

signal processing communities like the principal component algorithm or the cross-

spectral algorithm that are Eigen-based methods.  One of this development resulted in 

what is known as the Multi-Stage Wiener Filter (MSWF) that utilizes a 

decomposition for each stage that is based on orthogonal projections [4] [5].  Using 

the multi-stage Wiener filter, it is possible to avoid the matrix inverse operation 
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present in the Wiener filter and this method also does not rely on any Eigen 

decomposition operation.  At the same time, it is able to outperform other Eigen-

based algorithms in terms of computational time and accuracy.  An interesting feature 

of the multi-stage Wiener filter is that it has the reduced rank processing inherently 

built into its structure.  For example, when the rank of the measurement data 

correlation matrix is equal to the value N, performing N stages of decomposition with 

the MSWF is equivalent to performing a full-rank operation of the filter.   On the 

other hand, performing K stages of decomposition where K < N is equivalent to 

performing a reduced rank operation of the filter up to rank K.  Furthermore, it has 

also been determined in [5] that the number of decomposition stages required by the 

MSWF for achieving full rank MMSE performance is less than the full rank of the 

measured data correlation matrix.  Thus, by controlling the number of the 

decomposition stages, a faster computational time can be obtained using the MSWF. 

Another feature of the MSWF is that it can be implemented in scalar format for 

predicting one variable at a time or in vector format for predicting groups of data 

variables simultaneously. 

 

1.2 MOTIVATION OF THESIS 

 Coming back to the need of using the MMSE or Wiener filter for processing 

the received data from a Non-Uniformly Distributed Aperture Radar system, prior 

work on using the Kalman filter to replace the Wiener filter has been done by other 

researchers as shown in [6].  For my research area of interest, I will be looking into 

 6



 

using the Reduced Rank Square Root Covariance filter (RRSQRT) in the receiver for 

SAR processing and compare its performance with the conventional Kalman filter.  

For this part of the work, both scalar and vector measurement update will be 

examined in each iteration.  In addition, I will also be adopting the multi-stage 

Wiener filter used mostly by the communications community for SAR processing as 

well and compare its performance with both the traditional Wiener filter and the 

Kalman filter.  For the multi-stage Wiener filter, both the scalar version and the 

vector version will also be looked at to compare their performance with the Kalman 

filter.  Finally, in the process of implementing these algorithms, characteristics of 

each filter will be examined so as to allow the personality of each algorithm to be 

revealed.  

 

1.3 OUTLINE OF THESIS 

 In this thesis, Chapter 1 will cover the background and research motivation for 

the thesis itself.  In Chapter 2, a brief description of the simulated radar model used 

for my research work will be provided.  At the same time, the derivations of the 

equations that correspond to the Wiener filter and the Kalman filter implementations 

for the radar model will also be given as well.  In Chapter 3, the equations pertaining 

to the square root covariance filter and its reduced rank adaptation will be provided 

and results obtained from using the SRCF and RRSQRT will be presented for 

discussions.  Next, in Chapter 4, the equations for the multi-stage Wiener filter 

pertaining to my implementation will be shown and results obtained from using the 
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scalar and vector implementations of the MSWF will be provided for comparison 

with that of the Wiener filter and Kalman filter.  At the same time, a larger 

measurement data set is also simulated to further evaluate the performance of the 

multi-stage Wiener filter with the other 2 filters.  In Chapter 5, some innovative pre-

processing approaches for re-implementing the MSWF will be attempted and these 

preprocessing include either using a different method of initializing the parameters or 

re-ordering of the image resolution cell information based on correlation level before 

the actual stages of decomposition.  Also, the structure “Recursive MSWF” will be 

introduced as one of the innovative approach within the Chapter itself.  Finally, 

Chapter 6 will conclude on the findings of this thesis along with further 

recommendations. 
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CHAPTER 2: THE RADAR MODEL 

 

2.1 DISTRIBUTED APERTURE AND TARGET GEOMETRY 

 Now, due to a lack of real data from a non-uniformly distributed radar system, 

a radar model simulator was created using MATLAB by prior research students that 

allows the users to have the flexibility to model each aspect of the radar system 

independently.  For the distributed apertures within the radar system used in my 

research, it is modeled as a single transmitter and 12-receivers radar system.  The 

figure 2.1 below provides an illustration of the geometry of the transmitter and 

receivers location in space along with the target geometry. 

 

 

 

 

 

 

 

 

 

 

 

z 

x 

Non-uniform, Distributed 
Aperture Radar System 

Center of target area

Velocity vector vx 
of Radar system 

y 

‘NY’ resolution cells 

‘NX’ resolution cells

R0

h 

y0

θi

Figure 2-1: Distributed Aperture Radar System and Target Geometry 
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 Now, in this geometry, certain parameters are defined as follows: 

• The overall distributed aperture radar configuration is moving in the x 

direction with a velocity vector vx. 

• The center of the radar configuration is at the location, x = 0, y = 0 and z = h.  

Thus, the radar configuration is flying at a height h above the ground. 

• The center of the target area of interest is at the location, x = 0, y = y0 and z = 

0.  Also, flat earth geometry is assumed such that z is equal to zero throughout 

the entire target area.   

• The target area is modeled as a square grid in where there are Nx and Ny (Nx = 

Ny) square image resolution cells in each dimension for a total of Nt = Nx × Ny 

image resolution cells.  Note that the area of each image resolution cell is Δx × 

Δy where Δx is the along track resolution and Δy is the cross track resolution. 

• The angle θi is the incident angle to the center of the target area of interest.  

As such, we can define the parameters y0 and h as: 

y0 = R0 sinθi     (2.1) 

h = R0 cosθi     (2.2) 

Besides these parameters, the locations of both the transmitter and receivers are 

obtained from a Gaussian random generator in MATLAB with zero mean and 

variances set to a value that will ensure that the spatial extent of all the distributed 

apertures will not be so large as to affect the image resolution.  In addition, care is 

taken to ensure that each receiver aperture is not too close to the others so as to allow 

each receiver aperture to collect independent measurement samples. 
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2.2 SIGNAL SPACE MODELING 

2.2.1 TRANSMIT SIGNAL MODELING 

Details of the overall signal space modeling can be found in [8].  Below is a 

brief description of the different signal parameters used in the model itself that can 

also be obtained from [9].  Firstly, the transmit signal function s  will be modeled as 

a vector that has a total number of elements equal to J×BT where J is the number of 

transmitter, B is the transmit bandwidth and T is the total duration of the transmit 

pulses used for forming the image.  It can be expressed as a summation of basis 

functions as follows:  

G

1

ˆ( ) ( )
N

t n n
n

s x s xφ
=

= ∑G
t    (2.3) 

In equation 2.3, N is the total number of transmit signals and equal to J×BT and the 

vector tx  is a 5-D vector for the transmitter representing the combination of spatial 

coordinates x, y and z as well as the slow time t and fast frequency w variables: 

x  = [t,w,x,y,z]    (2.4) 

Next, the  basis functions  are functions of space, time and frequency that span the 

total time width, bandwidth and transmit aperture size as a whole.  As for the weight 

parameters , they can be considered as complex coefficients for the basis functions 

that will determine the explicit form of the total transmit signal s .  As such the 

transmit signal function s  can be represented in vector form as: 

ˆ
nφ

ns

G

G

s = [s1,s2,s3,…….,sN]T    (2.5) 
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2.2.2 TARGET MODELING 

 Now, the target area of interest consists of Nt number of image resolution 

cells.  Thus, the target function can also be modeled as a summation of Nt basis 

functions as:  

1

( ) ( )
tN

s m m
m

xγ γ ψ
=

= ∑
GG

sx    (2.6) 

In equation 2.6, the individual basis function 
mψ
G

represents the point scatterer in each 

image location of the total image area.  Also, the complex variable  represents the 

scattering coefficient associated with each image resolution cell location.  Thus, in 

vector format, the target function is expressed as: 

mγ

γ = [γ1,γ2,γ3,γ4,….,γNt]T   (2.7) 

 

2.2.3 RESPONSE MEASUREMENTS MODELING 

 For the measurements obtained at the different receivers, they can be 

generally expressed as a space-time function using the convolution integral: 

( ) ( ; ). ( ). ( ; ). ( ) ( )r r s s s t t t sr x H x x x G x x s x dx dx n xγ= +∫ ∫ r

I IG G G G
 (2.8) 

In the above equation, the functions ( ; )r sH x x
I

 and ( ; )s tG x x
I

are the dyadic Green’s 

functions that describe the propagation from radar to target area and back to the 

receivers.  Also, the function ( )rn x
G represents the Gaussian receiver noise present in 

the system.  Now, similarly the function ( )rr x
G  can also be expressed as a summation 

of basis functions: 
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1

( ) ( )
M

r l l
l

r x r xϕ
=

= ∑G G
r    (2.9) 

where M is the total number of measurements from all the receivers and the values rl 

are complex and equal to: 

( ). ( )l r l rr r x x dϕ= rx∫
G G

   (2.10) 

Using a series of manipulations, it is possible to obtain the final format of the 

response measurements in the following format: 

t

t

N

t t
t
N

t t
t

γ

γ

= +

= +

∑

∑

r H s

nρ

n

N

   (2.11) 

In the above equation, n is the receiver Gaussian noise, Ht is a matrix and ρt = Hts is 

the normalized space-time receiver measurement from the t-th scatterer or image 

resolution cell and these parameters are defined as follows: 

r = [r1,r2,r3,r4,…..rM]T    (2.12) 

n = [n1,n2,n3,n4,…..nM]T    (2.13) 

11 1

1

t t
N

t

t t
M M

H H

H H

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

H

…

# % #

"
   (2.14) 

( ). ( ; ). ( ). ( ; ). ( )t
mn m t r s t s s t n t t s rH x H x x x G x x x dx dx dxϕ ψ φ= ∫ ∫ ∫

I G I GG
 (2.15) 
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By looking at equation 2.11, we can combine the normalized space-time receiver 

measurements or response vectors from all the scatterers or image resolution cells 

into a matrix P: 

P = [ρ1;ρ2;ρ3;ρ4;…..;ρNt]   (2.16) 

Using equation 2.16, we can rewrite equation 2.11 as follows: 

γ= +r P n     (2.17) 

 

2.3 THE SAR IMAGE FORMULATION 

2.3.1 WIENER FILTER IMPLEMENTATION 

 Now, from the definitions obtained in the previous section, forming a SAR 

image from the response vectors r is simply to obtain the values  (predicted 

scattering coefficients) from r using the linear filtering model:  

γ̂

ˆ = Wrγ      (2.18) 

[ 1, 2, 3, 4,ˆ ˆ ˆ ˆ ˆ ˆ..... ]
tNγ γ γ γ γ=γ    (2.19) 

[ H]=W w w w w"" t1 2 3 N  (2.20) 

In equation 2.18, W is the weight matrix/linear filtering operation that will extract the 

predicted values  from the response vector and wγ̂ i is the weight vector 

corresponding to the ith image resolution cell or scatterer.  Thus, to obtain the values 

of  using a MMSE filter, we will need to define the weight matrix Wγ̂ mmse in 
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equation 2.20 that is linked to our signal model.  As a start, we know from [10] that 

the weight vector for a MMSE filter is defined as: 

1

= E ]

E[ ]

i

i iγ

−=

=

i

H

w R p

R  [rr

p r
     (2.21) 

Where R is the measurement data correlation matrix and pi is the cross correlation 

vector between the response vector r and the scattering coefficient γi of ith target.  

Also, it is assumed that the scattering coefficients and the receiver noise are 

statistically independent.  Thus, using the same definition, we arrive at the expression 

for Wmmse as  

H H H H H 1
mmse E[ ] ( E[ ] E[ ])γγ γγ −= +W P P P nn

iγ

  (2.22) 

If we assume that the elements of the vector γ are independent with identical 

statistical properties and E{nnH} is equal to the noise covariance matrix Kn since its 

mean value is zero, then equation 2.22 can be rewritten as: 

2 H 2 H 1
mmse ( )t t nγ γ −= +W P PP K   (2.23) 

in which  is the expected value of the square of the scattering coefficient 

of each image resolution cell or scatterer.  Looking at the above equation 2.23, it can 

be seen that there is a matrix inverse operation associated with the MMSE filter and 

the size of the matrix is equal to M×M where M is the total number of measurements.  

Thus, for situations in which the amount of measurement data is significant, the 

calculation of the W

2 E[ ]H
t iγ γ=

mmse will be computationally inefficient.  Thus, a much more 
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efficient method of implementing the MMSE filter of filter order O(2×M3) will be to 

adapt the problem into a Kalman filter implementation. 

 

2.3.2 KALMAN FILTER IMPLEMENTATION 

 As mentioned in the previous sections, Kalman filter is the iterative form of 

the MMSE or Wiener filter.  In order to adapt the SAR image processing using the 

Kalman filter implementation, we will need to address a few issues.  Firstly, the full 

segment of the response vector given in equation 2.12 will be divided into many 

smaller segments such that each smaller segment of the measurement data will be fed 

into one Kalman iteration until all the data are completely utilized.  Similarly, we will 

need to do likewise for the noise vector defined in equation 2.13 as well as for the P 

matrix defined in equation 2.16.  Assuming a total of L segments are to be obtained 

with 4 elements per segment as an example, the resulting partition of these 3 

parameters will be as shown below: 

1 2 3 4 5 6 7 8 9 10 11 12 3 2 1

( ) ( ) ( ) ( )

1 2 3 4 5 6 7 8

( ) ( )

, , , ,

(1) (2) (3) ( )

,

M M M M

1 2 3 L

T

1 2

r r r r r r r r r r r r r r r r

L

n n n n n n n n

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤= ⎢ ⎥⎣ ⎦

=

r r r r

n n

r

P P P P P

n

………
����	���
 ����	���
 �����	����
 ���������	��������


………

�����	����
 �����	� 
 9 10 11 12 3 2 1

( ) ( )

, , , M M M M

3 L

n n n n n n n n− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦n n

………
��� ������	�����
 ����������	���������


 (2.24) 

Secondly, it is known that there are two equations that define the Kalman filter 

implementation, namely the state equation and the observation equation.  For the state 

equation used in our modeling, it is given by the equation in the following page: 
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( ) ( ) ( 1) ( )l l l= − +Aγ γ lu

l

   (2.25) 

where A(l) is the state transition matrix and u(l) is the process noise that represents 

the uncertainty in A(l).  Note that in this equation, l represents the iteration or data 

segment number out of a total of L iterations or segments.  As for the observation 

equation, it can be defined as:  

( ) ( ) ( ) ( )l l l= +r P nγ    (2.26) 

Thirdly, for our radar model, we are also assuming that the elements of the vector γ 

remain constant with respect to time, frequency and space over the total duration T of 

the measurements.  As such, we can replace the state transition matrix A(l) with an 

identity matrix I.  Besides that, other assumptions or initial conditions that are used 

for my Kalman filter implementation are as follows: 

2

2

H

(̂0/ 0) E{ } 0

(0/ 0)

(0/ 0)

( ) E{ ( ) ( ) } 0

n n

l l l

γ γ

γ γ

σ

σ

= =

=

=

= =u

K I

K I

K u u

   (2.27) 

These assumptions are based on the fact that firstly, we do not have any prior 

information about the values of the scattering coefficients and thus we can set them to 

be equal to zeros. Secondly, each scattering coefficient is independent of the other 

scattering coefficients. Thirdly, since each scattering coefficient is assumed to remain 

unchanged during the observation period, the model noise is thus assumed to be equal 

to zero as well.  Fourthly, the measurement noise is assumed to be white Gaussian 

noise. 
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With the above definitions and assumptions made, it is now possible to define the 

Kalman filter implementation steps for our radar model.  With the value of l set to 1 

and using the initial conditions, the iteration steps begin as follows: 

• Step 1: Updating the A priori Error covariance matrix 

( / 1) ( 1/ 1) ( )l l l l lγ γ− = − − + uK K K

1

γ

  (2.28) 

• Step 2: Computing the Kalman gain G(l) 

H H( ) ( / 1) ( ) [ ( ) ( / 1) ( ) ( )]l l l l l l l l lγ γ
−= − − + nG K P P K P K   (2.29) 

• Step 3: Obtaining the Innovation v(l) from the new measurement data r(l) 

ˆ( ) ( ) ( ) ( 1/ 1)l l l l l= − − −v r P γ    (2.30) 

• Step 4: Computing the updated predicted scattering coefficient using the 

Kalman gain and innovation obtained from the previous steps 

ˆ( / )l lγ

ˆ ˆ( / ) ( 1/ 1) ( ) ( )l l l l l l= − − + G vγ γ    (2.31) 

• Step 5: Computing the Error covariance matrix  for the current iteration ( / )l lγK

( / ) [ ( ) ( )] ( / 1)l l l l l lγ = − −K I G P K   (2.32) 

With the five steps defined above, the Kalman filter implementation for the SAR 

image processing of the non-uniformly distributed aperture radar system can be 

achieved. 
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2.4 TESTING THE KALMAN FILTER IMPLEMENTATION 

2.4.1 1ST TEST SCENARIO FOR KALMAN FILTER 

 In order to ensure that the Kalman filter implementation described in the 

previous section is functionally properly for the SAR image processing, two test 

scenarios are carried out.  In the 1st test scenario, an image consisting of random 

complex scattering coefficients  and is generated and used as input to the radar 

model simulator to form the output measurement vector r.  Other additional parameter 

values used for the two test scenarios are described in Table 2.1 below: 

γ

Table 2.1: Parameter Values used for Test Scenario 1 and 2 

 Description of Parameters Values chosen 

1 h (Height of Distributed Aperture Radar System) 183 km 

2 vx (Velocity of Distributed Aperture Radar System) 7.8 km/s 

3 fc (Center Transmit frequency) 10 GHz 

4 Nx 31 

5 Ny 31 

6 B (Bandwidth of Transmit signal) 0.3125 MHz 

7 T (Time width of Transmit signal) 0.7327 ms 

8 θi (Incident angle) 45° 

9 Ro 258.8 km 

10 J (Number of transmitters) 1 

11 I (Number of receivers) 12 

12 Number of samples per receiver 255 
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 Description of Parameters Values chosen 

13 Total number of samples for 12 receivers 3060 

14 SNR (Signal to Noise Ratio) 40 dB 

15 2
γσ  for random complex scattering coefficients  γ 2 

 

Using the Kalman filter, the estimated scattering coefficient  is obtained.  To 

measure the performance of the Kalman filter, a numerical parameter known as the 

Normalized Mean Square Error or MSE is then computed at each step of the iteration: 

γ̂

ˆ ˆ(

ˆ
MSE

Η

Η=
γ − γ) (γ − γ)

γ γ
   (2.33) 

Next, the result of the computed MSE from the Test scenario 1 is as shown in figure 

2.2 along with the expected error from the Kalman filter obtained from normalizing 

the trace of the error covariance matrix with the same denominator as in equation 

2.33, i.e. 

trace(
_cov

ˆ

l
MSE γ

Η=
K ( ))

γ γ
   (2.34) 
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Figure 2-2: Performance of KF for randomly chosen scattering coefficients 
 

Note that a functional check on the validity of the Kalman filter results is the degree 

of correlation between the two parameters, MSE and MSE_cov defined in equation 

2.33 and 2.34.  From figure 2.2, it can be seen that these 2 parameters are closely 

tracking one another and thus it is concluded that the results from the Kalman filter 

for the 1st test scenario is valid. 

