
Reduced Rank Filtering Techniques for

Processing Multi-Aperture Radar

By

Peng Seng Tan

B.ENG (Honors), Electrical Engineering, National University of Singapore, 1995

M.Sc., Electrical and Electronic Engineering, Nanyang Technological University, 2001

Submitted to the Department of Electrical Engineering and Computer Science and the

faculty of the Graduate School of the University of Kansas in partial fulfillment of the

requirements for the degree of Master of Science

 Thesis Committee

Dr. James M. Stiles (Chair)

Dr. Christopher Allen

Dr. Shannon Blunt

Date of Thesis Defense: 08/08/06

The Thesis Committee for Peng Seng Tan certifies

That this is the approved version of the following thesis

Reduced Rank Filtering Techniques for

Processing Multi-Aperture Radar

 Thesis Committee

Dr. James M. Stiles (Chair)

Dr. Christopher Allen

Dr. Shannon Blunt

Date Approved: __________

 ii

ACKNOWLEDGEMENTS

 I will like to thank my MSc Thesis advisor, Prof Stiles for his invaluable

guidance in the field of research work. Over the course of my research work, he has

taught me on having the proper approach and mentality to tackle any research

problem as well as the skills to present the findings in a coherent and unambiguous

manner. Coming from a background of working as an engineer for nearly 10 years

when the most cost effective solution is always the one and only goal, the acquiring

of a research mentality is especially important for me since the goal of research is

much wider than that of the goal of the final implementation. Besides that, Prof Stiles

has also taught me several aspects of the radar and microwave system as well as SAR

concepts either via formal coursework, discussions or book club readings. These

measures have greatly enhanced my academic learning in the MSc degree that I am

pursuing.

 Next, I will also like to thank both Prof Allen and Prof Blunt who agree to be

in my committee, especially Prof Allen after I have only approached him towards the

end of my thesis preparation. At the same time, taking two radar related courses

under Prof Allen has greatly improved my understanding in the field of radar system

and signal processing as well and I am thankful for his enthusiasm and helpful advice

shown in these classes. I will also like to thank Prof Blunt for offering his advice in

some problems that I have faced during my research work even though he hardly

knows me at all. At the same time, I have also benefited indirectly from his course

iii

notes in the advanced signal processing and these notes will be kept with me for a

long time as well.

 Thirdly, I will also like to thank my wife and children for supporting me

throughout the course of my MSc degree. This is especially after I have spent so little

time with them during these 2 years, being in KU in the day most of the times and

missing many important family events that meant a lot to them. At the same time,

coming to America with me has required my family to have very large adjustments to

their daily lives which they have taken in their stride.

 Fourthly, I will like to thank my fellow graduate students, Ambika Nanda and

Vishal Sinha for their conversations and companionship, be it related to our research

work or in the daily routines or cultures of our lives. They have certainly enhanced

my overall experience here in America.

Finally, I will like to thank GOD who has given me the ability to acquire new

skills and knowledge as well as enjoying the process of learning and the satisfaction

of obtaining the end results. Without HIM, I will not even be in America to pursue

this dream of higher education that I am currently involved in.

 iv

TABLE OF CONTENTS

TITLE PAGE ………………………………………………………………………...I

ACCEPTANCE PAGE …………………………………………………………….II

ANKNOWLEDGEMENTS ……………………………………………………….III

ABSTRACT... IX

CHAPTER 1: INTRODUCTION.. 1
1.1 BACKGROUND... 1
1.2 MOTIVATION OF THESIS ... 6
1.3 OUTLINE OF THESIS.. 7

CHAPTER 2: THE RADAR MODEL.. 9
2.1 DISTRIBUTED APERTURE AND TARGET GEOMETRY 9
2.2 SIGNAL SPACE MODELING ... 11

2.2.1 TRANSMIT SIGNAL MODELING.. 11
2.2.2 TARGET MODELING .. 12
2.2.3 RESPONSE MEASUREMENTS MODELING.. 12

2.3 THE SAR IMAGE FORMULATION ... 14
2.3.1 WIENER FILTER IMPLEMENTATION... 14
2.3.2 KALMAN FILTER IMPLEMENTATION.. 16

2.4 TESTING THE KALMAN FILTER IMPLEMENTATION......................... 19
2.4.1 1ST TEST SCENARIO FOR KALMAN FILTER 19
2.4.2 2nd TEST SCENARIO FOR KALMAN FILTER 21

2.5 LOOKING BEYOND THE CONVENTIONAL KALMAN FILTER.......... 23

CHAPTER 3: THE SQUARE ROOT COVARIANCE FILTER 25
3.1 FULL RANK SQUARE ROOT FILTER .. 25
3.2 PERFORMANCE BETWEEN KALMAN AND FULL RANK SRCF 30
3.3 REDUCED RANK SQUARE ROOT FILTER ... 36

3.3.1 TIME-STEP OF RRSQRT... 37
3.3.2 REDUCTION-STEP OF RRSQRT.. 38
3.3.3 MEASUREMENT-STEP OF RRSQRT.. 39

3.4 CRITERIA DETERMINATION FOR RRSQRT.. 40
3.4.1 USING GUESSWORK FOR CRITERIA DETERMINATION................. 40
3.4.2 USING SRCF EIGEN SPECTRUM FOR CRITERIA DETERMINATION.
 ... 42

3.5 PERFORMANCE OF REDUCED RANK SQUARE ROOT FILTER 47

CHAPTER 4: THE MULTI-STAGE WIENER FILTER 55

4.1 BRIEF BACKGROUND OF THE MULTI-STAGE WIENER FILTER...... 55

 v

4.2 THE GENERIC MULTI-STAGE WIENER FILTER................................... 56
4.2.1 FORMING THE BLOCKING MATRIX B... 61
4.2.2 DEFINING THE INITIAL CONDITIONS FOR MSWF 63

4.3 PERFORMANCE OF MSWF FOR SCALAR ESTIMATION OF γI............ 64
4.4 THE VECTOR MULTI-STAGE WIENER FILTER 72

4.4.1 ADJUSTMENT OF DATA LENGTH DUE TO CHOLESKY FUNCTION.
 ... 75
4.4.2 MINIMUM DATA LENGTH RELATIONSHIP TO TARGET SIZE........ 76
4.4.3 DIAGONAL LOADING OF THE COVARIANCE MATRIX 77

idR

4.5 PERFORMANCE OF MSWF FOR VECTOR ESTIMATION OF 78 γ
4.6 PARALLEL/SERIAL IMPLEMENTATION OF VECTOR MSWF............ 82

4.6.1 AVERAGE
0

2
εσ VERSUS GROUP SIZE AND NUMBER OF STAGES.. 85

4.6.2 TIME (PARALEL) VERSUS GROUP SIZE AND NUMBER OF STAGES.
 ... 87
4.6.3 TIME (SERIAL) VERSUS GROUP SIZE AND NUMBER OF STAGES 88
4.6.4 CHOICE IN PARALLEL/SERIAL IMPLEMENTATION BASED ON MSE
 ... 89

4.7 RUNNING LARGER DATASET FOR PARALLEL MSWF....................... 91

CHAPTER 5: INNOVATIVE MSWF IMPLEMENTATIONS........................... 94

5.1 USING MODIFIED APPROACH TO INITIALIZATION OF DATA......... 94
5.2 USING MODIFIED TARGET GROUPING APPROACH 100

5.2.1 SCHEME A – GROUP TARGETS BASED ON LEAST CORRELATION ..
 ... 101
5.2.2 SCHEME B – GROUP TARGETS BASED ON HIGHEST

CORRELATION.. 106
5.3 USING MEASUREMENT SUBSETS FOR RECURSIVE MSWF............ 110

5.3.1 PERFORMANCE OF THE RECURSIVE MSWF................................. 115

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS....................... 121
6.1 SUMMARY... 121
6.2 RECOMMENDATIONS FOR FUTURE WORK....................................... 123
6.3 CONCLUSIONS ... 125

REFERENCES.. 127

 vi

TABLE OF FIGURES

Figure 1-1: TAF for Regularly Spaced Distributed Apertures 2

Figure 1-2: TAF for Non-Uniformly Spaced Distributed Apertures 3

Figure 2-1: Distributed Aperture Radar System and Target Geometry........................ 9

Figure 2-2: Performance of KF for randomly chosen scattering coefficients 21

Figure 2-3: Actual Image used to generate and Response Vectors r 22 γ

Figure 2-4: Performance of KF for KU image resolution cells used as Input 22

Figure 2-5: Estimated image obtained from KF ... 23

Figure 3-1: Processing Time of Kalman filter versus L.. 29

Figure 3-2: Performance of the Potter SRCF.. 33

Figure 3-3: Performance of the Andrew SRCF Type 1 .. 33

Figure 3-4: Performance of the Kalman filter Type 2 .. 34

Figure 3-5: Performance of the Andrew SRCF Type 2 .. 34

Figure 3-6: Eigen Spectrum at 0% to 50% of Total iteration process 43

Figure 3-7: Eigen Spectrum at 62.5% to 100% of Total iteration process 44

Figure 3-8: MSE (dB) obtained for RRSQRT .. 48

Figure 3-9: Remaining Eigen Vectors obtained for RRSQRT 50

Figure 3-10: Total Computational Time obtained for RRSQRT................................ 51

Figure 4-1: The structure of the Multi-Stage Wiener Filter for N=3 58

Figure 4-2: The Steady State Error magnitude across all targets................................ 70

Figure 4-3: The Steady State Error magnitude from Targets 51 to 100 71

Figure 4-4: The Steady State Error magnitude from Targets 751 to 800 71

 vii

Figure 4-5: Kalman Filter Implementation ... 83

Figure 4-6: Parallel Implementation of vector MSWF... 83

Figure 4-7: Serial Implementation of vector MSWF.. 84

Figure 4-8: 3-D plot of Average MSE versus Group Size and Decomposition Stages

... 85

Figure 4-9: 2-D view of Average MSE for vector MSWF implementation 86

Figure 4-10: 3-D plot of Time for Parallel MSWF Implementation 87

Figure 4-11: 2-D view of Time for Parallel MSWF Implementation......................... 87

Figure 4-12: 3-D plot of Time for Serial MSWF Implementation 88

Figure 4-13: 2-D view of Time for Serial MSWF Implementation............................ 89

Figure 4-14: Relationship between Average MSE and Computation Time 90

Figure 5-1: A re-look at the structure of Kalman Filter.. 94

Figure 5-2: Modified Serial Implementation analogous to Kalman filter 96

Figure 5-3: Results using Modified Serial MSWF Implementation........................... 97

Figure 5-4: Modified Parallel Implementation of MSWF .. 103

Figure 5-5: Results using Parallel MSWF Implementation (Least correlation) 104

Figure 5-6: Results using Parallel MSWF Implementation (Highest correlation) ... 107

Figure 5-7: Recursive parallel MSWF Implementation.. 112

Figure 5-8: Recursive serial MSWF Implementation... 113

 viii

ABSTRACT

Using a non-uniformly distributed aperture radar system for forming a SAR

image will result in data correlations between the SAR image resolution cells. Thus,

this requires that a more robust filter than the Matched Filter, i.e. the MMSE or

Wiener Filter to be used in the receiver processing. As the Wiener Filter involves a

computationally expensive matrix inverse operation, it can be avoided by using the

Kalman filter. But the error covariance matrix computation in the Kalman filter can

become unstable from finite machine precision in conjunction with large variations of

the covariance matrix Eigen values. However, this instability can be overcome by

using the Square Root Covariance Filter (SRCF) that ensures that the resulting error

covariance matrix will always remain positive definite after each measurement

update.

 Besides the Kalman filter, a recent algorithm, namely the Multi-Stage Wiener

Filter (MSWF) has been developed to overcome the matrix inverse problem in the

Wiener Filter as well. Using orthogonal projections in each successive stage of

decomposition, this filter is proven to achieve the same performance as the Wiener

filter in a shorter computation period.

 In this thesis, the performance of the SRCF and the MSWF used to form a

SAR image is evaluated as compared to the Wiener filter and the Kalman filter using

data from an existing radar model simulator. In addition, the use of reduced rank

techniques is applied to both algorithms so as to trade off between computation time

 ix

and accuracy. From the results obtained, the Reduced Rank Square Root Covariance

Filter (RRSQRT) is able to achieve nearly the same performance as the Kalman filter

in terms of accuracy even when the rank is reduced by 73%. However, as the Eigen

decomposition needed for the reduced rank technique in the RRSQRT takes quite a

while, thus the computation time for the RRSQRT is worse off than the Kalman filter

if the time needed for Eigen decomposition is taken into account. At the same time, it

is also shown that the MSWF is able to outperform the Wiener filter in terms of

computation time while achieving the same accuracy level. Furthermore, this

increase in computation performance is more prominent as the length of the

measurement data increases. However, the computation time needed for the MSWF

is still not able to match that of the Kalman filter although innovative implementation

of the MSWF will help to narrow the gap between the 2 types of filter.

 x

CHAPTER 1: INTRODUCTION

1.1 BACKGROUND

To obtain radar images from either ground based or airborne systems, there

are clear advantages in replacing a large, monolithic, complex and single aperture

radar system with much smaller but numerous distributed aperture radar sensors, (i.e.,

micro-sensors) in terms of cost, expansion capabilities as well as Mean Time

Between Failures (MTBF) [1]. For example, let’s consider the situation where it is

required to obtain radar images from a space based sensor system. In terms of cost,

building several small micro-satellites with lesser complex electronics as well as

lower requirement of transmitter power per satellite will definitely be cheaper than

building a large satellite that contains much complex electronics as well as high

requirement of transmit power. In terms of expansion capabilities, it is always

possible to increase the capability of the distributed aperture satellite radar system by

adding more micro-satellites such that finer image resolution or larger imaging area

can be easily achieved. In terms of failure rate, the malfunctioning of one single

micro-satellite will not cripple the overall distributed aperture satellite radar system

whereas any critical malfunctioning in the single aperture satellite radar system will

render the complete failure of the system itself.

However, in terms of deployment, controlling the orbital trajectory of a single

satellite is definitely much easier than controlling that of a constellation of micro-

satellites. Thus, in general, it is not possible to have a constellation of micro-satellites

 1

flying in a regularly spaced orbit trajectory at all times as the orbital dynamics will

make such a scenario near impossible. Instead, the actual deployment scenario will

likely be a cluster of satellites flying in a non-uniform irregular spaced manner such

that the positions of all the satellites will not form a regular spaced regular grid etc.

When the distributed aperture radar system is operating in such a manner, this will

greatly impact the Total Ambiguity Function (TAF) as the range-Doppler ambiguities

will still be present in the Total Ambiguity Function of the system [1]. Refer to

figure 1.1 and figure 1.2 below for the Total Ambiguity Function for a uniformly

distributed aperture radar system versus that of a non-uniformly distributed aperture

radar system. Note that both figures are obtained from [1] and reproduced in this

document in order to illustrate the point mentioned above.

Figure 1-1: TAF for Regularly Spaced Distributed Apertures

 2

Figure 1-2: TAF for Non-Uniformly Spaced Distributed Apertures

Now, when the system’s Total Ambiguity Function is as shown in figure 1.2,

this will imply that each image resolution cell in a SAR image will be highly

correlated to its neighboring resolution cells. As such, using a Matched Filter (MF)

for the receiver channel processing will not produce a good quality image since the

MF does not take data correlations between resolution cells into account. Thus, a

more intelligent and robust filter will need to be used for the non-uniformly spaced

distributed aperture radar system. From previous work in [1], it has been ascertained

that the Minimum Mean Square Error filter (MMSE) or Wiener filter, is the

appropriate filter choice.

Next, the MMSE filter is a much more complex filter than the standard

Matched filter. Furthermore, the MMSE filter contains a matrix inverse operation on

the correlation matrix of the measurement data. When the size of the measurement

 3

data is significant, i.e. in terms of thousands of measurements, the time needed for the

matrix inverse operation will be computationally very expensive and may be

impossible to execute for some hardware systems. Thus, we may ask whether it is

possible to develop a more efficient MMSE filter for implementation. One answer to

the above question is the Kalman filter that was developed during 1960. Essentially,

the Kalman filter is like a recursive or iterative version of the MMSE filter in that the

total measurement data set can be broken into many smaller blocks and the Kalman

filter then performs the filter operation iteratively on each of the smaller block of data

until all the available measurement data are utilized. In addition, when there are new

incoming measurement data, the Kalman filter can refine the answers obtained from

the previous measurement data using just this new information without having to

rerun the whole set of measurement data again. As a result, the Kalman filter

becomes very popular in many signal processing applications.

 However, based on the findings in [2], [3] and various other literatures, it has

been found that the results obtained from the Kalman filter can diverge or even the

total failure of the Kalman recursion can occur as a result of finite computer

precision. As a result of round-off errors due to finite precision, the error covariance

matrix in the Kalman filter may end up having negative Eigen values although it is

not possible for this condition to occur in theory. This ill condition is further

magnified in instances when the measurements are very accurate or when there is a

large range in magnitudes of the error covariance matrix’s Eigen values. Thus, this

motivates researchers to look into alternative recursive structures for propagating and

 4

updating the state estimates and the error covariance matrix. One of such alternative

approach is to update the square root of the error covariance matrix at each iteration

step instead of the error covariance matrix as in the Kalman filter. This approach,

term the Square Root Covariance Filter (SRCF), is found to be able to yield two times

as much effective precision as the Kalman filter in ill-conditioned problems [2].

Furthermore, the SRCF is also able to maintain the positive semi-definiteness of the

error covariance matrix after each iteration step.

 Nevertheless, the advantages of the square root covariance filter over the

Kalman filter comes with the price of longer computation time for the same level of

accuracy in the results obtained. Thus, this motivates researchers to examine the

structure of the SRCF so as to further reduce its computational time such that it is

comparable to that of the Kalman filter without any significant loss in the accuracy of

the results obtained. One possibility is to compute a reduced rank of the square root

of the error covariance matrix at each iteration step rather than the full rank at the

expense of some slight loss in accuracy.

 Besides utilizing the Kalman filter as a more efficient version of the MMSE

filter for implementation, in recent years there are also other developments in the

signal processing communities like the principal component algorithm or the cross-

spectral algorithm that are Eigen-based methods. One of this development resulted in

what is known as the Multi-Stage Wiener Filter (MSWF) that utilizes a

decomposition for each stage that is based on orthogonal projections [4] [5]. Using

the multi-stage Wiener filter, it is possible to avoid the matrix inverse operation

 5

present in the Wiener filter and this method also does not rely on any Eigen

decomposition operation. At the same time, it is able to outperform other Eigen-

based algorithms in terms of computational time and accuracy. An interesting feature

of the multi-stage Wiener filter is that it has the reduced rank processing inherently

built into its structure. For example, when the rank of the measurement data

correlation matrix is equal to the value N, performing N stages of decomposition with

the MSWF is equivalent to performing a full-rank operation of the filter. On the

other hand, performing K stages of decomposition where K < N is equivalent to

performing a reduced rank operation of the filter up to rank K. Furthermore, it has

also been determined in [5] that the number of decomposition stages required by the

MSWF for achieving full rank MMSE performance is less than the full rank of the

measured data correlation matrix. Thus, by controlling the number of the

decomposition stages, a faster computational time can be obtained using the MSWF.

Another feature of the MSWF is that it can be implemented in scalar format for

predicting one variable at a time or in vector format for predicting groups of data

variables simultaneously.

1.2 MOTIVATION OF THESIS

 Coming back to the need of using the MMSE or Wiener filter for processing

the received data from a Non-Uniformly Distributed Aperture Radar system, prior

work on using the Kalman filter to replace the Wiener filter has been done by other

researchers as shown in [6]. For my research area of interest, I will be looking into

 6

using the Reduced Rank Square Root Covariance filter (RRSQRT) in the receiver for

SAR processing and compare its performance with the conventional Kalman filter.

For this part of the work, both scalar and vector measurement update will be

examined in each iteration. In addition, I will also be adopting the multi-stage

Wiener filter used mostly by the communications community for SAR processing as

well and compare its performance with both the traditional Wiener filter and the

Kalman filter. For the multi-stage Wiener filter, both the scalar version and the

vector version will also be looked at to compare their performance with the Kalman

filter. Finally, in the process of implementing these algorithms, characteristics of

each filter will be examined so as to allow the personality of each algorithm to be

revealed.

1.3 OUTLINE OF THESIS

 In this thesis, Chapter 1 will cover the background and research motivation for

the thesis itself. In Chapter 2, a brief description of the simulated radar model used

for my research work will be provided. At the same time, the derivations of the

equations that correspond to the Wiener filter and the Kalman filter implementations

for the radar model will also be given as well. In Chapter 3, the equations pertaining

to the square root covariance filter and its reduced rank adaptation will be provided

and results obtained from using the SRCF and RRSQRT will be presented for

discussions. Next, in Chapter 4, the equations for the multi-stage Wiener filter

pertaining to my implementation will be shown and results obtained from using the

 7

scalar and vector implementations of the MSWF will be provided for comparison

with that of the Wiener filter and Kalman filter. At the same time, a larger

measurement data set is also simulated to further evaluate the performance of the

multi-stage Wiener filter with the other 2 filters. In Chapter 5, some innovative pre-

processing approaches for re-implementing the MSWF will be attempted and these

preprocessing include either using a different method of initializing the parameters or

re-ordering of the image resolution cell information based on correlation level before

the actual stages of decomposition. Also, the structure “Recursive MSWF” will be

introduced as one of the innovative approach within the Chapter itself. Finally,

Chapter 6 will conclude on the findings of this thesis along with further

recommendations.

