
Computational Model for Re-entrant Multiple

Hardware Threads
By

Rakhee Keswani

Bachelor of Engineering

Electronics and Communication Engineering

Osmania University, Hyderabad, INDIA, 2002

Submitted to the Department of Electrical Engineering and Computer Science and the

Faculty of the Graduate School of the University of Kansas

in partial fulfillment of the requirements for the degree of

Master of Science

Thesis Committee

 Dr. David Andrews

s

 Dr. Perry Alexander

 Dr. Daniel Deavours
 Chairperson

 Dr. James Stile
Date Accepted:

ABSTRACT

One of the challenges faced by the embedded and real-time system designers is to

meet the system requirements rapidly and with low cost. An ideal way to meet these

requirements is to use commercial off-the shelf components (COTS). Creating COTS

components that are reusable in a wide range of applications is difficult. Custom

components made available by reconfigurable devices typically achieve higher

performance than COTS components but at higher development cost. However, a

large obstacle in realizing the potential advantages of reconfigurable components is

that programming these devices is still difficult. A high level-programming model is

needed that abstracts the FPGA and CPU components available in the hybrid chips.

The multi-threaded programming model has been developed in this thesis as a

convenient way to describe embedded applications and has many ideal properties that

may allow FPGA resources to be more fully utilized. This report will answer the

question of how to map a threaded programming model onto a computational model

for modern FPGAs.

© Copyright 2005 by Rakhee Keswani
All Rights Reserved

Dedicated to my family

ACKNOWLEDGMENTS

I would like to thank Dr. Daniel Deavours, my advisor and committee chair,

for providing guidance during the work presented here. I would also like to

thank Dr. Perry Alexander and Dr. James Stiles for serving as members of my

thesis committee.

I would like to thank my family, for their support and encouragement during

my Masters. I am grateful to Sweatha Rao for her valuable suggestions and

support in the implementation of this project. I would like to convey special

regards to my friend Aparajitha Rachapudi for all the support she extended. I

would like to take this opportunity to thank Shalini Sodagam for helping me

out with the formatting of this report. Finally, I would like to thank my

roommates and friends for making my stay in Lawrence fun-filled and

memorable.

Table of Contents

1 Introduction 1
1.1 Objective 1
1.2 Approach 3

2 Background and Related Work 5
2.1 Handel-C 6
2.1 Streams-C 9
2.3 ECL 11
2.4 JHDL 14

3 Virtex-II ProTM Platform FPGAs 20
3.1 Achitecture: Array Overview 20
3.2 Summary of Features 22

4 Computational Model 23
4.1 Simple Transformations 24
4.2 Routing Transformations 25
4.3 Dual Transformations 27
4.4 FIFO Transformations 32

5 Factorial 34
5.1 Factorial Algorithm 34
5.2 Model of Computation Implementation 35
5.3 Model of computation: Building Blocks 37

 5.3.1 Examples of Simple Transformations 37
 5.3.2 Examples of Routing Transformations 41
 5.3.3 Examples of Dual Transformations 43

5.4 Scheduling and Control Logic 49
6 Fibonacci 51

6.1 Fibonacci Algorithm 51
6.2 Model of Computation Implementation 52
6.3 Program of Computation: Building Blocks 56

 6.3.1 Examples of Simple Transformations 56
 6.3.2 Examples of Routing Transformations 57
 6.3.3 Examples of Dual Transformations 59

6.4 Capacity and Scheduling 69

 i

7 Results and Future Work 71
7.1 Simulation Results 71
7.2 Synthesis Report 73
7.3 Conclusion and Future Work 76

 Bibliography 77

 ii

 List of Figures

Figure No.

Figure Name
 Page No.

1 FPGA Architecture 20
2 Simple Transformation 24
3 VHDL Pseudo Code, Routing Tansformation 25
4 Routing Transformation 26
5 VHDL Pseudo Code,Merge Transformation 26
6 Merge Transformation 27
7 General form of Dual Transformation 28
8 Linked List Example 30
9 FIFO Trnsformation 33
10 Factorial in C 34
11 Model Of Computation Factorial 35
12 Is_greaterthan_2 38
13 VHDL Pseudo Code,Is_greaterthan_2 38
14 Decrementer 39
15 VHDL Pseudo Code, Decrementer 39
16 Multiplier 40
17 VHDL Pseudo Code, Multiplier 40
18 Multiplexer 41
19 VHDL Pseudo Code, Multiplexer 41
20 Demultiplexer 42
21 VHDL Pseudo Code, Demultiplexer 42
22 Call-Return Block 43
23 Single-Port Distributed RAM 44
24 Call-Return Block(Call Only) 45
25 Call Only 45
26 Call-Return Block(Return Only) 46
27 Return Only 46

 iii

28 Call-Return Block(Both Call and Return) 47
29 Both Call and Return 47
30 Call-Return Block 48
31 Fibonacci in C 51
32 Model of Computation Fibonacci 55
33 Adder 56
34 VHDL Pseudo Code,Adder 57

35
VHDL Pseudo Code,Non-Blocking Priority
Router 58

36 Non-Blocking Priority Router 59
37 Communication Block 60
38 Communication Block(Request Only) 60
39 Request Only 61
40 Communication Block(Release Only) 61
41 Release Only 62
42 Both Request and Release 62
43 Communication Block 63
44 Send-Receive Block 64
45 Status Bits 65
46 Send-Receive Block(Send Only) 66
47 Send Only 66
48 Send-Receive Block(Receive Only) 67
49 Receive Only 67
50 Both Send and Receive at the Same Mailbox 68
51 Send-Receive Block 69
52 Breadth-First Search 70
53 Depth-First Search 70
54 Summary of Synthesis Report, Factorial 74
55 Summary of Synthesis Report, Fibonacci 75

 iv

 List of tables

Table Number

Table Name

Page Number

 1 Factorial Results 72

 2 Fibonacci Results 73

 v

Chapter 1

 Introduction

A primary requirement for many computing systems is to process large quantities of

data in the minimum time with minimum levels of power consumption.