 

2.4.2 2nd TEST SCENARIO FOR KALMAN FILTER 

 Now, in the 2nd test scenario for the Kalman filter implementation, a small 

section of a photograph of the KU football stadium was cropped to a size of 31×31 

and each image resolution cell’s intensity is given a random phase such that the 

resulting set of the 31×31 complex image resolution cell values is now used as the  

input to the radar model simulator to form the output measurement vector r with  

γ

2
γσ
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equal to 1282 in this scenario.  Figure 2.3 below gives a view of these new input 

scattering coefficients used for the 2γ nd test. 
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Figure 2-3: Actual Image used to generate  and Response Vectors r γ
 

With all other factors remaining constant, a Kalman filter run is executed on this new 

set of data and the results are shown in figure 2.4 and figure 2.5 on the next page. 
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Figure 2-4: Performance of KF for KU image resolution cells used as Input 
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Figure 2-5: Estimated image obtained from KF 
 

By examining the two curves in figure 2.4, it can also be concluded that the Kalman 

filter is working properly for the 2nd test scenario and this is further verified by the 

similarity of the output image obtained from the Kalman filter shown in figure 2.5 to 

the input image shown in figure 2.3.  Thus, the two functional tests performed on the 

Kalman filter implementation of the SAR image formation using simulated model 

data based on non-uniformly distributed aperture radar system are successful. 

 

2.5 LOOKING BEYOND THE CONVENTIONAL KALMAN FILTER 

 As mentioned in Chapter 1, although the Kalman filter is also to produce 

results at a much faster rate as compared to the Wiener filter, it may also suffer from 

some shortcomings that will cause it to diverge or fail completely.  These pitfalls are 

well recorded in [2] and [11].  In order to circumvent the problems faced by the 

Kalman filter, researchers have derived new forms of recursive filters from the 
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original structure of the Kalman filter and one new form of recursive filter is the 

Square Root Covariance Filter (SRCF).  For this filter, besides updating the state 

estimate at each iteration step, the square root of the error covariance matrix is 

updated instead of the error covariance matrix itself.  From experiments, researchers 

have proven that the SRCF is showing better numerical precision and stability as 

compared to the Kalman filter, especially in ill-conditioned problems.  At the same 

time, the computational time and memory needed by the SRCF is not significantly 

greater than that of the Kalman filter.  Thus, this new form of recursive filter is 

desirable as an alternative to the Kalman filter for the SAR image formation 

application for the non-uniformly distributed aperture radar system. 

 In the next Chapter, I will describe the equations that define the SRCF 

developed by Potter for scalar measurement update per iteration as well as its 

alternate form.  I will then proceed to define the vector measurement update version 

of Potter’s SRCF that was developed by Andrew.  As prior work done in [6] has 

demonstrated that it is computationally faster to implement the Kalman filter using 

vector measurement update per iteration as compared to scalar measurement update, 

thus I will use the results obtained using both Potter and Andrew’s version of filter to 

compare with the scalar and vector measurement update versions of the Kalman filter. 

 Next, to address the issue of the larger computation time required by the 

SRCF as compared to the Kalman filter, I will also explore using a reduced rank 

version of the SRCF that was proposed in [12] and compare the results obtained from 

different adaptations of the reduced rank version with that of the full rank version. 
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CHAPTER 3: THE SQUARE ROOT COVARIANCE FILTER 

 

3.1 FULL RANK SQUARE ROOT FILTER 

In Chapter 2, it is shown that the conventional Kalman filter can be utilized 

for the SAR image formation of the non-uniformly distributed aperture radar system.  

However, it is also mentioned that there are some pitfalls with the conventional 

Kalman filter in terms of stability and divergence issues.  As such, researchers have 

developed different forms of iterative filters to overcome the pitfalls of the Kalman 

filter.  One of these filters is the Square Root Covariance filter (SRCF) developed by 

Potter [2] that was initially used for space navigation purposes in which the process 

noise in the state equation is equal to zero.  At the same time, Potter also confined the 

operations of his SRCF to only scalar measurement updates.  Essentially in the SRCF, 

the error covariance matrix  and can be represented in 

the following manner: 

( 1/ 1l lγ − −K )

)

( / 1)l lγ −K

H

H

( 1/ 1) ( 1/ 1) ( 1/ 1)

( / 1) ( / 1) ( / 1)

l l l l l l

l l l l l l

γ

γ

− − = − − − −

− = − −

K S S

K S S  (3.1) 

In which the matrices  and  are the respective square roots 

of the Error Covariance Matrices.  Using the above definitions, therefore, it is 

possible to rewrite equation 2.28 as the following: 

( 1/ 1l l− −S ( / 1)l l −S

H H( / 1) ( / 1) ( 1/ 1) ( 1/ 1)l l l l l l l l− − = − − − −S S S S  (3.2) 

( / 1) ( 1/ 1)l l l l− = − −S S    (3.3) 
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since the process noise covariance matrix  is set to zero in our radar model.  

From equation 3.2, we can see that the appropriate propagation variables for the 

SRCF will be in addition to the predicted scattering coefficients 

 and .  Also, the update of the error covariance matrix 

defined in equation 2.32 can be rewritten as: 

( )luK

( / 1), ( / )l l l l−S S

ˆ( / )l lγ ˆ( 1/ 1l l− −γ )

H

H

2

( / )l lγK

H H( / ) ( / ) ( / 1)[ ( ) ( ) ( ) ] ( / 1)l l l l l l b l l l l l= − − −S S S I a a S  (3.4) 

Where the scalar variable b(l) and the vector a(l) are defined by: 

H( ) ( / 1) ( )l l l l= −a S p    (3.5) 

H1/ ( ) ( ) ( ) ( )nb l l l lσ= +a a    (3.6) 

Furthermore, Potter has shown that it is possible to factor the bracket term 

 into a product of 2 terms such that: H[ ( ) ( ) ( ) ]b l l l−I a a

H H

2

[ ] = [ ][

1
(1 )n

b b b

b

η η

η
σ

− − −

=
+

I aa I aa I aaH H]

a a

  (3.7) 

Note that in equation 3.7, η is a scalar variable.  By using the factorization, the 

equation 3.4 can then be simplified to equation 3.8 shown below: 

H

H

( / ) ( / 1)[ ( ) ( ) ( ) ( ) ]

= ( / 1) ( ) ( ) ( / 1) ( ) ( )

l l l l b l l l l

l l b l l l l l l

η

η

= − −

− − −

S S I a a

S S   (3.8) 

By combining equations 3.5 to 3.8, it is now possible to define the square root 

covariance filter implementation for our radar model.  With the value of l set to 1 and 
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using the initial conditions as per the Kalman filter implementation, the iteration steps 

can begin as follows: 

H H

H 2

12 2

H

( ) ( / 1) ( )

1( )
[ ( ) ( ) ( )]

1( )
[1 { ( ) ( )} ]

( ) ( ) ( / 1) ( )

ˆ ˆ ˆ( / ) ( 1/ 1) ( )[ ( ) ( ) ( 1/ 1)]

ˆ( 1/ 1) ( ) ( )

( / ) ( / 1) ( ) ( ) ( )

l l l l

b l
l l l

l
b l l

l b l l l l

l l l l l r l l l l

l l l v l

l l l l l l l

σ

η
σ

η

= −

=
+

=
+

= −

= − − + − − −

= − − +

= − −

n

n

a S p

a a

g S a

g p

g

S S g a

γ γ γ

γ

(3.9) 

In the above iteration process, g(l) is the Kalman gain vector and v(l) is the scalar 

innovation as per the conventional Kalman filter.  In this instance, the initial value of 

is obtained by taking the matrix square root of .  Before proceeding 

further, it is noted in [2] that an alternate structure of equation 3.9 is often employed 

as well and this structure is as shown in equation 3.10 below: 

(0/ 0)S (0/ 0)γK

H H

1H 2 2

2

( ) ( / 1) ( )

( ) [ ( ) ( ) ( )]

( ) ( ) ( )

1( ) ( ( ) ( ))

( ) ( ) ( / 1) ( )

( )ˆ ˆ ˆ( / ) ( 1/ 1) ( )[ ][ ( ) ( ) ( 1/ 1)]( )

( )ˆ( 1/ 1) ( )[ ] ( )( )

( / ) ( / 1)

l l l l

l l l l

l l l

l l l

l l l l l

ll l l l l r l l l ll

ll l l v ll

l l l l

σ σ

α σ σ

β σ α
β

α
σ

α
σ

= −

= +

= +

=

= −

= − − + − − −

= − − +

= − −

n

n

a S p

a a

g S a

g p

g

S S

γ γ γ

γ

H( ) ( )l lg a

(3.10) 
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Mathematically, it is not difficult to prove that the iteration steps shown in equation 

3.10 are equivalent to that of equation 3.9.  Furthermore, equation 3.10 can readily be 

converted to a vector measurement update structure that the generic Potter’s SRCF 

does not address in equation 3.9. 

Next, from previous research done on the performance of the conventional 

Kalman filter [6], it has been observed that the performance of the Kalman filter in 

terms of computational time will improve significantly when the iteration steps are 

performed using vector measurement updates rather than scalar measurement updates.  

However, once the size of the measurement update block exceeds a certain threshold, 

the savings achieved in the computational time for the vector measurement update 

implementation will decrease gradually.  Eventually, it will become the MMSE filter 

where all measurements are used in 1 iteration step or update.  To illustrate this point, 

a small simulation is carried out with the Kalman filter using a total of 504 

measurements (response vector r is 504×1) to predict an image size of 255 (15×15) 

resolution cells.  Next, a parameter L is defined where L is equal to the number of 

smaller vectors the response vector r is divided into. By increasing the value of L 

from a value of 1 corresponding to the MMSE filter until it is equal to 504 

corresponding to the total amount of measurements, the time taken to obtain the final 

result for each case is recorded.  These results are then plotted and shown in figure 

3.1 on the following page. 
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Figure 3-1: Processing Time of Kalman filter versus L 
 

By examining figure 3.1, it can be seen that the Kalman filter is least efficient when it 

is implemented using scalar measurement updates.  The main reason is because the 

total amount of iterations required for the scalar measurement updates is significant 

although the time required for each iteration step is small.  Thus, this blows up the 

total processing time as seen from the figure where the time taken is about 2.35 sec.  

On the other hand, when all the measurements are used in just one iteration step (L = 

1) as seen at the leftmost point in the figure 3.1, the time required for the matrix 

inverse operation will predominate.   
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Therefore, based on the observation shown in figure 3.1 above as well as in 

[6], it will be logical to implement the Kalman filter using vector measurement 

updates of reasonable block sizes rather than using scalar measurement updates.  

Since in my research, I am exploring using the SRCF to replace the Kalman filter, 

thus it also creates a need to search for the vector measurement update version of the 

Potter’s SRCF.  The search has resulted in finding the Andrew’s SRCF [2] that can 

process either scalar or vector measurement updates in each iteration step.  The 

equations for Andrew’s SRCF implementation are as shown below: 

H H

H

1 H 1

1 H H

( ) ( / 1) ( )

( ) ( ) ( ) ( )

ˆ ˆ( / ) ( 1/ 1) ( / 1) ( )[ ( ) ] ( ) ( )

( / ) ( / 1) ( / 1) ( )[ ( ) ] ( ) ( )] ( )

c

l l l l

l l l l

l l l l l l l l l l

l l l l l l l l l l l

− −

−

= −

= +

= − − + −

= − − − [ +

n

n

A S P

A A K

S A v

S S S A K A

Σ

γ γ Σ Σ

Σ Σ

 (3.11) 

By examining the equations in 3.11, we can see its similarity to that of the alternate 

form of Potter’s implementation shown in equation 3.10.  Note that the matrix is 

obtained by taking the lower triangular Cholesky decomposition of the 

expression . 

( )lΣ

H( ( ) ( ) ( ))l l l+ nA A K

 

3.2 PERFORMANCE BETWEEN KALMAN AND FULL RANK SRCF 

 In the previous section, the equations for both the scalar measurement update 

and vector measurement update implementations of the Square Root Covariance filter 

are derived.  In this section, I will show the results of a simulation being carried out 
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for these filters using their full rank and compared their performance with that of the 

Kalman filter using both the scalar and vector measurement update implementations.  

For this simulation, some of the test parameters are as shown in Table 3.1 below.  

Also, the image used is composed of random complex scattering coefficients . γ

Table 3.1: Parameter Values used for SRCF Simulation 

 Description of Parameters Values chosen 

1 Nx 31 

2 Ny 31 

3 Full Filter Rank size (=  Nx × Ny) 961 

4 Total number of transmitters 1 

5 Total number of receivers 12 

6 Total number of samples 3060 

7 SNR (Signal to Noise Ratio) 40 dB 

 

In this simulation, as the total number of available measurements is 3060, thus some 

efforts are spent to obtain a reasonable measurement update size to be used for the 

vector update implementation as is discussed in the previous section.  The final values 

that are decided are 102 measurements per update for a total of 30 iterations.  Next, 

the types of filters that are being put to the test are as shown in Table 3.2 in the 

following page: 
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Table 3.2: Types of Filter used for SRCF Simulation 

 Description of Filter Type of Measurement Update Filter Order 

1 Kalman filter Type 1 Scalar O(Nt
2) 

2 Potter SRCF Scalar O(Nt
2) 

3 Andrew SRCF Type 1 Scalar O(Nt
2) 

4 Kalman filter Type 2 Vector, 102 measurements per block O(Nt
2×M/L) 

5 Andrew SRCF Type 2 Vector, 102 measurements per block O(Nt
2×M/L) 

 

For the SRCF simulation, the Potter SRCF and Andrew SRCF Type 1 are executed to 

verify the results obtained from the SRCF with the Kalman filter Type 1.  For 

performance measure in terms of computational time and accuracy of results, the 

Andrew SRCF Type 2 is used to compare with that obtained from the Kalman filter 

Type 2.  The results that are obtained from this simulation are as shown below: 

Table 3.3: Results obtained for SRCF Simulation 

 Description of Filter Time/sec Final MSE/dB 

1 Kalman filter Type 1 356.350 -42.216 

2 Potter SRCF 437.451 -42.216 

3 Andrew SRCF Type 1 488.223 -42.216 

4 Kalman filter Type 2 37.206 -42.216 

5 Andrew SRCF Type 2 44.320 -42.216 
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Besides the tabulation of results in Table 3.3, figure 3.2 to figure 3.5 also shows the 

plots of the MSE and MSE_cov defined in equation 2.33 and 2.34 versus the amount 

of data processed for the Potter SRCF, Andrew SRCF Type 1, Kalman filter Type 2 

and Andrew SRCF Type 2. 
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Figure 3-2: Performance of the Potter SRCF 
 

0 500 1000 1500 2000 2500 3000 3500
-45

-40

-35

-30

-25

-20

-15

-10

-5

0
Performance of the Andrew SRCF Type 1 for randomly chosen scattering coefficients

Number of iterations ---->

N
or

m
al

iz
ed

 M
S

E
 (i

n 
dB

)--
-->

Numerical Computation
Error Covariance Values

 

Figure 3-3: Performance of the Andrew SRCF Type 1 
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Figure 3-4: Performance of the Kalman filter Type 2 
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Figure 3-5: Performance of the Andrew SRCF Type 2 
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By comparing the results obtained from the Potter SRCF, Andrew SRCF Type 1 with 

that of the conventional Kalman filter Type 1 as shown in Table 3.3, it can be seen 

that in terms of accuracy of results obtained, all 3 filters are equivalent in terms of 

performance.  However, in terms of computational time, the conventional Kalman 

filter will outperform the other two filters as is mentioned in Chapter 2 and [2] etc.  

