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Introduction

= Need for high-speed transmission systems

= In spite of the recent telecom bubble, the net traffic growth
(combined Internet, data and voice traffic) remains steady

= Major carriers are looking at increasing the transmission speeds on

their networks

= Sprint recently had 40 Gbps trials in their network
= Major challenges at high bit rates

= Polarization-mode dispersion (PMD) and chromatic dispersion (CD)

= PMD, unlike CD, is stochastic in nature and 1s difficult to

compensate for

= PMD is not as severe at 10 Gbps as it is at 40 Gbps and beyond

= — Telecommunication . - -
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Introduction (contd...)

= Polarization-mode dispersion (PMD)

Caused by birefringence; complicated by mode coupling

Signal energy at a given A 1s resolved into two orthogonal
polarization modes with different refractive indices

Difference in propagation times between both modes is
differential group delay (DGD)

Principal states of polarization (PSPs) - a light pulse launched in
any PSP results in an output pulse that 1s undistorted to first order

PMD vector: magnitude of DGD and direction of fast PSP

Changes stochastically with A and time due to randomness of
mode coupling and external stresses

DGD has Maxwellian PDF
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L iterature review

Reported PMD measurements

. Flber_ Fiber length Measure- Measurement | Mean DGD Correlation Measurement
Research Group | installation ment . .
/ type L Period (ps) Times method
type Repetition
127-km
Karlsson et al Buried DSF 2 hrs 36 days 279 3 days Jones matrix
2000 2.89 5.7 days
2 fibers
Nagel et al. . 114-km . Custom
2000 Buried SMF 5-10 min 70 days 41 19 hrs algorithm
Cameron et al. . 48.8-km .
1998 Buried SMF 58 sec 15 hrs 2.002 1-2 hrs Interferometric
DeAngelisetal. | prieq 17-km 27 hrs -05 20 min
1992
Bulow et al. .
1999 Buried 52-km 7.3 6to 13 ms
Takalia959h31 et al. Submarine 119-km 15 min 7 hrs 2.2 ~1hr Jones matrix
Kawazawa et al. Submarine 62- 10 min 9 months ~1.4 ~ 2 months Wavelel.lgth'
1994 DSF scanning
Cameron et al. . 96-km ) . Interferometric
1998 Aerial SMF 1.37 min 23 hrs 8.849 510 90 min
Bahsoun et al. 10-km . Wavelength-
1990 Spool DSF 5 min 7 days 23 3hrs scanning
Poole et al. 31.6-km . Wavelength-
Spool 34 ~30 min )
1991 p matiQﬁFand 7 scanning
L - lelecommunication £1 1 1




Literature review (contd...)

= Reported temporal and spectral characteristics of PMD
= Temporal
= On buried fibers DGD varies slowly, but randomly with time
= Strong correlation between the changes in DGD and PSPs

= Rate of temporal change of the PMD increases with the cable
length and the mean DGD

= Correlation between the temperature fluctuations and DGD
variations is much stronger if links include connectors exposed
to temperature variations

= Spectral

= DGD varies significantly with wavelength

« High DGD events are spectrally localized

= DGD bandwidth: 4/<At> where <At> is the mean DGD
= PMD in EDFAs 1s deterministic and less significant

= — Telecommunication . - -
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Literature review (contd...)

= First-order PMD outage analysis
= Definition of an outage

= Caponi et al. (2002) definition: an event where DGD exceeds
the given threshold value

= Other definitions are also in use: power penalty, OSNR
penalty, eye-opening penalty, Q penalty, BER penalty, etc.

= PMD outage probability \
Tth
P =P(At>Aty )=1- [fi.(At)dAt  units: minutes/year

out —

= Caponi et al. studied first-otder PMD outage analysis

= Expression for mean outage rate

R,y = ;fAr(ATth) Jfae(AT)AT|dAT  units: 1/year

At' 1s DGD time derivative
= Expression for mean outage duration

T R . .
out — out / out units: minutes
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Literature review (contd...)

s Numerical PMD model

= Dal Forno et al. (2000) developed a model for numerical simulation
of PMD using coarse-step method

= SMF 1s modeled as a concatenation of several fiber segments with
a given mean birefringence and random coupling angles

= Jones matrix at the end of the fiber 1s determined using

T(a) = N_ j(\/?bmm/zﬂbnj - 0 COSQl, sinocn}
((D) - IEI € . —J(\/gnbm\/hin/z-l-(])nj _Sin(xn COoSL,,
L e -
= wWhere

N: number of segments; h_: length of n segment;
b: PMD coefficient; m: optical frequency;
¢,: temperature fluctuations, uniform distribution between 0 and 2;

a,: coupling angle between the segment axes, uniform distribution
between 0 and 27

= — Telecommunication . - -
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Literature review (contd...)