 8

CHAPTER 2: THE RADAR MODEL

2.1 DISTRIBUTED APERTURE AND TARGET GEOMETRY

 Now, due to a lack of real data from a non-uniformly distributed radar system,

a radar model simulator was created using MATLAB by prior research students that

allows the users to have the flexibility to model each aspect of the radar system

independently. For the distributed apertures within the radar system used in my

research, it is modeled as a single transmitter and 12-receivers radar system. The

figure 2.1 below provides an illustration of the geometry of the transmitter and

receivers location in space along with the target geometry.

z

x

Non-uniform, Distributed
Aperture Radar System

Center of target area

Velocity vector vx
of Radar system

y

‘NY’ resolution cells

‘NX’ resolution cells

R0

h

y0

θi

Figure 2-1: Distributed Aperture Radar System and Target Geometry

 9

 Now, in this geometry, certain parameters are defined as follows:

• The overall distributed aperture radar configuration is moving in the x

direction with a velocity vector vx.

• The center of the radar configuration is at the location, x = 0, y = 0 and z = h.

Thus, the radar configuration is flying at a height h above the ground.

• The center of the target area of interest is at the location, x = 0, y = y0 and z =

0. Also, flat earth geometry is assumed such that z is equal to zero throughout

the entire target area.

• The target area is modeled as a square grid in where there are Nx and Ny (Nx =

Ny) square image resolution cells in each dimension for a total of Nt = Nx × Ny

image resolution cells. Note that the area of each image resolution cell is Δx ×

Δy where Δx is the along track resolution and Δy is the cross track resolution.

• The angle θi is the incident angle to the center of the target area of interest.

As such, we can define the parameters y0 and h as:

y0 = R0 sinθi (2.1)

h = R0 cosθi (2.2)

Besides these parameters, the locations of both the transmitter and receivers are

obtained from a Gaussian random generator in MATLAB with zero mean and

variances set to a value that will ensure that the spatial extent of all the distributed

apertures will not be so large as to affect the image resolution. In addition, care is

taken to ensure that each receiver aperture is not too close to the others so as to allow

each receiver aperture to collect independent measurement samples.

 10

2.2 SIGNAL SPACE MODELING

2.2.1 TRANSMIT SIGNAL MODELING

Details of the overall signal space modeling can be found in [8]. Below is a

brief description of the different signal parameters used in the model itself that can

also be obtained from [9]. Firstly, the transmit signal function s will be modeled as

a vector that has a total number of elements equal to J×BT where J is the number of

transmitter, B is the transmit bandwidth and T is the total duration of the transmit

pulses used for forming the image. It can be expressed as a summation of basis

functions as follows:

G

1

ˆ() ()
N

t n n
n

s x s xφ
=

= ∑G
t (2.3)

In equation 2.3, N is the total number of transmit signals and equal to J×BT and the

vector tx is a 5-D vector for the transmitter representing the combination of spatial

coordinates x, y and z as well as the slow time t and fast frequency w variables:

x = [t,w,x,y,z] (2.4)

Next, the basis functions are functions of space, time and frequency that span the

total time width, bandwidth and transmit aperture size as a whole. As for the weight

parameters , they can be considered as complex coefficients for the basis functions

that will determine the explicit form of the total transmit signal s . As such the

transmit signal function s can be represented in vector form as:

ˆ
nφ

ns

G

G

s = [s1,s2,s3,…….,sN]T (2.5)

 11

2.2.2 TARGET MODELING

 Now, the target area of interest consists of Nt number of image resolution

cells. Thus, the target function can also be modeled as a summation of Nt basis

functions as:

1

() ()
tN

s m m
m

xγ γ ψ
=

= ∑
GG

sx (2.6)

In equation 2.6, the individual basis function
mψ
G

represents the point scatterer in each

image location of the total image area. Also, the complex variable represents the

scattering coefficient associated with each image resolution cell location. Thus, in

vector format, the target function is expressed as:

mγ

γ = [γ1,γ2,γ3,γ4,….,γNt]T (2.7)

2.2.3 RESPONSE MEASUREMENTS MODELING

 For the measurements obtained at the different receivers, they can be

generally expressed as a space-time function using the convolution integral:

() (;). (). (;). () ()r r s s s t t t sr x H x x x G x x s x dx dx n xγ= +∫ ∫ r

I IG G G G
 (2.8)

In the above equation, the functions (;)r sH x x
I

 and (;)s tG x x
I

are the dyadic Green’s

functions that describe the propagation from radar to target area and back to the

receivers. Also, the function ()rn x
G represents the Gaussian receiver noise present in

the system. Now, similarly the function ()rr x
G can also be expressed as a summation

of basis functions:

 12

1

() ()
M

r l l
l

r x r xϕ
=

= ∑G G
r (2.9)

where M is the total number of measurements from all the receivers and the values rl

are complex and equal to:

(). ()l r l rr r x x dϕ= rx∫
G G

 (2.10)

Using a series of manipulations, it is possible to obtain the final format of the

response measurements in the following format:

t

t

N

t t
t
N

t t
t

γ

γ

= +

= +

∑

∑

r H s

nρ

n

N

 (2.11)

In the above equation, n is the receiver Gaussian noise, Ht is a matrix and ρt = Hts is

the normalized space-time receiver measurement from the t-th scatterer or image

resolution cell and these parameters are defined as follows:

r = [r1,r2,r3,r4,…..rM]T (2.12)

n = [n1,n2,n3,n4,…..nM]T (2.13)

11 1

1

t t
N

t

t t
M M

H H

H H

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

H

…

%

"
 (2.14)

(). (;). (). (;). ()t
mn m t r s t s s t n t t s rH x H x x x G x x x dx dx dxϕ ψ φ= ∫ ∫ ∫

I G I GG
 (2.15)

 13

By looking at equation 2.11, we can combine the normalized space-time receiver

measurements or response vectors from all the scatterers or image resolution cells

into a matrix P:

P = [ρ1;ρ2;ρ3;ρ4;…..;ρNt] (2.16)

Using equation 2.16, we can rewrite equation 2.11 as follows:

γ= +r P n (2.17)

2.3 THE SAR IMAGE FORMULATION

2.3.1 WIENER FILTER IMPLEMENTATION

 Now, from the definitions obtained in the previous section, forming a SAR

image from the response vectors r is simply to obtain the values (predicted

scattering coefficients) from r using the linear filtering model:

γ̂

ˆ = Wrγ (2.18)

[1, 2, 3, 4,ˆ ˆ ˆ ˆ ˆ ˆ.....]
tNγ γ γ γ γ=γ (2.19)

[H]=W w w w w"" t1 2 3 N (2.20)

In equation 2.18, W is the weight matrix/linear filtering operation that will extract the

predicted values from the response vector and wγ̂ i is the weight vector

corresponding to the ith image resolution cell or scatterer. Thus, to obtain the values

of using a MMSE filter, we will need to define the weight matrix Wγ̂ mmse in

 14

equation 2.20 that is linked to our signal model. As a start, we know from [10] that

the weight vector for a MMSE filter is defined as:

1

= E]

E[]

i

i iγ

−=

=

i

H

w R p

R [rr

p r
 (2.21)

Where R is the measurement data correlation matrix and pi is the cross correlation

vector between the response vector r and the scattering coefficient γi of ith target.

Also, it is assumed that the scattering coefficients and the receiver noise are

statistically independent. Thus, using the same definition, we arrive at the expression

for Wmmse as

H H H H H 1
mmse E[] (E[] E[])γγ γγ −= +W P P P nn

iγ

 (2.22)

If we assume that the elements of the vector γ are independent with identical

statistical properties and E{nnH} is equal to the noise covariance matrix Kn since its

mean value is zero, then equation 2.22 can be rewritten as:

2 H 2 H 1
mmse ()t t nγ γ −= +W P PP K (2.23)

in which is the expected value of the square of the scattering coefficient

of each image resolution cell or scatterer. Looking at the above equation 2.23, it can

be seen that there is a matrix inverse operation associated with the MMSE filter and

the size of the matrix is equal to M×M where M is the total number of measurements.

Thus, for situations in which the amount of measurement data is significant, the

calculation of the W

2 E[]H
t iγ γ=

mmse will be computationally inefficient. Thus, a much more

 15

efficient method of implementing the MMSE filter of filter order O(2×M3) will be to

adapt the problem into a Kalman filter implementation.

2.3.2 KALMAN FILTER IMPLEMENTATION

 As mentioned in the previous sections, Kalman filter is the iterative form of

the MMSE or Wiener filter. In order to adapt the SAR image processing using the

Kalman filter implementation, we will need to address a few issues. Firstly, the full

segment of the response vector given in equation 2.12 will be divided into many

smaller segments such that each smaller segment of the measurement data will be fed

into one Kalman iteration until all the data are completely utilized. Similarly, we will

need to do likewise for the noise vector defined in equation 2.13 as well as for the P

matrix defined in equation 2.16. Assuming a total of L segments are to be obtained

with 4 elements per segment as an example, the resulting partition of these 3

parameters will be as shown below:

1 2 3 4 5 6 7 8 9 10 11 12 3 2 1

() () () ()

1 2 3 4 5 6 7 8

() ()

, , , ,

(1) (2) (3) ()

,

M M M M

1 2 3 L

T

1 2

r r r r r r r r r r r r r r r r

L

n n n n n n n n

− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤= ⎢ ⎥⎣ ⎦

=

r r r r

n n

r

P P P P P

n

………
����	���
 ����	���
 �����	����
 ���������	��������

………

�����	����
 �����	�
 9 10 11 12 3 2 1

() ()

, , , M M M M

3 L

n n n n n n n n− − −

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦n n

………
��� ������	�����
 ����������	���������

 (2.24)

Secondly, it is known that there are two equations that define the Kalman filter

implementation, namely the state equation and the observation equation. For the state

equation used in our modeling, it is given by the equation in the following page:

 16

() () (1) ()l l l= − +Aγ γ lu

l

 (2.25)

where A(l) is the state transition matrix and u(l) is the process noise that represents

the uncertainty in A(l). Note that in this equation, l represents the iteration or data

segment number out of a total of L iterations or segments. As for the observation

equation, it can be defined as:

() () () ()l l l= +r P nγ (2.26)

Thirdly, for our radar model, we are also assuming that the elements of the vector γ

remain constant with respect to time, frequency and space over the total duration T of

the measurements. As such, we can replace the state transition matrix A(l) with an

identity matrix I. Besides that, other assumptions or initial conditions that are used

for my Kalman filter implementation are as follows:

2

2

H

(̂0/ 0) E{ } 0

(0/ 0)

(0/ 0)

() E{ () () } 0

n n

l l l

γ γ

γ γ

σ

σ

= =

=

=

= =u

K I

K I

K u u

 (2.27)

These assumptions are based on the fact that firstly, we do not have any prior

information about the values of the scattering coefficients and thus we can set them to

be equal to zeros. Secondly, each scattering coefficient is independent of the other

scattering coefficients. Thirdly, since each scattering coefficient is assumed to remain

unchanged during the observation period, the model noise is thus assumed to be equal

to zero as well. Fourthly, the measurement noise is assumed to be white Gaussian

noise.

 17

With the above definitions and assumptions made, it is now possible to define the

Kalman filter implementation steps for our radar model. With the value of l set to 1

and using the initial conditions, the iteration steps begin as follows:

• Step 1: Updating the A priori Error covariance matrix

(/ 1) (1/ 1) ()l l l l lγ γ− = − − + uK K K

1

γ

 (2.28)

• Step 2: Computing the Kalman gain G(l)

H H() (/ 1) () [() (/ 1) () ()]l l l l l l l l lγ γ
−= − − + nG K P P K P K (2.29)

• Step 3: Obtaining the Innovation v(l) from the new measurement data r(l)

ˆ() () () (1/ 1)l l l l l= − − −v r P γ (2.30)

• Step 4: Computing the updated predicted scattering coefficient using the

Kalman gain and innovation obtained from the previous steps

ˆ(/)l lγ

ˆ ˆ(/) (1/ 1) () ()l l l l l l= − − + G vγ γ (2.31)

• Step 5: Computing the Error covariance matrix for the current iteration (/)l lγK

(/) [() ()] (/ 1)l l l l l lγ = − −K I G P K (2.32)

With the five steps defined above, the Kalman filter implementation for the SAR

image processing of the non-uniformly distributed aperture radar system can be

achieved.

 18

2.4 TESTING THE KALMAN FILTER IMPLEMENTATION

2.4.1 1ST TEST SCENARIO FOR KALMAN FILTER

 In order to ensure that the Kalman filter implementation described in the

previous section is functionally properly for the SAR image processing, two test

scenarios are carried out. In the 1st test scenario, an image consisting of random

complex scattering coefficients and is generated and used as input to the radar

model simulator to form the output measurement vector r. Other additional parameter

values used for the two test scenarios are described in Table 2.1 below:

γ

Table 2.1: Parameter Values used for Test Scenario 1 and 2

 Description of Parameters Values chosen

1 h (Height of Distributed Aperture Radar System) 183 km

2 vx (Velocity of Distributed Aperture Radar System) 7.8 km/s

3 fc (Center Transmit frequency) 10 GHz

4 Nx 31

5 Ny 31

6 B (Bandwidth of Transmit signal) 0.3125 MHz

7 T (Time width of Transmit signal) 0.7327 ms

8 θi (Incident angle) 45°

9 Ro 258.8 km

10 J (Number of transmitters) 1

11 I (Number of receivers) 12

12 Number of samples per receiver 255

 19

 Description of Parameters Values chosen

13 Total number of samples for 12 receivers 3060

14 SNR (Signal to Noise Ratio) 40 dB

15 2
γσ for random complex scattering coefficients γ 2

Using the Kalman filter, the estimated scattering coefficient is obtained. To

measure the performance of the Kalman filter, a numerical parameter known as the

Normalized Mean Square Error or MSE is then computed at each step of the iteration:

γ̂

ˆ ˆ(

ˆ
MSE

Η

Η=
γ − γ) (γ − γ)

γ γ
 (2.33)

Next, the result of the computed MSE from the Test scenario 1 is as shown in figure

2.2 along with the expected error from the Kalman filter obtained from normalizing

the trace of the error covariance matrix with the same denominator as in equation

2.33, i.e.

trace(
_cov

ˆ

l
MSE γ

Η=
K ())

γ γ
 (2.34)

 20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-45

-40

-35

-30

-25

-20

-15

-10

-5

0
Performance of the Developed KF for randomly chosen scattering coefficients

Fraction of Measurement vector processed ---->

N
or

m
al

iz
ed

 M
S

E
 (i

n
dB

)--
-->

Numerical Computation
Error Covariance Values

Figure 2-2: Performance of KF for randomly chosen scattering coefficients

Note that a functional check on the validity of the Kalman filter results is the degree

of correlation between the two parameters, MSE and MSE_cov defined in equation

2.33 and 2.34. From figure 2.2, it can be seen that these 2 parameters are closely

tracking one another and thus it is concluded that the results from the Kalman filter

for the 1st test scenario is valid.

2.4.2 2nd TEST SCENARIO FOR KALMAN FILTER

 Now, in the 2nd test scenario for the Kalman filter implementation, a small

section of a photograph of the KU football stadium was cropped to a size of 31×31

and each image resolution cell’s intensity is given a random phase such that the

resulting set of the 31×31 complex image resolution cell values is now used as the

input to the radar model simulator to form the output measurement vector r with

γ

2
γσ

 21

equal to 1282 in this scenario. Figure 2.3 below gives a view of these new input

scattering coefficients used for the 2γ nd test.

5 10 15 20 25 30

5

10

15

20

25

30
70

80

90

100

110

120

130

140

150

160

170

Figure 2-3: Actual Image used to generate and Response Vectors r γ

With all other factors remaining constant, a Kalman filter run is executed on this new

set of data and the results are shown in figure 2.4 and figure 2.5 on the next page.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-45

-40

-35

-30

-25

-20

-15

-10

-5

0
Performance of the Developed KF for KU image pixels

Fraction of Measurement vector processed ---->

N
or

m
al

iz
ed

 M
S

E
 (i

n
dB

)--
-->

Numerical Computation
Error Covariance Values

Figure 2-4: Performance of KF for KU image resolution cells used as Input

 22

5 10 15 20 25 30

5

10

15

20

25

30
70

80

90

100

110

120

130

140

150

160

170

Figure 2-5: Estimated image obtained from KF

By examining the two curves in figure 2.4, it can also be concluded that the Kalman

filter is working properly for the 2nd test scenario and this is further verified by the

similarity of the output image obtained from the Kalman filter shown in figure 2.5 to

the input image shown in figure 2.3. Thus, the two functional tests performed on the

Kalman filter implementation of the SAR image formation using simulated model

data based on non-uniformly distributed aperture radar system are successful.

2.5 LOOKING BEYOND THE CONVENTIONAL KALMAN FILTER

 As mentioned in Chapter 1, although the Kalman filter is also to produce

results at a much faster rate as compared to the Wiener filter, it may also suffer from

some shortcomings that will cause it to diverge or fail completely. These pitfalls are

well recorded in [2] and [11]. In order to circumvent the problems faced by the

Kalman filter, researchers have derived new forms of recursive filters from the

 23

original structure of the Kalman filter and one new form of recursive filter is the

Square Root Covariance Filter (SRCF). For this filter, besides updating the state

estimate at each iteration step, the square root of the error covariance matrix is

updated instead of the error covariance matrix itself. From experiments, researchers

have proven that the SRCF is showing better numerical precision and stability as

compared to the Kalman filter, especially in ill-conditioned problems. At the same

time, the computational time and memory needed by the SRCF is not significantly

greater than that of the Kalman filter. Thus, this new form of recursive filter is

desirable as an alternative to the Kalman filter for the SAR image formation

application for the non-uniformly distributed aperture radar system.

 In the next Chapter, I will describe the equations that define the SRCF

developed by Potter for scalar measurement update per iteration as well as its

alternate form. I will then proceed to define the vector measurement update version

of Potter’s SRCF that was developed by Andrew. As prior work done in [6] has

demonstrated that it is computationally faster to implement the Kalman filter using

vector measurement update per iteration as compared to scalar measurement update,

thus I will use the results obtained using both Potter and Andrew’s version of filter to

compare with the scalar and vector measurement update versions of the Kalman filter.

 Next, to address the issue of the larger computation time required by the

SRCF as compared to the Kalman filter, I will also explore using a reduced rank

version of the SRCF that was proposed in [12] and compare the results obtained from

different adaptations of the reduced rank version with that of the full rank version.

 24

CHAPTER 3: THE SQUARE ROOT COVARIANCE FILTER

3.1 FULL RANK SQUARE ROOT FILTER

In Chapter 2, it is shown that the conventional Kalman filter can be utilized

for the SAR image formation of the non-uniformly distributed aperture radar system.

However, it is also mentioned that there are some pitfalls with the conventional

Kalman filter in terms of stability and divergence issues. As such, researchers have

developed different forms of iterative filters to overcome the pitfalls of the Kalman

filter. One of these filters is the Square Root Covariance filter (SRCF) developed by

Potter [2] that was initially used for space navigation purposes in which the process

noise in the state equation is equal to zero. At the same time, Potter also confined the

operations of his SRCF to only scalar measurement updates. Essentially in the SRCF,

the error covariance matrix and can be represented in

the following manner:

(1/ 1l lγ − −K)

)

(/ 1)l lγ −K

H

H

(1/ 1) (1/ 1) (1/ 1)

(/ 1) (/ 1) (/ 1)

l l l l l l

l l l l l l

γ

γ

− − = − − − −

− = − −

K S S

K S S (3.1)

In which the matrices and are the respective square roots

of the Error Covariance Matrices. Using the above definitions, therefore, it is

possible to rewrite equation 2.28 as the following:

(1/ 1l l− −S (/ 1)l l −S

H H(/ 1) (/ 1) (1/ 1) (1/ 1)l l l l l l l l− − = − − − −S S S S (3.2)

(/ 1) (1/ 1)l l l l− = − −S S (3.3)

 25

since the process noise covariance matrix is set to zero in our radar model.

From equation 3.2, we can see that the appropriate propagation variables for the

SRCF will be in addition to the predicted scattering coefficients

 and . Also, the update of the error covariance matrix

defined in equation 2.32 can be rewritten as:

()luK

(/ 1), (/)l l l l−S S

ˆ(/)l lγ ˆ(1/ 1l l− −γ)

H

H

2

(/)l lγK

H H(/) (/) (/ 1)[() () ()] (/ 1)l l l l l l b l l l l l= − − −S S S I a a S (3.4)

Where the scalar variable b(l) and the vector a(l) are defined by:

H() (/ 1) ()l l l l= −a S p (3.5)

H1/ () () () ()nb l l l lσ= +a a (3.6)

Furthermore, Potter has shown that it is possible to factor the bracket term

 into a product of 2 terms such that: H[() () ()]b l l l−I a a

H H

2

[] = [][

1
(1)n

b b b

b

η η

η
σ

− − −

=
+

I aa I aa I aaH H]

a a

 (3.7)

Note that in equation 3.7, η is a scalar variable. By using the factorization, the

equation 3.4 can then be simplified to equation 3.8 shown below:

H

H

(/) (/ 1)[() () () ()]

= (/ 1) () () (/ 1) () ()

l l l l b l l l l

l l b l l l l l l

η

η

= − −

− − −

S S I a a

S S (3.8)

By combining equations 3.5 to 3.8, it is now possible to define the square root

covariance filter implementation for our radar model. With the value of l set to 1 and

 26

using the initial conditions as per the Kalman filter implementation, the iteration steps

can begin as follows:

H H

H 2

12 2

H

() (/ 1) ()

1()
[() () ()]

1()
[1 { () ()}]

() () (/ 1) ()

ˆ ˆ ˆ(/) (1/ 1) ()[() () (1/ 1)]

ˆ(1/ 1) () ()

(/) (/ 1) () () ()

l l l l

b l
l l l

l
b l l

l b l l l l

l l l l l r l l l l

l l l v l

l l l l l l l

σ

η
σ

η

= −

=
+

=
+

= −

= − − + − − −

= − − +

= − −

n

n

a S p

a a

g S a

g p

g

S S g a

γ γ γ

γ

(3.9)

In the above iteration process, g(l) is the Kalman gain vector and v(l) is the scalar

innovation as per the conventional Kalman filter. In this instance, the initial value of

is obtained by taking the matrix square root of . Before proceeding

further, it is noted in [2] that an alternate structure of equation 3.9 is often employed

as well and this structure is as shown in equation 3.10 below:

(0/ 0)S (0/ 0)γK

H H

1H 2 2

2

() (/ 1) ()

() [() () ()]

() () ()

1() (() ())

() () (/ 1) ()

()ˆ ˆ ˆ(/) (1/ 1) ()[][() () (1/ 1)]()

()ˆ(1/ 1) ()[] ()()

(/) (/ 1)

l l l l

l l l l

l l l

l l l

l l l l l

ll l l l l r l l l ll

ll l l v ll

l l l l

σ σ

α σ σ

β σ α
β

α
σ

α
σ

= −

= +

= +

=

= −

= − − + − − −

= − − +

= − −

n

n

a S p

a a

g S a

g p

g

S S

γ γ γ

γ

H() ()l lg a

(3.10)

 27

Mathematically, it is not difficult to prove that the iteration steps shown in equation

3.10 are equivalent to that of equation 3.9. Furthermore, equation 3.10 can readily be

converted to a vector measurement update structure that the generic Potter’s SRCF

does not address in equation 3.9.