Also, by examining the time obtained using the scalar measurement update 

implementation with that of vector measurement update implementation, one can 

readily see the huge improvement in computational time using the later 

implementation. 

 Next, by comparing the results obtained between the Kalman filter Type 2 

with that of the Andrew SRCF Type 2  (both using vector measurement updates), we 

can see that the performance of both filters are equivalent in terms of accuracy of 

results but the Kalman filter Type 2 is superior in terms of computational time.  Thus, 

after looking at all the results above, it can be concluded that the SRCF can be used to 

replace the Kalman filter for SAR image formation using a non-uniformly distributed 

aperture radar system.  Although the SRCF incurs a higher computational time than 

the Kalman filter, it offers better numerical stability and thus the trade off between 

the 2 performance parameters is acceptable. 

 At this point in time, the next research question that comes into my mind will 

be to look into approaches to reduce the computational time of the SRCF such that it 

will be comparable to the Kalman filter.  One possibility is that the improvement in 
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computational efficiently may be achieved by a slight degradation of the accuracy of 

results.  In the next section, this approach will be examined in details.   

 

3.3 REDUCED RANK SQUARE ROOT FILTER 

As mentioned in the previous section, there is a motivation to look into new 

approaches to the SRCF that will reduce its computational time while maintaining its 

accuracy of results as much as possible.  After some intensive research, an answer is 

found in the papers [12] to [14] by M.Verlaan and A.W. Heemink.  In their papers, 

they have presented the technique of using a reduced rank approximation of the 

square root of the error covariance matrix to compute the final results with little 

degradation in the accuracy of the results.  To achieve the process of rank reduction 

of the square root covariance matrix, it involves operations for determining the q 

dominant Eigen values and Eigen vectors of the square root covariance matrix.  Once 

these q dominant Eigen values and vectors are obtained, they are then used to form 

the new square root covariance matrix whereas the (n-q) less dominant Eigen values 

and vectors of the square root covariance matrix are discarded with n being the total 

number of Eigen vectors/values or the full rank of the matrix.  In this manner, rank 

reduction is achieved since only the q dominant Eigen vectors/values are used to form 

the square root covariance matrix.  At the same time, lesser computation time is 

required to compute the square root covariance matrix since the matrix column 

dimension of the square root covariance matrix have also been reduced from n to q. 
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 Next, the reduced rank technique or Reduced Rank Square Root filter 

(RRSQRT) as it is called by M. Verlaan consists of 3 main steps that are as follows: 

1. Time-step 

2. Reduction-step 

3. Measurement-step 

For a better visualization of each of this step that together forms a complete RRSQRT 

iteration step, they will be explained in more details in the following sections. 

 

3.3.1 TIME-STEP OF RRSQRT 

 In the Time-step portion, the update of the approximate a priori square root 

error covariance matrix  that is equivalent to equation 3.3 is performed: ( / 1)l l −S�

1 2
u( / 1) [ ( 1/ 1), ( ) ]l l l l l− = − −S S K� �   (3.12) 

In our radar model, since we have set the process noise covariance matrix  to 

be equal to zero, thus equation 3.12 will be similar to equation 3.3.  The main 

difference lies in the fact that the square root error covariance matrix  

in equation 3.12 has only q

( )luK

( 1/ 1l l− −S� )

)

l-1 columns instead of n columns due to a Reduction-step 

process in the previous iteration step.  Thus, it is already an approximation of the full 

rank .  Also, compared to the full rank SRCF, the number of 

computations needed for obtaining the approximate square root covariance matrix has 

been reduced by a factor of 

( 1/ 1l l− −S

1l

n
q −

. 
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3.3.2 REDUCTION-STEP OF RRSQRT 

 In the Reduction-step portion, an Eigen decomposition is performed on the 

product of  so as to obtain the Eigen vectors and Eigen values 

of the approximate Error covariance matrix .  The operation is expressed 

in equation 3.13 where  and  are the Eigen vectors and values 

of : 

H( / 1) ( / 1)l l l l−S S� � −

−

( / 1)l lγ −K�

( )lU� ( )lD�

H( / 1) ( / 1)l l l l− −S S� �

H H( / 1) ( / 1) ( ) ( ) ( )l l l l l l l− − =S S U D U� � � � �  (3.13) 

Although  is equal to  and the Eigen 

decomposition should be performed on this expression such that  is given 

by  where  are the Eigen vectors of , it has been 

shown in [15] that the two expressions  and 

 has the same nonzero Eigen values.  Also, the Eigen vectors 

 of  are given by the expression [

( / 1)l lγ −K� H( / 1) ( / 1)l l l l− −S S� �

( / 1)l lγ −K�

H( ) ( ) ( )l l lV D V� � � ( )lV� ( / 1)l lγ −K�

H( / 1) ( / 1)l l l l−S S� �

H( / 1) ( / 1)l l l l− −S S� �

( )lV� ( / 1)l lγ −K�
1 2

( / 1) ( ) ( )l l l l
−−S U D� � � ].  As it is 

faster to compute the Eigen decomposition of  that has only a 

matrix size of (q

H( / 1) ( / 1)l l l l−S S� � −

l-1 × ql-1) rather than (n × n), thus the above operation in equation 3.13 

is performed.  Next, the reduction process of  is performed by only 

retaining the dominant q

( / 1)l l −S�

l Eigen vectors in the matrix  based on certain threshold 

or criteria where q

( )lU�

l≤ ql-1 such that:   
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1: ,1:( / 1) [ ( / 1) ( )]
ln ql l l l l− = −cS S U� � �   (3.14) 

Now, for equation 3.14, the expression  means the truncation of columns inside 

the matrix [] to q

1: ,1:[] n q

l number of columns. 

 

3.3.3 MEASUREMENT-STEP OF RRSQRT 

 Next, in the measurement-step portion of the RRSQT, it is similar to the 

iteration steps of the Potter SRCF or the Andrew SRCF except that the expression 

 in the full rank SRCF is replaced by the expression  for the 

RRSQRT.  The RRSQRT version for the Andrew SRCF Type 2 is as shown below: 

( / 1)l l −S ( / 1)l l −cS�

H H

H

1 H 1

1 H H

( ) ( / 1) ( )

( ) ( ) ( ) ( )

ˆ ˆ( / ) ( 1/ 1) ( / 1) ( )[ ( ) ] ( ) ( )

( / ) ( / 1) ( / 1) ( )[ ( ) ] ( ) ( )] ( )

c

l l l l

l l l l

l l l l l l l l l l

l l l l l l l l l l l

− −

−

= −

= +

= − − + −

= − − − [ +

c

n

c

c c n

A S P

A A K

S A v

S S S A K A

�

�

� � �

Σ

γ γ Σ Σ

Σ Σ

(3.15) 

Finally, for initialization purposes, the value of can be obtained by using the 

q leading Eigen vectors and values of the Error covariance matrix  so that 

(0/0)S�

(0/ 0)γK

H

1 2
1: ,1:

(0/ 0) (0) (0) (0)

(0/0) [ (0) (0) ] n q

γ =

=

K V D V

S V D�   (3.16) 

At the same time, it is also stated in [14] that when the value of q is set to be equal to 

the value of n in each iteration step, the RRSQRT of filter order O(Nt×ql-1
2 + 

4×(M/L)3) will revert to the full rank SRCF that is also mathematically equivalent to 

the conventional Kalman filter. 
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3.4 CRITERIA DETERMINATION FOR RRSQRT 

 In section 3.3, the equations pertaining to the RRSQRT are discussed in 

details.  However, one very important aspect that is needed to implement the 

RRSQRT with respect to our radar model has not yet been decided.  Essentially, this 

aspect is the choosing of the criteria for determining the number of dominant Eigen 

vectors and values to be retained after each iteration step.  In order to choose this 

criteria for the RRSQRT, two approaches are used in the investigation process.  The 

1st approach is basically just using guesswork to determine the number of q dominant 

Eigen vectors and values in each of the RRSQRT iteration step right from the 

initialization process.  The 2nd approach is much more systematic and involves 

extracting the Eigen spectrum of the Square Root Error covariance matrix using the 

full rank SRCF before deciding on the most appropriate criteria to be used.  To 

evaluate the performance of the RRSQRT using these two approaches, the simulation 

setups and results of each approach are presented in section 3.4.1 and 3.4.2 

 

3.4.1 USING GUESSWORK FOR CRITERIA DETERMINATION 

 In this section, the 1st approach of using guesswork to determine the criteria 

for retaining the q dominant Eigen vectors and values is discussed.  As it has been 

verified in section 3.2 that the SRCF of full rank n is equivalent in accuracy with the 

Kalman filter, some possibilities for choosing q can be just by setting it to be n×0.5 or 

any number less than n right at the initialization process stated in equation 3.16.  

Thus, for the 1st approach, the parameter q is set to the following values of 1, 40 and 
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n×0.5 where n is equal to 961 for a 31×31 image resolution cell SAR scenario at 

initialization and no further reduction step is carried out throughout the whole 

iteration process.  It is my belief that these 3 values will provide a good picture for 

understanding the behavior of the RRSQRT pertaining to the radar model.  At the 

same time, for completeness of the investigation process, the 1st approach is applied 

to the Potter SRCF Type 1, Andrew SRCF Type 1 that are scalar measurement update 

based and Andrew SRCF Type 2 that is based on vector measurement update.  Below 

are the results obtained in the simulations using these 3 values of q for each of the 3 

types of filter with the same initial conditions as in Table 3.1 under section 3.2: 

Table 3.4: Results obtained for RRSQRT Simulation using 1st approach 

 Filter Type Value of q Time/sec Final MSE/dB 

1 Potter SRCF Type 1 1 5.322 0.0027 

2 Andrew SRCF Type 1 1 5.531 0.0027 

3 Andrew SRCF Type 2 1 6.397 0.0027 

     

4 Potter SRCF Type 1 40 24.563 -0.0986 

5 Andrew SRCF Type 1 40 23.762 -0.0986 

6 Andrew SRCF Type 2 40 8.078 -0.0986 

     

7 Potter SRCF Type 1 480 225.381 -1.9 

8 Andrew SRCF Type 1 480 253.819 -1.9 
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 Filter Type Value of q Time/sec Final MSE/dB 

9 Andrew SRCF Type 2 480 25.035 -1.9 

 

From the results obtained in Table 3.4 compared to that in Table 3.3 for full rank 

SRCF, one can conclude that the dominant number of Eigen vectors and values of 

is definitely greater than half of its matrix rank.  This conclusion is based on 

the bad results achieved for the final MSE even for test case 7, 8 and 9.  Thus, using 

the guesswork approach does not provide a good solution for determining the criteria 

and thus the 2

(0/ 0)γK

nd approach is then explored.  

 

3.4.2 USING SRCF EIGEN SPECTRUM FOR CRITERIA DETERMINATION 

 In order to determine the behavior of the Eigen values of the SRCF as it steps 

through each iteration, a simulation is carried out using an input image consisting of 

7*7 image resolution cells along with 120 measurements.  This will mean that the 

size of the Error covariance matrix is 49 rows by 49 columns.  The rationale 

for choosing this image size is that there are already 49 Eigen values contained in 

 and thus this amount of Eigen values is sufficient for my investigation.  By 

performing an Eigen decomposition at various stages of the whole iteration process, 

the Eigen Spectrum of the Error covariance matrix is obtained with respect to the % 

of total iteration process.  The results obtained are then plotted out for analysis of the 

variation of the dominant Eigen values as the iteration progresses. 

(0/ 0)γK

(0/ 0)γK
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Figure 3-6: Eigen Spectrum at 0% to 50% of Total iteration process 

 

By looking at the Eigen Spectrum shown in Figure 3.6 at the beginning of the 

iteration, we can see that all 49 Eigen values are the same initially and thus all the 

corresponding Eigen vectors are dominant.  However, as the iteration progresses 

along, some of the Eigen values decrease in magnitude until they become 
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insignificant.  Thus, after some point in time, the dominant number of Eigen vectors 

will decrease below the value of 49. 
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Figure 3-7: Eigen Spectrum at 62.5% to 100% of Total iteration process 
 

Next, by looking at Figure 3.7, we can see that once the iteration process reaches 

62.5% of the data, there are hardly any dominant Eigen vectors left in the Error 

covariance matrix and thus it can be approximated by a rank 1 matrix.  By observing 

the behavior of the Eigen Spectrum as the iteration progresses, it has put me in a good 
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position to develop the criteria for determining the q number of dominant Eigen 

vectors to be retained in each iteration step.  Essentially, it should not be based on a 

constant number q but should rely on some threshold levels.  At the same time, as it is 

observed that the Eigen Spectrum will not change significantly within 1 iteration step, 

thus there is no need to perform an Eigen decomposition process and reduction-step 

process at every iteration step.  Instead, both processes can be performed based on 

certain step-size changes in the MSE etc, i.e. applying another criterion for 

performing these 2 processes.  After much considerations, both the criterions for 

performing the Eigen decomposition process and reduction-step process (criteria 1) 

and for determining the value of q (criteria 2) are derived based on a systematic and 

engineering approach to the problem.  For criteria 1, it will be that the 2 processes are 

applied at every 4 dB changes in the expected value of the MSE.  For criteria 2, it will 

be based on the number of Eigen values exceeding a threshold based on a certain % in 

magnitude of the initial Eigen value.  The details of both criterions are combined and 

shown in Table 3.5 below: 

Table 3.5: Details of Criterion for 2nd approach 

% of initial Eigen 

Value used for 

Criteria 2 

Step size in dB for MSE variation used for Criteria 1 

 4 8 12 16 20 

0.001      

0.01      
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% of initial Eigen 

Value used for 

Criteria 2 

Step size in dB for MSE variation used for Criteria 1 

 4 8 12 16 20 

0.05      

0.1      

0.5      

1.0      

4.0      

 
EXAMPLE CASE 

 

From Table 3.5, it can be seen that the combination of the two criterions will result in 

a total of 35 test scenarios.  Thus, it is believed that these test scenarios will provide a 

comprehensive picture of the performance of the RRSQRT in the SAR image 

formation problem.  Also, before proceeding to execute the test scenarios for the 

RRSQRT, one point to note is that for criteria 2, at least one Eigen vector 

corresponding to the largest Eigen value of the Square Root Error covariance matrix 

should be retained at all times after applying the criteria to discard the less dominant 

Eigen vectors.  Otherwise, with an empty  matrix, it will be impossible to 

complete the remaining measurement-step process of the current iteration step as well 

as the subsequent iteration steps. 

( / 1)l l −cS�
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3.5 PERFORMANCE OF REDUCED RANK SQUARE ROOT FILTER 

 In the previous sections, all the equations pertaining to the RRSQRT as well 

as the criterions needed for the implementation have been derived.  Also, it has been 

determined that there will be a total of 35 test scenarios to be performed on the 

RRSQRT so as to evaluate its performance in terms of computational time and 

accuracy of final results obtained.  With all these preparation, a simulation is then 

performed that covers all the test scenarios.  In the simulation, 3 parameters are then 

tracked for performance measure and they are the numerical MSE, the total 

computational time as well as the number of remaining Eigen vectors at the end of the 

iteration process for each test scenario.  The results recorded are then shown in Table 

3.6 to Table 3.8.  At the same time, a 3-dimensional plot of the results shown in each 

Table is also displayed in Figure 3.8 to 3.10. 