= Dal Forno et al.’s PMD model
= DGD is determined using the expression

tan_l(le

Are P p, and p, are the Eigenvalues of the

B AG matrix T (0)*T-!(®), where T () is the
frequency derivative of T(w)

= The model gives the Maxwellian PDF of DGD and the DGD
spectral dependence

= But the model does not have a temporal component

= To simulate realistic temporal DGD characteristics the free
variables (namely b, ¢, and o) should be varied in accordance
with the environmental variations

— — lelecommunication . : .
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Previous work (Master’s-level research)

= [ong-term PMD measurements on buried fibers

= Temporal and spectral measurements using 3 different 95-km
fibers (1, 2, and 3) within a slotted-core, direct buried, standard
SMF optic cable

= 7 different fiber configurations: three single-span links 1, 2, 3,
three two-span links 1-2, 2-3, 1-3 and one three-span link 1-2-3

= EDFAs were used on multi-span links
= First-order PMD outage analysis using measured data
= Predicted R_ . and T_  values for the 7 different links

out out

~95 km span 1/ ~95km span2/
span 2 / span 3 /
Automated span 3 span 1
PMD | EDFA EDFA | \\)
measurement

system e

Measurement setup for two-span links

o Mg, &
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Measured DGD colormaps
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Proposed PhD work

= In my comprehensive exam, I have proposed to expand our
understanding of the temporal behavior of PMD and predict

first-order PMD outage rates on long-haul fiber-optic links

= Three-fold process to achieve this:

= Simplify the first-order PMD outage rate expression given by
Caponi et al. into a simple closed-form expression

= Enhance the existing numerical model for PMD to simulate the

real temporal variations observed from measurements

= Use the simplified expression and the enhanced model to predict
first-order PMD outage rates on long-haul fiber-optic links and

study the variation of outage rates with link length

= — Telecommunication . - -
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i Significance of the proposed work

Major carriers, like Sprint, are pushing for high-speed, all-
optical, ultra long-haul fiber links

To ensure signal quality on their fiber at higher rates, network
engineers must anticipate the impact of PMD

Solid understanding of PMD-induced system outages 1s lacking
in PMD community

Proposed work enables us to simulate the temporal and spectral
PMD characteristics on any arbitrary length fiber-optic link and
fully understand the impact of first-order PMD outages

Higher-order PMD information could be extracted from the
proposed enhanced PMD model for higher-order outage analysis

= — Telecommunication . - -
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iImplified first-order PMD outage rate expression

The PDF of DGD time derivative (At')
Rout :% fAr (Arth) IfAr'(AT')‘AT" dAT

10’ T

: § : = Laplacian Fit
. TERCRCTITTR \. ............. \ .............. I:l Measured At Histl]gram -

1-5 Eogogooooacoa .............. ............. ..................... ............. SeeSeREEGe HeececERae 1 0' E_gg
107 ¢
1 oo el
10
TS I— m— R _ e T
: : : 10 E:: — Laplacian fit
0 i : ; | | | i | | |
2 1.5 1 0.5 0 05 1 15 2 2 1.5 1 0.5 0 0.5 1 1.5 2
AT (ps'hr) At {ps/hi)
Histogram of measured At' data from Link 2 Histogram of measured At' data from Link 2
and its Laplacian fit in linear scale and its Laplacian fit in log scale

= Laplacian PDF: (a two-sided, first-order exponential)

o —olAT] J2

fo(AT)= "¢ where o = ~= and 1s the Laplacian parameter with units of
2 O hr/ps and o is the standard deviation of At'

i et &
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iImplified first-order PMD outage rate expression