Reconfigurable computing offers greater performance advantages over commodity

processing elements in the high-performance computing arena. However, a large

obstacle in realizing these potential advantages is that programming these devices in

such a way as to maximize the usage of available resources is still difficult. Today’s

high end FPGAs offers over 120,000 logic cells, 500 18x18 multipliers and 1200 I/O

pins and multiple RISC processor cores [1][8]. The next generation of FPGAs will

offer even greater number of resources. The outstanding issue is how to use these

resources efficiently to solve various engineering problems.

1.1 Objective

One of the traditional uses of reconfigurable devices is as a co-processor. The

majority of the general-purpose operations occur in the CPU and special instructions

such as loops are executed on FPGAs. With the increase in size and complexity of the

FPGAs, their capabilities also increase. The FPGAs available in today’s market can

perform more than just executing simple instructions and loops.

 1

The high level of integration provided by todays processing technology has brought

new challenges in the design of digital systems, where entire systems consisting of

hardware and software are being integrated into single systems-on-chip. This trend

challenges EDA tool developers to provide tools that support the development of such

systems and provide the productivity improvements required to design such systems

in a cost-effective manner. Verilog and VHDL work very well for hardware

implementation flows but with the increase in system complexity there arises a need

for a new design language. Now the question arises if HDLs cannot work efficiently

then can the programming languages be used? But even the use of programming

languages has its own drawbacks. First, hardware circuits can execute operations with

a wide degree of concurrency. Conversely, software-programming languages like

C/C++ were conceived for uni-processor sequential execution. Second, detailed

timing of the operations is very important in hardware, because of performance and

interface requirements of the circuit being described. On the other hand, most

programming languages do not support timing constructs. Over the last decade, a few

research groups have tried to ease the mapping of hardware models in programming

languages into corresponding HDL models.

High-level languages (usually a variant of C or C++) are being used as tools

for abstracting details and for rapid development of programs that are implemented in

FPGAs. Examples include Streams-C [2], Esterel-C [3] and Handel C

[4][12][13][14]. All these languages try to help software engineers in applying their

skills across the CPU/FPGA boundaries. Unfortunately, current hybrid programming

 2

models are still immature. What is lacking is a technology that allows for high levels

of concurrency of codes with dynamic control structures such as message passing and

blocking I/O [7][10][11].

The threaded programming model has emerged as a mechanism for handling

the interactions of concurrent, lightweight computations, and has been met with great

acceptance, as is demonstrated by the wide use of Pthreads [6], and new commodity

CPU hardware support for multi-threading. The research described in this thesis

addresses the question of how to efficiently map a threaded programming model onto

a computational model for modern FPGAs.

1.2 Approach

Instead of issuing a command from the processor to execute a special instruction, a

sequence of instructions, or a loop, in our approach the processor may issue a

command to the co-processor to start executing a hardware thread. The design is re-

entrant; so multiple threads can be executed simultaneously. Hardware threads can

create more hardware threads, or they could communicate with the processor to start

new software threads.

While there are many topics of interest that we could discuss, we focus on the

core components that enable this new computational model. The remaining thesis is

organized as follows. Chapter 2 discusses background and related work. Chapter 3

describes the Virtex II pro FPGA family that has been used to implement a prototype

 3

of our approach. Chapter 4 discusses the model of computation and the components

that make up this model. In Chapter 5 and 6 we describe implementation of Factorial

and Fibonacci respectively. In Chapter 7 we discuss the results and future work that

can be done.

 4

Chapter 2

Background and Related Work

Before attempting to synthesize hardware from a programming language like C or

C++, we need to extend the semantics by adding additional semantics. In particular,

concurrency, reactivity, communication mechanisms, and event handling semantics

need to be added. Also, a synthesizable subset of the language needs to be defined,

together with synthesis semantics for programming language constructs. With these

enhancements, it is possible to create C/C++ descriptions of hardware at the well-

understood RTL and behavioral levels of abstraction, providing an opportunity to

leverage existing, mature hardware-synthesis technology that has been developed in

the context of HDL based synthesis to create a C/C++ synthesis system. In this

Chapter we describe some of the extensions of C and Java.

Over the last decade, a few research groups have tried to ease the mapping of

hardware models in programming languages into corresponding HDL models. Most

approaches include both extended and restricted programming language constructs.

Extensions are needed to express concurrency, structural information and various

other types of constraints such as the timing constraints. Restrictions are motivated by

avoiding constructs with no hardware meaning such as print statements, as well as

avoiding constructs whose translation into hardware is difficult. Giving the required

extensions to C various languages have been defined such as HARDWAREC,

CONES, SYSTEMC [16], ECL, HANDLE-C, STREAMC, BACH-C and so on.

 5

HARDWAREC is a fully synthesizable language with a C-like syntax and a cycle-

based semantic. It doesn’t support pointers, recursion and dynamic memory

allocation. CONES from AT&T Bell Laboratories is an automated synthesis system

that takes behavioral models written in a C-based language and produces gate-level

implementations. Here, the C model describes circuit behavior during each clock

cycle of sequential logic. This subset is very restricted and doesn’t contain unbounded

loops nor does pointers. SYSTEMC support a mixed synchronous and asynchronous

approach implemented as a C++ library. Other extensions include ECL from Cadence

based on C and Esterel, HANDLE-C and BACH-C originally based on OCCAM.

This chapter discusses the mechanisms of HANDLE-C, STREAMSC, ECL

and JHDL.

2.1 HANDEL-C [4][12][13] [14]

Handel-C is a programming language developed by Ian Page, Programming Research

Group (Oxford University/UK) and designed for compiling programs into hardware

images of FPGAs or ASICs. It is basically a small subset of C, extended with a few

constructs for configuring the hardware device and to support generation of efficient

hardware. It comprises all common expressions necessary to describe complex

algorithms, but lacks processor-oriented features like pointers and floating point

arithmetic. The programs are mapped into hardware at the netlist level, currently in

xnf or edif format. Handel-C is to hardware (gates) what “C” is to micro-assembly

 6

code. The language is designed around a simple timing model that makes it very

accessible to system architects and software engineers.

Highlights

• High-level language based on ISO/ANSI-C for the implementation of

algorithms in hardware.