Table 3.6: Results of MSE (dB) obtained for RRSQRT simulation 

% of initial Eigen 

Value used for 

Criteria 2 

Step size in dB for MSE variation used for Criteria 1 

 4 8 12 16 20 

0.001 -42.216 -42.216 -42.216 -42.216 -42.216 

0.01 -39.906 -40.649 -40.818 -41.210 -41.144 

0.05 -32.726 -35.422 -36.855 -38.222 -38.148 

0.1 -27.014 -31.374 -34.708 -36.600 -36.742 

0.5 -14.399 -21.629 -27.134 -31.176 -32.489 
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% of initial Eigen 

Value used for 

Criteria 2 

Step size in dB for MSE variation used for Criteria 1 

 4 8 12 16 20 

1.0 -11.039 -17.247 -25.312 -28.999 -30.699 

4.0 -2.239 -13.008 -17.616 -26.687 -27.348 

0
5

10
15

20 -30
-20

-10
0

10

-50

-40

-30

-20

-10

0

Eigen Threshold (dB)

Plot of MSE obtained for RRSQRT versus the 2 criterions

Step Size (dB)

M
S

E
 (d

B
)

-40

-35

-30

-25

-20

-15

-10

-5

 

Figure 3-8: MSE (dB) obtained for RRSQRT 

Now, by examining Table 3.6, we can see that the final MSE obtained can vary 

greatly from as bad a result of -2.239 dB to the full rank SRCF result of -42.216 dB 

depending on the combination of the two criterions.  When the threshold of criteria 2 
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is set too low, i.e. 0.001% of the initial Eigen value, the RRSQRT does not 

experience any reduction in rank and thus its results’ accuracy is equivalent to the full 

rank SRCF.  This phenomenon is verified by the results shown in Table 3.7.  On the 

other hand, if the threshold of criteria 2 is set as high as 4% of the initial Eigen value, 

many of the dominant Eigen vectors are too hastily discarded such that much 

information is lost when creating  in the measurement-step process.  This 

phenomenon can again be verified by the small number of remaining dominant Eigen 

vectors in Table 3.7 corresponding to the 4 % Threshold.  As a result, the final MSE 

obtained from using a high threshold of criteria 2 is bad.  As for the different step-size 

variation in the expected value of MSE used in criteria 1, it is observed from the 

results that it is better to use a larger step-size for triggering the Eigen decomposition 

and reduction-step processes.   

( / )l lS�

Moreover, by applying the 2 criterions properly as seen in row 2 and row 3 of 

Table 3.6, we can see that the RRSQRT can achieve good results with little error or 

low MSE even when the rank is reduced substantially from 961 to as low as 257 as 

seen in Table 3.7.  This is indeed a surprising phenomenon.  In fact, when the final 

rank has been reduced to a value of 40 as seen in the combination of the 20 dB Step 

size for criteria 1 and 0.05% Threshold for criteria 2, we can still achieve a 

reasonably low MSE of –38.148 dB.  Thus, this simulation has proved successfully 

that Verlaan’s RRSQRT can also be used for the SAR image formation of our radar 

model. 
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Table 3.7: Remaining Eigen vectors for RRSQRT simulation 

% of initial Eigen 

Value used for 

Criteria 2 

Step size in dB for MSE variation used for Criteria 1 

 4 8 12 16 20 

0.001 961 961 961 961 961 

0.01 230 245 285 313 257 

0.05 26 35 54 89 40 

0.1 9 22 29 49 16 

0.5 1 5 12 21 3 

1.0 1 2 4 11 2 

4.0 1 1 3 1 1 
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Figure 3-9: Remaining Eigen Vectors obtained for RRSQRT 
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Table 3.8: Results of Computational Time (sec) for RRSQRT simulation 

% of initial Eigen 

Value used for 

Criteria 2 

Step size in dB for MSE variation used for Criteria 1 

 4 8 12 16 20 

0.001 289.275 168.691 120.879 95.145 96.552 

0.01 78.994 64.331 60.305 58.405 57.667 

0.05 48.978 46.594 47.052 49.748 49.500 

0.1 45.493 44.583 45.882 48.595 48.125 

0.5 41.804 41.951 44.801 47.562 47.236 

1.0 41.984 42.084 44.162 46.843 47.000 

4.0 41.201 41.586 43.992 46.604 46.853 
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Figure 3-10: Total Computational Time obtained for RRSQRT 
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Next, by looking at Table 3.8, we can see that when there is no reduction of rank in 

the RRSQRT as in row 1 of Table 3.8, the total computational time is very much 

higher than when there is significant rank reduction as in row 3 to row 7 of Table 3.8.  

This outcome is due to the huge computational time required by the Eigen 

decomposition for a full rank matrix of 961 × 961 as compared to a smaller reduced 

rank matrix.  Furthermore, when the step-size for invoking the Eigen decomposition 

is small, i.e. 4 dB or 8 dB, more Eigen decomposition calls will be invoked in those 

test scenarios.  In order to verify this observation, the simulation is rerun and the 

computational time required for all the Eigen decomposition operations is then 

subtracted from the total computational time as shown in Table 3.8.  The new results 

are then tabulated in Table 3.9 below: 

Table 3.9: Computational Time (sec) minus Eigen decomposition for RRSQRT 

% of initial Eigen 

Value used for 

Criteria 2 

Step size in dB for MSE variation used for Criteria 1 

 4 8 12 16 20 

0.001 80.454 63.785 58.097 52.691 53.348 

0.01 35.367 34.894 34.945 35.264 34.432 

0.05 24.203 25.734 26.521 28.857 28.562 

0.1 22.540 24.394 25.772 27.876 27.390 

0.5 20.444 22.357 24.957 26.906 26.548 

1.0 20.686 22.521 24.318 26.235 26.375 
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% of initial Eigen 

Value used for 

Criteria 2 

Step size in dB for MSE variation used for Criteria 1 

 4 8 12 16 20 

4.0 20.185 22.133 24.148 25.979 26.212 

 

From Table 3.9, we can see that the computational time has reduced drastically when 

the Eigen decomposition timing is not taken into account.  Using the Kalman filter 

bench mark timing of 37.206 sec as shown in Table 3.1, we can say that the criterions 

for the highlighted portions in Table 3.9 and Table 3.6 are able to produce acceptably 

good results with small MSE as well as low computational timing if the Eigen 

decomposition timing is not taken into account.  Thus, if we can find a much more 

efficient method to perform the Eigen decomposition as compared to what is 

currently provided in MATLAB under the function “eig”, then it may be possible for 

the total computational timing in the highlighted portions of Table 3.8 to be less than 

the Kalman filter timing while providing acceptable results. 

 Next, having performed a thorough investigation of the performance of the 

full rank SRCF and the RRSQRT in this Chapter, I will move on to another type of 

filtering technique that is also found to be more efficient than the MMSE or Wiener 

filter in its implementation while providing the same level of accuracy.  At the same 

time, the inherent features or structure of the new filter allows it to be easily 

implemented in a reduced rank fashion that is essential for my research.  This new 

type of filter is known as the Multi-Stage Wiener Filter (MSWF) that is based on 
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successive orthogonal projections of the original measurement data.  In the next 

Chapter, I will discuss the equations pertaining to the standard MSWF as well as the 

results obtained from the MSWF on the SAR image formation problem for the non-

uniformly distributed aperture radar system.     
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CHAPTER 4: THE MULTI-STAGE WIENER FILTER 

 

4.1 BRIEF BACKGROUND OF THE MULTI-STAGE WIENER FILTER 

 In the previous Chapter, we have examined one efficient implementation of 

the MMSE or Wiener filter in the form of the Square Root Covariance filter (SRCF) 

and the Reduced Rank Square Root filter (RRSQRT).  In this Chapter, we will look 

into another efficient implementation of the MMSE filter and this implementation is 

known as the Multi-Stage Wiener Filter or MSWF or short.  This filter was first 

developed and presented in 1997 by J. Scott. Goldstein and Irving S. Reed under [4] 

and elaborated in much more details under [5].  Prior to the presentation of [4], J.  

Scott. Goldstein and Irving S. Reed had worked on issues related to reduced rank 

adaptive filtering and had also presented a paper under [16] in which the cross-

correlation vectors of the measurement data correlation matrix R are used to reduce 

the rank of the matrix R.  This method is known as the cross-spectral method and it is 

shown to be much more efficient than the well known principal component method 

(PC) that uses the dominant Eigen vectors of R to perform rank reduction.  

Subsequently, the multi-stage Wiener filter was introduced and it also makes use of 

the cross-correlation vector of the desired signal in its implementation although this 

filter is very different from the cross-spectral method.   

Now, one big advantage of the newly developed MSWF is that the traditional 

matrix inverse operation R-1 required by the MMSE or Wiener filter is not needed in 

the MSWF implementation.  Thus, this will translate to better computational 
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performance.  Also, due to its ease of implementation and low complexity as 

compared to other Eigen decomposition-based methods of filtering like the PC 

method, the MSWF has been greatly adopted by the communication community in 

many applications such as in interference suppression in Direct Sequence Code 

Division Multiple Access (DS-CDMA) communication systems as seen in [17] and 

[18] etc.  In recent years, there has also been interest in applying the MSWF in 

various radar applications like the Space Time Adaptive Filtering (STAP) domain etc.  

Thus, this filter is also chosen to be investigated for its performance in the SAR 

image formation problem that is the focus of my thesis research.  Next, after having 

given a brief background of the multi-stage Wiener filter, I will provide the details 

and equations of this filter in the following section. 

 

4.2 THE GENERIC MULTI-STAGE WIENER FILTER 

 The Multi-Stage Wiener Filter (MSWF) consists of a series of stage-by-stage 

decomposition of the initial measurement data using orthogonal projections.  In terms 

of the rank of the filter, each stage of decomposition is equivalent to the increase of 

the filter processing by an additional rank of one.  Therefore, for a Wiener filter of 

rank N, the MSWF will also achieve full rank processing when it has performed N 

stages of decompositions.  Thus, this will also mean that for the MSWF, reduced rank 

processing can easily be obtained by simply truncating the stages of decomposition 

before N stages are reached.  Now, from the results presented in [18] and [19], it has 

been shown that the MSWF is able to obtain the full rank performance of the Wiener 
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filter in terms of accuracy by just performing a small number of stages of 

decomposition that is much lesser than the value N.  Thus, it allows the MSWF to 

outperform the other Eigen-based reduced rank filters like the principal component or 

cross-spectral method when the rank reduction is significant. 

 Next, the multi-stage Wiener filter can also be viewed as a way of 

decomposing the standard MMSE filter using a multi-resolution approach [20], in 

which each stage of decomposition is based on the statistical importance of the 

residual correlations from an innovation process.  In this approach, each stage of 

decomposition is determined using a matched filter type of criterion, in which the 1st 

stage of decomposition will maximize the cross-correlation between the scalar desired 

signal and the initial measurement data vector.  The subsequent stage of 

decomposition, recognizing that residual correlation between the desired signal and 

the unwanted signals are still present after the 1st stage of decomposition, then 

provides a matched filter criterion again after using the null space or orthogonal space 

of the cross-correlation vector in the preceding stage to form the new transformed 

measurement data vector.  In this manner, a point will be reached in which all the 

significant correlations between the desired signal and the unwanted signals will be 

extracted and then finally removed from the output of the 1st stage of decomposition 

such that the end result is equivalent to the MMSE or Wiener filter.  To provide a 

clearer picture of the above explanation, the structure of the MSWF for a scalar 

desired signal is provided in the following figure so that it is easier to follow through 

each stage of decomposition starting from the initial measurement data. 
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Figure 4-1: The structure of the Multi-Stage Wiener Filter for N=3 

Note that in the above figure, the structure is for a MSWF with 3 stages of 

decomposition (N=3).  Also, in the above figure, x0 is equivalent to the initial 

measurement data vector and d0 is the scalar desired signal that is zero mean, Wide 

Sense Stationary (WSS) and is also a complex random number.  As for the filters hi, 

they are the normalized cross correlation vectors between xi and the scalars di and for 

the filters BBi, they are the blocking matrices that eliminates the signal components in 

the direction of hi such that BiB

1

hi = 0.  Thus, in figure 4.1, the value d1 correspond to 

the maximum correlation between the desired signal and the input measurement data 

vector.  The residual correlations that will need to be removed from d1 are then 

obtained as d2, d3 etc and subsequently removed from d1 such that the final estimate 

for the desired scalar signal d0 is given by the equation: 

*
0 1d̂ w ε=     (4.1) 
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Notice that in the above figure 4.1, there appears to be a forward iteration and a 

backward iteration step in the computation of the various parameters.  In fact, in the 

implementation of the multi-stage Wiener filter, there are 3 steps associated with it, 

namely, the forward iteration step, the turn around step and the backward iteration 

step.  These steps are explained in great details in [5] and summarized again in [21] 

with relevance to the radar model.  As for the equations pertaining to each of the step, 

they are shown below and will be used for implementation of the MSWF in the radar 

model for the estimation of each scattering coefficient of the SAR image: γι

• Step 1: Forward Iteration for i = 1 to N-1 
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   (4.2) 

• Step 2: Turn-around at i = N 

This step is special in that it can be interpreted as either the termination step of the 

forward iteration or as the 1st of the backward iteration step.  The equations pertaining 

to the “Turn-around” step are as follows: 
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• Step 3: Backward Iteration for i = N-1 to 1 

In the backward iteration step, for index i beginning with i = N-1 and ending with i = 

1 in decrement step size of 1, the equations are as follows: 

2
12

1

*
1 1

| |

=

i

i
i d

i

i
i

i

i i i i

w

d w

δ
ξ σ

ξ
δ
ξ

ε ε

+

+

+ +

= −

= −
   (4.4) 

Finally, the estimate of the desired signal is given by equation 4.1 and the error 

variance or MSE of the estimate  is given by the expression: 0̂d

0 0 0

0

2 2 2
ˆ

2 *
1 1 1

d d

d w w

εσ σ σ

σ ξ

= −

= −     (4.5) 

Also, notice the similarity between equation 4.5 and equation 2.49 of [10] that is for 

the MMSE of the standard Wiener filter.  At this point, there are still the issues of the 
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forming of the blocking matrices BBi and the definition of the initial conditions before 

the MSWF implementation can be carried out.  The issue of forming the blocking 

matrices will first be discussed below: 

 

4.2.1 FORMING THE BLOCKING MATRIX B 

Now, in the previous section, the blocking matrix BBi is defined to be the null 

space of the normalized cross correlation vector hi such that BiB hi = 0.  In [5], the 

authors have proposed 3 algorithms of forming the blocking matrix BB

)

i.  Basically the 

first two algorithms consist of using either a Singular Value Decomposition (SVD) or 

a QR decomposition to obtain a unitary blocking matrix and they are described in 

[22].  The equations for the 2 algorithms are as follows: 

• Algorithm 1: Using SVD decomposition 

H

H

[ ] svd(

[ (:,2 : )]N

=

=

i

i

U, S, V h

B V
    (4.6) 

• Algorithm 2: Using QR decomposition 

H

H

[ ] qr( )

[ (:,2 : )]N

=

=

i

i

Q, R h

B Q
    (4.7) 

Note that if the dimension N of the cross correlation vector hi is huge; both these 

algorithms will be very computationally expensive.  Besides the 2 algorithms above, 

the authors of [5] also propose a 3rd algorithm in Appendix A of the same paper that 

is supposedly less complex than the first two algorithms but will generate a non-

unitary blocking matrix instead of a unitary blocking matrix.  Although the 3rd 
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algorithm is less computationally expensive than the first two algorithms, it still takes 

some time to generate if the value of N is large.  Also, another point to note is that for 

the 3 algorithms mentioned above, the blocking matrix formed is rectangular and thus 

the column space of the input measurement data vector will always be reduced by 1 

whether the blocking matrix is applied to the data vector. 

 As mentioned above, all 3 algorithms proposed above are not very efficient 

when used for generating the blocking matrix BBi.  On top of that, as the output 

measurement vector xi from the blocking matrix BiB

i i

 is different in dimension from the 

input measurement vector xi-1, thus this will result in additional hardware or software 

complexity in the implementation to account for all these vectors of different lengths.  

Thus, to overcome the problem, it was decided to use the orthogonal projection of hi 

to form the square blocking matrix instead such that: 

H= −iB I h h     (4.8) 

By looking at equation 4.8, we can see that it is now a very simple operation to form 

the blocking matrix.  At the same time, this will also improve the computation of xi 

from xi-1 since the new way of computation is: 

        (4.9) 

1
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=

= −

= −

x B x

I h h x

x h

Interestingly, after verifying that this implementation is working properly, I also 

discovered subsequently that the same idea was proposed by [23] citing the same 
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benefits as above.  Thus, this reconfirms the decision to use equation 4.8 to form the 

blocking matrix. 

 

4.2.2 DEFINING THE INITIAL CONDITIONS FOR MSWF 

 In this section, the initial conditions for implementing the MSWF will be 

defined [21].  From equation 4.2, we can see that it is required to define the initial 

matrix  and the cross correlation vector   before the forward iteration step 

can proceed.  Now, the initial measurement data vector  is equivalent to the 

response vector r in my radar model.  Therefore using equation 2.17, we can now 

define the following: 

0xR
0 0dxr

0x

0 0

0

H

2

2

d

d γ
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σ

σ

= +

=

=

=

x n

n n

R PR P K

K I

R K

I

   (4.10) 

In equation 4.10 above, the Gaussian measurement noise covariance matrix is Kn and 

 is the expected value of the square of the scattering coefficient of each 

image resolution cell or scatterer that has a mean value of zero.  Also, for the MSWF 

implementation defined above, it is to be used for scalar signal estimation.  Now, 

since there are many scattering coefficients in the SAR image formation problem, 

therefore, in order to estimate the value of the i

2 E[ ]H
i iγσ γ γ=

th scattering coefficient γi using the 

MSWF, the value of  is equal to: 
0 0dxr

0 0 0d d=xr PR ie     (4.11) 
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in which ei is a vector whose elements are all zeros except the element i that has a 

value of 1.  As an example, if i = 5, then: 

e5 = [0, 0, 0, 0, 1, 0, …..]T   (4.12) 

Thus, with the definition of equation 4.11, all the initial conditions for the MSWF 

implementation have been defined and it is now possible to start the MSWF stages of 

decomposition.  In the next section, the performance of the MSWF of filter order 

O(5×M2)used to estimate the value of one scattering coefficient will be evaluated with 

that of the MMSE filter as well as with the Kalman filter. 