03[

= Laplacian Fit
[ ] Measured aAx Histogram
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Histogram of measured At' data from Link 1-2-3
and its Laplacian fit in linear scale
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= Using Laplacian PDF for
At', the original expression
for R, simplifies to
Rou = fx(A%,)
a
= Simplified expression
depends only on two
parameters: mean DGD and
Laplacian parameter

= Required measurement period
for a good estimate of o,

= At least 10 to 14 days to
estimate the value of o to
within 10% of its actual value

. ' - Information and _
- — Telecommunication
) Technology Center

iImplified first-order PMD outage rate expression
Closed-form expression for R,
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Enhanced PMD numerical model
Characterizing the existing base PMD model

Tw) = F[lej(\/?bmﬁ /2+¢nj j(ﬁnbim%j |:COS% Sil’lOCn:|
n= 0 e

—sinq,, €osa,

= Simulation parameters: (Matlab)

PMD coefficient (b): 2.7 ps/Nkm; fiber length: 100 km; N = 100;
A band: 1480-1580 nm (100 nm); A step: 0.1 nm; h = 1 km (fixed)

100 simulation runs; Different sets of o and ¢ values for each run
DGD colormap

DGED (ps) DGD Histogram
<<DGD>> 25 95 ps

. 0 : : : : : :
L - .
: 50 100 * 1000 values
L@ : o

40

Measurement £

i Pl L e i n k) 1
1480 1500 1520 1540 1560 1580 e Uz = =2 5 G“g Sl s
‘Wavelegnth (nm) (psl
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Enhanced PMD numerical model (contd..)

= Need to add the temporal component to the base model

= Studies have shown that PMD temporal variation strongly
correlates with the ambient temperature variations with no time lag

= Such behavior 1s believed to be driven by a few segments of the
fiber, like man holes, EDFA huts, bridge attachments, etc., being
exposed to the outside air temperature variations

= Other stress-inducing factors like atmospheric pressure, rain
events, surface vibrations, etc., also affect the temporal behavior of
PMD, but in a small way

= The three parameters, o, ¢, and b, of the base model should be
made functions of the ambient temperature and the other stress-
inducing factors

= — Telecommunication . - -
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Enhanced PMD numerical model (contd..)

he coupling angle o, 1s determined by the manufacturing and
installation procedures

= An installed fiber does not see appreciable change in coupling
angles over time and so o, for an installed fiber can be modeled as
a static set of uniform random values between 0 and 2w

= Making PMD coefficient ‘b’ a function of temperature results in a
drift in spectral domain (illustrated on the next slide)

= Angle ¢ 1s the crucial parameter to model PMD temporal behavior

= ¢, of few segments of each span should be made time-variant

= Central limit theorem could be used to model all the stress-inducing
factors other than temperature, which 1s modeled as a linear term

¢y, =U[0 27|+ k * Air Temperature (°F)+ N[0, G _ var]

i . L Proportionality constant Gaussian random variable
Uniform random variable p y Mean: 0: Variance: G var

Units: radians/(°F —
between 0 and 27 nits: radians/(°F) Units: Radian2

= — Telecommunication . - -
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s Simulations were run with an initial
PMD coefficient of 0.7 ps/Nkm

= Value of Relative temperature
sensitivity of ‘b’ used: 6 x 104 °C-!

s Fixed sets of uniform random values
for o, and ¢

19.6

19.4

19.2

Measurement #

50 100 150 200 250 300 350
Tirme (104103 to 10/18/03; 1 hr intereals

Hourly temperature at one location.
Source: NRCS website

. ' Information and _
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Enhanced PMD numerical model (contd..)
Effect of temperature- dependent b
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Enhanced PMD numerical model (contd..)

= Segment length h_
= Using fixed value for h_ results
in artificial periodicity in
spectral domain

= Could be avoided by making h_
a Gaussian variable

s Illustration

= Simulation parameters
N=100; b=0.7 ps/Nkm

4 segments with time-

dependent ¢

h : 1 km fixed value (top f1g) |
Gaussian values (bottom fig) = .
mean: 1 km 160
variance: 20 % of mean 10

200
1535 1540 1545 1550 1555 1560 1565

Wavelength (nrm)

- ' _Ir_nli_‘olrmation and " s _ )
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Enhanced-model validation