• Allows software engineers to design hardware without retraining

• Clean extensions for hardware design including flexible data widths,

• Parallelism and communications

Comparison of Handel-C with VHDL

Comparing Handel-C with VHDL shows that the aims of these languages are quite

different. VHDL is designed for hardware engineers who want to create sophisticated

circuits. It provides all constructs necessary to craft complex hardware designs. By

choosing the right elements and language constructs in the right order, the designer

can specify every single gate or flip-flop built and manipulates the propagation delays

of signals throughout the system. VHDL expects that the developer knows about low-

level hardware and about the gate-level effects of every single code sequence. This

quite easily distracts the designer from the actual algorithmic or functional subject.

 7

In contrast to that, Handel-C is not designed to be a hardware description

language, but a high-level programming language with hardware output. It doesn't

provide highly specialized hardware features and allows only the design of digital,

synchronous circuits. Instead of trying to cover all potentially possible design

particularities, its focus is on fast prototyping and optimizing at the algorithmic level.

The low-level problems are hidden completely; the compiler does all the gate-level

decisions and optimization so that the programmer can focus his mind on the task he

wants to implement. As a consequence, hardware design using Handel-C resembles

more to programming than to hardware engineering.

Applications for Handel-C

Handel-C enables concurrent hardware and software application design within a

common C language environment. Celoxica’s rapid hardware prototyping capability

offers an unparalleled ability to design and build fully optimized applications, thus

boosting performance and reducing costs. This allows software engineers to reduce

development complexity and compress the time-to-market by directly participating in

the hardware design process. A number of recent projects developed under Handel-C

illustrate the language’s wide applications fit.

• Internet Security—DES encryption algorithm in hardware for SSL

acceleration

• Digital Music—MP3 decoding in reconfigurable hardware

 8

• Internet Telephony—Voice-over-IP phone implementing H.323 and TCP/IP

in hardware

• Image Processing—Accelerating complex image processing algorithms in

FPGAs

2.2 STREAMS-C [2]

The Streams-C compiler synthesizes hardware circuits for reconfigurable FPGA-

based computers from parallel C programs. The Streams-C language consists of a

small number of libraries and intrinsic functions added to a synthesizable subset of C,

and supports a communicating process programming model. The processes may be

either software or hardware processes, or the compiler manages communication

among the processes transparently to the programmer. For the hardware processes,

the compiler generates RTL VHDL, targeting multiple FPGAs with dedicated

memories. For the software processes, a multi –threaded software program is

generated.

General Overview

The concept of stream-based computation is a fundamental formalism for high

performance embedded systems, which is characterized by streams of data produced

at high rate The Streams-C language, supports this kind of system with minimal

 9

number of language extensions and library callable from a C program. The compiler

targets a combination of software and hardware.

For computation occurring in hardware, the compiler generates RTL VHDL

for a target FPGA board containing multiple FPGAs, external memories, and

interconnects. The language extensions, such as declaration for a process or stream,

allocate resources on the board for these objects. These extensions allow the

programmer to allocate registers on an FPGA and define register bit lengths, assign

variables to memories; define concurrent processes; define stream connections

between processes; and read/write streams to communicate data between processes.

The processes operate asynchronously and synchronize through stream operations,

which may occur within the body of the process. A distributed memory model is

followed, with local state belonging to each process and inter-process communication

via streams. The extensions include mapping directives to give the applications

developer control over the mapping of processes to hardware components and of

streams to communication media on the target application board.

A hardware streams library has been built for the Annapolis Microsystems

Wildforce accelerator board. The compiler, based on Napa C compiler and Malleable

Architecture Generator (MARGE), synthesizes hardware circuits from a C-language

program. Although the target is a synchronous set of circuits on multiple

communicating FPGAs, the C programmer does not have to be concerned with

synchronizing state machines, or other hardware timing events. The compiler

generated state machines control sequencing and loops. The hardware streams library

 10

encapsulates the data flow synchronization between stream reader and writer. The

combination of compiler –generated computation nodes with the hardware streams

library allows applications developers to target FPGA boards from a high level

concurrent language.

A software library using POSIX threads provides concurrent processes and stream

support in software. Thus the software libraries support a dual function: when all

processes are mapped to software, the system provides a functional simulation

environment for the parallel program. When processes are mapped to a combination

of software and hardware, the software libraries are used for communication among

software processes and between software and hardware processes. Hardware libraries

are used for communication among hardware processes and for the hardware side of

communication to software processes.

2.3 ECL: Esterel-C Language [3]

The ECL (Esterel-C Language) project is a system-level specification research project

originating at Cadence Berkeley Laboratories. Luciano Lavagno, Roberto Passerone,

and Ellen Sentovich developed ECL. ECL is both a language and a compiler. It is

intended for system-level specification of communication blocks; it supports

asynchronous and synchronous communication blocks with a mix of control and data

parts, and implementation in a mix of hardware and software.

 11

Overview

The basic syntax of an ECL program is C-like, with the addition of the module. A

module is like a subroutine, but may take special parameters called signals. The

signals behave as signals in Esterel or VHDL: they carry both “event” presence or

absence status information and a value. An orthogonal, “kernel” subset of Esterel

constructs is provided in ECL to manipulate the signals.

Background

Esterel is a language and compiler with synchronous semantics. This means that an

Esterel program has a global clock, and each module in the program reacts at each

“tick” of the global clock. All modules react simultaneously and instantaneously,

computing and emitting their outputs in “zero time”, and then are quiescent until the

next clock tick. This is classical finite state machine (FSM) behavior, but with a

description that is distributed and implicit, making it very efficient to write,

understands and compile into EFSMs (and hence either software or hardware). This

underlying FSM behavior implies that the well-developed set of algorithms pertaining

to FSMs can be applied to Esterel programs. Thus, one can perform property

verification, implementation

The Esterel language provides special constructs that make the specification

of complex control structures very natural. It is often referred to as a reactive

 12

language, since it is intended for control-dominated systems where continuous

reaction to the environment is required. Broadcasting signals does communication,

and a number of constructs are provided for manipulating these signals and

supporting waiting, concurrency and signal pre-emption (e.g., a wait (signal), parallel,

abortion and suspension). The Esterel compiler resolves the internal communication

between modules, and creates a C program implementing the underlying FSM

behavior. A sophisticated graphical source-level debugger is provided with the

Esterel environment. While Esterel only provides a few simple data types, one can

create and use any legal C data types; however, this is separate from the Esterel

program, and must be defined separately by the designer. Pure C procedures and

functions can be defined by the user and called from an Esterel program, but again

definitions and code must be written by hand by the designer. ECL automates this

task, by automatically generating all the required declarations and definitions (“glue

code”).