 

4.3 PERFORMANCE OF MSWF FOR SCALAR ESTIMATION OF γi 

 In this section, a simulation is carried out using the experimental conditions as 

defined in Table 3.1 in Chapter 3 that uses a measurement size of 3060 to estimate a 

total of 961 image resolution cells.  Also, the value of image resolution cell #1 or γ1 is 

chosen as the desired signal to be estimated by the MSWF.  By varying the stages of 

decomposition of the MSWF, the results obtained for the normalized value of the 

Expected Error Variance 
0

2
εσ  and normalized value of the Computed Error Variance 

of γ1 are then recorded and shown in Table 4.2 below.  Note that the 2 parameters are 

defined as follows with Nt being the total number of resolution cells:  

0
0

2
2

ˆ ˆ( )tN
ε

ε
σ

σ Η=
γ γ/

    (4.13) 
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(γ γ/

)
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Table 4.1: Results from MMSE and Kalman filter for image resolution cell #1 

Filter Type Total Time /sec 
0

2
εσ /dB Computed MSE /dB 

Kalman 37.506 -40.475 -40.953 

Wiener 220.711 -40.475 -40.953 

 

Table 4.2: Results from MSWF for image resolution cell #1 

Number of Stages Total Time /sec 
0

2
εσ /dB Computed MSE /dB 

1 40.782      -3.772 -4.389       

2 43.613 6.840 -8.536 

3 46.647 9.642 -7.023 

4 49.713 -11.900 -17.022 

5 52.746 -14.043 -32.492 

6 55.749 -16.188 -16.110 

7 58.753 -17.945 -24.852 

8 61.802 -19.474 -22.048 

9 64.914 -20.941 -17.414 

10 67.839 -22.356 -19.327 

20 98.187 -39.019 -36.650 

25 113.110 -40.382 -40.513 

30 128.404 -40.469 -40.865 

35 143.064 -40.475 -40.947 

40 158.797 -40.475 -40.964 
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Firstly, by looking at the results of Table 4.1, it is not surprising to see that both the 

Wiener filter and the Kalman filter producing the same results but with different 

computational timing.  Secondly, from the MSE results shown in Table 4.2, some 

characteristics of the MSWF can be observed.  As mentioned in the previous sections, 

each additional stage of decomposition of the MSWF is equivalent to the increase of 

the filter processing by an additional rank of one.  Therefore, for a MSWF with 

number of decomposition stages equal to 1, it will correspond to only processing the 

filter with a reduced rank equal to 1.   As such, the MSE results obtained are very 

poor compared to the full rank processing results.  However, as the stages of 

decomposition increase, the performance of the MSWF also improves as seen by the 

corresponding MSE results.  Eventually, it can be seen that the MSWF has obtained 

full rank MMSE filter result at a decomposition stage of about 40 which takes lesser 

computational time than the MMSE filter.  Therefore, at this point, it seems that the 

MSWF is functioning properly in its estimation of the scattering coefficient γ1 and 

using a small number of decomposition stages that is much less than the full rank of 

961 for the matrix .   
0xR

Also, note that in obtaining the total computational time of both the Wiener 

filter and the MSWF, it includes the time required to form the initial condition matrix 

which takes 40.610 sec.   As for the Kalman filter, as it is only using a subset of 

the measurements in each iteration step, thus the time needed for its initial condition 

preparation is negligible.  Therefore, if it is assumed that the initial conditions are 

0xR
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already present before using the filters, the modified timing is as shown in Table 4.3 

and Table 4.4: 

Table 4.3: Results from MMSE and Kalman filter with modified timing 

Filter Type Total Time /sec
0

2
εσ /dB Computed MSE /dB 

Kalman 37.506 -40.475 -40.953 

Wiener 180.101 -40.475 -40.953 

 

Table 4.4: Results from MSWF with modified timing 

Number of Stages Total Time /sec 
0

2
εσ /dB Computed MSE /dB 

1 0.172      -3.772 -4.389       

2 3.003 6.840 -8.536 

3 6.037 9.642 -7.023 

4 9.103 -11.900 -17.022 

5 12.136 -14.043 -32.492 

10 27.229 -22.356 -19.327 

20 57.577 -39.019 -36.650 

25 72.500 -40.382 -40.513 

30 87.794 -40.469 -40.865 

35 102.454 -40.475 -40.947 

40 118.187 -40.475 -40.964 

 

 67



 

Looking at Table 4.3 and 4.4, we can observe that although the MSWF estimator is 

able to outperform the MMSE or Wiener filter in terms of computational time, it is 

still not as fast as the Kalman filter itself. 

 Next, after I have looked at the performance of the MSWF on its estimation of 

the scalar value of γ1, the next experiment will be to repeat the same experiment for 

960 times corresponding to the remaining 960 targets in the SAR image to ensure that 

the remaining targets will also converge at the decomposition stage of 40.  Also, as 

the MSWF discussed so far can only estimate one scalar signal at a time, I will 

introduce the notation “scalar MSWF” at this point to distinguish it from the 

subsequent implementation of MSWF that can estimate more than 1 signal at a time.  

At the same time, to check the overall performance of the results of all the targets, 

two evaluation methods will be carried out.  The 1st evaluation method will be to use 

the average expected error variance and the average computed error variance across 

all targets as the performance parameters where these parameters are defined as: 
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ˆ )
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Η

Η=
γ − γ) (γ − γ)

(γ γ
   (4.16) 

Note that there are some differences between equations 4.15 to 4.16 for all targets and 

equations 4.13 to 4.14 for a single target.  As for the 2nd evaluation method, 

essentially it is to obtain the error vector between the estimated values  and the 

actual values  for the MMSE filter as well as the error vector  for that of the 

1ε γ̂

γ 2ε
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MSWF.  A correlation analysis between these two error vectors is then performed 

using the inner product rule as follows: 

1 2ε εσ ∗
1 2 1 2= ε ε ε ε    (4.17) 

In equation 4.17, is the correlation measure between the two error vectors.  If the 

two error vectors are identical, then will have a value that will be equal to 1.  

This will imply that the two vectors are perfectly correlated.  However, if the two 

error vectors are non-identical, then will be less than 1.  Using these two 

methods, the simulation is carried out for the 2

1 2ε εσ

1 2ε εσ

1 2ε εσ

nd experiment and the results are 

computed and shown below: 

Table 4.5: Performance of MMSE, Kalman and scalar MSWF using 1st method 

Filter Type 
0

2
εσ /dB Computed MSE /dB 

Kalman -41.933 -42.216 

Wiener -41.933 -42.216 

MSWF -41.933 -42.216 

 

From Table 4.5, we can see that the scalar MSWF is able to achieve the same 

performance in terms of accuracy as the other two filters for all the 961 targets.  To 

further verify this observation, the 2nd method using correlation measure is carried out 

and the results for the correlation measure turns out to be equal to 1 as well.  

Thus, these two methods prove that the scalar MSWF is functioning properly for the 

SAR image formation problem.  At the same time, some plots showing the elements 

1 2ε εσ
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of the two error vectors  and  are provided to illustrate the perfect correlation 

between these two vectors. 
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Figure 4-2: The Steady State Error magnitude across all targets 

In Figure 4.2, we can see that the final error obtained from each image resolution cell 

or target has the same value from both the Kalman filter and the MSWF such that the 

two error curves coincide exactly with each other at all points.  However, as there are 

too many targets in figure 4.2, certain subsets of the targets are re-plotted again so as 

to have a clearer picture of the correlation relationship between the two error vectors, 

i.e., the zoom-in version of Figure 4.2.  These new plots are shown in figure 4.3 and 

figure 4.4 on the next page. 
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Figure 4-3: The Steady State Error magnitude from Targets 51 to 100 
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Figure 4-4: The Steady State Error magnitude from Targets 751 to 800 
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Now, the results and plots obtained above from the two evaluation methods have 

verified that the scalar MSWF is able to produce the final estimation results with 

equally good accuracies as with the full rank MMSE and Kalman filter while using 

less than full rank processing.  However, to obtain the estimated scattering 

coefficients  for the whole image of 961 resolution cells, it takes a total of 

118.187*961 seconds (118.187 = time needed for 40 stages of decomposition per 

target) to complete the process if it is performed serially with one target at a time.  On 

the other hand, to confine the time needed to process all targets to be the same as 

processing one target, (e.g., 118.187 seconds) it will require 961 computing machines 

to perform the tasks in parallel.  Thus, neither of these scenarios are feasible from an 

implementation point of view.  Therefore, to overcome the limitations posed by the 

scalar MSWF that can only estimate one signal at a time, the next step will be to 

search for a form of the MSWF that can estimate multiple signals or a vector of 

signals at a time.  By using the MSWF in such a manner, i.e. vector MSWF, we can 

either reduce the total computational time for all targets from 118.187*961 seconds or 

reduce the amount of parallel machines needed from 961 etc.  In the next section, the 

results of the search for the vector MSWF are discussed along with the details of 

implementation for such type of MSWF. 

γ̂

 

4.4 THE VECTOR MULTI-STAGE WIENER FILTER 

 In order to use the MSWF to estimate multiple signals or using the term 

“Multi-user Detection” or MUD in communication applications, researchers have 
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been trying to satisfy this goal by using parallel processing with 1 output signal per 

processor as can be seen in [24] and [25].  However, as mentioned in the previous 

section, this approach will not be feasible if there are many signals to be detected or 

estimated.  Looking back, it is briefly mentioned in [20] that the MSWF can be used 

for detecting multiple signals using a Multi-Stage Matrix Wiener Filter 

implementation along with some implementation details.  The term “Matrix” in [20] 

refers to the facts that unlike scalar signal detection in which the weights of the 

MSWF will form a vector, i.e. wmswf = [w1, w2, w3… wN], the weights of the MSWF 

for multiple signal detection will form a matrix Wmswf instead.  Therefore, the 

notation “Multi-Stage Matrix Wiener Filter “ used by [20] and my notation “vector 

MSWF” used in this thesis are referring to the same implementation.  After further 

research, another paper [26] is found that also provides additional information for the 

vector MSWF implementation etc.  Thus, using the information from the two papers, 

the equations for the vector MSWF of filter order O(8×(Nt
3)+8×(Nt

2×M)+5×(M2×Nt)) 

are slightly modified from equation 4.2 to 4.4 and are shown as follows: 

• Step 1: Forward Iteration for i = 1 to N-1 

1 1 1 1

1 1

1

1 2H

1

H
1

H
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i i i i

i i

i i

i x d x d

i x d i

i i i

i x i

i inull

− − − −

− −

−

−

−

=

=

=

=

=

d

R R

H R

d H x

R H R H

B H

δ

δ

  (4.18) 
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Note that in equation 4.18, the cross correlation vector  as well as its normalized 

version h

0 0dxr

i in equation 4.2 have been transformed from vectors to matrices  and 

H

0 0x dR

i.  At the same time, the normalizing value  has also become a matrix  and the 

square root operation required to obtain  is not the standard scalar square-root 

function but the fast and accurate Cholesky decomposition operation instead.  Also, 

all scalar division operations have been replaced by matrix inverse operations.  As for 

the expected variance  of one target, it has been replaced by the Covariance 

Matrix of multiple targets. 

iδ iδ

iδ

2
idσ

idR

• Step 2: Turn-around at i = N 
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ε

  (4.19) 

Note that in equation 4.19, the scalar weight wN has been replaced by the weight 

matrix WN instead.   
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• Step 3: Backward Iteration for i = N-1 to 1 

H
1 1

1

H
1 1

=

i

i

i i i

i i

i i i i

+ + +

−

+ +

= −

= −

dR
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d W

ξ δ ξ

ξ δ

ε ε

1iδ

ε

  (4.20) 

Finally, the estimated values of all the scattering coefficients are given by the 

following expression: 

H
1ˆ = 1Wγ      (4.21) 

 

4.4.1 ADJUSTMENT OF DATA LENGTH DUE TO CHOLESKY FUNCTION 

 In the equations for the vector MSWF implementation, it is mentioned that the 

square root operation of a matrix is performed using the fast and accurate Cholesky 

decomposition that will produce an upper triangular matrix that is the square root of 

the input matrix, i.e. for a square matrix X, its square root U is obtained using: 

H

= cholesky( )

=X U U

U X
    (4.22) 

Now, one requirement for performing Cholesky decomposition is that the input 

matrix must be positive definite which means that none of its Eigen values are zero.  

Otherwise, the Cholesky decomposition operation will fail completely. 

 With this knowledge of the Cholesky operation, we will now examine its 

usage in the vector MSWF implementation.  As can be seen from equation 4.18 and 

4.19, the Cholesky operation is used to compute the normalization matrix of the 
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initial cross correlation matrix etc.  Also, by referring to equation 4.11, we can 

see that the initial cross correlation matrix is formed from the P matrix defined 

in equation 2.16 that is equal to the combination of the normalized space-time 

receiver measurements or response vectors.  However, due to the features of the radar 

model simulator that also accounts for targets that are at the near end or far end of the 

radar receiver platforms, there are many zeros in the initial and end rows of the P 

matrix.  Unfortunately, these zeros will cause the initial Cholesky operation in the 

forward iteration to fail as it will result in the matrix becoming positive semi-

definite instead.  Thus, in order to implement the vector MSWF, the initial portion of 

the P matrix and the response vector r is discarded in the computing process.  

0 0x dR

0 0x dR

0 0x dR

 

4.4.2 MINIMUM DATA LENGTH RELATIONSHIP TO TARGET SIZE 

 For the scalar MSWF implementation, there is no requirement on the 

minimum length of the measurement data to be used when performing the stages of 

decomposition.  However, for vector MSWF implementation, if there are K targets or 

image resolution cells to be estimated, then the length of the measurement data or 

response vector r cannot be less than K.  Otherwise, this will result in the product 

 with a size of (K × K) having some Eigen values that are equal to zero 

or becomes a positive semi-definite matrix.  Subsequently, this will again result in the 

failure of execution of the Cholesky operation at the 1

0 0 0 0

H( d dx xR R )

st step of the forward iteration. 
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4.4.3 DIAGONAL LOADING OF THE COVARIANCE MATRIX  
idR

 Besides truncating the length of the response vector r for the vector MSWF 

implementation, there is another issue that have arise as a result of using the Cholesky 

decomposition operation.  By referring to equation 4.18 and 4.19, we can see that the 

covariance matrix is computed at every forward iteration step.  However, due to 

finite computer precision, this may cause to change from a positive definite 

matrix to a positive semi-definite matrix due to rounding errors.  Once this change 

occurs, the forward iteration will not be able to proceed with further stages of 

decomposition as the Cholesky operation will fail at the 1

idR

idR

st step of the next stage of 

decomposition.  Therefore, in order to overcome this shortcoming of the vector 

MSWF implementation, the solution is to apply diagonal loading to the covariance 

matrix during its computation.  In this manner, this will ensure that will not 

become positive semi-definite as the iteration proceeds.  As for the amount of 

diagonal loading to be introduced to , after several trials, the value corresponding 

to 0.1% of the measurement noise power  used in the radar model.  As a result of 

the introduction of diagonal loading, the computation of and is changed to 

the following expression: 

idR
idR

idR

2
nσ

idR
NdR

1

2

H

= 0.001

i i

n

i x i

σ

−
= +d

DL I

R H R H DL   (4.23) 

Finally, after all these considerations are taken into account, the vector MSWF is then 

successfully implemented and its performance is evaluated in the next section. 
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4.5 PERFORMANCE OF MSWF FOR VECTOR ESTIMATION OF  γ

In this section, a simulation is carried out using the experimental conditions as 

defined in Table 3.1 in Chapter 3 but however the measurement size has been reduced 

from 3060 to 2856 as is explained in section 4.4.1.  Also, the complex scattering 

coefficients  are also taken from the KU image.  As a start, the simulation will first 

begin with estimating a target group containing only a single target and then followed 

by various increments of target or image numbers in the target group such that it will 

reach the total of 961 image resolution cells.  At the same time, the value of image 

resolution cell #1 or γ

γ

1 is chosen as the target whose performance is to be tracked 

within the group throughout the process.  By varying the stages of decomposition of 

the vector MSWF, the results obtained for the normalized expected error variance 
0

2
εσ  

and the normalized computed error variance of γ1 along with the average expected 

error variance and the average computed error variance across the few target group 

sizes are then recorded and the results of these target group sizes are shown in the 

following tables.  Note that the average expected error variance and the average 

computed error variance across each target group size are defined as follows where M 

is the number of targets to be estimated: 

0

0

2

2 1

1

ˆ ˆ( )

i

i M

i

t

M

N

ε

ε

σ
σ

=

=
Η=
∑

γ γ/
    (4.24) 

ˆ ˆ( ( ) ( ) ( ) ( )1
Computed

ˆ / )t

1 : M 1 : M 1 : M 1 : M
MSE

M N

Η

Η

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

γ − γ ) (γ − γ

(γ γ

)
 (4.25) 
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As with the scalar MSWF implementation, there is a time incurred of about 35.239 

seconds needed to form the initial condition matrix  for both the Wiener filter and 

the MSWF.  In the following tables that are shown, this time is included in the total 

time incurred: 