= Validate the model by comparing the simulation results with the
measured results on the 7 links used in measurements
= Model accuracy metrics
= Mean DGD (time and wavelength averaged DGD) value
= Goodness of Maxwellian PDF fit to the simulated DGD data
= Goodness of Laplacian PDF fit to the simulated DGD time

derivative data
= Laplacian parameter value
= Decorrelation time and bandwidth

= Overall appearance of the DGD colormap

o Mg, &
= — Telecommunication . : -
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Enhanced-model validation: Single-span link 1

Temperature pI'OﬁlC > ! . Raw!f hourl‘_!v air te!rnpera?:ure

@
=

N=500 per span; Time-invariant ‘b’ Foo }i- |
Sampling interval: EpY .
3 hrs (simulations); 2 hrs 55 min (measurements) £z |
Model free parameters To—1L 1 oo e W w
. . . . . Filtered h ly air t t
Proportionality | Number of | Relative filter Gaussian o ! ! ' ere; ou;ry = ;emper;a e ! !
constant time-varying bandwidth std. deviation g o0
k (radians/°F) sections parameter (radians) g
0.2 4 0.001 /22 "o 1i0 zio 3i0 4i0 5i0 ﬁil) ?io sio 90
Time {Days)

From Measurements

B
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Enhanced-model validation: Single-span link 1

Simulated normalized DGD hlstogram in linear and log scales

*********************************************************

—_— I'u'laxwelllan Flt
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10
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o i i i i
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DGD f MeanDGD DGD /f Mean DGD

Slmulated DGD tlme derlvatlve hlsto= ram in linear and log scales

I Lapla[:lan Flt
|:| Slmulated At Hlstogram E

Simulated ax” Histogram
Laplacian Fitin Log Scal

=]

-1 0.8 0.6 0.4 0.2 1] 0.2 0.4 0.6 0.8 1
Ax [psihr)

Mean DGD from simulations within 1 % of the value from measurements
Laplacian parameter: from simulations 8.7 hr/ps; from measurements 7.5 hr/ps
Decorrelation time: from simulations 4 days; from measurements 4.6 days;
Decorrelation BW from simulations within 30 % of the value from measurements
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Enhanced-model validation: Two-span link 1-2

Temperature proﬁle | 100 Raw, interpolated air temperature

N=500 per span; Time-invariant ‘b’ for each span ¥ o
Sampling interval: £ w0
20 min (simulations); 23 min (measurements) AT VATH T SRS TR TS
Model free parameters sog—————— Eed @ W % W
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k (radians/°F) sections parameter (radians) £
0.11 8 0.08 w/135

From Simulations
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Enhanced-model validation: Two-span link 1-2

Slmulated normahzed DGD hlstogram in linear and log scales

4

10

E — I'I.I'Iaxwelllan Fit
10 SESEEEReeeE |:| Slmulated DGD Hlslugram

10"

- Simulated DGD Histoqg mn in Log Scale
23 —— Maxwellian Fitin Log Scale

L1} 0.5 1 1.5 2 2.5 3 o 0.5 1 1.5 2 2.5 3
DGD f MeanDGD DGD 7 Mean DGD

Simulated DGD time derivative histogram in linear and log scales

— Laplaclan Flt
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10 a8 €5 e -2 L1 2 4 [ a8 10
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Mean DGD from simulations within 2 % of the value from measurements
Laplacian parameter: from simulations 0.69 hr/ps; from measurements 0.6 hr/ps
Decorrelation time: from simulations 1.66 hours; from measurements 1.53 hours;
Decorrelation BW from simulations within 10 % of the value from measurements
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nhanced-model validation: Three-span link 1-2-3

Temperature proﬁle_> R T ! Raw!, interpo;ated air!tempera!ture !
. . . T 80l i i " i i
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nhanced-model validation: Three-span link 1-2-3

S1mu1ated normalized DGD histogram in linear and log scales

— I'I.I'Iaxwelllan Fit
1 |:| Slmulated DGD Hlslugram &
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Slmulated DGD time derivative h1st0gram in linear and log scales

— Laplal::|an Fit
1 Slmulated AT Hlstogram

ulated Ax Histogram in Log Scale
lacian Fit in Log Scale

.
10 15 Z0o - -
Ax” (psihrn) ax (pshr)