Next, from previous research done on the performance of the conventional

Kalman filter [6], it has been observed that the performance of the Kalman filter in

terms of computational time will improve significantly when the iteration steps are

performed using vector measurement updates rather than scalar measurement updates.

However, once the size of the measurement update block exceeds a certain threshold,

the savings achieved in the computational time for the vector measurement update

implementation will decrease gradually. Eventually, it will become the MMSE filter

where all measurements are used in 1 iteration step or update. To illustrate this point,

a small simulation is carried out with the Kalman filter using a total of 504

measurements (response vector r is 504×1) to predict an image size of 255 (15×15)

resolution cells. Next, a parameter L is defined where L is equal to the number of

smaller vectors the response vector r is divided into. By increasing the value of L

from a value of 1 corresponding to the MMSE filter until it is equal to 504

corresponding to the total amount of measurements, the time taken to obtain the final

result for each case is recorded. These results are then plotted and shown in figure

3.1 on the following page.

 28

10
0

10
1

10
2

10
3

0

0.5

1

1.5

2

2.5

Log(L)

To
ta

l P
ro

ce
ss

in
g

tim
e

in
 s

ec
s

Plot of Processing time of Kalman filter versus L

Figure 3-1: Processing Time of Kalman filter versus L

By examining figure 3.1, it can be seen that the Kalman filter is least efficient when it

is implemented using scalar measurement updates. The main reason is because the

total amount of iterations required for the scalar measurement updates is significant

although the time required for each iteration step is small. Thus, this blows up the

total processing time as seen from the figure where the time taken is about 2.35 sec.

On the other hand, when all the measurements are used in just one iteration step (L =

1) as seen at the leftmost point in the figure 3.1, the time required for the matrix

inverse operation will predominate.

 29

Therefore, based on the observation shown in figure 3.1 above as well as in

[6], it will be logical to implement the Kalman filter using vector measurement

updates of reasonable block sizes rather than using scalar measurement updates.

Since in my research, I am exploring using the SRCF to replace the Kalman filter,

thus it also creates a need to search for the vector measurement update version of the

Potter’s SRCF. The search has resulted in finding the Andrew’s SRCF [2] that can

process either scalar or vector measurement updates in each iteration step. The

equations for Andrew’s SRCF implementation are as shown below:

H H

H

1 H 1

1 H H

() (/ 1) ()

() () () ()

ˆ ˆ(/) (1/ 1) (/ 1) ()[()] () ()

(/) (/ 1) (/ 1) ()[()] () ()] ()

c

l l l l

l l l l

l l l l l l l l l l

l l l l l l l l l l l

− −

−

= −

= +

= − − + −

= − − − [+

n

n

A S P

A A K

S A v

S S S A K A

Σ

γ γ Σ Σ

Σ Σ

 (3.11)

By examining the equations in 3.11, we can see its similarity to that of the alternate

form of Potter’s implementation shown in equation 3.10. Note that the matrix is

obtained by taking the lower triangular Cholesky decomposition of the

expression .

()lΣ

H(() () ())l l l+ nA A K

3.2 PERFORMANCE BETWEEN KALMAN AND FULL RANK SRCF

 In the previous section, the equations for both the scalar measurement update

and vector measurement update implementations of the Square Root Covariance filter

are derived. In this section, I will show the results of a simulation being carried out

 30

for these filters using their full rank and compared their performance with that of the

Kalman filter using both the scalar and vector measurement update implementations.

For this simulation, some of the test parameters are as shown in Table 3.1 below.

Also, the image used is composed of random complex scattering coefficients . γ

Table 3.1: Parameter Values used for SRCF Simulation

 Description of Parameters Values chosen

1 Nx 31

2 Ny 31

3 Full Filter Rank size (= Nx × Ny) 961

4 Total number of transmitters 1

5 Total number of receivers 12

6 Total number of samples 3060

7 SNR (Signal to Noise Ratio) 40 dB

In this simulation, as the total number of available measurements is 3060, thus some

efforts are spent to obtain a reasonable measurement update size to be used for the

vector update implementation as is discussed in the previous section. The final values

that are decided are 102 measurements per update for a total of 30 iterations. Next,

the types of filters that are being put to the test are as shown in Table 3.2 in the

following page:

 31

Table 3.2: Types of Filter used for SRCF Simulation

 Description of Filter Type of Measurement Update Filter Order

1 Kalman filter Type 1 Scalar O(Nt
2)

2 Potter SRCF Scalar O(Nt
2)

3 Andrew SRCF Type 1 Scalar O(Nt
2)

4 Kalman filter Type 2 Vector, 102 measurements per block O(Nt
2×M/L)

5 Andrew SRCF Type 2 Vector, 102 measurements per block O(Nt
2×M/L)

For the SRCF simulation, the Potter SRCF and Andrew SRCF Type 1 are executed to

verify the results obtained from the SRCF with the Kalman filter Type 1. For

performance measure in terms of computational time and accuracy of results, the

Andrew SRCF Type 2 is used to compare with that obtained from the Kalman filter

Type 2. The results that are obtained from this simulation are as shown below:

Table 3.3: Results obtained for SRCF Simulation

 Description of Filter Time/sec Final MSE/dB

1 Kalman filter Type 1 356.350 -42.216

2 Potter SRCF 437.451 -42.216

3 Andrew SRCF Type 1 488.223 -42.216

4 Kalman filter Type 2 37.206 -42.216

5 Andrew SRCF Type 2 44.320 -42.216

 32

Besides the tabulation of results in Table 3.3, figure 3.2 to figure 3.5 also shows the

plots of the MSE and MSE_cov defined in equation 2.33 and 2.34 versus the amount

of data processed for the Potter SRCF, Andrew SRCF Type 1, Kalman filter Type 2

and Andrew SRCF Type 2.

0 500 1000 1500 2000 2500 3000 3500
-45

-40

-35

-30

-25

-20

-15

-10

-5

0
Performance of the Potter SRCF for randomly chosen scattering coefficients

Number of iterations ---->

N
or

m
al

iz
ed

 M
S

E
 (i

n
dB

)--
-->

Numerical Computation
Error Covariance Values

Figure 3-2: Performance of the Potter SRCF

0 500 1000 1500 2000 2500 3000 3500
-45

-40

-35

-30

-25

-20

-15

-10

-5

0
Performance of the Andrew SRCF Type 1 for randomly chosen scattering coefficients

Number of iterations ---->

N
or

m
al

iz
ed

 M
S

E
 (i

n
dB

)--
-->

Numerical Computation
Error Covariance Values

Figure 3-3: Performance of the Andrew SRCF Type 1

 33

0 5 10 15 20 25 30
-45

-40

-35

-30

-25

-20

-15

-10

-5

0
Performance of the KF Type 2 for randomly chosen scattering coefficients

Number of iterations ---->

N
or

m
al

iz
ed

 M
S

E
 (i

n
dB

)--
-->

Numerical Computation
Error Covariance Values

Figure 3-4: Performance of the Kalman filter Type 2

0 5 10 15 20 25 30
-45

-40

-35

-30

-25

-20

-15

-10

-5

0
Performance of the Andrew SRCF Type 2 for randomly chosen scattering coefficients

Number of iterations ---->

N
or

m
al

iz
ed

 M
S

E
 (i

n
dB

)--
-->

Numerical Computation
Error Covariance Values

Figure 3-5: Performance of the Andrew SRCF Type 2

 34

By comparing the results obtained from the Potter SRCF, Andrew SRCF Type 1 with

that of the conventional Kalman filter Type 1 as shown in Table 3.3, it can be seen

that in terms of accuracy of results obtained, all 3 filters are equivalent in terms of

performance. However, in terms of computational time, the conventional Kalman

filter will outperform the other two filters as is mentioned in Chapter 2 and [2] etc.

Also, by examining the time obtained using the scalar measurement update

implementation with that of vector measurement update implementation, one can

readily see the huge improvement in computational time using the later

implementation.

 Next, by comparing the results obtained between the Kalman filter Type 2

with that of the Andrew SRCF Type 2 (both using vector measurement updates), we

can see that the performance of both filters are equivalent in terms of accuracy of

results but the Kalman filter Type 2 is superior in terms of computational time. Thus,

after looking at all the results above, it can be concluded that the SRCF can be used to

replace the Kalman filter for SAR image formation using a non-uniformly distributed

aperture radar system. Although the SRCF incurs a higher computational time than

the Kalman filter, it offers better numerical stability and thus the trade off between

the 2 performance parameters is acceptable.

 At this point in time, the next research question that comes into my mind will

be to look into approaches to reduce the computational time of the SRCF such that it

will be comparable to the Kalman filter. One possibility is that the improvement in

 35

computational efficiently may be achieved by a slight degradation of the accuracy of

results. In the next section, this approach will be examined in details.

3.3 REDUCED RANK SQUARE ROOT FILTER

As mentioned in the previous section, there is a motivation to look into new

approaches to the SRCF that will reduce its computational time while maintaining its

accuracy of results as much as possible. After some intensive research, an answer is

found in the papers [12] to [14] by M.Verlaan and A.W. Heemink. In their papers,

they have presented the technique of using a reduced rank approximation of the

square root of the error covariance matrix to compute the final results with little

degradation in the accuracy of the results. To achieve the process of rank reduction

of the square root covariance matrix, it involves operations for determining the q

dominant Eigen values and Eigen vectors of the square root covariance matrix. Once

these q dominant Eigen values and vectors are obtained, they are then used to form

the new square root covariance matrix whereas the (n-q) less dominant Eigen values

and vectors of the square root covariance matrix are discarded with n being the total

number of Eigen vectors/values or the full rank of the matrix. In this manner, rank

reduction is achieved since only the q dominant Eigen vectors/values are used to form

the square root covariance matrix. At the same time, lesser computation time is

required to compute the square root covariance matrix since the matrix column

dimension of the square root covariance matrix have also been reduced from n to q.

 36

 Next, the reduced rank technique or Reduced Rank Square Root filter

(RRSQRT) as it is called by M. Verlaan consists of 3 main steps that are as follows:

1. Time-step

2. Reduction-step

3. Measurement-step

For a better visualization of each of this step that together forms a complete RRSQRT

iteration step, they will be explained in more details in the following sections.

3.3.1 TIME-STEP OF RRSQRT

 In the Time-step portion, the update of the approximate a priori square root

error covariance matrix that is equivalent to equation 3.3 is performed: (/ 1)l l −S�

1 2
u(/ 1) [(1/ 1), ()]l l l l l− = − −S S K� � (3.12)

In our radar model, since we have set the process noise covariance matrix to

be equal to zero, thus equation 3.12 will be similar to equation 3.3. The main

difference lies in the fact that the square root error covariance matrix

in equation 3.12 has only q

()luK

(1/ 1l l− −S�)

)

l-1 columns instead of n columns due to a Reduction-step

process in the previous iteration step. Thus, it is already an approximation of the full

rank . Also, compared to the full rank SRCF, the number of

computations needed for obtaining the approximate square root covariance matrix has

been reduced by a factor of

(1/ 1l l− −S

1l

n
q −

.

 37

3.3.2 REDUCTION-STEP OF RRSQRT

 In the Reduction-step portion, an Eigen decomposition is performed on the

product of so as to obtain the Eigen vectors and Eigen values

of the approximate Error covariance matrix . The operation is expressed

in equation 3.13 where and are the Eigen vectors and values

of :

H(/ 1) (/ 1)l l l l−S S� � −

−

(/ 1)l lγ −K�

()lU� ()lD�

H(/ 1) (/ 1)l l l l− −S S� �

H H(/ 1) (/ 1) () () ()l l l l l l l− − =S S U D U� � � � � (3.13)

Although is equal to and the Eigen

decomposition should be performed on this expression such that is given

by where are the Eigen vectors of , it has been

shown in [15] that the two expressions and

 has the same nonzero Eigen values. Also, the Eigen vectors

 of are given by the expression [

(/ 1)l lγ −K� H(/ 1) (/ 1)l l l l− −S S� �

(/ 1)l lγ −K�

H() () ()l l lV D V� � � ()lV� (/ 1)l lγ −K�

H(/ 1) (/ 1)l l l l−S S� �

H(/ 1) (/ 1)l l l l− −S S� �

()lV� (/ 1)l lγ −K�
1 2

(/ 1) () ()l l l l
−−S U D� � �]. As it is

faster to compute the Eigen decomposition of that has only a

matrix size of (q

H(/ 1) (/ 1)l l l l−S S� � −

l-1 × ql-1) rather than (n × n), thus the above operation in equation 3.13

is performed. Next, the reduction process of is performed by only

retaining the dominant q

(/ 1)l l −S�

l Eigen vectors in the matrix based on certain threshold

or criteria where q

()lU�

l≤ ql-1 such that:

 38

1: ,1:(/ 1) [(/ 1) ()]
ln ql l l l l− = −cS S U� � � (3.14)

Now, for equation 3.14, the expression means the truncation of columns inside

the matrix [] to q

1: ,1:[] n q

l number of columns.

3.3.3 MEASUREMENT-STEP OF RRSQRT

 Next, in the measurement-step portion of the RRSQT, it is similar to the

iteration steps of the Potter SRCF or the Andrew SRCF except that the expression

 in the full rank SRCF is replaced by the expression for the

RRSQRT. The RRSQRT version for the Andrew SRCF Type 2 is as shown below:

(/ 1)l l −S (/ 1)l l −cS�

H H

H

1 H 1

1 H H

() (/ 1) ()

() () () ()

ˆ ˆ(/) (1/ 1) (/ 1) ()[()] () ()

(/) (/ 1) (/ 1) ()[()] () ()] ()

c

l l l l

l l l l

l l l l l l l l l l

l l l l l l l l l l l

− −

−

= −

= +

= − − + −

= − − − [+

c

n

c

c c n

A S P

A A K

S A v

S S S A K A

�

�

� � �

Σ

γ γ Σ Σ

Σ Σ

(3.15)

Finally, for initialization purposes, the value of can be obtained by using the

q leading Eigen vectors and values of the Error covariance matrix so that

(0/0)S�

(0/ 0)γK

H

1 2
1: ,1:

(0/ 0) (0) (0) (0)

(0/0) [(0) (0)] n q

γ =

=

K V D V

S V D� (3.16)

At the same time, it is also stated in [14] that when the value of q is set to be equal to

the value of n in each iteration step, the RRSQRT of filter order O(Nt×ql-1
2 +

4×(M/L)3) will revert to the full rank SRCF that is also mathematically equivalent to

the conventional Kalman filter.

 39

3.4 CRITERIA DETERMINATION FOR RRSQRT

 In section 3.3, the equations pertaining to the RRSQRT are discussed in

details. However, one very important aspect that is needed to implement the

RRSQRT with respect to our radar model has not yet been decided. Essentially, this

aspect is the choosing of the criteria for determining the number of dominant Eigen

vectors and values to be retained after each iteration step. In order to choose this

criteria for the RRSQRT, two approaches are used in the investigation process. The

1st approach is basically just using guesswork to determine the number of q dominant

Eigen vectors and values in each of the RRSQRT iteration step right from the

initialization process. The 2nd approach is much more systematic and involves

extracting the Eigen spectrum of the Square Root Error covariance matrix using the

full rank SRCF before deciding on the most appropriate criteria to be used. To

evaluate the performance of the RRSQRT using these two approaches, the simulation

setups and results of each approach are presented in section 3.4.1 and 3.4.2

3.4.1 USING GUESSWORK FOR CRITERIA DETERMINATION

 In this section, the 1st approach of using guesswork to determine the criteria

for retaining the q dominant Eigen vectors and values is discussed. As it has been

verified in section 3.2 that the SRCF of full rank n is equivalent in accuracy with the

Kalman filter, some possibilities for choosing q can be just by setting it to be n×0.5 or

any number less than n right at the initialization process stated in equation 3.16.

Thus, for the 1st approach, the parameter q is set to the following values of 1, 40 and

 40

n×0.5 where n is equal to 961 for a 31×31 image resolution cell SAR scenario at

initialization and no further reduction step is carried out throughout the whole

iteration process. It is my belief that these 3 values will provide a good picture for

understanding the behavior of the RRSQRT pertaining to the radar model. At the

same time, for completeness of the investigation process, the 1st approach is applied

to the Potter SRCF Type 1, Andrew SRCF Type 1 that are scalar measurement update

based and Andrew SRCF Type 2 that is based on vector measurement update. Below

are the results obtained in the simulations using these 3 values of q for each of the 3

types of filter with the same initial conditions as in Table 3.1 under section 3.2:

Table 3.4: Results obtained for RRSQRT Simulation using 1st approach

 Filter Type Value of q Time/sec Final MSE/dB

1 Potter SRCF Type 1 1 5.322 0.0027

2 Andrew SRCF Type 1 1 5.531 0.0027

3 Andrew SRCF Type 2 1 6.397 0.0027

4 Potter SRCF Type 1 40 24.563 -0.0986

5 Andrew SRCF Type 1 40 23.762 -0.0986

6 Andrew SRCF Type 2 40 8.078 -0.0986

7 Potter SRCF Type 1 480 225.381 -1.9

8 Andrew SRCF Type 1 480 253.819 -1.9

 41

 Filter Type Value of q Time/sec Final MSE/dB

9 Andrew SRCF Type 2 480 25.035 -1.9

From the results obtained in Table 3.4 compared to that in Table 3.3 for full rank

SRCF, one can conclude that the dominant number of Eigen vectors and values of

is definitely greater than half of its matrix rank. This conclusion is based on

the bad results achieved for the final MSE even for test case 7, 8 and 9. Thus, using

the guesswork approach does not provide a good solution for determining the criteria

and thus the 2

(0/ 0)γK

nd approach is then explored.

3.4.2 USING SRCF EIGEN SPECTRUM FOR CRITERIA DETERMINATION

 In order to determine the behavior of the Eigen values of the SRCF as it steps

through each iteration, a simulation is carried out using an input image consisting of

7*7 image resolution cells along with 120 measurements. This will mean that the

size of the Error covariance matrix is 49 rows by 49 columns. The rationale

for choosing this image size is that there are already 49 Eigen values contained in

 and thus this amount of Eigen values is sufficient for my investigation. By

performing an Eigen decomposition at various stages of the whole iteration process,

the Eigen Spectrum of the Error covariance matrix is obtained with respect to the %

of total iteration process. The results obtained are then plotted out for analysis of the

variation of the dominant Eigen values as the iteration progresses.

(0/ 0)γK

(0/ 0)γK

 42

0 % of iteration process

12.5% of iteration process

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5
Eigen Spectrum of Error Covariance Matrix

Eigen Number

E
ig

en
 V

al
ue

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5
Eigen Spectrum of Error Covariance Matrix

Eigen Number

E
ig

en
 V

al
ue

25% of iteration process

50% of iteration process

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5
Eigen Spectrum of Error Covariance Matrix

Eigen Number

E
ig

en
 V

al
ue

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5
Eigen Spectrum of Error Covariance Matrix

Eigen Number

E
ig

en
 V

al
ue

Figure 3-6: Eigen Spectrum at 0% to 50% of Total iteration process

By looking at the Eigen Spectrum shown in Figure 3.6 at the beginning of the

iteration, we can see that all 49 Eigen values are the same initially and thus all the

corresponding Eigen vectors are dominant. However, as the iteration progresses

along, some of the Eigen values decrease in magnitude until they become

 43

insignificant. Thus, after some point in time, the dominant number of Eigen vectors

will decrease below the value of 49.