0xR

Table 4.6: Results from MMSE and Kalman filter across all Target resolution cells 

Filter 

Type 

Total Time 

/sec 

0

2
εσ /dB for 

Target 1 

Computed 

MSE /dB 

for Target 1 

Average 

0

2
εσ /dB 

Average 

Computed 

MSE /dB 

Wiener 186.078 -41.021 -42.253 -41.101 -41.037 

Kalman 35.562 -41.021 -42.253 -41.101 -41.037 

 

Table 4.7: Results from vector MSWF for Target group size M = 1 

Number 

of Stages 

Total 

Time /sec 

0

2
εσ /dB for 

Target 1 

Computed 

MSE /dB for 

Target 1 

Average 

0

2
εσ /dB 

Average 

Computed 

MSE /dB 

1 35.378 -4.431 -5.8382 - - 

2 37.856 -7.423 -20.512 - - 

3 40.411 -9.995 -23.824 - - 

4 43.268 -12.523 -23.037 - - 

5 46.221 -14.922 -19.714 - - 

10 58.667 -26.050 -25.405 - - 

20 84.485 -40.044 -37.379 - - 

30 109.627 -41.011 -42.124 - - 
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Table 4.8: Results from vector MSWF for Target group size M = 10 

Number 

of Stages 

Total 

Time /sec 

0

2
εσ /dB for 

Target 1 

Computed 

MSE /dB for 

Target 1 

Average 

0

2
εσ /dB 

Average 

Computed 

MSE /dB 

1 35.886 -4.578 -5.943 -4.426 -4.946 

2 40.229 -7.922 -14.165 -7.889 -9.093 

3 44.729 -10.693 -15.343 -10.924 -11.155 

4 49.151 -13.528 -15.032 -13,762 -14.469 

5 53.603 -16.159 -24.153 -16.451 -15.731 

10 75.270 -29.947 -29.245 -29.113 -29.704 

20 119.625 -40.972 -41.490 -40.697 -42.869 

25 142.431 -41.016 -42.081 -40.759 -43.104 

 

Table 4.9: Results from vector MSWF for Target group size M = 100 

Number 

of Stages 

Total 

Time /sec 

0

2
εσ /dB for 

Target 1 

Computed 

MSE /dB for 

Target 1 

Average 

0

2
εσ /dB 

Average 

Computed 

MSE /dB 

1 39.134 -6.063 -4.508 -5.7795 -5.505 

2 57.471 -10.524 -23.939 -10.364 -10.951 

3 75.965 -14.615 -16.093 -14.598 -14.887 

4 94.333 -18.843 -25.032 -18.897 -17.597 

5 112.979 -23.604 -33.228 -23.561 -23.299 

10 203.642 -41.017 -42.253 -40.939 -41.171 
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Table 4.10: Results from vector MSWF for Target group size M = 961 

Number 

of Stages 

Total 

Time /sec 

0

2
εσ /dB for 

Target 1 

Computed 

MSE /dB for 

Target 1 

Average 

0

2
εσ /dB 

Average 

Computed 

MSE /dB 

1 112.572 -41.016 -42.253 -41.097 -41.037 

 

From the results shown in the tables above, we can observe two trends.  Firstly, we 

can see that as the number of targets within the group increases, it will lead to faster 

convergence of the targets using the vector MSWF in terms of stages of 

decomposition.  Secondly, as the time needed for each stage of decomposition will 

take a longer time with an increase in the target group size, thus there is an overall 

increase in the computational time needed for convergence when the target size 

increases.  However, when all the targets are used together in the decomposition as 

shown in Table 4.10, the trends reverse as all the targets achieved their steady state 

estimated values using just 1 stage of decomposition and in a shorter period of time.  

Also, from Table 4.10, we can see that the results obtained from the vector MSWF 

when using all targets together are the same as that of the Kalman or Wiener filter 

shown in Table 4.6.  Thus, we can conclude that the vector MSWF is functioning 

properly in the estimation of the scattering coefficients . γ

 At this point in time, after acquiring the capability of the MSWF to perform 

vector estimations of signals, the next important task will be to determine the choice 

of target group size that will allow all the targets in  to reach their steady state γ
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estimated values in the shortest possible time given the available computing 

resources.  Unlike Kalman or MMSE filter where it is not possible to divide the 

overall processing across various machines, it is now possible for the targets to be 

divided into groups and each group interdependently processed by a machine when 

using the MSWF.  If enough machines are available such that all target groups can be 

processed simultaneously, this type of implementation will be known as the “Parallel 

MSWF” implementation.  On the other hand, if there is only one machine available, it 

is still possible to perform the MSWF decomposition on each group in a serial 

manner with one group at a time.  This type of implementation will be known as the 

“Serial MSWF” implementation.  To order to make the choice between the 2 types of 

MSWF implementation, simulations are carried out on various target group sizes 

starting from the value of 1 and extending to the full target size of 961.  The results 

that are obtained will be discussed in the next section. 

 

4.6 PARALLEL/SERIAL IMPLEMENTATION OF VECTOR MSWF 

 As mentioned in the previous section, the availability of vector MSWF 

capability allows for 2 types of implementation when processing all the targets or 

image resolution cells.  To visualize the difference between these 2 types of vector 

MSWF implementation with that of the Kalman filter, some diagrams showing the 

structures of the Kalman filter, the parallel and serial implementation of the MSWF 

are provided.  Note that in the following diagrams,  and  as are 

defined in equation 2.27 in Chapter 2. 

0ˆ 0=γ 2
0 γσ=Kγ I
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Figure 4-5: Kalman Filter Implementation 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Full set of 
Measurement 
Data used for 

MSWF 
processing 

Initial Conditions for all Target groups 
0 0ˆ ,Kγγ  

 
 

Start of 
MSWF 

processing
Of 

Target 
Group 

#1 

 
 

Start of 
MSWF 

processing
Of 

Target 
Group 

#2 

 
 

Start of 
MSWF 

processing
Of 

Target 
Group 

#3 

 
 

Start of 
MSWF 

processing
Of 

Target 
Group 

#J 

….. 

Final ˆ,Kγγ  

Figure 4-6: Parallel Implementation of vector MSWF 
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Figure 4-7: Serial Implementation of vector MSWF 

From the above figures 4.5 to 4.7, we can notice the 2 basic differences between the 

Kalman filter and the vector MSWF.  For Kalman filter, the full measurement data is 

divided into subsets for processing in each iteration step whereas in the vector 

MSWF, all measurements are used simultaneously.  Also, in Kalman filter, all the 

targets are processed in each iteration step whereas in vector MSWF, the targets can 

be divided into different groups and processing is then performed independently on 

each group itself.  Now, after having visualized the structures of the parallel and serial 

vector MSWF implementations, the results in terms of average expected error 

variance as defined in equation 4.24 and the total computation time needed with 
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respect to target group sizes and stages of decomposition are then obtained and 

discussed in the following sections. 

 

4.6.1 AVERAGE 
0

2
εσ  VERSUS GROUP SIZE AND NUMBER OF STAGES 

 As mentioned in section 4.5, there is a need to decide on the size of the target 

groups to be used in the vector MSWF implementations.  As such, one of the areas to 

be investigated is the relationship between the average 
0

2
εσ of all the targets versus the 

target group sizes and the stages of decomposition that are performed.  Some plots of 

the relationship obtained are as shown below: 

0.1

1.0

10.0

100.0

0
5

10
15

20
25

-50

-40

-30

-20

-10

0

Tgt Group Size in % (logscale)

Average Expected MSE obtained for MSWF

Stages of Decomposition

M
S

E
 (d

B
)

-40

-35

-30

-25

-20

-15

-10

-5

 

Figure 4-8: 3-D plot of Average MSE versus Group Size and Decomposition Stages 

 85



 

Tgt Group Size in % (logscale)

S
ta

ge
s 

of
 D

ec
om

po
si

tio
n

Average Expected MSE (dB) obtained for MSWF

0.1 1.0 10.0 100.0

0

5

10

15

20

25
-40

-35

-30

-25

-20

-15

-10

-5

 

Figure 4-9: 2-D view of Average MSE for vector MSWF implementation 

From figure 4.8, it can be seen again that as the size of the target group increases, it 

will require fewer stages of decomposition for the estimated values to obtain their 

steady state conditions.  Furthermore, as the size of the target group approaches to 

100% of the available targets, there is a sharp decrease in the number of 

decomposition stages required as seen by the steep slope in the figure 4.8.  At the 

same time, we can also observed that there are many combinations in which steady 

state conditions can be reached as seen by the flat plane in the same figure itself.  

Finally, by examining figure 4.9, we can see again that when all the targets are used 

simultaneously in the decomposition, only 1 stage is required for convergence or 

steady state condition to be achieved as seen in the top right corner of figure 4.9. 
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4.6.2 TIME (PARALEL) VERSUS GROUP SIZE AND NUMBER OF STAGES 
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Figure 4-10: 3-D plot of Time for Parallel MSWF Implementation 
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Figure 4-11: 2-D view of Time for Parallel MSWF Implementation 
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From figure 4.10 and figure 4.11, we are able to observe the expected trend that for 

parallel MSWF implementation, the computational time will increase exponentially 

when either the target group size or stages of decomposition or both increase in their 

values.  At the same time, it is noted that the time difference between the smallest 

computational time and the largest computational time is of 2 orders of magnitude in 

difference. 

 

4.6.3 TIME (SERIAL) VERSUS GROUP SIZE AND NUMBER OF STAGES 
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Figure 4-12: 3-D plot of Time for Serial MSWF Implementation 

From figure 4.12, we can see that for serial MSWF implementation, as the target 

group size increases, the computational time required decreases as opposed to that of 

parallel MSWF implementation.  However, as the target group size reaches 100%, the 

slope stops decreasing but climbs up instead.  The main reason is because as there are 
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more targets within the group, it will dramatically increase the time required to 

perform the non linear matrix inverse operation needed to obtain the normalized cross 

correlation matrix as shown in equation 4.18 and 4.19.  The only exception seems to 

be at one location that is when the combination of all targets and 1 stage of 

decomposition is chosen as seen in the top right corner of figure 4.13. 
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Figure 4-13: 2-D view of Time for Serial MSWF Implementation 

 

4.6.4 CHOICE IN PARALLEL/SERIAL IMPLEMENTATION BASED ON MSE 

After analyzing all the information provided in the previous 3 sections, the 

important decisions to make are to choose between parallel or serial MSWF 

implementation as well as the size of the target group itself.  In order to make a good 

judgment between the various choices, I will place all the 2-D plots together so as to 

allow for better visualizations of the overall picture. 
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Figure 4-14: Relationship between Average MSE and Computation Time 

By looking at figure 4.14, we can observe that in the region where there is 

convergence in the average expected MSE, it is generally better to use the parallel 

implementation approach as the computational time required is generally shorter.  

However, if there is a real constraint in the computing resources, using serial 

implementation will only increase the computation time by less than an order of 

magnitude in most cases which is acceptable.  Also, for both parallel and serial 

implementations, there seems to be a common optimal combination at which 

convergence can occur rapidly.  This combination is the choice of using all targets 
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and using just 1 stage of the decomposition.  However, it is also believed that as the 

number of targets increase dramatically from 961 to many thousands, this optimal 

condition may not hold true as ultimately, the matrix inverse operation required for 

computing the cross correlation matrix will become the dominant factor. 

 At this point, I have successfully completed the derivation as well as provided 

the implementation aspects and results of using the vector MSWF for solving the 

SAR image formation problem of a Non-Uniformly Distributed Multiple Aperture 

Radar system.  But as the computational timing needed for convergence of the 

estimated values is rather high (112.572 seconds versus 35.262 seconds) as compared 

to the Kalman filter, one may wonder whether the Kalman filter still outperforms the 

MSWF when both the measurement data and target size increases.  At the same time, 

it is also curious to know whether the MSWF will still hold its edge over the MMSE 

filter (112.572 seconds versus 186.078 seconds) in such a situation.  In order to 

answer this question, a simulation is performed on the 3 types of filter again but using 

a much larger data set.  The results of this simulation are shown in the next section. 

 

4.7 RUNNING LARGER DATASET FOR PARALLEL MSWF 

In this section, a simulation is performed using the MMSE filter, the Kalman 

filter as well as the parallel vector MSWF on a data set that is about 4 times as large 

when compared to the simulations that are run previously.  As the computing 

resources needed for this simulation is beyond that of a standard PC computer, it is 

therefore executed in the freestyle server machine in the premise.  Note that as the 
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freestyle server is not a dedicated machine for performing this simulation but 

accessed by many users, thus many simulation runs have to be performed for each 

scenario before the average results are obtained.  In Table 4.11 below, the parameters 

that are used for the simulation are as shown: 

Table 4.11: Parameter Values used for Large Data Set Simulation 

S/N Description of Parameters Values chosen 

1 Nx 63 

2 Ny 63 

3 Full Filter Rank size (=  Nx × Ny) 3969 

4 Total number of transmitters 1 

5 Total number of receivers 12 

6 Total number of samples 11460 

7 SNR (Signal to Noise Ratio) 40 dB 

 

Using the parameters shown in the above Table 4.11, the simulation is performed on 

all 3 filters with an measurement group size of 191 measurements per iteration step 

being used for the Kalman filter.  This value of 191 is only determined after many 

runs are performed on the Kalman filter to ensure that the measurement size of 191 

per iteration step will provide an optimal computational time using the Kalman filter.   

As for the MSWF, it is carried out by grouping all the targets in a single group and 

using 1 stage of decomposition to obtain the final results.  Next, the results obtained 

for the simulation are then recorded and shown in Table 4.12 on the next page. 
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Table 4.12: Large Data Set Results from MMSE, Kalman filter and MSWF 

Filter Type Total Time /sec Average 

0

2
εσ /dB 

Average Computed 

MSE /dB 

Wiener 9349.3 -39.483 -39.439 

Kalman 1192.1 -39.483 -39.439 

MSWF 3432.5 -39.479 -39.439 

 

From the results shown in Table 4.12, we can conclude that the MSWF will generally 

not be more computational efficient as compared to the Kalman filter.  However, the 

MSWF edge over the MMSE or Wiener filter will improve tremendously when the 

measurement data size and target size increase significantly.  

Finally, the next question that comes to mind will be to determine whether the 

vector MSWF timing decreases by using some innovative or pre-processing 

approaches in its implementation.  This question will be answered in the next Chapter 

on using innovative implementation of the MSWF. 
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CHAPTER 5: INNOVATIVE MSWF IMPLEMENTATIONS 

 

5.1 USING MODIFIED APPROACH TO INITIALIZATION OF DATA 

 In the previous Chapter, I have discussed both the scalar and vector 

implementation of the Multi-Stage Wiener filter (MSWF) along with using either 

parallel or serial computing architecture for the vector MSWF implementation.  

Although the MSWF functions properly using each of this combination, there lies a 

question on whether its performance improves in terms of the computational time 

required.  In order to answer this question, one can firstly re-examine the structure of 

the efficient Kalman filter as shown in figure 4.5 and reproduced again in figure 5.1 

below to forge some idea on speeding the processing of the MSWF. 

 

Measurement 
data subset 1 

Measurement 
data subset 2 

Initial Conditions 
0 0ˆ ,Kγγ  

Simultaneous Processing of All Targets 

Initial Conditions 
11 11ˆ ,Kγγ  

Simultaneous Processing of All Targets 

And so forth 

 

 

 

 

 

 

 

 

Figure 5-1: A re-look at the structure of Kalman Filter 
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By examining figure 5.1, we can notice that the initial conditions used for processing 

the next batch of measurement data input to the Kalman filter are not the same as the 

initial conditions used at the processing of the previous batch of measurement data.  

Instead, the new initial conditions  are the output of all the targets from the 

Kalman filter processing of the 1

11 11ˆ , Kγγ

st batch or subset of measurement data.  By 

repeatedly refining the initial conditions that provide a closer picture to the actual 

values of the states to be estimated, the Kalman filter is thus able to achieve 

convergence once enough measurements are processed.  Essentially, the Kalman 

filter’s approach can be summarized as using piecewise measurement data processing 

along with refinement of initial conditions using output from previous processing.  

Looking at this approach, one can draw some analogy between the Kalman 

filter structure and the serial implementation of the MSWF that is shown in figure 4.7 

in Chapter 4.  For instance, if the initial conditions for processing the 2nd group of 

targets in the serial MSWF implementation are also refined using the output from the 

1st group of targets, then the division is in the target data that is analogous to the 

division in the measurement data using the Kalman filter.  However, unlike the 

Kalman filter where the  vector consists of the estimates of all targets from the 

previous batch of data, the  vector used in the 2

11γ̂

1γ̂
nd target group for the serial MSWF 

processing consists of a mixture of estimates from the 1st target group and the rest 

from the original initial condition .  Similarly, the matrix  used in the 

initialization of the 2

0γ̂ 1Kγ

nd target group for the serial MSWF processing is not a fully 

filled matrix but rather a mixture of diagonal and block diagonal elements.  This 
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analogy can be more easily visualized in the modified serial MSWF implementation 

as shown in figure 5.2 below: 
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Figure 5-2: Modified Serial Implementation analogous to Kalman filter 

Using this new approach, a simulation is performed on the modified serial MSWF 

implementation approach using 3 different target group sizes of 20, 100 and 480 so as 

to analyze the trend of the end results obtained from the MSWF using this approach.  