= Mean DGD from simulations within 3 % of the value from measurements

= Laplacian parameter: from simulations 0.35 hr/ps; from measurements 0.38 hr/ps
s Decorrelation time: from simulations 1.33 hours; from measurements 1.83 hours;
m  Decorrelation BW from simulations is same as the value from measurements
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Enhanced-model validation: Summary

Free parameters of the model Percent difference between measurements and simulations
Constant . . Gaussian .
Link k #szrt'ir:e_ fﬁte;?té\@/ standard Mean L;gran%;nr Decorrelation | Decorrelation
configuration ying Deviation DGD P time bandwidth
(radians/ °F) | sections | parameter (radians) o

Link 1 0.2 4 0.001 /22 1% 14 % 13 % 30 %
Link 2 0.2 4 0.001 /48 5% 7 % 4.5% 10 %
Link 3 0.2 4 0.002 n/120 5% 10.5 % 11 % 15%
Link 1-2 0.11 8 0.08 n/135 2% 13 % 8 % 10 %
Link 2-3 0.1 8 0.08 n/120 3% 3% 23 % 0%
Link 1-3 0.08 8 0.08 /120 1% 12.5% 13 % 0%
Link 1-2-3 0.15 12 0.08 /90 3% 8% 27 % 0%

= Conclusion
= Enhanced-model reproduced very well the temporal and spectral
characteristics of DGD observed from the measurements
= Need for a narrow LPF for single-span links should be further
investigated
= Enhanced-model can be used to predict first-order PMD outage
rates on long-haul optical fiber links

= — Telecommunication 1 - -
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rate variation with link length

i Simulation stuay ot Tirst-oraer PMD outage

= Objective was to study the variation of Laplacian parameter,
and thereby the first-order PMD outage rate with link length

= Simulations on two-span (190 km), four-span (380 km), five-
span (475 km), seven-span (665 km), nine-span (855 km) and
eleven-span (1045 km)

= Single temperature profile, from the 34-day measurement
period of link 1-2-3

= PMD coefficients of the 3 single-span links (b1, b2, b3) cycled
through for multi-span links. Ex: five-span link b1-b2-b3-b1-b2

= Valuesofh , o, and ¢, for all the links were derived from a
single set of values used for the eleven-span link

Model free parameters

Proportionality
constant
k (radians/°F)

Number of
time-varying
sections

Relative filter
Bandwidth
parameter

Gaussian
std. deviation
(radians)

0.15

4 per span

0.08

7t/90 to ®/120

Technology Center
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& ‘University of Kansas

31



Simulation study of first-order PMD outa?_e .
in

rate variation with link length: Two-span
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Simulation study of first-order PMD outage

Time {Days)

rate variation with link length: Four-span link
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Simulation study of first-order PMD outa?_e
rate variation with link length: Five-span link
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Simulation study of first-order PMD outage

Sampling interval: 10 min

Gaussian std. deviation: /105 radians o}
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rate variation with link length: Seven-span link
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Sampling interval: 10 min
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Simulation study of first-order PMD outage

rate variation with link length: Nine-span link
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Simulation study of first-order PMD outage rate
variation with link length: Eleven-span lin
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Effect of under-sampling

-] T

Generalized exponential PDF: 71

o v v L]

pll) = ——— exp | — —
hiz VBoT(2) p( Vo ) i
v =1 — Laplacian i

v =2 — Gaussian
v =00 — Uniform ozl

¥ bl ety
(=] (=]
= th

o
La
T

= Under-sampling results in non-Laplacian PDF for DGD time
derivative: first Gaussian and eventually uniform PDF

= The five-, seven-, nine- and eleven-span cases discussed before
were only slightly under-sampled

= The actual a values for those cases would be slightly smaller
than the ones reported

o Mg, &
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a vs. Link length

0.55

<A L & =

=
P

Laplaci an_param eter a (hr/ps)
[ ]

0.15

=
—

+ Laplacian Parameter from Simulations
— Curve fit

___________________________

Link Length (km)
where A =95 km-hr/ps

-------------------------

0.05
200

Link Length {kmy}
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Variation of Laplacian parameter with link length

1
Rout = 5 fAz (ATth)
o

Substituting A

o=
Link Length (km)

Link Length (km)
2A

Rout = fAr (ATth )

From the expression of Maxwellian PDF,

ﬁ Arthz ]