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5
Eigen Spectrum of Error Covariance Matrix

Eigen Number

E
ig

en
 V

al
ue

62.5% of iteration process (Zoom in)

0 5 10 15 20 25 30 35 40 45 50
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07
Eigen Spectrum of Error Covariance Matrix

Eigen Number

E
ig

en
 V

al
ue

62.5% of iteration process

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5
x 10-3 Eigen Spectrum of Error Covariance Matrix

Eigen Number

E
ig

en
 V

al
ue

100% of iteration process (Zoom in)

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10-3 Eigen Spectrum of Error Covariance Matrix

Eigen Number

E
ig

en
 V

al
ue

90% of iteration process (Zoom in)

Figure 3-7: Eigen Spectrum at 62.5% to 100% of Total iteration process

Next, by looking at Figure 3.7, we can see that once the iteration process reaches

62.5% of the data, there are hardly any dominant Eigen vectors left in the Error

covariance matrix and thus it can be approximated by a rank 1 matrix. By observing

the behavior of the Eigen Spectrum as the iteration progresses, it has put me in a good

 44

position to develop the criteria for determining the q number of dominant Eigen

vectors to be retained in each iteration step. Essentially, it should not be based on a

constant number q but should rely on some threshold levels. At the same time, as it is

observed that the Eigen Spectrum will not change significantly within 1 iteration step,

thus there is no need to perform an Eigen decomposition process and reduction-step

process at every iteration step. Instead, both processes can be performed based on

certain step-size changes in the MSE etc, i.e. applying another criterion for

performing these 2 processes. After much considerations, both the criterions for

performing the Eigen decomposition process and reduction-step process (criteria 1)

and for determining the value of q (criteria 2) are derived based on a systematic and

engineering approach to the problem. For criteria 1, it will be that the 2 processes are

applied at every 4 dB changes in the expected value of the MSE. For criteria 2, it will

be based on the number of Eigen values exceeding a threshold based on a certain % in

magnitude of the initial Eigen value. The details of both criterions are combined and

shown in Table 3.5 below:

Table 3.5: Details of Criterion for 2nd approach

% of initial Eigen

Value used for

Criteria 2

Step size in dB for MSE variation used for Criteria 1

 4 8 12 16 20

0.001

0.01

 45

% of initial Eigen

Value used for

Criteria 2

Step size in dB for MSE variation used for Criteria 1

 4 8 12 16 20

0.05

0.1

0.5

1.0

4.0

EXAMPLE CASE

From Table 3.5, it can be seen that the combination of the two criterions will result in

a total of 35 test scenarios. Thus, it is believed that these test scenarios will provide a

comprehensive picture of the performance of the RRSQRT in the SAR image

formation problem. Also, before proceeding to execute the test scenarios for the

RRSQRT, one point to note is that for criteria 2, at least one Eigen vector

corresponding to the largest Eigen value of the Square Root Error covariance matrix

should be retained at all times after applying the criteria to discard the less dominant

Eigen vectors. Otherwise, with an empty matrix, it will be impossible to

complete the remaining measurement-step process of the current iteration step as well

as the subsequent iteration steps.

(/ 1)l l −cS�

 46

3.5 PERFORMANCE OF REDUCED RANK SQUARE ROOT FILTER

 In the previous sections, all the equations pertaining to the RRSQRT as well

as the criterions needed for the implementation have been derived. Also, it has been

determined that there will be a total of 35 test scenarios to be performed on the

RRSQRT so as to evaluate its performance in terms of computational time and

accuracy of final results obtained. With all these preparation, a simulation is then

performed that covers all the test scenarios. In the simulation, 3 parameters are then

tracked for performance measure and they are the numerical MSE, the total

computational time as well as the number of remaining Eigen vectors at the end of the

iteration process for each test scenario. The results recorded are then shown in Table

3.6 to Table 3.8. At the same time, a 3-dimensional plot of the results shown in each

Table is also displayed in Figure 3.8 to 3.10.

Table 3.6: Results of MSE (dB) obtained for RRSQRT simulation

% of initial Eigen

Value used for

Criteria 2

Step size in dB for MSE variation used for Criteria 1

 4 8 12 16 20

0.001 -42.216 -42.216 -42.216 -42.216 -42.216

0.01 -39.906 -40.649 -40.818 -41.210 -41.144

0.05 -32.726 -35.422 -36.855 -38.222 -38.148

0.1 -27.014 -31.374 -34.708 -36.600 -36.742

0.5 -14.399 -21.629 -27.134 -31.176 -32.489

 47

% of initial Eigen

Value used for

Criteria 2

Step size in dB for MSE variation used for Criteria 1

 4 8 12 16 20

1.0 -11.039 -17.247 -25.312 -28.999 -30.699

4.0 -2.239 -13.008 -17.616 -26.687 -27.348

0
5

10
15

20 -30
-20

-10
0

10

-50

-40

-30

-20

-10

0

Eigen Threshold (dB)

Plot of MSE obtained for RRSQRT versus the 2 criterions

Step Size (dB)

M
S

E
 (d

B
)

-40

-35

-30

-25

-20

-15

-10

-5

Figure 3-8: MSE (dB) obtained for RRSQRT

Now, by examining Table 3.6, we can see that the final MSE obtained can vary

greatly from as bad a result of -2.239 dB to the full rank SRCF result of -42.216 dB

depending on the combination of the two criterions. When the threshold of criteria 2

 48

is set too low, i.e. 0.001% of the initial Eigen value, the RRSQRT does not

experience any reduction in rank and thus its results’ accuracy is equivalent to the full

rank SRCF. This phenomenon is verified by the results shown in Table 3.7. On the

other hand, if the threshold of criteria 2 is set as high as 4% of the initial Eigen value,

many of the dominant Eigen vectors are too hastily discarded such that much

information is lost when creating in the measurement-step process. This

phenomenon can again be verified by the small number of remaining dominant Eigen

vectors in Table 3.7 corresponding to the 4 % Threshold. As a result, the final MSE

obtained from using a high threshold of criteria 2 is bad. As for the different step-size

variation in the expected value of MSE used in criteria 1, it is observed from the

results that it is better to use a larger step-size for triggering the Eigen decomposition

and reduction-step processes.

(/)l lS�

Moreover, by applying the 2 criterions properly as seen in row 2 and row 3 of

Table 3.6, we can see that the RRSQRT can achieve good results with little error or

low MSE even when the rank is reduced substantially from 961 to as low as 257 as

seen in Table 3.7. This is indeed a surprising phenomenon. In fact, when the final

rank has been reduced to a value of 40 as seen in the combination of the 20 dB Step

size for criteria 1 and 0.05% Threshold for criteria 2, we can still achieve a

reasonably low MSE of –38.148 dB. Thus, this simulation has proved successfully

that Verlaan’s RRSQRT can also be used for the SAR image formation of our radar

model.

 49

Table 3.7: Remaining Eigen vectors for RRSQRT simulation

% of initial Eigen

Value used for

Criteria 2

Step size in dB for MSE variation used for Criteria 1

 4 8 12 16 20

0.001 961 961 961 961 961

0.01 230 245 285 313 257

0.05 26 35 54 89 40

0.1 9 22 29 49 16

0.5 1 5 12 21 3

1.0 1 2 4 11 2

4.0 1 1 3 1 1

0

5

10

15

20

-30
-20

-10
0

10

0

200

400

600

800

1000

Eigen Threshold (dB)

Plot of Remaining Eigen vectors for RRSQRT versus the 2 criterions

Step Size (dB)

of

 R
em

ai
ni

ng
 E

ig
en

 v
ec

to
rs

100

200

300

400

500

600

700

800

900

Figure 3-9: Remaining Eigen Vectors obtained for RRSQRT

 50

Table 3.8: Results of Computational Time (sec) for RRSQRT simulation

% of initial Eigen

Value used for

Criteria 2

Step size in dB for MSE variation used for Criteria 1

 4 8 12 16 20

0.001 289.275 168.691 120.879 95.145 96.552

0.01 78.994 64.331 60.305 58.405 57.667

0.05 48.978 46.594 47.052 49.748 49.500

0.1 45.493 44.583 45.882 48.595 48.125

0.5 41.804 41.951 44.801 47.562 47.236

1.0 41.984 42.084 44.162 46.843 47.000

4.0 41.201 41.586 43.992 46.604 46.853

0

5

10

15

20 -30

-20

-10

0

10

0

100

200

300

Eigen Threshold (dB)

Plot of Computational Time required for RRSQRT versus the 2 criterions

Step Size (dB)

To
ta

l C
om

pu
ta

tio
na

l t
im

e
(s

ec
)

50

100

150

200

250

Figure 3-10: Total Computational Time obtained for RRSQRT

 51

Next, by looking at Table 3.8, we can see that when there is no reduction of rank in

the RRSQRT as in row 1 of Table 3.8, the total computational time is very much

higher than when there is significant rank reduction as in row 3 to row 7 of Table 3.8.

This outcome is due to the huge computational time required by the Eigen

decomposition for a full rank matrix of 961 × 961 as compared to a smaller reduced

rank matrix. Furthermore, when the step-size for invoking the Eigen decomposition

is small, i.e. 4 dB or 8 dB, more Eigen decomposition calls will be invoked in those

test scenarios. In order to verify this observation, the simulation is rerun and the

computational time required for all the Eigen decomposition operations is then

subtracted from the total computational time as shown in Table 3.8. The new results

are then tabulated in Table 3.9 below:

Table 3.9: Computational Time (sec) minus Eigen decomposition for RRSQRT

% of initial Eigen

Value used for

Criteria 2

Step size in dB for MSE variation used for Criteria 1

 4 8 12 16 20

0.001 80.454 63.785 58.097 52.691 53.348

0.01 35.367 34.894 34.945 35.264 34.432

0.05 24.203 25.734 26.521 28.857 28.562

0.1 22.540 24.394 25.772 27.876 27.390

0.5 20.444 22.357 24.957 26.906 26.548

1.0 20.686 22.521 24.318 26.235 26.375

 52

% of initial Eigen

Value used for

Criteria 2

Step size in dB for MSE variation used for Criteria 1

 4 8 12 16 20

4.0 20.185 22.133 24.148 25.979 26.212

From Table 3.9, we can see that the computational time has reduced drastically when

the Eigen decomposition timing is not taken into account. Using the Kalman filter

bench mark timing of 37.206 sec as shown in Table 3.1, we can say that the criterions

for the highlighted portions in Table 3.9 and Table 3.6 are able to produce acceptably

good results with small MSE as well as low computational timing if the Eigen

decomposition timing is not taken into account. Thus, if we can find a much more

efficient method to perform the Eigen decomposition as compared to what is

currently provided in MATLAB under the function “eig”, then it may be possible for

the total computational timing in the highlighted portions of Table 3.8 to be less than

the Kalman filter timing while providing acceptable results.

 Next, having performed a thorough investigation of the performance of the

full rank SRCF and the RRSQRT in this Chapter, I will move on to another type of

filtering technique that is also found to be more efficient than the MMSE or Wiener

filter in its implementation while providing the same level of accuracy. At the same

time, the inherent features or structure of the new filter allows it to be easily

implemented in a reduced rank fashion that is essential for my research. This new

type of filter is known as the Multi-Stage Wiener Filter (MSWF) that is based on

 53

successive orthogonal projections of the original measurement data. In the next

Chapter, I will discuss the equations pertaining to the standard MSWF as well as the

results obtained from the MSWF on the SAR image formation problem for the non-

uniformly distributed aperture radar system.

 54

CHAPTER 4: THE MULTI-STAGE WIENER FILTER

4.1 BRIEF BACKGROUND OF THE MULTI-STAGE WIENER FILTER

 In the previous Chapter, we have examined one efficient implementation of

the MMSE or Wiener filter in the form of the Square Root Covariance filter (SRCF)

and the Reduced Rank Square Root filter (RRSQRT). In this Chapter, we will look

into another efficient implementation of the MMSE filter and this implementation is

known as the Multi-Stage Wiener Filter or MSWF or short. This filter was first

developed and presented in 1997 by J. Scott. Goldstein and Irving S. Reed under [4]

and elaborated in much more details under [5]. Prior to the presentation of [4], J.

Scott. Goldstein and Irving S. Reed had worked on issues related to reduced rank

adaptive filtering and had also presented a paper under [16] in which the cross-

correlation vectors of the measurement data correlation matrix R are used to reduce

the rank of the matrix R. This method is known as the cross-spectral method and it is

shown to be much more efficient than the well known principal component method

(PC) that uses the dominant Eigen vectors of R to perform rank reduction.

Subsequently, the multi-stage Wiener filter was introduced and it also makes use of

the cross-correlation vector of the desired signal in its implementation although this

filter is very different from the cross-spectral method.

Now, one big advantage of the newly developed MSWF is that the traditional

matrix inverse operation R-1 required by the MMSE or Wiener filter is not needed in

the MSWF implementation. Thus, this will translate to better computational

 55

performance. Also, due to its ease of implementation and low complexity as

compared to other Eigen decomposition-based methods of filtering like the PC

method, the MSWF has been greatly adopted by the communication community in

many applications such as in interference suppression in Direct Sequence Code

Division Multiple Access (DS-CDMA) communication systems as seen in [17] and

[18] etc. In recent years, there has also been interest in applying the MSWF in

various radar applications like the Space Time Adaptive Filtering (STAP) domain etc.

Thus, this filter is also chosen to be investigated for its performance in the SAR

image formation problem that is the focus of my thesis research. Next, after having

given a brief background of the multi-stage Wiener filter, I will provide the details

and equations of this filter in the following section.

4.2 THE GENERIC MULTI-STAGE WIENER FILTER

 The Multi-Stage Wiener Filter (MSWF) consists of a series of stage-by-stage

decomposition of the initial measurement data using orthogonal projections. In terms

of the rank of the filter, each stage of decomposition is equivalent to the increase of

the filter processing by an additional rank of one. Therefore, for a Wiener filter of

rank N, the MSWF will also achieve full rank processing when it has performed N

stages of decompositions. Thus, this will also mean that for the MSWF, reduced rank

processing can easily be obtained by simply truncating the stages of decomposition

before N stages are reached. Now, from the results presented in [18] and [19], it has

been shown that the MSWF is able to obtain the full rank performance of the Wiener

 56

filter in terms of accuracy by just performing a small number of stages of

decomposition that is much lesser than the value N. Thus, it allows the MSWF to

outperform the other Eigen-based reduced rank filters like the principal component or

cross-spectral method when the rank reduction is significant.

 Next, the multi-stage Wiener filter can also be viewed as a way of

decomposing the standard MMSE filter using a multi-resolution approach [20], in

which each stage of decomposition is based on the statistical importance of the

residual correlations from an innovation process. In this approach, each stage of

decomposition is determined using a matched filter type of criterion, in which the 1st

stage of decomposition will maximize the cross-correlation between the scalar desired

signal and the initial measurement data vector. The subsequent stage of

decomposition, recognizing that residual correlation between the desired signal and

the unwanted signals are still present after the 1st stage of decomposition, then

provides a matched filter criterion again after using the null space or orthogonal space

of the cross-correlation vector in the preceding stage to form the new transformed

measurement data vector. In this manner, a point will be reached in which all the

significant correlations between the desired signal and the unwanted signals will be

extracted and then finally removed from the output of the 1st stage of decomposition

such that the end result is equivalent to the MMSE or Wiener filter. To provide a

clearer picture of the above explanation, the structure of the MSWF for a scalar

desired signal is provided in the following figure so that it is easier to follow through

each stage of decomposition starting from the initial measurement data.

 57

h1

B1

B2

h2

w1

w3

w2

∑

∑

∑

d ε0

d1

d2

x0

x1

x2 = d3 =

ε1

ε2

0

+

-

+

-

+

-

ε 3

Figure 4-1: The structure of the Multi-Stage Wiener Filter for N=3

Note that in the above figure, the structure is for a MSWF with 3 stages of

decomposition (N=3). Also, in the above figure, x0 is equivalent to the initial

measurement data vector and d0 is the scalar desired signal that is zero mean, Wide

Sense Stationary (WSS) and is also a complex random number. As for the filters hi,

they are the normalized cross correlation vectors between xi and the scalars di and for

the filters BBi, they are the blocking matrices that eliminates the signal components in

the direction of hi such that BiB

1

hi = 0. Thus, in figure 4.1, the value d1 correspond to

the maximum correlation between the desired signal and the input measurement data

vector. The residual correlations that will need to be removed from d1 are then

obtained as d2, d3 etc and subsequently removed from d1 such that the final estimate

for the desired scalar signal d0 is given by the equation:

*
0 1d̂ w ε= (4.1)

 58

Notice that in the above figure 4.1, there appears to be a forward iteration and a

backward iteration step in the computation of the various parameters. In fact, in the

implementation of the multi-stage Wiener filter, there are 3 steps associated with it,

namely, the forward iteration step, the turn around step and the backward iteration

step. These steps are explained in great details in [5] and summarized again in [21]

with relevance to the radar model. As for the equations pertaining to each of the step,

they are shown below and will be used for implementation of the MSWF in the radar

model for the estimation of each scattering coefficient of the SAR image: γι

• Step 1: Forward Iteration for i = 1 to N-1

1 1 1 1

1 1

1

1

1

H

H
1

2 H

1

H

{ }

=

i i i i

i i

i i

i i

i i i

i x d x d

x d
i

i

i i i

d i x i

i i

i i i

x i x i

x d i x i

d

null

δ

δ

σ

− − − −

− −

−

−

−

−

−

=

=

=

=

=

=

=

r r
r

h

h x

h R h

B h

x B x

R B R B

r B R h

 (4.2)

• Step 2: Turn-around at i = N

This step is special in that it can be interpreted as either the termination step of the

forward iteration or as the 1st of the backward iteration step. The equations pertaining

to the “Turn-around” step are as follows:

 59

1 1 1 1

1 1

1

H

H
1

2 H

2

=

N N N N

N N

N N

N

N x d x d

x d
N

N

N N N

d N x N

N d

N
N

N

N N

d

w

d

δ

δ

σ

ξ σ

δ
ξ

ε

− − − −

− −

−

−

=

=

=

=

=

=

r r
r

h

h x

h R h

 (4.3)

• Step 3: Backward Iteration for i = N-1 to 1

In the backward iteration step, for index i beginning with i = N-1 and ending with i =

1 in decrement step size of 1, the equations are as follows:

2
12

1

*
1 1

| |

=

i

i
i d

i

i
i

i

i i i i

w

d w

δ
ξ σ

ξ
δ
ξ

ε ε

+

+

+ +

= −

= −
 (4.4)

Finally, the estimate of the desired signal is given by equation 4.1 and the error

variance or MSE of the estimate is given by the expression: 0̂d

0 0 0

0

2 2 2
ˆ

2 *
1 1 1

d d

d w w

εσ σ σ

σ ξ

= −

= − (4.5)

Also, notice the similarity between equation 4.5 and equation 2.49 of [10] that is for

the MMSE of the standard Wiener filter. At this point, there are still the issues of the

 60

forming of the blocking matrices BBi and the definition of the initial conditions before

the MSWF implementation can be carried out. The issue of forming the blocking

matrices will first be discussed below:

4.2.1 FORMING THE BLOCKING MATRIX B

Now, in the previous section, the blocking matrix BBi is defined to be the null

space of the normalized cross correlation vector hi such that BiB hi = 0. In [5], the

authors have proposed 3 algorithms of forming the blocking matrix BB

)

i. Basically the

first two algorithms consist of using either a Singular Value Decomposition (SVD) or

a QR decomposition to obtain a unitary blocking matrix and they are described in

[22]. The equations for the 2 algorithms are as follows:

• Algorithm 1: Using SVD decomposition

H

H

[] svd(

[(:,2 :)]N

=

=

i

i

U, S, V h

B V
 (4.6)

• Algorithm 2: Using QR decomposition

H

H

[] qr()

[(:,2 :)]N

=

=

i

i

Q, R h

B Q
 (4.7)

Note that if the dimension N of the cross correlation vector hi is huge; both these

algorithms will be very computationally expensive. Besides the 2 algorithms above,

the authors of [5] also propose a 3rd algorithm in Appendix A of the same paper that

is supposedly less complex than the first two algorithms but will generate a non-

unitary blocking matrix instead of a unitary blocking matrix. Although the 3rd

 61

algorithm is less computationally expensive than the first two algorithms, it still takes

some time to generate if the value of N is large. Also, another point to note is that for

the 3 algorithms mentioned above, the blocking matrix formed is rectangular and thus

the column space of the input measurement data vector will always be reduced by 1

whether the blocking matrix is applied to the data vector.

 As mentioned above, all 3 algorithms proposed above are not very efficient

when used for generating the blocking matrix BBi. On top of that, as the output

measurement vector xi from the blocking matrix BiB

i i

 is different in dimension from the

input measurement vector xi-1, thus this will result in additional hardware or software

complexity in the implementation to account for all these vectors of different lengths.

Thus, to overcome the problem, it was decided to use the orthogonal projection of hi

to form the square blocking matrix instead such that:

H= −iB I h h (4.8)

By looking at equation 4.8, we can see that it is now a very simple operation to form

the blocking matrix. At the same time, this will also improve the computation of xi

from xi-1 since the new way of computation is:

 (4.9)

1

H
1

1

[]

i i i

i i i

i i id

−

−

−

=

= −

= −

x B x

I h h x

x h

Interestingly, after verifying that this implementation is working properly, I also

discovered subsequently that the same idea was proposed by [23] citing the same

 62

benefits as above. Thus, this reconfirms the decision to use equation 4.8 to form the

blocking matrix.

4.2.2 DEFINING THE INITIAL CONDITIONS FOR MSWF

 In this section, the initial conditions for implementing the MSWF will be

defined [21]. From equation 4.2, we can see that it is required to define the initial

matrix and the cross correlation vector before the forward iteration step

can proceed. Now, the initial measurement data vector is equivalent to the

response vector r in my radar model. Therefore using equation 2.17, we can now

define the following:

0xR
0 0dxr

0x

0 0

0

H

2

2

d

d γ

γ

σ

σ

= +

=

=

=

x n

n n

R PR P K

K I

R K

I

 (4.10)

In equation 4.10 above, the Gaussian measurement noise covariance matrix is Kn and

 is the expected value of the square of the scattering coefficient of each

image resolution cell or scatterer that has a mean value of zero. Also, for the MSWF

implementation defined above, it is to be used for scalar signal estimation. Now,

since there are many scattering coefficients in the SAR image formation problem,

therefore, in order to estimate the value of the i

2 E[]H
i iγσ γ γ=

th scattering coefficient γi using the

MSWF, the value of is equal to:
0 0dxr

0 0 0d d=xr PR ie (4.11)

 63

in which ei is a vector whose elements are all zeros except the element i that has a

value of 1. As an example, if i = 5, then:

e5 = [0, 0, 0, 0, 1, 0, …..]T (4.12)

Thus, with the definition of equation 4.11, all the initial conditions for the MSWF

implementation have been defined and it is now possible to start the MSWF stages of

decomposition. In the next section, the performance of the MSWF of filter order

O(5×M2)used to estimate the value of one scattering coefficient will be evaluated with

that of the MMSE filter as well as with the Kalman filter.