The results are shown in figure 5.3 in the following page. 
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Figure 5-3: Results using Modified Serial MSWF Implementation 

In figure 5.3 above, the rate of convergence of each target group with respect to 

stages of decomposition is plotted for various target group sizes of 20, 100 or 480 

targets per group.  To start, let’s examine the topmost plot in which there are 20 

targets per target group.  Comparing the rate of convergence between the 1st target 

group and the 20th target group, we can see that the 20th target group has a faster 
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convergence rate as it only needs 12 stages of decomposition to reach its steady state 

values whereas the 1st target group needs at least 18 stages of decomposition to 

achieve steady state conditions.  If we are to look at the convergence rate of the last 

target group or the 48th target group in the list, we will see that it has achieved its 

steady state condition in just 6 stages of decomposition.  Next, if we are to continue 

examining the bottom 2 plots in which the target group size are namely 100 and 480, 

we can notice the similar trends in these plots as well.  This improvement in the 

convergence rate is most prominent in the case where the target group size is 480, in 

which the 2nd target group is able to achieve convergence at just the 1st stage of 

decomposition whereas the 1st target group needs 3 stages to achieve convergence 

condition. 

 Next, after discovering that the rate of convergence for the target groups will 

improve when the modified serial MSWF implementation, the question will be to 

determine how this improvement can be linked to the computational time needed for 

processing all the targets.  Looking at the 3 plots in figure 5.3 again, we can 

hypothesize that on average, the number of stages of decomposition required for each 

target group has been reduced by about 40% as compared to the situation when all 

target groups are initialized with the same initial conditions.  For example, by looking 

at the plot where the target group size is 100, we can conclude that the average 

number of stages required for convergence is about 6 stages versus that of 10 stages 

of decomposition if the initial conditions are identical across all target groups.  This 

should translate in layman terms to roughly about 40% improvement in the 
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computational time needed.  To support this hypothesis, the total computational time 

taken for all target groups to achieve convergence is measured for the original serial 

MSWF implementation as well as that of the modified serial MSWF implementation.  

The results are recorded and shown in Table 5.1 below: 

Table 5.1: Timing results from 2 types of Serial MSWF Implementation 

Filter Type Total Time /sec 

Serial MSWF 1758.0 

Modified Serial MSWF 1278.3 

 

Looking at the 2 timing results obtained, we can see that the modified serial MSWF 

implementation has indeed improve the performance by a factor of about 28%.  The 

main reason that the improvement is not as good as the 40% predicted by the earlier 

hypothesis is because unlike the standard serial MSWF implementation where the 

initial condition matrix (refer to equation 4.10) is prepared just once for all target 

groups, there is now a need to re-compute this for each target group since the 

matrix  used to compute  is now different for different target groups.  As a 

result, this new requirement becomes an overhead to the computational cost and 

reduces the overall time savings to 28% instead of 40% as predicted in the 

hypothesis.  Nevertheless, achieving a saving of 28% in the total computational time 

is very significant and thus the modified serial MSWF implementation should be 

preferred in all situations in which serial implementation is chosen over parallel 

implementation. 

0xR

0xR

Kγ 0xR

 99



 

 Next, after having successfully introduced some improvement to the serial 

MSWF implementation, the subsequent step will be to look at alternative approaches 

to the parallel MSWF implementation approach that may allow its performance in 

terms of computational time to be improved.  The details will be discussed in the next 

section. 

 

5.2 USING MODIFIED TARGET GROUPING APPROACH 

 Now, in all the previous simulations and results obtained for the MSWF, the 

targets are grouped based on their spatial proximity in the regular target grid area.  

For example, target 2 is just located in between target 1 and target 3 in the whole 

target area itself.  Although there is nothing wrong with this form of grouping 

scheme, the question arises as to whether another form of grouping scheme will make 

any difference to the performance of the MSWF.  To answer this question, we must 

examine the inherent mechanism of the MSWF itself.  Now, from Chapter 4, we 

understand that the basic feature of the MSWF is to work on removing the residual 

correlations between targets (like a whitening process) such that each target’s final 

output will be free of correlation effects from other targets.  Thus, using some insight 

or logical deduction, one would hypothesize that the target of interest will be able to 

achieve convergence at a faster rate if targets that are most correlated to it are placed 

in the same target group as it is such that the effects of their correlation are quickly  

removed from the target’s output.  Using the same line of thinking, one can also 

hypothesize that the target of interest will achieve convergence at a slower rate if 
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targets that are least correlated to it are grouped together with it.  Therefore, to test 

these two hypotheses, two grouping schemes are devised so as to allow targets to be 

grouped together based on their least or highest correlation to at least 1 target of 

interest per group.  For ease of tracking, I will call the 1st grouping scheme “scheme 

A” and the 2nd grouping scheme “scheme B”.  In the following sections, I will discuss 

on the details of each grouping scheme as well as the simulation results obtained after 

using these 2 schemes on the parallel MSWF implementation. 

 

5.2.1 SCHEME A – GROUP TARGETS BASED ON LEAST CORRELATION 

 In this scheme itself, a computation is first performed on the P matrix so as to 

obtain the cross correlation magnitude between targets.  The computation is as 

follows: 

H
1

2 1

=

=

P P

P P

P
     (5.1) 

In equation 5.1, P2 will obtain the magnitude of the auto correlation and cross 

correlation magnitudes of all the targets in each of its element.  Also, the size of 

matrix P2 will be equal to Nt * Nt where Nt is equal to the total number of targets.  

Next, within each column of P2, a sorting operation is performed on the elements in 

the column such that the smallest value will be at the top of the column and the 

largest value (largest value will be equal to the auto correlation magnitude) will be at 

the last element of the column, i.e. in ascending order.  This sorting operation is then 
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performed on all the columns inside P2.  Once this is done, the next step will be to 

start the grouping of the targets. 

In the grouping operation, the required size of the target group K is first 

determined, for example 20, 40 or 100 targets per group.  Secondly, target 1 of the 

original target numbering is chosen to be also the 1st target of the new grouping 

scheme.  Now, target 1 will be located at the last element of column 1 in P2 after 

sorting since column 1 contains both the auto correlation magnitude  of 

target 1 and the cross correlation magnitudes of other targets to target 1 

and  is the largest magnitude in that column.  The grouping scheme begins 

by taking the K-1 targets starting from the 1

*
1 1E{ }ρ ρ

*
1 , 1E{ }j j≠ρ ρ

*
1 1E{ }ρ ρ

st element in column 1 that are least 

correlated to target 1.  These K targets will then form the new target group #1 with 

target numbering from 1 to K.  Next, the focus shift to column 2 and the original 

target 2 in the 2nd column is checked to ensure that it has not yet been included as one 

of the K-1 targets in the new target group #1.  If so, then the focus will shift to 

column 3 of the P2 instead.  If not, then target 2 will become the 1st target of the 2nd 

target group and K-1 targets starting from the 1st element in column 2 will be added to 

target 2 to form the new target group #2.  Note that the K-1 targets are chosen such 

that they are distinct from those targets already included in the previous new target 

grouping.  Also, the original target 2 will become the (K+1)th target in the new target 

numbering process.  This grouping operation is then performed repeatedly until 

finally all Nt targets have been grouped into the new target groupings.  Finally, using 
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the new target numbers, the columns of the P matrix are also rearranged based on the 

new target number ordering. 

 To test the 2nd hypothesis that is mentioned in section 5.2, the newly grouped 

targets then undergo the parallel MSWF implementation and the expected MSE of the 

1st target in each new target group is then compared with its original expected MSE 

using the old grouping scheme for each stage of decomposition.  A diagram showing 

the modified approach to the parallel MSWF implementation is as shown in figure 5.4 

below:   

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Full set of 
Measurement 
Data used for 

MSWF 
processing 

Initial Conditions for all Target groups 
0 0ˆ ,Kγγ  

 
 

Start of 
MSWF 

processing
for 

Target 
Group 

#1 

 
 

Start of 
MSWF 

processing
for 

Target 
Group 

#2 

 
 

Start of 
MSWF 

processing
for 

Target 
Group 

#3 

 
 

Start of 
MSWF 

processing
for 

Target 
Group 

#J 

….. 

Final ˆ,Kγγ  

Pre-Processing Task 
Using Grouping Scheme A to rearrange the targets  

and the columns of the P matrix 

Figure 5-4: Modified Parallel Implementation of MSWF 
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The simulation again uses 3 different target group sizes of 20, 100 and 480 as in 

section 5.1 and the results obtained are shown in figure 5.5 below: 
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Figure 5-5: Results using Parallel MSWF Implementation (Least correlation) 

Looking at the topmost plot in figure 5.5 where the target group size is 20, we can 

observe that the new rate of convergence for target 1 is slower than the original rate 

of convergence when grouping scheme A is used.  However, at the last of the target 
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groups, i.e. group #48, the impact of the new grouping scheme has diminished such 

that there is hardly any difference in the new convergence rate and the old 

convergence rate.  Next, by examining the plot where the target group size is 100, we 

can observe the same trend as is shown in the previous plot.  Thus, from the results of 

these two plots, we can say that the 2nd hypothesis in section 5.2 which says that the 

target of interest will achieve convergence at a slower rate if targets that are least 

correlated to it are grouped together with it is true to a  certain extent.  As for the 

reason that there is hardly any difference in the convergence rate of the last target 

group, the reason is because the grouping scheme A is biased in that as more and 

more distinct targets are chosen for the earlier target groupings, the K-1 remaining 

targets to be placed in the last target group may or may not be the least correlated to 

the 1st target of the last target group.  Thus, the behavior is atypical from the earlier 

groups. 

Next, coming to the 3rd plot of figure 5.5 in which the size of the target group 

is 480, we notice one interesting phenomenon.  For the new convergence rate in the 

2nd target group of this plot, instead of having the same behavior as that of the other 

two plots, instead it is having a faster convergence rate as compared to the original 

convergence rate in the 2nd target group.  The main reason is again due to the bias that 

is present in the grouping scheme A.  Since so many targets that are least correlated to 

the 1st target in target group #1 have been included in the target group #1 itself, 

therefore the remaining targets in target group #2 are more likely to be highly 
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correlated to the 1st target in the same group which resulted in a faster, not slower 

convergence rate. 

 At this point of time, after verifying the 2nd hypothesis defined in section 5.2 

to a large extent, the next task will be to try to verify the 1st hypothesis in section 5.2 

which states that the target of interest will be able to achieve convergence at a faster 

rate if targets that are most correlated to it are placed in the same target group as it is.  

The details of the grouping scheme B for verifying this hypothesis and the results are 

discussed in the following section. 

 

5.2.2 SCHEME B – GROUP TARGETS BASED ON HIGHEST CORRELATION 

 In scheme B target grouping, the steps and processes are very similar to that 

of scheme B target grouping with only 2 exceptions.  Firstly, the elements within each 

column of P2 are sorted in a descending order manner rather than in ascending order.  

Secondly, the grouping scheme B will begin by taking the K-1 targets starting from 

the 2nd element in column 1 that are most correlated or highly correlated to target 1 

(target 1 is now the 1st element in column 1 due to the sorting in descending order).  

These K targets will then form the new target group #1 with target numbering from 1 

to K.  Similarly, the column operations continue until finally all Nt targets have been 

grouped into the new target groupings using scheme B. 

 Next, to test the 1st hypothesis defined in section 5.2, these newly grouped 

targets also undergo the parallel MSWF implementation and the expected MSE of the 

1st target in each new target group is then compared with its original expected MSE 
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for each stage of decomposition.  The simulation also uses the same target group sizes 

of 20, 100 and 480 as in section 5.2.1 and the results obtained are shown in figure 5.6 

below: 
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Figure 5-6: Results using Parallel MSWF Implementation (Highest correlation) 

Now, by looking at the topmost plot in this figure, we can see that the new rate of 

convergence for the 1st target in target group #1 has indeed improved over its original 

rate of convergence after grouping scheme B is applied.  Thus, this result is indicating 
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that the 1st hypothesis may be true.  Next, as was shown in grouping scheme A in 

section 5.2.1, there is hardly any difference between the new convergence rate and the 

original convergence rate of the 1st target in the last target group, i.e. target group 

#48.  This is due to the same fact that as grouping scheme B is also biased in that as 

most of the distinct targets are chosen for the earlier target groupings, the K-1 

remaining targets to be placed in the last target group may not be correlated to the 1st 

target of the last target group at all but rather they are just the leftover targets.  As 

such, the trend in the earlier target groups is not seen in the latter target groups and 

especially in target group #48, which is the last target group. 

 Next, by examining the plot with target group size equal to 100 at the bottom 

right corner of figure 5.6, we can observe some surprising trends.  Although we 

expect to see that the new convergence rate for the 1st target in target group #1 to be 

faster than its original convergence rate using grouping scheme B in support of 

hypothesis 1, we never expect at all to see the reverse trend for the 1st target in the 5th 

target group.  In fact, after examining the collected results closely, it is found that the 

trend has actually started reversing itself at the 4th target group and the trend then 

swings back and forth between the 6th target group and the last target group.  After 

careful analysis of the elements within the matrix P2 so as to explain this surprising 

trend, it is discovered there are not so many targets that are correlated to the target of 

interest in each column, i.e. the number of significant cross correlation values per 

column is much lesser than 100.  Thus, by using a target group size of 100 (100 is too 

large) for the not so perfect scheme B, it has resulted in prematurely taking away 
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targets that are actually correlated to the target of interest in the latter target groups.  

Thus this defeat the original purpose of grouping targets together based on high 

correlation.  In a sense, this means that grouping scheme B has failed in this situation 

but the 1st hypothesis still remains true.  This revelation is supported by the plot for 

the target group size of 480 in which the new convergence rate for the 1st target in the 

1st target group is faster than its original convergence rate.  However, the new 

convergence rate for the 1st target in the 2nd target group is slower than its original 

convergence rate at the early stages of decomposition before changing to about the 

same value towards the end. 

 Thus, at this stage, we have managed to verify both hypothesis 1 and 2 

defined in section 5.2 that states that grouping of targets based on high cross 

correlation should help in increasing the rate of convergence when using the MSWF 

and the reverse will also hold true when the targets that are very least correlated are 

grouped together instead.  However, due to the bias or defects of both grouping 

scheme A and B, these schemes are not able to fulfill their tasks completely such that 

the latter target groups are not grouped according to the desired criterion.  As a result, 

I am not able to show via simulation results that there is an actual improvement in the 

computational time needed when using parallel MSWF implementation in 

conjunction with scheme B as the net convergence rate across all target groups 

remains unchanged when applying this scheme.  Nevertheless, I believe that if a more 

intelligent grouping scheme is designed such that it allows the targets that are highly 

correlated to each other to be grouped together without any preference given to the 
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earlier target groupings, this approach will definitely improve the performance of the 

MSWF in either the parallel and serial implementation methods. 

 Also, at this point in time, we have already looked at 3 approaches that 

involve either the targets’ initialization conditions or their style of grouping that may 

help to alter the performance of the MSWF in terms of timing requirement.  

Basically, these approaches deal mainly with the target space.  Looking ahead, the 

next approach that I will be attempting will involve the measurement space as well.  

By drawing inspiration from Kalman filter that is able to execute much faster than the 

MMSE or Wiener filter because it breaks up the total measurement data set into 

subsets in its processing, the question for MSWF is whether can its processing be 

sped up likewise.  Essentially, this implies that if the measurement data set is broken 

into various subsets in the MSWF implementation, it may also help to reduce its 

computational time as well.  Thus, to answer this question, the original structure of 

the MSWF implementation as shown in Chapter 4 is modified again and the results 

obtained are discussed in the next section. 

 

5.3 USING MEASUREMENT SUBSETS FOR RECURSIVE MSWF 

 In Kalman filter, the processing is done recursively or iteratively on every 

new subset of measurement data that it has just received.  As such, the Kalman filter 

can also be known as the recursive or iterative MMSE filter.  Now, if it is possible for 

the MSWF to process new incoming measurement data in an iterative manner without 
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having to re-process all the previous data again, it can also be known as the recursive 

or iterative MSWF. 