_

32 At [n<A >2

fAT(ATth): 2 th 3 C E
o <AT>

<At> 1s the mean DGD of the link

For the special case of equal span lengths,

Number of spans
Rout = 5 fr (AT th )
& ‘University of Kansas 40



First-order PMD outage rate variation with
link length: Example scenario

R

out

4000 vs. Link length in linear scale

Consider the following scenario: %) SRS S SN N S S S S’
= Bit rate = 40 Gbps= bit period = 25 ps o - — RxIDGD Thweshold 028 ps | i /]
= Link PMD coefficient ‘b’ = 0.1 ps/\/km 5000 |-~ e, f .......
= Span length = 80 km; assume equal —_—
length spans; constant A = 80 km-hr/ps *
= Two receivers: L
Rx1 DGD threshold: 6.25 ps o

RX2 DGD threshold: 833 ps % 21;0 au;o ﬁl;o- 3';0 10;30 12|oo 14ioo 1600

Link length {kmj}

-
=
=
=

Rout (1/year)

10 o vs. Link length , ROut vs. Link length in log scale
10 T T T T
2
T 1 R S S o Y o s T SR —
=10
d_ 100 ____________________________________________________________________ —
g
= =
£ 10 @ : . . : : : :
= ; 105 oot i A i —— Rx1 DGD Threshold = 6.25 ps | ___
=t - H H i | == Rx2 DGD Threshold = 8.33 ps
= = i i i i i
g & : : : :
g 11 J RS AR U S S S -
— 10 H
10 e bbb -
107 I 1 1 1 I 1 1
0 200 100 600 800 1000 1200 1400 1600 10° : : : : :
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First-order PMD outage rate variation with

link length: Example scenario

Rx1 DGD R Mean time Outage Rx2 DGD Rout Mean OIOuta_ge
- t : time uration
Link | Mean o threshold / | for Rx1 between | duration | threshold /) - for Rx2 -} - o v T
length | DGD outages T Mean (Outages . out
(km) 09) (hr/ps) Mean (Outages out DGD - outages | (minutes)
P DGD per year) (minutes)
200 1.41 0.4 4.42 777 x 10-6 mlllggr‘ﬁums 5.91 5.89 5.7 x 10-14 Never 7 days
9 months 6.15 4.17 1.6 x10* Few 4.4
400 2 0.2 3.13 1.38 Centuries
600 2.45 0.13 2.55 71.1 5 days 6.30 3.4 0.2 5 years 4.65
18 hours 6.43 2.95 6.96 1% 4.66
800 2.83 0.1 2.21 489.15 mont2hs
1000 3.16 0.08 1.98 1517 6 hours 6.54 2.63 56.7 6 days 4.72
1
1400 374 0.06 167 5310 1ha(§lLﬂ"S/2 6.76 2.23 598 15 hours 4.83
1600 4 0.05 1.56 7743 1 hour 6.86 2.08 1231 7 hours 4.88
= Special case
= If the ratio of DGD threshold and mean DGD 1s maintained
constant as link length increases, then
R oyt < +/Link Length (km)
: ' - Irlltolrmation and " o
Z — Telecommunication : :
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Conclusions

= The proposed PhD work has been successfully completed
leading to some very interesting results
= The results were achieved by following a 3-step process
= simplified the first-order PMD outage rate expression

= enhanced the basic PMD numerical model to include the temporal
component that would accurately model the PMD characteristics

= did a simulation study using the enhanced-model and the simplified
expression to predict outage rates on long-haul optical fiber links

= The study showed that the Laplacian parameter is inversely
related to link length

= The first-order PMD outage rates increase monotonically with
link length

= idecommunican &
= — Telecommunication _ - -
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Future work

= Ample scope for future work
= Use the model to do higher-order PMD outage analysis

= Use multiple temperature profiles corresponding to different
locations along a long-haul link in the simulation and study the
impact on the results reported

= Study why the single-span links needed a much narrower filter than
the multi-span links

= [f long-term access to long-haul optical fiber links 1s available,
verify the results through measurements

= Make the number of segments per span having a time-variant ¢,
component a uniform or Gaussian variable and study its impact on
the results reported

= Many other variations to the model could be studied

= — Telecommunication . - -
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