4.3 PERFORMANCE OF MSWF FOR SCALAR ESTIMATION OF γi

 In this section, a simulation is carried out using the experimental conditions as

defined in Table 3.1 in Chapter 3 that uses a measurement size of 3060 to estimate a

total of 961 image resolution cells. Also, the value of image resolution cell #1 or γ1 is

chosen as the desired signal to be estimated by the MSWF. By varying the stages of

decomposition of the MSWF, the results obtained for the normalized value of the

Expected Error Variance
0

2
εσ and normalized value of the Computed Error Variance

of γ1 are then recorded and shown in Table 4.2 below. Note that the 2 parameters are

defined as follows with Nt being the total number of resolution cells:

0
0

2
2

ˆ ˆ()tN
ε

ε
σ

σ Η=
γ γ/

 (4.13)

ˆ ˆ(
Computed

ˆ)t
MSE

N

γ 1 γ 1 γ 1 γ 1Η

Η

() () () ()
=

−) (−

(γ γ/

)
 (4.14)

 64

Table 4.1: Results from MMSE and Kalman filter for image resolution cell #1

Filter Type Total Time /sec
0

2
εσ /dB Computed MSE /dB

Kalman 37.506 -40.475 -40.953

Wiener 220.711 -40.475 -40.953

Table 4.2: Results from MSWF for image resolution cell #1

Number of Stages Total Time /sec
0

2
εσ /dB Computed MSE /dB

1 40.782 -3.772 -4.389

2 43.613 6.840 -8.536

3 46.647 9.642 -7.023

4 49.713 -11.900 -17.022

5 52.746 -14.043 -32.492

6 55.749 -16.188 -16.110

7 58.753 -17.945 -24.852

8 61.802 -19.474 -22.048

9 64.914 -20.941 -17.414

10 67.839 -22.356 -19.327

20 98.187 -39.019 -36.650

25 113.110 -40.382 -40.513

30 128.404 -40.469 -40.865

35 143.064 -40.475 -40.947

40 158.797 -40.475 -40.964

 65

Firstly, by looking at the results of Table 4.1, it is not surprising to see that both the

Wiener filter and the Kalman filter producing the same results but with different

computational timing. Secondly, from the MSE results shown in Table 4.2, some

characteristics of the MSWF can be observed. As mentioned in the previous sections,

each additional stage of decomposition of the MSWF is equivalent to the increase of

the filter processing by an additional rank of one. Therefore, for a MSWF with

number of decomposition stages equal to 1, it will correspond to only processing the

filter with a reduced rank equal to 1. As such, the MSE results obtained are very

poor compared to the full rank processing results. However, as the stages of

decomposition increase, the performance of the MSWF also improves as seen by the

corresponding MSE results. Eventually, it can be seen that the MSWF has obtained

full rank MMSE filter result at a decomposition stage of about 40 which takes lesser

computational time than the MMSE filter. Therefore, at this point, it seems that the

MSWF is functioning properly in its estimation of the scattering coefficient γ1 and

using a small number of decomposition stages that is much less than the full rank of

961 for the matrix .
0xR

Also, note that in obtaining the total computational time of both the Wiener

filter and the MSWF, it includes the time required to form the initial condition matrix

which takes 40.610 sec. As for the Kalman filter, as it is only using a subset of

the measurements in each iteration step, thus the time needed for its initial condition

preparation is negligible. Therefore, if it is assumed that the initial conditions are

0xR

 66

already present before using the filters, the modified timing is as shown in Table 4.3

and Table 4.4:

Table 4.3: Results from MMSE and Kalman filter with modified timing

Filter Type Total Time /sec
0

2
εσ /dB Computed MSE /dB

Kalman 37.506 -40.475 -40.953

Wiener 180.101 -40.475 -40.953

Table 4.4: Results from MSWF with modified timing

Number of Stages Total Time /sec
0

2
εσ /dB Computed MSE /dB

1 0.172 -3.772 -4.389

2 3.003 6.840 -8.536

3 6.037 9.642 -7.023

4 9.103 -11.900 -17.022

5 12.136 -14.043 -32.492

10 27.229 -22.356 -19.327

20 57.577 -39.019 -36.650

25 72.500 -40.382 -40.513

30 87.794 -40.469 -40.865

35 102.454 -40.475 -40.947

40 118.187 -40.475 -40.964

 67

Looking at Table 4.3 and 4.4, we can observe that although the MSWF estimator is

able to outperform the MMSE or Wiener filter in terms of computational time, it is

still not as fast as the Kalman filter itself.

 Next, after I have looked at the performance of the MSWF on its estimation of

the scalar value of γ1, the next experiment will be to repeat the same experiment for

960 times corresponding to the remaining 960 targets in the SAR image to ensure that

the remaining targets will also converge at the decomposition stage of 40. Also, as

the MSWF discussed so far can only estimate one scalar signal at a time, I will

introduce the notation “scalar MSWF” at this point to distinguish it from the

subsequent implementation of MSWF that can estimate more than 1 signal at a time.

At the same time, to check the overall performance of the results of all the targets,

two evaluation methods will be carried out. The 1st evaluation method will be to use

the average expected error variance and the average computed error variance across

all targets as the performance parameters where these parameters are defined as:

0

0

2

2 1

ˆ ˆ()

t

i

i N

i
ε

ε

σ
σ

=

=
Η=

∑
γ γ

 (4.15)

ˆ ˆ(
Computed

ˆ)
MSE

Η

Η=
γ − γ) (γ − γ)

(γ γ
 (4.16)

Note that there are some differences between equations 4.15 to 4.16 for all targets and

equations 4.13 to 4.14 for a single target. As for the 2nd evaluation method,

essentially it is to obtain the error vector between the estimated values and the

actual values for the MMSE filter as well as the error vector for that of the

1ε γ̂

γ 2ε

 68

MSWF. A correlation analysis between these two error vectors is then performed

using the inner product rule as follows:

1 2ε εσ ∗
1 2 1 2= ε ε ε ε (4.17)

In equation 4.17, is the correlation measure between the two error vectors. If the

two error vectors are identical, then will have a value that will be equal to 1.

This will imply that the two vectors are perfectly correlated. However, if the two

error vectors are non-identical, then will be less than 1. Using these two

methods, the simulation is carried out for the 2

1 2ε εσ

1 2ε εσ

1 2ε εσ

nd experiment and the results are

computed and shown below:

Table 4.5: Performance of MMSE, Kalman and scalar MSWF using 1st method

Filter Type
0

2
εσ /dB Computed MSE /dB

Kalman -41.933 -42.216

Wiener -41.933 -42.216

MSWF -41.933 -42.216

From Table 4.5, we can see that the scalar MSWF is able to achieve the same

performance in terms of accuracy as the other two filters for all the 961 targets. To

further verify this observation, the 2nd method using correlation measure is carried out

and the results for the correlation measure turns out to be equal to 1 as well.

Thus, these two methods prove that the scalar MSWF is functioning properly for the

SAR image formation problem. At the same time, some plots showing the elements

1 2ε εσ

 69

of the two error vectors and are provided to illustrate the perfect correlation

between these two vectors.

1ε 2ε

100 200 300 400 500 600 700 800 900
0

0.005

0.01

0.015

0.02

0.025

Target Number

S
te

ad
y

S
ta

te
 E

rro
r M

ag
ni

tu
de

Plot of Steady State Error versus Target Number for Kalman filter and MSWF

Steady State Error of Kalman
Steady State Error of MSWF

Figure 4-2: The Steady State Error magnitude across all targets

In Figure 4.2, we can see that the final error obtained from each image resolution cell

or target has the same value from both the Kalman filter and the MSWF such that the

two error curves coincide exactly with each other at all points. However, as there are

too many targets in figure 4.2, certain subsets of the targets are re-plotted again so as

to have a clearer picture of the correlation relationship between the two error vectors,

i.e., the zoom-in version of Figure 4.2. These new plots are shown in figure 4.3 and

figure 4.4 on the next page.

 70

55 60 65 70 75 80 85 90 95 100
0

0.005

0.01

0.015

0.02

0.025

Target Number

S
te

ad
y

S
ta

te
 E

rro
r M

ag
ni

tu
de

Plot of Steady State Error versus Target Number for Kalman filter and MSWF

Steady State Error of Kalman
Steady State Error of MSWF

Figure 4-3: The Steady State Error magnitude from Targets 51 to 100

755 760 765 770 775 780 785 790 795 800
0

0.005

0.01

0.015

0.02

0.025

Target Number

S
te

ad
y

S
ta

te
 E

rro
r M

ag
ni

tu
de

Plot of Steady State Error versus Target Number for Kalman filter and MSWF

Steady State Error of Kalman
Steady State Error of MSWF

Figure 4-4: The Steady State Error magnitude from Targets 751 to 800

 71

Now, the results and plots obtained above from the two evaluation methods have

verified that the scalar MSWF is able to produce the final estimation results with

equally good accuracies as with the full rank MMSE and Kalman filter while using

less than full rank processing. However, to obtain the estimated scattering

coefficients for the whole image of 961 resolution cells, it takes a total of

118.187*961 seconds (118.187 = time needed for 40 stages of decomposition per

target) to complete the process if it is performed serially with one target at a time. On

the other hand, to confine the time needed to process all targets to be the same as

processing one target, (e.g., 118.187 seconds) it will require 961 computing machines

to perform the tasks in parallel. Thus, neither of these scenarios are feasible from an

implementation point of view. Therefore, to overcome the limitations posed by the

scalar MSWF that can only estimate one signal at a time, the next step will be to

search for a form of the MSWF that can estimate multiple signals or a vector of

signals at a time. By using the MSWF in such a manner, i.e. vector MSWF, we can

either reduce the total computational time for all targets from 118.187*961 seconds or

reduce the amount of parallel machines needed from 961 etc. In the next section, the

results of the search for the vector MSWF are discussed along with the details of

implementation for such type of MSWF.

γ̂

4.4 THE VECTOR MULTI-STAGE WIENER FILTER

 In order to use the MSWF to estimate multiple signals or using the term

“Multi-user Detection” or MUD in communication applications, researchers have

 72

been trying to satisfy this goal by using parallel processing with 1 output signal per

processor as can be seen in [24] and [25]. However, as mentioned in the previous

section, this approach will not be feasible if there are many signals to be detected or

estimated. Looking back, it is briefly mentioned in [20] that the MSWF can be used

for detecting multiple signals using a Multi-Stage Matrix Wiener Filter

implementation along with some implementation details. The term “Matrix” in [20]

refers to the facts that unlike scalar signal detection in which the weights of the

MSWF will form a vector, i.e. wmswf = [w1, w2, w3… wN], the weights of the MSWF

for multiple signal detection will form a matrix Wmswf instead. Therefore, the

notation “Multi-Stage Matrix Wiener Filter “ used by [20] and my notation “vector

MSWF” used in this thesis are referring to the same implementation. After further

research, another paper [26] is found that also provides additional information for the

vector MSWF implementation etc. Thus, using the information from the two papers,

the equations for the vector MSWF of filter order O(8×(Nt
3)+8×(Nt

2×M)+5×(M2×Nt))

are slightly modified from equation 4.2 to 4.4 and are shown as follows:

• Step 1: Forward Iteration for i = 1 to N-1

1 1 1 1

1 1

1

1 2H

1

H
1

H

()

{ }

i i i i

i i

i i

i x d x d

i x d i

i i i

i x i

i inull

− − − −

− −

−

−

−

=

=

=

=

=

d

R R

H R

d H x

R H R H

B H

δ

δ

 (4.18)

 73

1

1

1

H=
i i

i i i

i i i

x i x i

x i x

−

−

−=

=d

x B x

R B R B

R B R iH

Note that in equation 4.18, the cross correlation vector as well as its normalized

version h

0 0dxr

i in equation 4.2 have been transformed from vectors to matrices and

H

0 0x dR

i. At the same time, the normalizing value has also become a matrix and the

square root operation required to obtain is not the standard scalar square-root

function but the fast and accurate Cholesky decomposition operation instead. Also,

all scalar division operations have been replaced by matrix inverse operations. As for

the expected variance of one target, it has been replaced by the Covariance

Matrix of multiple targets.

iδ iδ

iδ

2
idσ

idR

• Step 2: Turn-around at i = N

1 1 1 1

1 1

1

1 2H

1

H
1

H

1

()

=

N N N N

N N

N N

N

N x d x d

N x d N

N N N

N x N

N

N N N

N N

− − − −

− −

−

−

−

−

=

=

=

=

=

=

d

d

R R

H R

d H x

R H R H

R

W

d

δ

δ

ξ

ξ δ

ε

 (4.19)

Note that in equation 4.19, the scalar weight wN has been replaced by the weight

matrix WN instead.

 74

• Step 3: Backward Iteration for i = N-1 to 1

H
1 1

1

H
1 1

=

i

i

i i i

i i

i i i i

+ + +

−

+ +

= −

= −

dR

W

d W

ξ δ ξ

ξ δ

ε ε

1iδ

ε

 (4.20)

Finally, the estimated values of all the scattering coefficients are given by the

following expression:

H
1ˆ = 1Wγ (4.21)

4.4.1 ADJUSTMENT OF DATA LENGTH DUE TO CHOLESKY FUNCTION

 In the equations for the vector MSWF implementation, it is mentioned that the

square root operation of a matrix is performed using the fast and accurate Cholesky

decomposition that will produce an upper triangular matrix that is the square root of

the input matrix, i.e. for a square matrix X, its square root U is obtained using:

H

= cholesky()

=X U U

U X
 (4.22)

Now, one requirement for performing Cholesky decomposition is that the input

matrix must be positive definite which means that none of its Eigen values are zero.

Otherwise, the Cholesky decomposition operation will fail completely.

 With this knowledge of the Cholesky operation, we will now examine its

usage in the vector MSWF implementation. As can be seen from equation 4.18 and

4.19, the Cholesky operation is used to compute the normalization matrix of the

 75

initial cross correlation matrix etc. Also, by referring to equation 4.11, we can

see that the initial cross correlation matrix is formed from the P matrix defined

in equation 2.16 that is equal to the combination of the normalized space-time

receiver measurements or response vectors. However, due to the features of the radar

model simulator that also accounts for targets that are at the near end or far end of the

radar receiver platforms, there are many zeros in the initial and end rows of the P

matrix. Unfortunately, these zeros will cause the initial Cholesky operation in the

forward iteration to fail as it will result in the matrix becoming positive semi-

definite instead. Thus, in order to implement the vector MSWF, the initial portion of

the P matrix and the response vector r is discarded in the computing process.

0 0x dR

0 0x dR

0 0x dR

4.4.2 MINIMUM DATA LENGTH RELATIONSHIP TO TARGET SIZE

 For the scalar MSWF implementation, there is no requirement on the

minimum length of the measurement data to be used when performing the stages of

decomposition. However, for vector MSWF implementation, if there are K targets or

image resolution cells to be estimated, then the length of the measurement data or

response vector r cannot be less than K. Otherwise, this will result in the product

 with a size of (K × K) having some Eigen values that are equal to zero

or becomes a positive semi-definite matrix. Subsequently, this will again result in the

failure of execution of the Cholesky operation at the 1

0 0 0 0

H(d dx xR R)

st step of the forward iteration.

 76

4.4.3 DIAGONAL LOADING OF THE COVARIANCE MATRIX
idR

 Besides truncating the length of the response vector r for the vector MSWF

implementation, there is another issue that have arise as a result of using the Cholesky

decomposition operation. By referring to equation 4.18 and 4.19, we can see that the

covariance matrix is computed at every forward iteration step. However, due to

finite computer precision, this may cause to change from a positive definite

matrix to a positive semi-definite matrix due to rounding errors. Once this change

occurs, the forward iteration will not be able to proceed with further stages of

decomposition as the Cholesky operation will fail at the 1

idR

idR

st step of the next stage of

decomposition. Therefore, in order to overcome this shortcoming of the vector

MSWF implementation, the solution is to apply diagonal loading to the covariance

matrix during its computation. In this manner, this will ensure that will not

become positive semi-definite as the iteration proceeds. As for the amount of

diagonal loading to be introduced to , after several trials, the value corresponding

to 0.1% of the measurement noise power used in the radar model. As a result of

the introduction of diagonal loading, the computation of and is changed to

the following expression:

idR
idR

idR

2
nσ

idR
NdR

1

2

H

= 0.001

i i

n

i x i

σ

−
= +d

DL I

R H R H DL (4.23)

Finally, after all these considerations are taken into account, the vector MSWF is then

successfully implemented and its performance is evaluated in the next section.

 77

4.5 PERFORMANCE OF MSWF FOR VECTOR ESTIMATION OF γ

In this section, a simulation is carried out using the experimental conditions as

defined in Table 3.1 in Chapter 3 but however the measurement size has been reduced

from 3060 to 2856 as is explained in section 4.4.1. Also, the complex scattering

coefficients are also taken from the KU image. As a start, the simulation will first

begin with estimating a target group containing only a single target and then followed

by various increments of target or image numbers in the target group such that it will

reach the total of 961 image resolution cells. At the same time, the value of image

resolution cell #1 or γ

γ

1 is chosen as the target whose performance is to be tracked

within the group throughout the process. By varying the stages of decomposition of

the vector MSWF, the results obtained for the normalized expected error variance
0

2
εσ

and the normalized computed error variance of γ1 along with the average expected

error variance and the average computed error variance across the few target group

sizes are then recorded and the results of these target group sizes are shown in the

following tables. Note that the average expected error variance and the average

computed error variance across each target group size are defined as follows where M

is the number of targets to be estimated:

0

0

2

2 1

1

ˆ ˆ()

i

i M

i

t

M

N

ε

ε

σ
σ

=

=
Η=
∑

γ γ/
 (4.24)

ˆ ˆ(() () () ()1
Computed

ˆ /)t

1 : M 1 : M 1 : M 1 : M
MSE

M N

Η

Η

⎛ ⎞⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

γ − γ) (γ − γ

(γ γ

)
 (4.25)

 78

As with the scalar MSWF implementation, there is a time incurred of about 35.239

seconds needed to form the initial condition matrix for both the Wiener filter and

the MSWF. In the following tables that are shown, this time is included in the total

time incurred:

0xR

Table 4.6: Results from MMSE and Kalman filter across all Target resolution cells

Filter

Type

Total Time

/sec

0

2
εσ /dB for

Target 1

Computed

MSE /dB

for Target 1

Average

0

2
εσ /dB

Average

Computed

MSE /dB

Wiener 186.078 -41.021 -42.253 -41.101 -41.037

Kalman 35.562 -41.021 -42.253 -41.101 -41.037

Table 4.7: Results from vector MSWF for Target group size M = 1

Number

of Stages

Total

Time /sec

0

2
εσ /dB for

Target 1

Computed

MSE /dB for

Target 1

Average

0

2
εσ /dB

Average

Computed

MSE /dB

1 35.378 -4.431 -5.8382 - -

2 37.856 -7.423 -20.512 - -

3 40.411 -9.995 -23.824 - -

4 43.268 -12.523 -23.037 - -

5 46.221 -14.922 -19.714 - -

10 58.667 -26.050 -25.405 - -

20 84.485 -40.044 -37.379 - -

30 109.627 -41.011 -42.124 - -

 79

Table 4.8: Results from vector MSWF for Target group size M = 10

Number

of Stages

Total

Time /sec

0

2
εσ /dB for

Target 1

Computed

MSE /dB for

Target 1

Average

0

2
εσ /dB

Average

Computed

MSE /dB

1 35.886 -4.578 -5.943 -4.426 -4.946

2 40.229 -7.922 -14.165 -7.889 -9.093

3 44.729 -10.693 -15.343 -10.924 -11.155

4 49.151 -13.528 -15.032 -13,762 -14.469

5 53.603 -16.159 -24.153 -16.451 -15.731

10 75.270 -29.947 -29.245 -29.113 -29.704

20 119.625 -40.972 -41.490 -40.697 -42.869

25 142.431 -41.016 -42.081 -40.759 -43.104

Table 4.9: Results from vector MSWF for Target group size M = 100

Number

of Stages

Total

Time /sec

0

2
εσ /dB for

Target 1

Computed

MSE /dB for

Target 1

Average

0

2
εσ /dB

Average

Computed

MSE /dB

1 39.134 -6.063 -4.508 -5.7795 -5.505

2 57.471 -10.524 -23.939 -10.364 -10.951

3 75.965 -14.615 -16.093 -14.598 -14.887

4 94.333 -18.843 -25.032 -18.897 -17.597

5 112.979 -23.604 -33.228 -23.561 -23.299

10 203.642 -41.017 -42.253 -40.939 -41.171

 80

Table 4.10: Results from vector MSWF for Target group size M = 961

Number

of Stages

Total

Time /sec

0

2
εσ /dB for

Target 1

Computed

MSE /dB for

Target 1

Average

0

2
εσ /dB

Average

Computed

MSE /dB

1 112.572 -41.016 -42.253 -41.097 -41.037

From the results shown in the tables above, we can observe two trends. Firstly, we

can see that as the number of targets within the group increases, it will lead to faster

convergence of the targets using the vector MSWF in terms of stages of

decomposition. Secondly, as the time needed for each stage of decomposition will

take a longer time with an increase in the target group size, thus there is an overall

increase in the computational time needed for convergence when the target size

increases. However, when all the targets are used together in the decomposition as

shown in Table 4.10, the trends reverse as all the targets achieved their steady state

estimated values using just 1 stage of decomposition and in a shorter period of time.