Key Features

• ECL is a combination of C and Esterel-like reactive statements, giving the

designer a familiar language with a few new constructs to ease the

specification of control.

 13

• ECL nicely handles mixed control/data specifications, with a control portion

that has fully synchronous semantics, and a data portion that has the familiar

C semantics.

• The control portion is equivalent to an EFSM, permitting the use of existing

powerful techniques for optimization, analysis, and synthesis of FSMs. In

particular, logic synthesis and optimization can be applied to reduce size or

improve speed, implicit state exploration techniques can be used for

optimization and functional analysis, and synthesis techniques used to create

implementations in hardware or software.

• ECL compilation involves a choice when splitting the code to the reactive part

(fully synthesizable) and the data part (software-only, and possibly preserving

the form of the incoming code). An ECL prototype compiler is currently

implemented and under test on industrial examples.

2.4 JHDL-Java Based Hardware Description Language [15]

General Overview

JHDL is a language developed with the intent of elegantly embodying the run-time

reconfiguration paradigm in a commonly used programming environment. This

approach allows the user to describe netlist, simulate, and execute full run-time

reconfigurable systems, all with a single Java description. Java is used to implement a

 14

simulation kernel that models hardware execution with a set of classes such as

"Wire", "Synchronous", "Combinational Logic", and so forth. The dynamic

creation/destruction of these objects is exploited to model run-time hardware

reconfiguration. Furthermore, the component classes provide built-in hierarchical

netlisting. Finally, the system is bundled into wrapper classes that can either perform

the computation by running the simulation kernel, or by making device driver calls to

load a corresponding circuit into an FPGA system. Thus, software simulation and

hardware execution are performed with the same piece of code, enabling a true

codesign methodology.

Available appendages to the JHDL circuit model include a set of tools for

debugging, simulating, testing and interfacing to the circuit, both as it exists in

simulation ("in software",) and while the program is executing on an FPGA ("in

hardware.") These appendages interact with the JHDL circuit model through three

well-defined APIs:

• Circuit Structure and Circuit State APIs allow for the creation of netlisters and

other specialized viewers (e.g. schematics, waveforms, memory viewers,

hierarchy browsers, etc.)

• Simulator APIs allow tools to control execution of the simulator (for both

simulation and hardware execution) as well as receive key feedback from the

simulator.

 15

These features allow designers to quickly and easily design, debug and deploy custom

configurable computing machine (CCM) applications -- either a stand-alone (no

computer interface), or with an accompanying runtime user interface (UI.)

JHDL is an exploratory attempt to identify the key features and functionality

of good FPGA tools. The design of an FPGA system has three major arenas:

• The structure or organization of the circuits.

• The layout of the circuits.

• The interface of the FPGA circuits with the host application software.

All traditional FPGA tools present some method for designing the circuit

structure. A few of these also permit the user to perform the layout of the circuit;

more often, circuit layout must be performed with a separate, non-integrated tool. But

almost no tools provide a way to naturally interface the running hardware platform

with the software running on the host machine. This last issue is important: FPGA-

based systems typically operate in tandem with a general-purpose host

microprocessor and it is important to simulate the entire system, including the host

computer system and its application software in conjunction with the FPGA design to

ensure that the entire application works as desired.

 16

Features of JHDL

In its current state JHDL includes:

• a library that supports Xilinx 4K, Virtex, and Virtex II series devices.

• a graphical debugging tool that allows designers to simulate, debug and

hierarchically navigate their designs. This tool can display a schematic view

annotated with simulation or execution data, provide a waveform view of any

desired signals, and allows the designer to invoke any public methods

implemented by the circuit class (via Java reflection).

• a schematic generator that can automatically create a high-quality schematic

view of a JHDL description.

• an EDIF 2.0 netlist class that generates output compatible with current Xilinx

M2 place and route software.

• an EDIF parser allowing the user to import externally-generated designs and

modules into JHDL.

• simulation models and transparent run-time support for the Annapolis

Microsystems WildForce platform and the SLAAC1 platform.

• a table-based state-machine generator.

• facilities for instrumenting both simulation and hardware execution to

streamline the circuit verification process.

• a graphical floorplanner (under development) that will be used cooperatively

with the schematic view to manually floor-plan designs.

 17

In addition to these specific design aids, JHDL provides a unified design

environment where a single, user interface can be used for both simulation and

execution. This allows the designer to request either simulation or execution (or a

mixture of the two) using the exact same commands for both. This is a big advantage

for designers because they can learn a single debugging environment that works for

both simulation and execution in contrast with current systems where execution and

simulation environments are distinct and very different. Moreover, this is what makes

it possible to use the same program for both software simulation and hardware

execution.

JHDL Advantages

• JHDL is free, has an open source, is easy to set-up and configure.

• JHDL is based on a popular language and requires no language extensions for

circuit design.

• The CCM control paradigm is CCM independent, adopting the object-instance

construction metaphor from object-oriented languages. The abstraction will

work with any standard CCM.

• JHDL supports both partial and global configuration and demonstration

applications from ATR have been implemented to show this capability.

• A JHDL application description serves as both simulation and execution for

CCM applications. No code modifications are required and switching between

 18

software simulation and hardware execution on the CCM requires the setting

of a single boolean-variable.

Limitations

Currently, JHDL doesn't support all forms of digital systems design that you may be

familiar with. In particular, asynchronous loops are unsupported and, if they exist in

your circuit, will result in a simulator error message to the effect that "xxx not on

propagate list".