 Next, to allow the MSWF to be implemented in a recursive manner, some 

modifications will have to be made to the initial conditions of the recursive MSWF at 

the 2nd iteration step as compared to the first iteration step.  Essentially, the concept of 

innovation data used in the Kalman filter processing will also be required in this 

situation starting from the 2nd iteration step of the recursive MSWF.  Besides that, 

other issues like updating the new estimates of the scattering coefficient as well as the 

Error covariance matrix will also be implemented as well in the recursive MSWF.  In 

summary, the required changes to the standard MSWF equations will include the 

following additions: 

ˆ( ) ( ) ( ) ( 1/ 1)l l l l l= − − −v r P γ  

H
1 1ˆ ˆ( / ) ( 1/ 1)l l l l= − − + Wγ γ ε   (5.2) 

H
1( / ) ( / 1)l l l lγ γ= − − 1 1K K W ξ W

I

 

Also, the initial conditions are again  and  as per the standard non-

recursive MSWF implementation.  In order to provide a better visualization to the 

structure of the recursive MSWF, they are shown on the following pages.  Note that 

in both figures, is the same as  and  is the same as .  Also, 

instead of the measurement vector r(l) being used as x

0ˆ 0=γ 2
0 γσ=Kγ

11γ̂ ˆ( / )1 1γ 11Kγ ( / )l lγK

0, it is the innovation vector v(l)  

that will be used as x0 instead for each step of the recursive MSWF. 
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Figure 5-7: Recursive parallel MSWF Implementation 
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Figure 5-8: Recursive serial MSWF Implementation 
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Having completed the design implementations of both the recursive parallel and serial 

MSWF, the next task is to decide on the measurement data subset size to be used out 

of a total of 2856 measurement data as well as the target group size out of a total of 

961 targets.  From section 4.4.2, we know that the length of the measurement data 

subset cannot be smaller than the size of the target group used.  As such, the decision 

is to use the combination shown in Table 5.1 for performing the experiment to 

determine whether is recursive MSWF faster than the standard MSWF and is there 

any tradeoff in this implementation. 

Table 5.1: Measurement and Target Group Sizes for Recursive MSWF 

Measurements 
per subset 

Number of 
subsets 

Target 
Group 

size = 961 

Target 
Group 

size = 480 

Target 
Group size 

= 320 

Target 
Group size 

= 160 
2856 1 √ √ √ √ 

1428 2 √ √ √ √ 

714 4 Χ √ √ √ 

476 6 Χ Χ √ √ 

 

Now, in Table 5.1, some of the combinations are marked with the symbol “Χ”.  The 

reason is because for these combinations, the size of the target group is bigger than 

the size of each measurement data subset.  Thus it will not be possible to implement 

vector MSWF in these situations.  Also, in row 1 of Table 5.1 where the number of 

measurements per subset is equal to 2856, it is equal to the parallel MSWF 

implementation since all measurement data are used at the same time and non 
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recursion or iteration step is performed.  Therefore, the results obtained from the 

combination in row 1 will be used as the benchmark to determine whether there is 

any benefit in using recursive MSWF over non recursive MSWF.  After having 

decided on the combination of both measurement data subset and target group sizes to 

be used, a simulation is performed using these combinations and the results are 

discussed in the next section. 

 

5.3.1 PERFORMANCE OF THE RECURSIVE MSWF 

 In the previous section, we have determined the combinations of the 

measurement data subset and target group sizes to be used in the simulation.  As such, 

a simulation is executed for both the recursive parallel MSWF and recursive serial 

MSWF implementations.  The results obtained are shown in Table 5.2 and Table 5.3 

for the recursive parallel MSWF and Table 5.4 and Table 5.5 for the recursive 

modified serial MSWF implementation. 

Table 5.2: Computational Timing Results for Recursive Parallel MSWF 

Measurements 
per subset 

Number of 
subsets 

Target 
Group 

size = 961 

Target 
Group 

size = 480 

Target 
Group size 

= 320 

Target 
Group size 

= 160 
2856 1 113.203 241.112 222.498 215.547 

1428 2 103.735 151.110 130.548 103.331 

714 4 Χ 78.728 69.301 54.669 

476 6 Χ Χ 43.549 37.560 
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Table 5.3: Average Computed MSE for Recursive Parallel MSWF 

Measurements 
per subset 

Number of 
subsets 

Target 
Group 

size = 961 

Target 
Group 

size = 480 

Target 
Group size 

= 320 

Target 
Group size 

= 160 
2856 1 -41.037 -41.037 -41.037 -41.037 

1428 2 -41.037 -39.880 -39.350 -38.959 

714 4 Χ -37.093 -34.392 -30.052 

476 6 Χ Χ -25.015 -21.524 

 

From Table 5.2, we can observe that when the measurement data set is divided into 

more and more subsets, the computational time required will decrease significantly.  

Moreover, by looking at the corresponding entries in Table 5.3, we note to our 

pleasant surprise that the average computed MSE does not degrade at all in the case 

when all targets are included in one target group in conjunction to achieving this 

improvement in computational efficiency.    However, in all other combinations, the 

improvement in the computational efficiency comes with a price which is the 

decrease in accuracy of the final estimated results.  But in the case when the 

measurement subset is increased from 1 to 2 as seen from row 1 and row 2 of Table 

5.2 and Table 5.3, this price to pay is very small when comparing with the amount of 

time savings that are achieved in the process.  Thus, this is a situation where recursive 

parallel MSWF is able to meet our goal of improving the computational efficiency of 

the MSWF at very little cost. 
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Next, after further analyzing the results, we notice that as the target group size 

becomes smaller, the degradation in the accuracy becomes more severe.  To explain 

the trend for the decrease in accuracy when the measurement data is divided into 

more subsets along with using target group size that is less than the total number of 

targets, we will need to examine the Error covariance matrix  that is 

generated after each iteration step.  Essentially,  has a matrix size of 

961×961.  However, when the chosen target group size is less than 961, this will 

mean that at every iteration step, only the diagonal and near diagonal elements of 

 is updated since no information is available on the other elements that are 

away from the diagonal locations.  To allow for better visualization, a sample of the 

 matrix using the recursive MSWF is shown below: 

( / )l lγK

( / )l lγK

( / )l lγK

( / )l lγK

( / )

x x x o o o

x x x o o o

x x x o o o
l l o o o x x x

o o o x x x

o o o x x x

γ

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

K   (5.3) 

In equation 5.3 above, lets assume that there are a total of 6 targets and thus the 

 has a size of 6×6.  Also, further assume that the targets are divided into 2 

target groups with 3 targets per group.  Using this scenario for implementing the 

recursive MSWF, only those locations marked with the symbol x  will be updated 

after each iteration step whereas all the other locations marked with the symbol o  

will never be updated and their values will always remain as zero since the initial 

( / )l lγK
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condition is .  Thus,  becomes a block diagonal matrix rather 

than a fully populated matrix and this will  affect the accuracy of the estimation.  

Furthermore, if the size of the target group decreases, for example to 2 targets per 

group, it will make  to be more sparsely populated and the estimation errors 

will become more severe in this situation as seen from row 2 onwards in Table 5.3.   

2
0 γσ=Kγ I ( / )l lγK

( / )l lγK

To further compound this problem, when the measurement data is divided into 

more subsets, one can imagine that the increase in the number of iteration steps will 

further aggravate the problem (number of times of error propagation also increases) 

and thus we can also see this trend from column 2 onwards in Table 5.3.  Thus, after 

finding out the behavior of the recursive parallel MSWF, one will need to select the 

appropriate measurement data and target group sizes so as to achieve the desirable 

tradeoff between computational time and accuracy.  As an example, choosing the 

combination of 4 measurement subsets along with a target group size of 480 provides 

a reasonable computed MSE of -37.093 dB with a computational time of 78.728 

seconds.  This constitutes to a time reduction of 162.384 seconds or 67% in time 

savings as compared to the original non recursive parallel MSWF implementation. 

 Now, after we have examined the results of the recursive parallel MSWF, we 

can conclude that the recursive parallel MSWF is indeed a good candidate to be 

considered for implementation when compared to the standard parallel MSWF 

implementation.  In fact, in one situation, we can even achieve improvement in the 

computational efficiency at no cost at all in terms of the accuracy of results. The next 

task will be to look at the results obtained from the recursive modified serial MSWF 
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that are shown in Table 5.4 and Table 5.5.  Note that the modified serial MSWF is 

used instead of the standard serial MSWF because it has been shown in section 5.1 

that the modified serial MSWF is a more efficient implementation. 

Table 5.4: Computational Timing Results for Recursive Serial MSWF 

Measurements 
per subset 

Number of 
subsets 

Target 
Group 

size = 961 

Target 
Group 

size = 480 

Target 
Group size 

= 320 

Target 
Group size 

= 160 
2856 1 113.203 305.190 445.894 879.208 

1428 2 103.657 194.108 264.904 397.079 

714 4 Χ 115.741 142.252 250.211 

476 6 Χ Χ 110.991 183.079 

 

Table 5.5: Average Computed MSE for Recursive Serial MSWF 

Measurements 
per subset 

Number of 
subsets 

Target 
Group 

size = 961 

Target 
Group 

size = 480 

Target 
Group size 

= 320 

Target 
Group size 

= 160 
2856 1 -41.037 -41.037 -41.036 -41.036 

1428 2 -41.037 -39.812 -39.104 -38.565 

714 4 Χ -37.042 -32.768 -26.407 

476 6 Χ Χ -22.622 -19.836 

 

Looking at Table 5.4 and Table 5.5, we can observe the same trend in the recursive 

modified serial MSWF as in the recursive parallel MSWF.  Thus, we can also 

conclude that the recursive modified serial MSWF is a good candidate for 

implementation as it is also able to achieve a significant reduction in computational 
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timing in some situations along with non significant loss in accuracy of results.  

However, in general, the average computed MSE obtained from the recursive 

modified serial MSWF is usually worst off than that of the recursive parallel MSWF 

with the same combination after comparing the results between Table 5.3 and Table 

5.5.  Thus, in general, it is preferred to use recursive parallel MSWF if computing 

resources are not a factor of constraint. 

 At this moment, after trying out the few schemes as described in section 5.1 to 

5.3, I believe that I have answered the question raised at the beginning of this Chapter 

on whether can the MSWF performance be improved in terms of the computational 

time required when we varies its implementation structure.  After looking at new 

innovative approaches to both the original parallel and serial MSWF implementation, 

the answer to the question is a resounding “Yes”.  Thus, I will also conclude the 

research work on the MSWF at this point since I believe that a very comprehensive 

investigation into the behavior of the MSWF has been performed from the start of 

Chapter 4 to this Chapter itself.  I will then conclude on all my Thesis research work 

that has been performed in the concluding Chapter as well as giving some 

recommendations on future work that can be performed. 

 

 

 120



 

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 SUMMARY 

In this Thesis, I have firstly presented the rationale behind using the Wiener 

filter for processing data obtained from a non-uniformly distributed aperture radar 

system as compared to using the Matched filter.  However, one undesirable feature of 

the Wiener filter is that it requires performing a computationally expensive matrix 

inverse operation before the results can be obtained.  Although Kalman filter is one 

technique that is able to avoid this matrix inverse operation in the Wiener filter, 

nevertheless it also has some pitfalls on this own.  As such, I have looked at 

alternative techniques that can resolve the pitfalls of the Kalman filter along with 

additional techniques that are also more efficient than the Wiener filter. 

In Chapter 3, I have investigated the use of the Square Root Covariance Filter 

(SRCF) as one alternative to the Kalman filter along with its reduced rank version, 

the Reduced Rank Square Root filter (RRSQRT).  Both these techniques are found to 

achieve the same results as the Kalman filter when full rank processing is carried out.  

Moreover, they provide stability in the Error covariance matrix computation  such 

that it will never end up having some negative Eigen values in it.  On top of that, it 

has even been shown that the RRSQRT is able to achieve nearly the same level of 

accuracy of the final results as the Kalman filter when the rank has been reduced by 

up to 73%.  For a small tradeoff in the results’ accuracy, the rank reduction can even 

goes up to 95.8% as seen in the case when there are only 40 remaining Eigen vectors 

γK
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in  as compared to an initial value of 961 Eigen vectors.  Thus, this can constitute 

to significant savings in computing resources during implementation.  Although the 

need for Eigen decomposition operation to achieve the rank reduction increases the 

computational timing of the RRSQRT such that it exceeds that of the Kalman filter, 

however the increase is not tremendous and it is believed that this shortcoming can be 

overcome when there is a more efficient method to perform the Eigen decomposition 

operation. 

γK

Next, besides the square root filters, I have also looked at another technique 

that is more efficient that Wiener filter in its implementation while at the same time, 

easily allows rank reduction measures to be performed.  This technique is known as 

the Multi-Stage Wiener filter (MSWF) based on orthogonal projections.  After 

deriving the equations and implementation of the MSWF required for our radar 

problem domain, I am able to show that this filter is able to achieve the same results 

with the Wiener filter even when less than full rank processing is performed.  

Although the MSWF is not as computationally efficient as the Kalman filter, its 

performance gap with the Kalman filter does not degenerate even when the problem 

statement expands in size.  For instance, in the case of using 3060 measurements for 

961 targets, the fastest timing achieved by the MSWF is 112.572 seconds as 

compared to 35.262 seconds for the Kalman filter (refer to Table 4.6 and 4.10).  This 

is equivalent to a ratio of about 3.2.  As for the case of using 11460 measurements for 

3969 targets, the fastest timing achieved by the MSWF is 3432.5 seconds as 

compared to 1192.1 seconds for the Kalman filter (refer to Table 4.11).  This is 
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equivalent to a ratio of about 2.9.  Thus, the performance gap remains essentially 

constant.  However, the performance gap between the MSWF and the Wiener filter 

widens from a value of 1.65 (186.078 seconds for Wiener filter versus 112.572 

seconds for MSWF) using the smaller data set to a value of 2.72 (9349.3 seconds for 

Wiener filter versus 3432.5 seconds for MSWF) when using the larger data set.  Thus, 

the advantage of the MSWF over the Wiener filter becomes more prominent as the 

data set increases. 

Besides achieving some meaningful results using the MSWF, I have also 

shown that it is possible to further improve its computational efficiency when care is 

taken to group the targets according to the criteria of high cross correlation 

magnitudes or when the MSWF is implemented in a recursive manner.  Although no 

numerical figures are available in the case of using the target grouping approach due 

to the imperfection of my grouping schemes, nevertheless the overall trend points to 

the high probability of performance enhancement.  Thus, these findings will be useful 

to future researchers who will need to implement the MSWF for their needs. 

 
6.2 RECOMMENDATIONS FOR FUTURE WORK 

In all my findings and results obtained for the different filters that are 

introduced in the Thesis research, the common shortcoming that needs further 

improvement is in the speed of the computation of these filters when compared to the 

Kalman filter.  When we examine the case of the Reduced Rank Square Root filters, 

it is the Eigen decomposition operation that is the main culprit for the computational 

inefficiency.  Therefore, one area that we can further look into is in finding faster 
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ways of performing Eigen decomposition so that the total timing taken by the 

RRSQRT will not exceed that of the Kalman filter. 

 Besides that, we may also want to look into other SAR scenarios where it is 

only required to know the scattering coefficients of a few disjoint smaller areas of 

interest but not the whole illumination area.  In these situations, we can then start the 

iteration right away with a reduced rank version of the square root covariance matrix 

 for the RRSQRT whereas the Kalman filter will still need to work on the full 

size of the Error covariance matrix .  As a result of starting with a smaller matrix 

size of , it may end up reducing the time taken by the subsequent Eigen 

decompositions to a point that the RRSQRT may outperform the Kalman filter at the 

end of the iterations.  However, in such scenarios, the tradeoff will be that no 

estimation or information will be obtained from those regions that are designated as 

“don’t care” in the whole illumination area. 

(0/ 0)S

γK

(0/ 0)S

 Next, coming to the implementation of the Multi-Stage Wiener filter, one area 

that future researchers can start looking into is the optimal grouping scheme that will 

group targets together either using the criteria of high cross correlation or vice versa.  

Once the optimal grouping scheme is developed, it can then be tested on either the 

non recursive or recursive MSWF implementations to verify whether the computation 

speed goes up further in both situations, i.e. using less stages of decomposition.  Also, 

besides looking into this area , another possibility will be to re-look at the present 

structure of the MSWF that requires a forward iteration step, the turn around step and 

the backward iteration step.  In the last couple of years, there is an emergence of a 
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new type of MSWF that is based on Conjugate Gradients rather than on Orthogonal 

Projections as seen in [28] and [29] etc.  For the Conjugate Gradient based MSWF 

(MSWF-CG), there is only a need to perform the forward iteration step in its 

structure.  As such, it may be a more efficient form of MSWF as compared to the 

current MSWF that is based on orthogonal projections.  Thus, future work may 

involve the adaptation of the MSWF-CG algorithm to our radar scenario before 

running simulations to measure its performance as compared to the current MSWF 

and the Kalman filter. 

 

6.3 CONCLUSIONS 

The focus of this thesis is on developing reduced rank versions of the 

conventional Wiener or MMSE filter such that these reduced rank implementations 

will be much more efficient than the Wiener filter while only sacrificing small loss in 

the final accuracy of the results.  From the findings presented in the thesis, this 

objective has been fully met.  Although the techniques developed in this thesis is not 

as efficient as the Kalman filter which is another efficient implementation of the 

Wiener filter, nevertheless the performance gap between the former and the latter is 

not very significant.  Moreover, the RRSQRT will be able to overcome some 

potential pitfalls that are documented in the Kalman filter.  With additional research 

efforts invested into the recommendations that are identified in the previous sections, 

it may result in the complete elimination of the performance gap between the reduced 

rank filters and Kalman filters. 
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Finally, the research work involved in this thesis have given me a great 

appreciation of the domain of linear filtering as well as the fundamentals of radar 

system design modeling.  It is believed that this knowledge will aid me greatly in my 

subsequent professional career down the years. 
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