Also, from Table 4.10, we can see that the results obtained from the vector MSWF

when using all targets together are the same as that of the Kalman or Wiener filter

shown in Table 4.6. Thus, we can conclude that the vector MSWF is functioning

properly in the estimation of the scattering coefficients . γ

 At this point in time, after acquiring the capability of the MSWF to perform

vector estimations of signals, the next important task will be to determine the choice

of target group size that will allow all the targets in to reach their steady state γ

 81

estimated values in the shortest possible time given the available computing

resources. Unlike Kalman or MMSE filter where it is not possible to divide the

overall processing across various machines, it is now possible for the targets to be

divided into groups and each group interdependently processed by a machine when

using the MSWF. If enough machines are available such that all target groups can be

processed simultaneously, this type of implementation will be known as the “Parallel

MSWF” implementation. On the other hand, if there is only one machine available, it

is still possible to perform the MSWF decomposition on each group in a serial

manner with one group at a time. This type of implementation will be known as the

“Serial MSWF” implementation. To order to make the choice between the 2 types of

MSWF implementation, simulations are carried out on various target group sizes

starting from the value of 1 and extending to the full target size of 961. The results

that are obtained will be discussed in the next section.

4.6 PARALLEL/SERIAL IMPLEMENTATION OF VECTOR MSWF

 As mentioned in the previous section, the availability of vector MSWF

capability allows for 2 types of implementation when processing all the targets or

image resolution cells. To visualize the difference between these 2 types of vector

MSWF implementation with that of the Kalman filter, some diagrams showing the

structures of the Kalman filter, the parallel and serial implementation of the MSWF

are provided. Note that in the following diagrams, and as are

defined in equation 2.27 in Chapter 2.

0ˆ 0=γ 2
0 γσ=Kγ I

 82

Measurement
data subset 1

Measurement
data subset 2

Measurement
data subset 3

Initial Conditions
0 0ˆ ,Kγγ

Simultaneous Processing of All Targets

Initial Conditions
11 11ˆ ,Kγγ

Simultaneous Processing of All Targets

Initial Conditions
22 22ˆ ,Kγγ

Simultaneous Processing of All Targets

Figure 4-5: Kalman Filter Implementation

Full set of
Measurement
Data used for

MSWF
processing

Initial Conditions for all Target groups
0 0ˆ ,Kγγ

Start of
MSWF

processing
Of

Target
Group

#1

Start of
MSWF

processing
Of

Target
Group

#2

Start of
MSWF

processing
Of

Target
Group

#3

Start of
MSWF

processing
Of

Target
Group

#J

…..

Final ˆ,Kγγ

Figure 4-6: Parallel Implementation of vector MSWF

 83

Full set of
Measurement
Data used for

MSWF
processing

Initial Conditions for all Target groups
0 0ˆ ,Kγγ

Start of
MSWF

processing
Of

Target
Group

#1

Start of
MSWF

processing
Of

Target
Group

#2 after
processing
Group #1

Start of
MSWF

processing
Of

Target
Group

#3 after
processing
Group #2

Start of
MSWF

processing
Of

Target
Group
#J after

processing
Group #J-1

…..

Final ˆ,Kγγ

Figure 4-7: Serial Implementation of vector MSWF

From the above figures 4.5 to 4.7, we can notice the 2 basic differences between the

Kalman filter and the vector MSWF. For Kalman filter, the full measurement data is

divided into subsets for processing in each iteration step whereas in the vector

MSWF, all measurements are used simultaneously. Also, in Kalman filter, all the

targets are processed in each iteration step whereas in vector MSWF, the targets can

be divided into different groups and processing is then performed independently on

each group itself. Now, after having visualized the structures of the parallel and serial

vector MSWF implementations, the results in terms of average expected error

variance as defined in equation 4.24 and the total computation time needed with

 84

respect to target group sizes and stages of decomposition are then obtained and

discussed in the following sections.

4.6.1 AVERAGE
0

2
εσ VERSUS GROUP SIZE AND NUMBER OF STAGES

 As mentioned in section 4.5, there is a need to decide on the size of the target

groups to be used in the vector MSWF implementations. As such, one of the areas to

be investigated is the relationship between the average
0

2
εσ of all the targets versus the

target group sizes and the stages of decomposition that are performed. Some plots of

the relationship obtained are as shown below:

0.1

1.0

10.0

100.0

0
5

10
15

20
25

-50

-40

-30

-20

-10

0

Tgt Group Size in % (logscale)

Average Expected MSE obtained for MSWF

Stages of Decomposition

M
S

E
 (d

B
)

-40

-35

-30

-25

-20

-15

-10

-5

Figure 4-8: 3-D plot of Average MSE versus Group Size and Decomposition Stages

 85

Tgt Group Size in % (logscale)

S
ta

ge
s

of
 D

ec
om

po
si

tio
n

Average Expected MSE (dB) obtained for MSWF

0.1 1.0 10.0 100.0

0

5

10

15

20

25
-40

-35

-30

-25

-20

-15

-10

-5

Figure 4-9: 2-D view of Average MSE for vector MSWF implementation

From figure 4.8, it can be seen again that as the size of the target group increases, it

will require fewer stages of decomposition for the estimated values to obtain their

steady state conditions. Furthermore, as the size of the target group approaches to

100% of the available targets, there is a sharp decrease in the number of

decomposition stages required as seen by the steep slope in the figure 4.8. At the

same time, we can also observed that there are many combinations in which steady

state conditions can be reached as seen by the flat plane in the same figure itself.

Finally, by examining figure 4.9, we can see again that when all the targets are used

simultaneously in the decomposition, only 1 stage is required for convergence or

steady state condition to be achieved as seen in the top right corner of figure 4.9.

 86

4.6.2 TIME (PARALEL) VERSUS GROUP SIZE AND NUMBER OF STAGES

0.1
1.0

10.0
100.0

0
10

20

10

100

1000

10000

100000

Tgt Group Size in % (logscale)

Time (Parallel) in sec required for MSWF

Stages of Decomposition

Ti
m

e
(P

ar
al

le
l)

in
 s

ec
 (l

og
sc

al
e)

40

100

398

1000

3980

Figure 4-10: 3-D plot of Time for Parallel MSWF Implementation

Tgt Group Size in % (logscale)

S
ta

ge
s

of
 D

ec
om

po
si

tio
n

Time (Parallel) in sec required for MSWF

0.1 1.0 10.0 100.0

0

5

10

15

20

25 40

100

398

1000

3980

Figure 4-11: 2-D view of Time for Parallel MSWF Implementation

 87

From figure 4.10 and figure 4.11, we are able to observe the expected trend that for

parallel MSWF implementation, the computational time will increase exponentially

when either the target group size or stages of decomposition or both increase in their

values. At the same time, it is noted that the time difference between the smallest

computational time and the largest computational time is of 2 orders of magnitude in

difference.

4.6.3 TIME (SERIAL) VERSUS GROUP SIZE AND NUMBER OF STAGES

0.1

1.0

10.0

100.0

0
5

10
15

20
25
10

100

1000

10000

100000

Tgt Group Size in % (logscale)

Time (Serial) required for MSWF

Stages of Decomposition

Ti
m

e
(S

er
ia

l)
in

 s
ec

 (l
og

sc
al

e)

100

316

1000

3162

10000

31623

Figure 4-12: 3-D plot of Time for Serial MSWF Implementation

From figure 4.12, we can see that for serial MSWF implementation, as the target

group size increases, the computational time required decreases as opposed to that of

parallel MSWF implementation. However, as the target group size reaches 100%, the

slope stops decreasing but climbs up instead. The main reason is because as there are

 88

more targets within the group, it will dramatically increase the time required to

perform the non linear matrix inverse operation needed to obtain the normalized cross

correlation matrix as shown in equation 4.18 and 4.19. The only exception seems to

be at one location that is when the combination of all targets and 1 stage of

decomposition is chosen as seen in the top right corner of figure 4.13.

Tgt Group Size in % (logscale)

S
ta

ge
s

of
 D

ec
om

po
si

tio
n

Time (Serial) in sec required for MSWF

0.1 1.0 10.0 100.0

0

5

10

15

20

25
100

316

1000

3162

10000

31623

Figure 4-13: 2-D view of Time for Serial MSWF Implementation

4.6.4 CHOICE IN PARALLEL/SERIAL IMPLEMENTATION BASED ON MSE

After analyzing all the information provided in the previous 3 sections, the

important decisions to make are to choose between parallel or serial MSWF

implementation as well as the size of the target group itself. In order to make a good

judgment between the various choices, I will place all the 2-D plots together so as to

allow for better visualizations of the overall picture.

 89

Tgt Group Size in % (logscale)

S
ta

ge
s

of
 D

ec
om

po
si

tio
n

Average Expected MSE (dB) obtained for MSWF

0.1 1.0 10.0 100.0

0

5

10

15

20

25
-40

-35

-30

-25

-20

-15

-10

-5

Tgt Group Size in % (logscale)

S
ta

ge
s

of
 D

ec
om

po
si

tio
n

Time (Parallel) in sec required for MSWF

0.1 1.0 10.0 100.0

0

5

10

15

20

25 40

100

398

1000

3980

Tgt Group Size in % (logscale)

S
ta

ge
s

of
 D

ec
om

po
si

tio
n

Time (Serial) in sec required for MSWF

0.1 1.0 10.0 100.0

0

5

10

15

20

25
100

316

1000

3162

10000

31623

Figure 4-14: Relationship between Average MSE and Computation Time

By looking at figure 4.14, we can observe that in the region where there is

convergence in the average expected MSE, it is generally better to use the parallel

implementation approach as the computational time required is generally shorter.

However, if there is a real constraint in the computing resources, using serial

implementation will only increase the computation time by less than an order of

magnitude in most cases which is acceptable. Also, for both parallel and serial

implementations, there seems to be a common optimal combination at which

convergence can occur rapidly. This combination is the choice of using all targets

 90

and using just 1 stage of the decomposition. However, it is also believed that as the

number of targets increase dramatically from 961 to many thousands, this optimal

condition may not hold true as ultimately, the matrix inverse operation required for

computing the cross correlation matrix will become the dominant factor.

 At this point, I have successfully completed the derivation as well as provided

the implementation aspects and results of using the vector MSWF for solving the

SAR image formation problem of a Non-Uniformly Distributed Multiple Aperture

Radar system. But as the computational timing needed for convergence of the

estimated values is rather high (112.572 seconds versus 35.262 seconds) as compared

to the Kalman filter, one may wonder whether the Kalman filter still outperforms the

MSWF when both the measurement data and target size increases. At the same time,

it is also curious to know whether the MSWF will still hold its edge over the MMSE

filter (112.572 seconds versus 186.078 seconds) in such a situation. In order to

answer this question, a simulation is performed on the 3 types of filter again but using

a much larger data set. The results of this simulation are shown in the next section.

4.7 RUNNING LARGER DATASET FOR PARALLEL MSWF

In this section, a simulation is performed using the MMSE filter, the Kalman

filter as well as the parallel vector MSWF on a data set that is about 4 times as large

when compared to the simulations that are run previously. As the computing

resources needed for this simulation is beyond that of a standard PC computer, it is

therefore executed in the freestyle server machine in the premise. Note that as the

 91

freestyle server is not a dedicated machine for performing this simulation but

accessed by many users, thus many simulation runs have to be performed for each

scenario before the average results are obtained. In Table 4.11 below, the parameters

that are used for the simulation are as shown:

Table 4.11: Parameter Values used for Large Data Set Simulation

S/N Description of Parameters Values chosen

1 Nx 63

2 Ny 63

3 Full Filter Rank size (= Nx × Ny) 3969

4 Total number of transmitters 1

5 Total number of receivers 12

6 Total number of samples 11460

7 SNR (Signal to Noise Ratio) 40 dB

Using the parameters shown in the above Table 4.11, the simulation is performed on

all 3 filters with an measurement group size of 191 measurements per iteration step

being used for the Kalman filter. This value of 191 is only determined after many

runs are performed on the Kalman filter to ensure that the measurement size of 191

per iteration step will provide an optimal computational time using the Kalman filter.

As for the MSWF, it is carried out by grouping all the targets in a single group and

using 1 stage of decomposition to obtain the final results. Next, the results obtained

for the simulation are then recorded and shown in Table 4.12 on the next page.

 92

Table 4.12: Large Data Set Results from MMSE, Kalman filter and MSWF

Filter Type Total Time /sec Average

0

2
εσ /dB

Average Computed

MSE /dB

Wiener 9349.3 -39.483 -39.439

Kalman 1192.1 -39.483 -39.439

MSWF 3432.5 -39.479 -39.439

From the results shown in Table 4.12, we can conclude that the MSWF will generally

not be more computational efficient as compared to the Kalman filter. However, the

MSWF edge over the MMSE or Wiener filter will improve tremendously when the

measurement data size and target size increase significantly.

Finally, the next question that comes to mind will be to determine whether the

vector MSWF timing decreases by using some innovative or pre-processing

approaches in its implementation. This question will be answered in the next Chapter

on using innovative implementation of the MSWF.

 93

CHAPTER 5: INNOVATIVE MSWF IMPLEMENTATIONS

5.1 USING MODIFIED APPROACH TO INITIALIZATION OF DATA

 In the previous Chapter, I have discussed both the scalar and vector

implementation of the Multi-Stage Wiener filter (MSWF) along with using either

parallel or serial computing architecture for the vector MSWF implementation.

Although the MSWF functions properly using each of this combination, there lies a

question on whether its performance improves in terms of the computational time

required. In order to answer this question, one can firstly re-examine the structure of

the efficient Kalman filter as shown in figure 4.5 and reproduced again in figure 5.1

below to forge some idea on speeding the processing of the MSWF.

Measurement
data subset 1

Measurement
data subset 2

Initial Conditions
0 0ˆ ,Kγγ

Simultaneous Processing of All Targets

Initial Conditions
11 11ˆ ,Kγγ

Simultaneous Processing of All Targets

And so forth

Figure 5-1: A re-look at the structure of Kalman Filter

 94

By examining figure 5.1, we can notice that the initial conditions used for processing

the next batch of measurement data input to the Kalman filter are not the same as the

initial conditions used at the processing of the previous batch of measurement data.

Instead, the new initial conditions are the output of all the targets from the

Kalman filter processing of the 1

11 11ˆ , Kγγ

st batch or subset of measurement data. By

repeatedly refining the initial conditions that provide a closer picture to the actual

values of the states to be estimated, the Kalman filter is thus able to achieve

convergence once enough measurements are processed. Essentially, the Kalman

filter’s approach can be summarized as using piecewise measurement data processing

along with refinement of initial conditions using output from previous processing.

Looking at this approach, one can draw some analogy between the Kalman

filter structure and the serial implementation of the MSWF that is shown in figure 4.7

in Chapter 4. For instance, if the initial conditions for processing the 2nd group of

targets in the serial MSWF implementation are also refined using the output from the

1st group of targets, then the division is in the target data that is analogous to the

division in the measurement data using the Kalman filter. However, unlike the

Kalman filter where the vector consists of the estimates of all targets from the

previous batch of data, the vector used in the 2

11γ̂

1γ̂
nd target group for the serial MSWF

processing consists of a mixture of estimates from the 1st target group and the rest

from the original initial condition . Similarly, the matrix used in the

initialization of the 2

0γ̂ 1Kγ

nd target group for the serial MSWF processing is not a fully

filled matrix but rather a mixture of diagonal and block diagonal elements. This

 95

analogy can be more easily visualized in the modified serial MSWF implementation

as shown in figure 5.2 below:

Full set of
Measurement
Data used for

MSWF
processing

Initial

Conditions
for Group #1
0 0ˆ ,Kγγ

Start of
MSWF

processing
for

Target
Group

#1

Start of
MSWF

processing
for

Target
Group

#2 after
processing
Group #1

Start of
MSWF

processing
for

Target
Group

#3 after
processing
Group #2

Start of
MSWF

processing
for

Target
Group
#J after

processing
Group #J-

1

…..

Final ˆ,Kγγ

Initial

Conditions
for Group #2
1 1ˆ ,Kγγ

Initial

Conditions
for Group #J
j 1 j 1ˆ ,− Kγ −γ

Initial

Conditions
for Group #3
2 2ˆ ,Kγγ

Figure 5-2: Modified Serial Implementation analogous to Kalman filter

Using this new approach, a simulation is performed on the modified serial MSWF

implementation approach using 3 different target group sizes of 20, 100 and 480 so as

to analyze the trend of the end results obtained from the MSWF using this approach.

The results are shown in figure 5.3 in the following page.

 96

0 2 4 6 8 10 12 14 16 18 20
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Stages of Decomposition for MSWF

A
ve

ra
ge

 E
xp

ec
te

d
M

S
E

 (d
B

)

Average Expected MSE of Target versus Stages of Decomposition

Avg Expected MSE of Group 1
Avg Expected MSE of Group 20
Avg Expected MSE of Group 30
Avg Expected MSE of Group 40
Avg Expected MSE of Group 48

Total # of groups = 48
Group size = 20

1 2 3 4 5 6 7 8 9 10
-45

-40

-35

-30

-25

-20

-15

-10

-5

Stages of Decomposition for MSWF

A
ve

ra
ge

 E
xp

ec
te

d
M

S
E

 (d
B

)

Average Expected MSE of Target versus Stages of Decomposition

Avg Expected MSE of Group 1
Avg Expected MSE of Group 3
Avg Expected MSE of Group 5
Avg Expected MSE of Group 8
Avg Expected MSE of Group 9

Total # of groups = 10
Group size = 100

1 2 3
-45

-40

-35

-30

-25

-20

-15

-10

-5

Stages of Decomposition for MSWF

A
ve

ra
ge

 E
xp

ec
te

d
M

S
E

 (d
B

)
Average Expected MSE of Target versus Stages of Decomposition

Avg Expected MSE of Group 1
Avg Expected MSE of Group 2

Total # of groups = 2
Group size = 480

Figure 5-3: Results using Modified Serial MSWF Implementation

In figure 5.3 above, the rate of convergence of each target group with respect to

stages of decomposition is plotted for various target group sizes of 20, 100 or 480

targets per group. To start, let’s examine the topmost plot in which there are 20

targets per target group. Comparing the rate of convergence between the 1st target

group and the 20th target group, we can see that the 20th target group has a faster

 97

convergence rate as it only needs 12 stages of decomposition to reach its steady state

values whereas the 1st target group needs at least 18 stages of decomposition to

achieve steady state conditions. If we are to look at the convergence rate of the last

target group or the 48th target group in the list, we will see that it has achieved its

steady state condition in just 6 stages of decomposition. Next, if we are to continue

examining the bottom 2 plots in which the target group size are namely 100 and 480,

we can notice the similar trends in these plots as well. This improvement in the

convergence rate is most prominent in the case where the target group size is 480, in

which the 2nd target group is able to achieve convergence at just the 1st stage of

decomposition whereas the 1st target group needs 3 stages to achieve convergence

condition.

 Next, after discovering that the rate of convergence for the target groups will

improve when the modified serial MSWF implementation, the question will be to

determine how this improvement can be linked to the computational time needed for

processing all the targets. Looking at the 3 plots in figure 5.3 again, we can

hypothesize that on average, the number of stages of decomposition required for each

target group has been reduced by about 40% as compared to the situation when all

target groups are initialized with the same initial conditions. For example, by looking

at the plot where the target group size is 100, we can conclude that the average

number of stages required for convergence is about 6 stages versus that of 10 stages

of decomposition if the initial conditions are identical across all target groups. This

should translate in layman terms to roughly about 40% improvement in the

 98

computational time needed. To support this hypothesis, the total computational time

taken for all target groups to achieve convergence is measured for the original serial

MSWF implementation as well as that of the modified serial MSWF implementation.

The results are recorded and shown in Table 5.1 below:

Table 5.1: Timing results from 2 types of Serial MSWF Implementation

Filter Type Total Time /sec

Serial MSWF 1758.0

Modified Serial MSWF 1278.3

Looking at the 2 timing results obtained, we can see that the modified serial MSWF

implementation has indeed improve the performance by a factor of about 28%. The

main reason that the improvement is not as good as the 40% predicted by the earlier

hypothesis is because unlike the standard serial MSWF implementation where the

initial condition matrix (refer to equation 4.10) is prepared just once for all target

groups, there is now a need to re-compute this for each target group since the

matrix used to compute is now different for different target groups. As a

result, this new requirement becomes an overhead to the computational cost and

reduces the overall time savings to 28% instead of 40% as predicted in the

hypothesis. Nevertheless, achieving a saving of 28% in the total computational time

is very significant and thus the modified serial MSWF implementation should be

preferred in all situations in which serial implementation is chosen over parallel

implementation.

0xR

0xR

Kγ 0xR

 99

 Next, after having successfully introduced some improvement to the serial

MSWF implementation, the subsequent step will be to look at alternative approaches

to the parallel MSWF implementation approach that may allow its performance in

terms of computational time to be improved. The details will be discussed in the next

section.

5.2 USING MODIFIED TARGET GROUPING APPROACH

 Now, in all the previous simulations and results obtained for the MSWF, the

targets are grouped based on their spatial proximity in the regular target grid area.

For example, target 2 is just located in between target 1 and target 3 in the whole

target area itself. Although there is nothing wrong with this form of grouping

scheme, the question arises as to whether another form of grouping scheme will make

any difference to the performance of the MSWF. To answer this question, we must

examine the inherent mechanism of the MSWF itself. Now, from Chapter 4, we

understand that the basic feature of the MSWF is to work on removing the residual

correlations between targets (like a whitening process) such that each target’s final

output will be free of correlation effects from other targets. Thus, using some insight

or logical deduction, one would hypothesize that the target of interest will be able to

achieve convergence at a faster rate if targets that are most correlated to it are placed

in the same target group as it is such that the effects of their correlation are quickly

removed from the target’s output. Using the same line of thinking, one can also

hypothesize that the target of interest will achieve convergence at a slower rate if

 100

targets that are least correlated to it are grouped together with it. Therefore, to test

these two hypotheses, two grouping schemes are devised so as to allow targets to be

grouped together based on their least or highest correlation to at least 1 target of

interest per group. For ease of tracking, I will call the 1st grouping scheme “scheme

A” and the 2nd grouping scheme “scheme B”. In the following sections, I will discuss

on the details of each grouping scheme as well as the simulation results obtained after

using these 2 schemes on the parallel MSWF implementation.