 19

Chapter 3

Virtex-II ProTM Platform FPGAs [1]

With the development of Intellectual Property cores now provided by companies like

Xilinx and Altera, and the increased capabilities of FPGA and CPLD devices, entire

systems can now be built on a single silicon die (System on a Chip). The system can

be customized or configurable eliminating the economic disadvantage and

inflexibility associated with ASIC customized designs. The configurable processor is

a highly integrated device, with a dedicated processor and programmable logic on a

single configurable chip. These platforms represent a robust environment for

development of wide ranging and changing application requirements. The Virtex-II

Pro Platform FPGA solution is one of the most technically sophisticated silicon

developed by Xilinx in collaboration with IBM and Mindspeed. [1]

3.1 Architecture: Array Overview

 Figure 1: FPGA Architecture [1] [8]

 20

Virtex-II Pro devices are user-programmable gate arrays with various

configurable elements and embedded blocks optimized for high-density and high-

performance system designs. Virtex-II Pro devices implement the following

functionality:

 Embedded high-speed serial transceivers enable data bit rate up to 3.125 Gb/s

per channel.

 Embedded IBM PowerPC 405 RISC processor blocks with clock speeds up to

 400 MHz.

 SelectIO-Ultra blocks provide the interface between package pins and the

internal configurable logic.

 Configurable Logic Blocks (CLBs) provide functional elements for

combinatorial and synchronous logic, including basic storage elements.

 Block SelectRAM+ memory modules provide large 18 Kb storage elements of

 True Dual-Port RAM

 Embedded multiplier blocks are 18-bit x 18-bit dedicated multipliers.

 Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital

solutions for clock distribution delay compensation, clock multiplication and

division, and coarse- and fine-grained clock phase shifting.

The Virtex-II Pro solution offers a powerful paradigm for complex embedded

systems found in signal processing, industrial control, image processing, networking,

communications and aeronautical applications

 21

3.2 Summary of Features

The important architectural features of this platform are listed below.

• A PowerPC core and programmable logic (FPGA) on the same silicon die

providing the advantageous of:

o reduced area

o numerous programmable I/O ports

o ability to create processor-based architectures with required peripherals

for any specific application

o reduced system development and debug time

• Programmable logic to implement user defined functions.

The advantages for platform FPGA implementations include customizing of

functionality, ease of design reuse and ability to fix design bugs. This reconfigurable

platform is essential for the computational model. We chose Virtex-II pro platform

because of these features and also availability.

 22

Chapter 4

Computational Model

In this Chapter we propose a computational model that addresses the issues outlined

in Chapter one. This new computational model can be easily mapped from a threaded

programming model and tends to both fully utilize the available resources of the

reconfigurable devices and provide high levels of concurrency. This technique will be

able to solve proportionally larger problems at greater speeds.

 A computational model is defined informally as a systematic, coherent

framework for computation. This computational model is made of basic structures,

which we call transformations. There are four basic transformations in our design. A

transformation is roughly analogous to a machine instruction or a set of instructions.

In a high level language, several machine instructions are used to represent a single

statement. Similarly many transformations can be used to construct a high-level

program statement.

The four types or categories of transformations used in this computational

model are: simple transformations, routing transformations, dual transformations and

first-in- first-out (FIFO) transformations. Each of these transformations is described

in detail below.

 23

4.1 Simple Transformations

A simple transformation involves two registers, A and B and some function f: A→B.

The set of functions that f could be is constrained by the capabilities of hardware and

timing requirements. Initially, the active state of the thread is contained in register A.

The thread state that is being used is called the active state.

After some number of cycles (typically one), the transformation f is completed and

the state of the thread is placed in B. Simple transformations make up the primary

data computations in the system.

Figure 2 shows a simple transformation. Example of a machine instruction

analogous to a simple transformation is A= add(A, B), that is the contents of the

register A is updated with the sum of contents of register A and register B. Note that

in general the registers may contain other data that is not acted upon by f.

 B

f

 A

ADD

 A

Figure2: Simple Transformation

 24

Simple transformations may also be state machines that take one or more than

one cycles to complete. When the machine terminates, the thread state is moved from

A to B, and the state machine restarts when a new thread is placed in register A.

Sequences of these simple transformations can be chained together to form a

pipelined computation. Pipelines are the fundamental construct that provides

concurrency within this computational model.

4.2 Routing Transformations

 Routers are structures that route thread states between other transformations. They

are analogous to, but different from, branch instructions in traditional processes.

Figure 4 gives a simple example of a route transformation, which is analogous to the

simple if-then construct. Based on the thread state, the thread is routed one way or the

other. This type of router can be trivially realized as a demultiplexer.

VHDL Pseudo Code

process(input,selector)
begin
 if (selector ='0') then
 output 1 <= input;
 else output 2 <=input;
 end if;
 end process;

 Figure 3: VHDL Pseudo Code, Routing Transformation

 25

 Figure 4: Routing Transformation

A merge is illustrated in Figure 6. This is used at the target destination of multiple

transformations, where several thread flows merge into one. For example, a

subroutine called from several locations would use a merge transformation to

combine multiple source locations into one destination. One implementation of this

kind of transformation is a multiplexer. Depending on the thread state, only one

thread is selected to pass onto the output.

 Figure 5: VHDL Pseudo Code, Merge Transformation

VHDL Pseudo Code

process(input1,input2,selector)
begin
 if (selector ='0') then
 output<= input 1;
 else output<= input 2;
 end if;
 end process;

Output 2

Router

Input

Output 1

 26

Figure 6: Merge Transformation

In general, some threads may attempt to use the same resources at the same time,

causing deadlock, thus some sort of flow-control is necessary. One adequate approach

is to use a simple control mechanism involving a valid bit and pause signal. A valid

bit and a pause signal are associated with all incoming thread. The valid bit defines

whether the signal carries some valid data or not. When a transformation such as

merge cannot accept a thread, the pause signal is asserted. Naturally some kind of

logic must be used for these pause signals, and if used in a cycle, then must be used

carefully to avoid deadlock.

4.3 Dual Transformations

In this subsection we describe the dual transformation, which we believe is a novel

structure, and is the technology that enables us to model re-entrant concurrent

hardware threads with complex control structures found in most programming

languages.

Input 1 Input 2

Router

Output

 27

 Dual Transformations are difficult to describe in abstract, so it is best to

illustrate with several examples.

Examples of Dual transformations

Consider the case in which a thread is going to invoke a function or subroutine (see

Figure 7). To do this the thread is placed at the input of port A. The active thread state

is placed on the stack via a RAM write. At the output of port A, a new thread is

created which contains the parameters to the function and some return information,

such as the address of the RAM where the entry was stored, say r. This is analogous

to the Call machine instruction found o nearly all microprocessors. After performing

the transformations in the subroutine, the thread is routed to the input of port B. The

calling thread is retrieved from the “stack” through a RAM read according to the

value of r. The state of the thread is appended with the function return value and is

emitted at the output of port B. This is analogous to the Return machine instruction.

The thread then continues its path of execution. In this transformation the use of port

A and port B can occur simultaneously.

 28

The mechanism for storing the thread state in the RAM depends on the nature of the

function. If the function requires that the threads be returned in the same order as they

were called, then the RAM can be organized as a simple FIFO. In general, threads

return in a random order irrespective of the order they are called; thus a unique

address must be passed along with the thread state.

 Special logic is required to keep track of addresses of RAM entries that are

empty and to those that are full. One way to do is to assign a flag bit for each address.

The flag bit is set to ‘1’ if the address is free and it is set ‘0’ if the address is full.

There are some disadvantages in this implementation. First, we need extra memory

space to store those flag bits. As the length of the RAM increases the number of flag

bits increases. Most importantly, we must develop a search algorithm to find out

which flag bit is ‘1’ and which is ‘0’. That also requires additional resources, and can

take considerable time unless additional storage is used.

 Another implementation is to use a linked list to manage the free memory

address. Each memory location has a portion of the content allocated for the linked

Input A Input B

 A B

Output A

RAM

Output B

Figure 7:General form of Dual Transformation

 29

list. The freed address is inserted into the head of the list, and requires one memory

write to that address to update the link to the previous head pointer. When requested,

a free address is allocated from the head of the list, which requires a memory read to

update the head pointer. If an allocation and a free request occur in the same cycle,

then the freed address can be used immediately to satisfy the allocation request, and

the linked list remains unchanged. This can be done in one clock cycle and this is the

basic criterion used in designing the Call-Return block.

Here is what a list containing the numbers 1, 2, and 3 might look like Figure 8.

1 2 3

The Overall list is built by connecting the nodes together by their
next pointers. Head

Each node stores one data element

Each node stores one next
pointer The next field of the last

node is NULL

A “head” pointer keeps the
whole list by storing a
pointer to the first node

Figure 8: Linked List Example [5]

Another example of dual transformation that is slightly different than

Call/Return is that instead of returning a single thread with some return information

 30

many threads are returned. One thread invokes the subroutine by placing an active

thread state at the input of port A, it is placed in the stack but instead of one thread

being omitted from the output of port A, a number of threads are emitted. After all

these threads complete they return at the input of port B and only one thread that was

placed on the stack is emitted out and continues its path of execution. This is

analogous to a DOALL statement, which facilitates parallelism.

Another use of dual transformation is FIFO pipes for message passing. Messages are

added through one port of the FIFO and removed from another. Special care must be

taken when considering the boundary conditions, such as when a thread writes to a

full-queue and when a thread reads from an empty queue.

 Another example of dual transformation is in interprocess communication with

mailboxes. A sender can leave a message for a receiver in a particular mailbox

through a RAM write and the corresponding receiver can retrieve its message from

that mailbox through a RAM read. An example of message passing dual

transformation (Send- Receive block) is described in Section 6.3.3.2.

 The blocking I/O transformation is an unusual type of dual transformation.

When a blocking I/O operation is requested at the input of port A, the thread is placed

on the stack and instead of a new thread being issued on the output of port A, an I/O

request is sent. When the reply to the I/O request is received at the input of the port B,

the thread is removed from the stack, combined with the results of the I/O operation

and emitted out from output of port B. That requires some way of associating the I/O

response with the thread ID making the request, which is often the case.

 31

The dual transformations can be used for semaphores. A register within the

semaphore transformation may hold the value of the semaphore and a RAM can be

used to hold the state of blocked thread. A WAIT and POST command corresponds to

threads entering ports A and B. When a thread enters the input of port A it issues a

WAIT command and checks the state of the semaphore in the register. If the

semaphore is free then the thread continues its path of execution. If the semaphore is

in use by some other thread, then the thread is placed on the RAM. The entering of

the thread at the input of port B causes the POST command to be issued and

depending on the return information, a blocked thread is retrieved from the RAM and

emitted at the output of port B.

4.4 FIFO Transformations

The last transformations we discuss are the FIFO transformations. Since the registers

are limited in capacity, it may sometimes make sense to store the thread state in RAM

when it is inactive; i.e. is when it is not being used.

The FIFO transformations just like the route transformations do not change

the thread state. Figure 9 illustrates the FIFO transformations. If a part of a thread is

inactive, that is it does not read or write, it is a waste of resources to carry it further

through various transformations so it is placed in a FIFO and when the other part of

the thread completes its transformations, the inactive part of the thread is removed

 32

from the FIFO and appended back with it. Dual-ported memory allows a thread to be

inserted and removed from the FIFO every cycle.

FIFO transformations in general can be used to avoid deadlock due to

resource limitations and for scheduling purposes. Consider a case where more than

one thread is trying to access a resource. Depending on the priority scheme selected,

one thread can be given access to the resource and the other threads can be placed on

the FIFO. FIFO transformations along with PAUSE signal and VALID bit form the

basis of the control and scheduling mechanism of the computational model. The

priority scheme developed with FIFO transformations is briefly described in Section

6.3.2.

FIFO

Figure 9: A FIFO Transformation

Inactive
thread

 33

Chapter 5

Factorial

In this Chapter, we present a small example, a recursive computation of factorial. We

begin by describing the algorithm in high-level language and then describe the model

of computation.