5.2.1 SCHEME A – GROUP TARGETS BASED ON LEAST CORRELATION

 In this scheme itself, a computation is first performed on the P matrix so as to

obtain the cross correlation magnitude between targets. The computation is as

follows:

H
1

2 1

=

=

P P

P P

P
 (5.1)

In equation 5.1, P2 will obtain the magnitude of the auto correlation and cross

correlation magnitudes of all the targets in each of its element. Also, the size of

matrix P2 will be equal to Nt * Nt where Nt is equal to the total number of targets.

Next, within each column of P2, a sorting operation is performed on the elements in

the column such that the smallest value will be at the top of the column and the

largest value (largest value will be equal to the auto correlation magnitude) will be at

the last element of the column, i.e. in ascending order. This sorting operation is then

 101

performed on all the columns inside P2. Once this is done, the next step will be to

start the grouping of the targets.

In the grouping operation, the required size of the target group K is first

determined, for example 20, 40 or 100 targets per group. Secondly, target 1 of the

original target numbering is chosen to be also the 1st target of the new grouping

scheme. Now, target 1 will be located at the last element of column 1 in P2 after

sorting since column 1 contains both the auto correlation magnitude of

target 1 and the cross correlation magnitudes of other targets to target 1

and is the largest magnitude in that column. The grouping scheme begins

by taking the K-1 targets starting from the 1

*
1 1E{ }ρ ρ

*
1 , 1E{ }j j≠ρ ρ

*
1 1E{ }ρ ρ

st element in column 1 that are least

correlated to target 1. These K targets will then form the new target group #1 with

target numbering from 1 to K. Next, the focus shift to column 2 and the original

target 2 in the 2nd column is checked to ensure that it has not yet been included as one

of the K-1 targets in the new target group #1. If so, then the focus will shift to

column 3 of the P2 instead. If not, then target 2 will become the 1st target of the 2nd

target group and K-1 targets starting from the 1st element in column 2 will be added to

target 2 to form the new target group #2. Note that the K-1 targets are chosen such

that they are distinct from those targets already included in the previous new target

grouping. Also, the original target 2 will become the (K+1)th target in the new target

numbering process. This grouping operation is then performed repeatedly until

finally all Nt targets have been grouped into the new target groupings. Finally, using

 102

the new target numbers, the columns of the P matrix are also rearranged based on the

new target number ordering.

 To test the 2nd hypothesis that is mentioned in section 5.2, the newly grouped

targets then undergo the parallel MSWF implementation and the expected MSE of the

1st target in each new target group is then compared with its original expected MSE

using the old grouping scheme for each stage of decomposition. A diagram showing

the modified approach to the parallel MSWF implementation is as shown in figure 5.4

below:

Full set of
Measurement
Data used for

MSWF
processing

Initial Conditions for all Target groups
0 0ˆ ,Kγγ

Start of
MSWF

processing
for

Target
Group

#1

Start of
MSWF

processing
for

Target
Group

#2

Start of
MSWF

processing
for

Target
Group

#3

Start of
MSWF

processing
for

Target
Group

#J

…..

Final ˆ,Kγγ

Pre-Processing Task
Using Grouping Scheme A to rearrange the targets

and the columns of the P matrix

Figure 5-4: Modified Parallel Implementation of MSWF

 103

The simulation again uses 3 different target group sizes of 20, 100 and 480 as in

section 5.1 and the results obtained are shown in figure 5.5 below:

0 5 10 15 20 25
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Stages of Decomposition for MSWF

Ta
rg

et
 E

xp
ec

te
d

M
S

E
 (d

B
)

Expected MSE of Target versus Stages of Decomposition

Original Expected MSE of Grp 1 Tgt 1
New Expected MSE of Grp 1 Tgt 1
Original Expected MSE of Grp 48 Tgt 1
New Expected MSE of Grp 48 Tgt 1

Total # of groups = 48
Group size = 20

1 2 3 4 5 6 7 8 9 10
-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Stages of Decomposition for MSWF

Ta
rg

et
 E

xp
ec

te
d

M
S

E
 (d

B
)

Expected MSE of Target versus Stages of Decomposition

Original Expected MSE of Grp 1 Tgt 1
New Expected MSE of Grp 1 Tgt 1
Original Expected MSE of Grp 9 Tgt 1
New Expected MSE of Grp 9 Tgt 1

Total # of groups = 10
Group size = 100

1 2 3

-45

-40

-35

-30

-25

-20

-15

-10

-5

0

Stages of Decomposition for MSWF

Ta
rg

et
 E

xp
ec

te
d

M
S

E
 (d

B
)

Expected MSE of Target versus Stages of Decomposition

Original Expected MSE of Grp 1 Tgt 1
New Expected MSE of Grp 1 Tgt 1
Original Expected MSE of Grp 2 Tgt 1
New Expected MSE of Grp 2 Tgt 1

Total # of groups = 2
Group size = 480

Figure 5-5: Results using Parallel MSWF Implementation (Least correlation)

Looking at the topmost plot in figure 5.5 where the target group size is 20, we can

observe that the new rate of convergence for target 1 is slower than the original rate

of convergence when grouping scheme A is used. However, at the last of the target

 104

groups, i.e. group #48, the impact of the new grouping scheme has diminished such

that there is hardly any difference in the new convergence rate and the old

convergence rate. Next, by examining the plot where the target group size is 100, we

can observe the same trend as is shown in the previous plot. Thus, from the results of

these two plots, we can say that the 2nd hypothesis in section 5.2 which says that the

target of interest will achieve convergence at a slower rate if targets that are least

correlated to it are grouped together with it is true to a certain extent. As for the

reason that there is hardly any difference in the convergence rate of the last target

group, the reason is because the grouping scheme A is biased in that as more and

more distinct targets are chosen for the earlier target groupings, the K-1 remaining

targets to be placed in the last target group may or may not be the least correlated to

the 1st target of the last target group. Thus, the behavior is atypical from the earlier

groups.

Next, coming to the 3rd plot of figure 5.5 in which the size of the target group

is 480, we notice one interesting phenomenon. For the new convergence rate in the

2nd target group of this plot, instead of having the same behavior as that of the other

two plots, instead it is having a faster convergence rate as compared to the original

convergence rate in the 2nd target group. The main reason is again due to the bias that

is present in the grouping scheme A. Since so many targets that are least correlated to

the 1st target in target group #1 have been included in the target group #1 itself,

therefore the remaining targets in target group #2 are more likely to be highly

 105

correlated to the 1st target in the same group which resulted in a faster, not slower

convergence rate.

 At this point of time, after verifying the 2nd hypothesis defined in section 5.2

to a large extent, the next task will be to try to verify the 1st hypothesis in section 5.2

which states that the target of interest will be able to achieve convergence at a faster

rate if targets that are most correlated to it are placed in the same target group as it is.

The details of the grouping scheme B for verifying this hypothesis and the results are

discussed in the following section.

5.2.2 SCHEME B – GROUP TARGETS BASED ON HIGHEST CORRELATION

 In scheme B target grouping, the steps and processes are very similar to that

of scheme B target grouping with only 2 exceptions. Firstly, the elements within each

column of P2 are sorted in a descending order manner rather than in ascending order.

Secondly, the grouping scheme B will begin by taking the K-1 targets starting from

the 2nd element in column 1 that are most correlated or highly correlated to target 1

(target 1 is now the 1st element in column 1 due to the sorting in descending order).

These K targets will then form the new target group #1 with target numbering from 1

to K. Similarly, the column operations continue until finally all Nt targets have been

grouped into the new target groupings using scheme B.

 Next, to test the 1st hypothesis defined in section 5.2, these newly grouped

targets also undergo the parallel MSWF implementation and the expected MSE of the

1st target in each new target group is then compared with its original expected MSE

 106

for each stage of decomposition. The simulation also uses the same target group sizes

of 20, 100 and 480 as in section 5.2.1 and the results obtained are shown in figure 5.6

below:

0 5 10 15 20 25
-45

-40

-35

-30

-25

-20

-15

-10

-5

Stages of Decomposition for MSWF

Ta
rg

et
 E

xp
ec

te
d

M
S

E
 (d

B
)

Expected MSE of Target versus Stages of Decomposition

Original Expected MSE of Grp 1 Tgt 1
New Expected MSE of Grp 1 Tgt 1
Original Expected MSE of Grp 48 Tgt 1
New Expected MSE of Grp 48 Tgt 1

Total # of groups = 48
Group size = 20

1 2 3 4 5 6 7 8 9 10
-45

-40

-35

-30

-25

-20

-15

-10

-5

Stages of Decomposition for MSWF

Ta
rg

et
 E

xp
ec

te
d

M
S

E
 (d

B
)

Expected MSE of Target versus Stages of Decomposition

Original Expected MSE of Grp 1 Tgt 1
New Expected MSE of Grp 1 Tgt 1
Original Expected MSE of Grp 5 Tgt 1
New Expected MSE of Grp 5 Tgt 1
Original Expected MSE of Grp 9 Tgt 1
New Expected MSE of Grp 9 Tgt 1

Total # of groups = 10
Group size = 100

1 2 3
-45

-40

-35

-30

-25

-20

-15

-10

-5

Stages of Decomposition for MSWF

Ta
rg

et
 E

xp
ec

te
d

M
S

E
 (d

B
)

Expected MSE of Target versus Stages of Decomposition

Original Expected MSE of Grp 1 Tgt 1
New Expected MSE of Grp 1 Tgt 1
Original Expected MSE of Grp 2 Tgt 1
New Expected MSE of Grp 2 Tgt 1

Total # of groups = 2
Group size = 480

Figure 5-6: Results using Parallel MSWF Implementation (Highest correlation)

Now, by looking at the topmost plot in this figure, we can see that the new rate of

convergence for the 1st target in target group #1 has indeed improved over its original

rate of convergence after grouping scheme B is applied. Thus, this result is indicating

 107

that the 1st hypothesis may be true. Next, as was shown in grouping scheme A in

section 5.2.1, there is hardly any difference between the new convergence rate and the

original convergence rate of the 1st target in the last target group, i.e. target group

#48. This is due to the same fact that as grouping scheme B is also biased in that as

most of the distinct targets are chosen for the earlier target groupings, the K-1

remaining targets to be placed in the last target group may not be correlated to the 1st

target of the last target group at all but rather they are just the leftover targets. As

such, the trend in the earlier target groups is not seen in the latter target groups and

especially in target group #48, which is the last target group.

 Next, by examining the plot with target group size equal to 100 at the bottom

right corner of figure 5.6, we can observe some surprising trends. Although we

expect to see that the new convergence rate for the 1st target in target group #1 to be

faster than its original convergence rate using grouping scheme B in support of

hypothesis 1, we never expect at all to see the reverse trend for the 1st target in the 5th

target group. In fact, after examining the collected results closely, it is found that the

trend has actually started reversing itself at the 4th target group and the trend then

swings back and forth between the 6th target group and the last target group. After

careful analysis of the elements within the matrix P2 so as to explain this surprising

trend, it is discovered there are not so many targets that are correlated to the target of

interest in each column, i.e. the number of significant cross correlation values per

column is much lesser than 100. Thus, by using a target group size of 100 (100 is too

large) for the not so perfect scheme B, it has resulted in prematurely taking away

 108

targets that are actually correlated to the target of interest in the latter target groups.

Thus this defeat the original purpose of grouping targets together based on high

correlation. In a sense, this means that grouping scheme B has failed in this situation

but the 1st hypothesis still remains true. This revelation is supported by the plot for

the target group size of 480 in which the new convergence rate for the 1st target in the

1st target group is faster than its original convergence rate. However, the new

convergence rate for the 1st target in the 2nd target group is slower than its original

convergence rate at the early stages of decomposition before changing to about the

same value towards the end.

 Thus, at this stage, we have managed to verify both hypothesis 1 and 2

defined in section 5.2 that states that grouping of targets based on high cross

correlation should help in increasing the rate of convergence when using the MSWF

and the reverse will also hold true when the targets that are very least correlated are

grouped together instead. However, due to the bias or defects of both grouping

scheme A and B, these schemes are not able to fulfill their tasks completely such that

the latter target groups are not grouped according to the desired criterion. As a result,

I am not able to show via simulation results that there is an actual improvement in the

computational time needed when using parallel MSWF implementation in

conjunction with scheme B as the net convergence rate across all target groups

remains unchanged when applying this scheme. Nevertheless, I believe that if a more

intelligent grouping scheme is designed such that it allows the targets that are highly

correlated to each other to be grouped together without any preference given to the

 109

earlier target groupings, this approach will definitely improve the performance of the

MSWF in either the parallel and serial implementation methods.

 Also, at this point in time, we have already looked at 3 approaches that

involve either the targets’ initialization conditions or their style of grouping that may

help to alter the performance of the MSWF in terms of timing requirement.

Basically, these approaches deal mainly with the target space. Looking ahead, the

next approach that I will be attempting will involve the measurement space as well.

By drawing inspiration from Kalman filter that is able to execute much faster than the

MMSE or Wiener filter because it breaks up the total measurement data set into

subsets in its processing, the question for MSWF is whether can its processing be

sped up likewise. Essentially, this implies that if the measurement data set is broken

into various subsets in the MSWF implementation, it may also help to reduce its

computational time as well. Thus, to answer this question, the original structure of

the MSWF implementation as shown in Chapter 4 is modified again and the results

obtained are discussed in the next section.

5.3 USING MEASUREMENT SUBSETS FOR RECURSIVE MSWF

 In Kalman filter, the processing is done recursively or iteratively on every

new subset of measurement data that it has just received. As such, the Kalman filter

can also be known as the recursive or iterative MMSE filter. Now, if it is possible for

the MSWF to process new incoming measurement data in an iterative manner without

 110

having to re-process all the previous data again, it can also be known as the recursive

or iterative MSWF.

 Next, to allow the MSWF to be implemented in a recursive manner, some

modifications will have to be made to the initial conditions of the recursive MSWF at

the 2nd iteration step as compared to the first iteration step. Essentially, the concept of

innovation data used in the Kalman filter processing will also be required in this

situation starting from the 2nd iteration step of the recursive MSWF. Besides that,

other issues like updating the new estimates of the scattering coefficient as well as the

Error covariance matrix will also be implemented as well in the recursive MSWF. In

summary, the required changes to the standard MSWF equations will include the

following additions:

ˆ() () () (1/ 1)l l l l l= − − −v r P γ

H
1 1ˆ ˆ(/) (1/ 1)l l l l= − − + Wγ γ ε (5.2)

H
1(/) (/ 1)l l l lγ γ= − − 1 1K K W ξ W

I

Also, the initial conditions are again and as per the standard non-

recursive MSWF implementation. In order to provide a better visualization to the

structure of the recursive MSWF, they are shown on the following pages. Note that

in both figures, is the same as and is the same as . Also,

instead of the measurement vector r(l) being used as x

0ˆ 0=γ 2
0 γσ=Kγ

11γ̂ ˆ(/)1 1γ 11Kγ (/)l lγK

0, it is the innovation vector v(l)

that will be used as x0 instead for each step of the recursive MSWF.

 111

Measurement
data subset 1

Measurement
data subset 2

Measurement
data subset 3

Initial Conditions for all Target groups
0 0ˆ ,Kγγ

Start of
MSWF

processing
for

Target
Group

#1

Start of
MSWF

processing
for

Target
Group

#2

Start of
MSWF

processing
for

Target
Group

#3

Start of
MSWF

processing
for

Target
Group

#J

….

Final ˆ,Kγγ

Initial Conditions for all Target groups
11 11ˆ ,Kγγ

Start of
MSWF

processing
for

Target
Group

#1

Start of
MSWF

processing
for

Target
Group

#2

Start of
MSWF

processing
for

Target
Group

#3

Start of
MSWF

processing
for

Target
Group

#J

….

Initial Conditions for all Target groups
22 22ˆ ,Kγγ

Start of
MSWF

processing
for

Target
Group

#1

Start of
MSWF

processing
for

Target
Group

#2

Start of
MSWF

processing
for

Target
Group

#3

Start of
MSWF

processing
for

Target
Group

#J

….

Figure 5-7: Recursive parallel MSWF Implementation

 112

Measurement
data subset 1

Measurement
data subset 2

Final ˆ,Kγγ

Initial
Conditions

for Group #1
0 0ˆ ,Kγγ

Start of
MSWF

processing
for

Target
Group

#1

Start of
MSWF

processing
for

Target
Group

#2 after
processing
Group #1

Start of
MSWF

processing
for

Target
Group

#3 after
processing
Group #2

Start of
MSWF

processing
for

Target
Group
#J after

processing
Group #J-1

....

Initial
Conditions

for Group #2
1 1ˆ ,Kγγ

Initial
Conditions

for Group #J
j 1 j 1ˆ ,− Kγ −γ

Initial
Conditions

for Group #3
2 2ˆ ,Kγγ

Initial
Conditions

for Group #1
2ˆ , 2Kγ

Start of
MSWF

processing
for

Target
Group

#1 after
processing
Group #2

Start of
MSWF

processing
for

Target
Group

#J-2 after
processing
Group #J-1

Start of
MSWF

processing
for

Target
Group

#J-1 after
processing
Group #J

Start of
MSWF

processing
for

Target
Group

#J

….

Initial
Conditions for

Group #J-2
j 1 j 1ˆ ,− Kγ −γ

Initial
Conditions

for Group #J
11 11ˆ ,Kγ

Initial
Conditions for

Group #J-1
j jˆ ,Kγγ

Figure 5-8: Recursive serial MSWF Implementation

 113

Having completed the design implementations of both the recursive parallel and serial

MSWF, the next task is to decide on the measurement data subset size to be used out

of a total of 2856 measurement data as well as the target group size out of a total of

961 targets. From section 4.4.2, we know that the length of the measurement data

subset cannot be smaller than the size of the target group used. As such, the decision

is to use the combination shown in Table 5.1 for performing the experiment to

determine whether is recursive MSWF faster than the standard MSWF and is there

any tradeoff in this implementation.

Table 5.1: Measurement and Target Group Sizes for Recursive MSWF

Measurements
per subset

Number of
subsets

Target
Group

size = 961

Target
Group

size = 480

Target
Group size

= 320

Target
Group size

= 160
2856 1 √ √ √ √

1428 2 √ √ √ √

714 4 Χ √ √ √

476 6 Χ Χ √ √

Now, in Table 5.1, some of the combinations are marked with the symbol “Χ”. The

reason is because for these combinations, the size of the target group is bigger than

the size of each measurement data subset. Thus it will not be possible to implement

vector MSWF in these situations. Also, in row 1 of Table 5.1 where the number of

measurements per subset is equal to 2856, it is equal to the parallel MSWF

implementation since all measurement data are used at the same time and non

 114

recursion or iteration step is performed. Therefore, the results obtained from the

combination in row 1 will be used as the benchmark to determine whether there is

any benefit in using recursive MSWF over non recursive MSWF. After having

decided on the combination of both measurement data subset and target group sizes to

be used, a simulation is performed using these combinations and the results are

discussed in the next section.

5.3.1 PERFORMANCE OF THE RECURSIVE MSWF

 In the previous section, we have determined the combinations of the

measurement data subset and target group sizes to be used in the simulation. As such,

a simulation is executed for both the recursive parallel MSWF and recursive serial

MSWF implementations. The results obtained are shown in Table 5.2 and Table 5.3

for the recursive parallel MSWF and Table 5.4 and Table 5.5 for the recursive

modified serial MSWF implementation.

Table 5.2: Computational Timing Results for Recursive Parallel MSWF

Measurements
per subset

Number of
subsets

Target
Group

size = 961

Target
Group

size = 480

Target
Group size

= 320

Target
Group size

= 160
2856 1 113.203 241.112 222.498 215.547

1428 2 103.735 151.110 130.548 103.331

714 4 Χ 78.728 69.301 54.669

476 6 Χ Χ 43.549 37.560

 115

Table 5.3: Average Computed MSE for Recursive Parallel MSWF

Measurements
per subset

Number of
subsets

Target
Group

size = 961

Target
Group

size = 480

Target
Group size

= 320

Target
Group size

= 160
2856 1 -41.037 -41.037 -41.037 -41.037

1428 2 -41.037 -39.880 -39.350 -38.959

714 4 Χ -37.093 -34.392 -30.052

476 6 Χ Χ -25.015 -21.524

From Table 5.2, we can observe that when the measurement data set is divided into

more and more subsets, the computational time required will decrease significantly.

Moreover, by looking at the corresponding entries in Table 5.3, we note to our

pleasant surprise that the average computed MSE does not degrade at all in the case

when all targets are included in one target group in conjunction to achieving this

improvement in computational efficiency. However, in all other combinations, the

improvement in the computational efficiency comes with a price which is the

decrease in accuracy of the final estimated results. But in the case when the

measurement subset is increased from 1 to 2 as seen from row 1 and row 2 of Table

5.2 and Table 5.3, this price to pay is very small when comparing with the amount of

time savings that are achieved in the process. Thus, this is a situation where recursive

parallel MSWF is able to meet our goal of improving the computational efficiency of

the MSWF at very little cost.

 116

Next, after further analyzing the results, we notice that as the target group size

becomes smaller, the degradation in the accuracy becomes more severe. To explain

the trend for the decrease in accuracy when the measurement data is divided into

more subsets along with using target group size that is less than the total number of

targets, we will need to examine the Error covariance matrix that is

generated after each iteration step. Essentially, has a matrix size of

961×961. However, when the chosen target group size is less than 961, this will

mean that at every iteration step, only the diagonal and near diagonal elements of

 is updated since no information is available on the other elements that are

away from the diagonal locations. To allow for better visualization, a sample of the

 matrix using the recursive MSWF is shown below:

(/)l lγK

(/)l lγK

(/)l lγK

(/)l lγK

(/)

x x x o o o

x x x o o o

x x x o o o
l l o o o x x x

o o o x x x

o o o x x x

γ

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

K (5.3)

In equation 5.3 above, lets assume that there are a total of 6 targets and thus the

 has a size of 6×6. Also, further assume that the targets are divided into 2

target groups with 3 targets per group. Using this scenario for implementing the

recursive MSWF, only those locations marked with the symbol x will be updated

after each iteration step whereas all the other locations marked with the symbol o

will never be updated and their values will always remain as zero since the initial

(/)l lγK

 117

condition is . Thus, becomes a block diagonal matrix rather

than a fully populated matrix and this will affect the accuracy of the estimation.