5.1 Factorial Algorithm [9]

The algorithm is simple but will illustrate a number of features unique to this

computational model. The factorial of a natural number is defined as follows:

⎪
⎩

⎪
⎨

⎧

≥×
=
=

=

− .2
,11
,01

1 nFn
n
n

F

n

N

int fact(int n)
{
 if (n == 0) or (n == 1)
 return 1;
 else
 return (n * fact (n-1));
}

 Figure 10: Factorial in C

34

A naïve implementation of the factorial function is given above and is an example

often used to teach recursion. It is for that purpose that we selected to implement the

factorial function in our computational model.

5.2 Model of Computation Implementation
Input

R1

R5

 Call Ret

C

D1

(-)
M2

D2

(X)

R7

R2

R4 R3

R6

Output

 R - Register
 M - Multiplexer
 C - Comparator
 D - Demultiplexer
 (-)- Decrementer
 (x)- Multiplier

M1

Figure11: Model of Computation Factorial

35

Figure 11 graphically represents a high-level view of our implementation of the

computation for the factorial function. In this section we will describe how it works.

Placing a valid thread on the input line labeled inputdata performs the call to the

function fact. The line inputdata is a bus that consists of data bits and control bits.

The data bits contain the return address information and the value to compute, x and

the valid bit. The line labeled outputdata returns the computation result.

 When a thread enters the module, it first passes through a router; M1,

described in the Section 5.3.2.1.Which thread is chosen by the router depends on the

scheduling policy (blocking priority). Scheduling policies are described in detail in

Section 5.4. Once the thread is emitted from M1, it is placed in a register R1. In the

next cycle, the thread undergoes a test for x Є {0, 1, 2} and the boolean result s is

passed to another router. Depending on the value of s the router routes the thread to

the right (s=0) or to the left (s =1).

 We need to follow two potential execution paths, one when s=0 and the other

when s=1.When s =0 the algorithm is trivial. The value that is returned is nothing but

the same value of computation, x. When s=1, then x > 2 and the algorithm is no

longer trivial. A part of the thread that contains x is passed through a decrementer and

the decremented value is appended to the thread. This thread then enters a dual

transformation and invokes a subroutine call. The databus of the thread is placed on

the RAM and a new thread is emitted out containing return information and the new

value of computation. This process repeats until s=0 and the thread is routed the other

way (left). The thread then invokes the return function. The thread carries some return

 36

information (return address) with it. This return information is used to retrieve the

stored thread. The returned data is passed through a multiplier (x) and the product is

stored in a register R7. This thread again invokes the return function. This continues

until all the threads associated with a value of computation are retrieved, multiplied

and the result obtained. Then the thread containing the result is sent out at the output

port of the model.

5.3 Model of Computation: Building Blocks

The basic blocks in this program are registers, multiplexers, demultiplexers and the

call-return block. Of all these building blocks the call-return block is the most

significant one and allows us to fully implementing recursion. We will discuss each

of these modules in detail in this subsection.

5.3.1 Examples of Simple Transformations

In this subsection we describe some of the examples of simple transformations, which

we used in the Factorial program.

 37

5.3.1.1 Is_greaterthan_2

Is_greaterthan_2 is an example of simple transformations. In this particular example

of factorial it checks if the number is greater than two and outputs a boolean value of

‘1’.

output

>2

datain

Figure 12: is_greaterthan_2

VHDL Pseudo Code

process(input)
begin
if(input='0')or(input='1')or(input='2')then

output <= '0';
 else output <='1';
 end if;
 end process;

 Figure 13: VHDL Pseudo Code, Is_greaterthan_2

 38

5.3.1.2 Decrementer

 Decrementer is also an example of simple transformation. The input is decremented

by one and transformed to the output.

 Figure 15: VHDL Pseudo Code, Decrementer

 Figure 15: VHDL Pseudo Code, Decrementer

 dataout

datain

(- 1)

underflow_error

Figure 14: Decrementer

VHDL Pseudo Code

process(input)
begin
 if(input='0')then
 underflow_error <= '1';
 else output <= input - '1';
 end if;
 end process;

 39

4.3.1.3 Multiplier

 Another example of simple transformations is the multiplier. The two inputs are

multiplied and their product is transformed to the output.

 Output

Multiplier

 Input 2

 Input 1

 Figure 16: Multiplier

VHDL Pseudo Code

 output <= input 1 * input 2;
 Figure 17: VHDL Pseudo Code, Multiplier

40

5.3.2 Examples of Routing Transformations

5.3.2.1 Multiplexers

 Multiplexers are basically selection devices. It is an example of routing

transformations Depending on the thread state, only one thread is selected to pass

onto the output.

 Fi

 Figure 19: VHDL Pseudo Code, Multiplexer

Figure 18: Multiplexer

 Output

Multiplexer

Input 1 Input 2

Selector

VHDL Pseudo Code

process(input 1,input 2,selector)
begin
 if (selector ='0') then
 output <= input 1;
 else output <= input 2;
 end if;
 end process;

 41

5.3.2.2 Demultiplexers

 Demultiplexer is another example of routing transformations. Depending on the

condition the input is routed to one output or another.

 Figure 21: VHDL Pseudo Code, Demultiplexer

 Output 1

Demultiplexer

 Input

Selector

Output 2

Figure 20: Demultiplexer

VHDL Pseudo Code

process(input,selector)
begin
 if (selector ='0') then
 output 1 <= input;
 else output 2 <= input;
 end if;
 end process;

 42

5.3.3 Example of Dual Transformations

5.3.3.1 Call-Return Block

In the factorial program, the call-return block is the most significant block and is an

ideal example for dual transformation. The data placed on the input line of the call is

written on the RAM and a new thread is emitted out containing return information

and the new value of computation. A thread with some return information is placed

on the input of the return function. This return information is used to retrieve the

stored data from the RAM.

 Call Return

 Figure 22: Call-Return Block

As discussed in Chapter 4, an efficient way to implement this design is to implement

the RAM as a linked list. The RAM used in this design is a single port distributed

select RAM.

 The following are characteristics of the Distributed SelectRAM [1]

• A write operation requires only one clock edge.

 43

• A read operation requires only the logic access time.

• Outputs are asynchronous and dependent only on the logic delay.