Furthermore, if the size of the target group decreases, for example to 2 targets per

group, it will make to be more sparsely populated and the estimation errors

will become more severe in this situation as seen from row 2 onwards in Table 5.3.

2
0 γσ=Kγ I (/)l lγK

(/)l lγK

To further compound this problem, when the measurement data is divided into

more subsets, one can imagine that the increase in the number of iteration steps will

further aggravate the problem (number of times of error propagation also increases)

and thus we can also see this trend from column 2 onwards in Table 5.3. Thus, after

finding out the behavior of the recursive parallel MSWF, one will need to select the

appropriate measurement data and target group sizes so as to achieve the desirable

tradeoff between computational time and accuracy. As an example, choosing the

combination of 4 measurement subsets along with a target group size of 480 provides

a reasonable computed MSE of -37.093 dB with a computational time of 78.728

seconds. This constitutes to a time reduction of 162.384 seconds or 67% in time

savings as compared to the original non recursive parallel MSWF implementation.

 Now, after we have examined the results of the recursive parallel MSWF, we

can conclude that the recursive parallel MSWF is indeed a good candidate to be

considered for implementation when compared to the standard parallel MSWF

implementation. In fact, in one situation, we can even achieve improvement in the

computational efficiency at no cost at all in terms of the accuracy of results. The next

task will be to look at the results obtained from the recursive modified serial MSWF

 118

that are shown in Table 5.4 and Table 5.5. Note that the modified serial MSWF is

used instead of the standard serial MSWF because it has been shown in section 5.1

that the modified serial MSWF is a more efficient implementation.

Table 5.4: Computational Timing Results for Recursive Serial MSWF

Measurements
per subset

Number of
subsets

Target
Group

size = 961

Target
Group

size = 480

Target
Group size

= 320

Target
Group size

= 160
2856 1 113.203 305.190 445.894 879.208

1428 2 103.657 194.108 264.904 397.079

714 4 Χ 115.741 142.252 250.211

476 6 Χ Χ 110.991 183.079

Table 5.5: Average Computed MSE for Recursive Serial MSWF

Measurements
per subset

Number of
subsets

Target
Group

size = 961

Target
Group

size = 480

Target
Group size

= 320

Target
Group size

= 160
2856 1 -41.037 -41.037 -41.036 -41.036

1428 2 -41.037 -39.812 -39.104 -38.565

714 4 Χ -37.042 -32.768 -26.407

476 6 Χ Χ -22.622 -19.836

Looking at Table 5.4 and Table 5.5, we can observe the same trend in the recursive

modified serial MSWF as in the recursive parallel MSWF. Thus, we can also

conclude that the recursive modified serial MSWF is a good candidate for

implementation as it is also able to achieve a significant reduction in computational

 119

timing in some situations along with non significant loss in accuracy of results.

However, in general, the average computed MSE obtained from the recursive

modified serial MSWF is usually worst off than that of the recursive parallel MSWF

with the same combination after comparing the results between Table 5.3 and Table

5.5. Thus, in general, it is preferred to use recursive parallel MSWF if computing

resources are not a factor of constraint.

 At this moment, after trying out the few schemes as described in section 5.1 to

5.3, I believe that I have answered the question raised at the beginning of this Chapter

on whether can the MSWF performance be improved in terms of the computational

time required when we varies its implementation structure. After looking at new

innovative approaches to both the original parallel and serial MSWF implementation,

the answer to the question is a resounding “Yes”. Thus, I will also conclude the

research work on the MSWF at this point since I believe that a very comprehensive

investigation into the behavior of the MSWF has been performed from the start of

Chapter 4 to this Chapter itself. I will then conclude on all my Thesis research work

that has been performed in the concluding Chapter as well as giving some

recommendations on future work that can be performed.

 120

CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS

6.1 SUMMARY

In this Thesis, I have firstly presented the rationale behind using the Wiener

filter for processing data obtained from a non-uniformly distributed aperture radar

system as compared to using the Matched filter. However, one undesirable feature of

the Wiener filter is that it requires performing a computationally expensive matrix

inverse operation before the results can be obtained. Although Kalman filter is one

technique that is able to avoid this matrix inverse operation in the Wiener filter,

nevertheless it also has some pitfalls on this own. As such, I have looked at

alternative techniques that can resolve the pitfalls of the Kalman filter along with

additional techniques that are also more efficient than the Wiener filter.

In Chapter 3, I have investigated the use of the Square Root Covariance Filter

(SRCF) as one alternative to the Kalman filter along with its reduced rank version,

the Reduced Rank Square Root filter (RRSQRT). Both these techniques are found to

achieve the same results as the Kalman filter when full rank processing is carried out.

Moreover, they provide stability in the Error covariance matrix computation such

that it will never end up having some negative Eigen values in it. On top of that, it

has even been shown that the RRSQRT is able to achieve nearly the same level of

accuracy of the final results as the Kalman filter when the rank has been reduced by

up to 73%. For a small tradeoff in the results’ accuracy, the rank reduction can even

goes up to 95.8% as seen in the case when there are only 40 remaining Eigen vectors

γK

 121

in as compared to an initial value of 961 Eigen vectors. Thus, this can constitute

to significant savings in computing resources during implementation. Although the

need for Eigen decomposition operation to achieve the rank reduction increases the

computational timing of the RRSQRT such that it exceeds that of the Kalman filter,

however the increase is not tremendous and it is believed that this shortcoming can be

overcome when there is a more efficient method to perform the Eigen decomposition

operation.

γK

Next, besides the square root filters, I have also looked at another technique

that is more efficient that Wiener filter in its implementation while at the same time,

easily allows rank reduction measures to be performed. This technique is known as

the Multi-Stage Wiener filter (MSWF) based on orthogonal projections. After

deriving the equations and implementation of the MSWF required for our radar

problem domain, I am able to show that this filter is able to achieve the same results

with the Wiener filter even when less than full rank processing is performed.

Although the MSWF is not as computationally efficient as the Kalman filter, its

performance gap with the Kalman filter does not degenerate even when the problem

statement expands in size. For instance, in the case of using 3060 measurements for

961 targets, the fastest timing achieved by the MSWF is 112.572 seconds as

compared to 35.262 seconds for the Kalman filter (refer to Table 4.6 and 4.10). This

is equivalent to a ratio of about 3.2. As for the case of using 11460 measurements for

3969 targets, the fastest timing achieved by the MSWF is 3432.5 seconds as

compared to 1192.1 seconds for the Kalman filter (refer to Table 4.11). This is

 122

equivalent to a ratio of about 2.9. Thus, the performance gap remains essentially

constant. However, the performance gap between the MSWF and the Wiener filter

widens from a value of 1.65 (186.078 seconds for Wiener filter versus 112.572

seconds for MSWF) using the smaller data set to a value of 2.72 (9349.3 seconds for

Wiener filter versus 3432.5 seconds for MSWF) when using the larger data set. Thus,

the advantage of the MSWF over the Wiener filter becomes more prominent as the

data set increases.

Besides achieving some meaningful results using the MSWF, I have also

shown that it is possible to further improve its computational efficiency when care is

taken to group the targets according to the criteria of high cross correlation

magnitudes or when the MSWF is implemented in a recursive manner. Although no

numerical figures are available in the case of using the target grouping approach due

to the imperfection of my grouping schemes, nevertheless the overall trend points to

the high probability of performance enhancement. Thus, these findings will be useful

to future researchers who will need to implement the MSWF for their needs.

6.2 RECOMMENDATIONS FOR FUTURE WORK

In all my findings and results obtained for the different filters that are

introduced in the Thesis research, the common shortcoming that needs further

improvement is in the speed of the computation of these filters when compared to the

Kalman filter. When we examine the case of the Reduced Rank Square Root filters,

it is the Eigen decomposition operation that is the main culprit for the computational

inefficiency. Therefore, one area that we can further look into is in finding faster

 123

ways of performing Eigen decomposition so that the total timing taken by the

RRSQRT will not exceed that of the Kalman filter.

 Besides that, we may also want to look into other SAR scenarios where it is

only required to know the scattering coefficients of a few disjoint smaller areas of

interest but not the whole illumination area. In these situations, we can then start the

iteration right away with a reduced rank version of the square root covariance matrix

 for the RRSQRT whereas the Kalman filter will still need to work on the full

size of the Error covariance matrix . As a result of starting with a smaller matrix

size of , it may end up reducing the time taken by the subsequent Eigen

decompositions to a point that the RRSQRT may outperform the Kalman filter at the

end of the iterations. However, in such scenarios, the tradeoff will be that no

estimation or information will be obtained from those regions that are designated as

“don’t care” in the whole illumination area.

(0/ 0)S

γK

(0/ 0)S

 Next, coming to the implementation of the Multi-Stage Wiener filter, one area

that future researchers can start looking into is the optimal grouping scheme that will

group targets together either using the criteria of high cross correlation or vice versa.

Once the optimal grouping scheme is developed, it can then be tested on either the

non recursive or recursive MSWF implementations to verify whether the computation

speed goes up further in both situations, i.e. using less stages of decomposition. Also,

besides looking into this area , another possibility will be to re-look at the present

structure of the MSWF that requires a forward iteration step, the turn around step and

the backward iteration step. In the last couple of years, there is an emergence of a

 124

new type of MSWF that is based on Conjugate Gradients rather than on Orthogonal

Projections as seen in [28] and [29] etc. For the Conjugate Gradient based MSWF

(MSWF-CG), there is only a need to perform the forward iteration step in its

structure. As such, it may be a more efficient form of MSWF as compared to the

current MSWF that is based on orthogonal projections. Thus, future work may

involve the adaptation of the MSWF-CG algorithm to our radar scenario before

running simulations to measure its performance as compared to the current MSWF

and the Kalman filter.

6.3 CONCLUSIONS

The focus of this thesis is on developing reduced rank versions of the

conventional Wiener or MMSE filter such that these reduced rank implementations

will be much more efficient than the Wiener filter while only sacrificing small loss in

the final accuracy of the results. From the findings presented in the thesis, this

objective has been fully met. Although the techniques developed in this thesis is not

as efficient as the Kalman filter which is another efficient implementation of the

Wiener filter, nevertheless the performance gap between the former and the latter is

not very significant. Moreover, the RRSQRT will be able to overcome some

potential pitfalls that are documented in the Kalman filter. With additional research

efforts invested into the recommendations that are identified in the previous sections,

it may result in the complete elimination of the performance gap between the reduced

rank filters and Kalman filters.

 125

Finally, the research work involved in this thesis have given me a great

appreciation of the domain of linear filtering as well as the fundamentals of radar

system design modeling. It is believed that this knowledge will aid me greatly in my

subsequent professional career down the years.

 126

REFERENCES

[1] Nathan Goodman, “SAR and MTI processing of sparse satellite clusters”,

Doctoral thesis, The University of Kansas, July 2002.

[2] Peter S. Maybeck, “Stochastic Models, Estimation and Control”, Volume I,

Academic Press 1979, Chapter 7.

[3] R.W. Stewart and R. Chapman, “Fast Stable Kalman Filter Algorithms

utilizing the Square Root”, International Conference on Acoustics, Speech and

Signal Processing, April 1990, volume 3, pg 1815-1818.

[4] J. Scott. Goldstein and Irving S. Reed, “A New Method of Wiener Filtering

and its Application to Interference Mitigation for Communications”, IEEE

MILCOM Nov 97 Proceedings, volume 3, pg 1087-1091.

[5] J. Scott. Goldstein and Irving S. Reed, “A Multistage Representation of the

Wiener Filter Based on Orthogonal Projections”, IEEE Transactions on

Information Theory, volume 44, No 7, Nov 1998.

[6] Subhash Gullapalli, ”Application of Kalman Filtering Technique for SAR

Processing of sparse satellite clusters”, Master’s Thesis, The University of

Kansas, December 2002.

[7] J.M. Stiles, “Determination of Numeric Model Parameters”, Revision A, The

University of Kansas, Radar Systems and Remote Sensing Laboratory,

Lawrence, KS, July 2004

 127

[8] J.M. Stiles, “Space-Time Radar Transmission, Target and Measurement

Model”, Revision E, The University of Kansas, Radar Systems and Remote

Sensing Laboratory, Lawrence, KS, August 2004

[9] Jim Stiles, Vishal Sinha, Atulya Deekonda, “Optimal Space-Time Transmit

Signals for Multi-Mode Radar”, The University of Kansas, Radar Systems and

Remote Sensing Laboratory, Lawrence, KS, Nov 2005

[10] Simon Haykin, “Adaptive Filter Theory”, Fourth edition, Prentice Hall 2002,

Chapter 2.

[11] Mohinder S.Grewal, Angus P. Andrews, “Kalman Filtering”, 2nd Edition,

Wiley Interscience, 2001, Chapter 6.

[12] M. Verlaan, A.W. Heemink, “Reduced Rank Square Root Filters for Large

Scale Data Assimilation Problems”, Second International Symposium on

Assimilation of Observations in Meteorology and Oceanography, World

Meteorological Organization, Mar 1995, pg. 247-252.

[13] M. Verlaan, A.W. Heemink, “Tidal Flow Forecasting using Reduced Rank

Square Root Filters”, Stochastic Hydrology and Hydraulics, volume 11, no 5

1997, pg 349-368.

[14] M. Verlaan, A.W. Heemink, “Convergence of the RRSQRT Algorithm for

Large Scale Kalman Filtering Problems”, Delft University of Technology,

1997, Technical report 97-19.

[15] G. Golub, C. Van Loan, “Matrix Computations”, John Hopkins University

Press, 2nd edition, 1989, pg 427.

 128

[16] J. Scott. Goldstein and Irving S. Reed, “Reduced Rank Adaptive Filtering”

IEEE Transactions on Signal Processing, 1997, volume 45, pg 492-496.

[17] Michael L. Honig, J. Scott. Goldstein, “Adaptive Reduced-Rank Residual

Correlation for DS-CDMA Interference Suppression”, IEEE Conference on

Signals, Systems and Computers, 1998, volume 2, pg 1106-1110.

[18] Michael L. Honig, J. Scott. Goldstein, “Adaptive Reduced-Rank Interference

Suppression Based on the Multi-Stage Wiener Filter”, IEEE Transactions on

Communications, 2002, volume 50, pg 986-994.

[19] Michael L. Honig, Weimin Xiao, “Performance of Reduced-Rank Linear

Interference Suppression”, IEEE Transactions on Information Theory, 2001,

volume 47, pg 1928-1946.

[20] J. Scott. Goldstein, Irving S. Reed, Dan E. Dudgeon and Joe R. Guerci, “A

Multistage Matrix Wiener Filter for Subspace Detection”, IT workshop on

Detection, Estimation, Classification and Imaging, Santa Fe, NM, USA, Feb

24-26, 1999.

[21] J.M. Stiles, “Implementation of the Multi-Stage Wiener Filter”, Revision B,

The University of Kansas, Radar Systems and Remote Sensing Laboratory,

Lawrence, KS, Jan 2006.

[22] J. Scott. Goldstein, Irving S. Reed, “Theory of Partially Adaptive Radar”,

IEEE Transactions on Aerospace Electronic System, 1997, volume 33, pg

1309-1325.

 129

[23] Ricks, D.C., J. Scott. Goldstein, “Efficient Architectures for Implementing

Adaptive Algorithms”, Proceedings of the 2000 Antenna Applications

Symposium, Allerton Park, Monticello, Illinois, Sep 20-22, 2000, pg 29-41.

[24] Seema Sud, Wilbur L. Myrick, J. Scott Goldstein, Michael D. Zoltowski,

”Performance Analysis of a Reduced Rank MMSE MUD for DS-CDMA”,

GlobalComm 2001, volume 5, pg 3158-3162.

[25] Seema Sud, Wilbur L. Myrick, Paula Cifuentes, J. Scott Goldstein, Michael D.

Zoltowski, “A Low Complexity MMSE Multi-user detector for DS-CDMA”,

35th Asilomar Conference on Signals, Systems and Computers, Nov 2001,

volume 1, pg 404-409.

[26] Seema Sud, Wilbur L. Myrick, Paula Cifuentes, J. Scott Goldstein, Michael D.

Zoltowski, “Reduced Rank Matrix Multi-stage Wiener Filter with applications

in MMSE Joint Multi-user detection for DS-CDMA”, IEEE International

Conference on Acoustics, Speech and Signal Processing, 2002, volume 3, pg

2605-2608.

[27] Harry L. Van Trees, “Optimum Array Processing, Part IV of Detection,

Estimation and Modulation Theory”, Wiley Interscience, 2002, 1st edition, pg

505 to 510.

[28] Hongya Ge, M. Lundberg, Louis L. Scharf, “Reduced-Rank Multi-user

Detectors Based on Vector and Matrix Conjugate Gradient Wiener Filters”,

IEEE 5th workshop on Signal Processing Advances in Wireless

Communications, 2004, pg 189-193

 130

[29] Zhi Tian, Hongya Ge, Louis L. Scharf, “Low-Complexity Multi-user

Detection and Reduced-Rank Wiener Filters for Ultra-Wideband Multiple

Access”, International Conference on Acoustics, Speech and Signal

Processing, 2005, pg 621-624.

 131

	ABSTRACT
	CHAPTER 1: INTRODUCTION
	1.1 BACKGROUND
	1.2 MOTIVATION OF THESIS
	1.3 OUTLINE OF THESIS

	CHAPTER 2: THE RADAR MODEL
	2.1 DISTRIBUTED APERTURE AND TARGET GEOMETRY
	2.2 SIGNAL SPACE MODELING
	2.2.1 TRANSMIT SIGNAL MODELING
	2.2.2 TARGET MODELING
	2.2.3 RESPONSE MEASUREMENTS MODELING

	2.3 THE SAR IMAGE FORMULATION
	2.3.1 WIENER FILTER IMPLEMENTATION
	2.3.2 KALMAN FILTER IMPLEMENTATION

	2.4 TESTING THE KALMAN FILTER IMPLEMENTATION
	2.4.1 1ST TEST SCENARIO FOR KALMAN FILTER
	2.4.2 2nd TEST SCENARIO FOR KALMAN FILTER

	2.5 LOOKING BEYOND THE CONVENTIONAL KALMAN FILTER

	CHAPTER 3: THE SQUARE ROOT COVARIANCE FILTER
	3.1 FULL RANK SQUARE ROOT FILTER
	3.2 PERFORMANCE BETWEEN KALMAN AND FULL RANK SRCF
	3.3 REDUCED RANK SQUARE ROOT FILTER
	3.3.1 TIME-STEP OF RRSQRT
	3.3.2 REDUCTION-STEP OF RRSQRT
	3.3.3 MEASUREMENT-STEP OF RRSQRT

	3.4 CRITERIA DETERMINATION FOR RRSQRT
	3.4.1 USING GUESSWORK FOR CRITERIA DETERMINATION
	3.4.2 USING SRCF EIGEN SPECTRUM FOR CRITERIA DETERMINATION

	3.5 PERFORMANCE OF REDUCED RANK SQUARE ROOT FILTER

	CHAPTER 4: THE MULTI-STAGE WIENER FILTER
	4.1 BRIEF BACKGROUND OF THE MULTI-STAGE WIENER FILTER
	4.2 THE GENERIC MULTI-STAGE WIENER FILTER
	4.2.1 FORMING THE BLOCKING MATRIX B
	4.2.2 DEFINING THE INITIAL CONDITIONS FOR MSWF

	4.3 PERFORMANCE OF MSWF FOR SCALAR ESTIMATION OF (i
	4.4 THE VECTOR MULTI-STAGE WIENER FILTER
	4.4.1 ADJUSTMENT OF DATA LENGTH DUE TO CHOLESKY FUNCTION
	4.4.2 MINIMUM DATA LENGTH RELATIONSHIP TO TARGET SIZE
	4.4.3 DIAGONAL LOADING OF THE COVARIANCE MATRIX

	4.5 PERFORMANCE OF MSWF FOR VECTOR ESTIMATION OF
	4.6 PARALLEL/SERIAL IMPLEMENTATION OF VECTOR MSWF
	4.6.1 AVERAGE VERSUS GROUP SIZE AND NUMBER OF STAGES
	 4.6.2 TIME (PARALEL) VERSUS GROUP SIZE AND NUMBER OF STAGES
	4.6.3 TIME (SERIAL) VERSUS GROUP SIZE AND NUMBER OF STAGES
	4.6.4 CHOICE IN PARALLEL/SERIAL IMPLEMENTATION BASED ON MSE

	4.7 RUNNING LARGER DATASET FOR PARALLEL MSWF

	CHAPTER 5: INNOVATIVE MSWF IMPLEMENTATIONS
	5.1 USING MODIFIED APPROACH TO INITIALIZATION OF DATA
	5.2 USING MODIFIED TARGET GROUPING APPROACH
	5.2.1 SCHEME A – GROUP TARGETS BASED ON LEAST CORRELATION
	5.2.2 SCHEME B – GROUP TARGETS BASED ON HIGHEST CORRELATION

	5.3 USING MEASUREMENT SUBSETS FOR RECURSIVE MSWF
	5.3.1 PERFORMANCE OF THE RECURSIVE MSWF

	CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS
	6.1 SUMMARY
	6.2 RECOMMENDATIONS FOR FUTURE WORK
	6.3 CONCLUSIONS

	REFERENCES