• Data and address inputs are latched with the write clock and have a setup-to

clock timing specification. There is no hold-time requirement.

These characteristics of the distributed SRAM make it suitable for our design.

 di

Consider the SRAM elements to be the nodes of a linked list. head is a

register pointing to a free element in the SRAM. addr, di and we are the inputs to the

SRAM and do is the output of the SRAM. The SRAM elements are initialized such

that the first element points the second, the second to the third and so on. On system

start up the head register points to the first element of the SRAM.

To simplify the explanation of this implementation, we consider four

scenarios, corresponding to the four possibilities of threads arriving on Ports A and

B.When no thread arrive on A and B, the implementation simply does nothing. The

following figures illustrate a design that is sufficient for the scenario in which there is

only one thread entering the dual transformation, and that thread is issuing a call

instruction.

R/W Port do

 addr

Write Read

we

 Figure 23: Single-Port Distributed RAM

 44

we

 SRAM

di do

addr

Head

call_data

call output address

 Figure 24: Call-Return Block (Call Only)

 call_output_address <= head
addr <= head
di <= call_data
head<= do

 Figure 25: Call only

During the call process a thread is written into the RAM and the address where the

thread is stored is emitted out of the call-return block.

The contents of the head register point towards the element where the thread

is to be stored. Thus, the head register output is latched on the addr port of the

SRAM and also is the output of call function. The data input to the call function is

 45

latched on the di port of the SRAM and the do of the SRAM updates the head

register, i.e., now head points to the next free address.

Figures 26 and 27 illustrate the scenario where a thread enters the dual

transformation, Call-Return Block and invokes a return instruction.

we

 SRAM

di do

addr

Head

 return_data

return_input_address

 Figure 26: Call-Return Block (Return Only)

addr<= return_input_address
return_data<= do
di<=head
head<= return_input_address

 Figure 27: Return Only

During the return process a thread with some return information is placed on the input

of the return function and this information is used to retrieve the stored thread.

 The return_input address is latched on the addr port of the SRAM and the

data read from the port do is placed on the signal return data. The contents of the

 46

head register are latched on the di port and then it is updated with the return input

address.

 The following Figures 28 and 29 describe a scenario where two threads are

entering the dual transformation simultaneously and one of them issues a call

instruction and the other issues a return instruction.

we

 SRAM

di

do

addr

call_data

return_input_address

call_output_address

 Figure 28: Call-Return Block (Both Call and Return)

addr<= return_input_address
return data<= do
call_output_address <= return_input_address
di <= call_data

 Figure 29: Both Call and Return

 47

When both call and return take place at the same time a thread is written into the

RAM and the address is emitted out of the call output port. Simultaneously at the

return output port a stored thread is retrieved.

This is one of the simplest cases of Call-Return. The address from which the

stored thread is retrieved is written into during the call process. Both the call and the

return simultaneously are possible in one clock cycle because of the use of

Distributed Select RAM.

The return_input address is latched on the addr port of the SRAM and the data

read from the port do is placed on the signal return data. The call data is latched on

the di port of the SRAM. Since the recently freed element is written to the call

output address is same as the return input address.

Figure 30 shows the hardware of the Call-Return Block.
return_data

 call_ output_address

0

mux

mux

mux

mux

Head
01

1

0

1
0

1

Head in

Head out

call_data

return_input_ address

we

 SRAM
di do

addr

Figure 30: Call-Return Block

 48

5.4 Scheduling and Control Logic

Deadlocks can be caused when more than one thread competes for the use of a

transformation. Prudent use of FIFO and good capacity planning can be used to avoid

deadlock. In the discussion below, we have assumed that deadlocks occur only

because of capacity limitations but there are many other reasons that cause deadlocks

such as incorrect programming and software faults in the compiler.

 Deadlocks depend on the scheduling policies used in the transformations

particularly the routing transformations. For the factorial example described in

Section 5.2, a scheduling policy is required at the two routers, M1 and M2 where

there is a possibility that more than one thread can compete for its use.

 A round robin strategy would guarantee fairness, but might cause exponential

growth in the number of threads. Another strategy is to give preference to one source

of threads over the other. We have implemented the scheduling in the routers in such

a way that only one thread is given priority and the other thread must wait for the first

thread to run to completion. These routers are called blocking priority routers, since

one thread is given priority over the other and the lower priority thread is blocked.

Another technique to resolve priority is to use non-blocking priority routers. Non-

blocking priority routers use a FIFO to store the lower priority thread. We discuss

this technique in detail in Section 6.3.2.1.

 The Factorial program utilizes the valid/pause signals to manage control flow

between connected transformations and registers. When a transformation or a register

 49

is in use by one thread and another thread tries to access it a Pause signal is asserted

by the transformation to the new thread asking it to hold and wait till it is free to

accept it. If all the transformations are asserting a Pause signal, the system goes into

deadlock.

 50

Chapter 6

 Fibonacci

 In this chapter, we begin with a brief introduction to the Fibonacci algorithm in

Section 6.1 and then proceed to describe the model of computation in Section 6.2 and

the building blocks in Section 6.3.

6.1 Fibonacci Algorithm [9]

Let us suppose that we need to find the fibonacci of a number, x, Fib (x).

The algorithm is recursive and each call to Fib creates two threads and the result of

one thread is communicated to another. Functionally the algorithm is represented as

⎪
⎩

⎪
⎨

⎧

≥+
=
=

=

−− 2.n
1,n 1
0,n 0

21 nn

n

FF
F

In high-level language like C the algorithm is as follows:

int fib(int n){
 if (n <= 2) return 1

 else return fib (n-1) + fib (n-2)
 }

 Figure 31: Fibonacci in C

 51

This algorithm is modeled closely after the recursive definition. Implementation of

the model of computation of fibonacci is more complex than the factorial because the

fibonacci function refers to itself twice.

6.2 Model of Computation Implementation

Figure 32 illustrates the graphical implementation of the model of computation for the

fibonacci program. Placing a valid thread on the input line labeled inputdata

performs the call to the function fib. The line is a bus, which consists of data bits and

control bits. The data bits contain the return address information and the value to

compute, x and also specify whether the thread is valid or not. The line labeled

outputdata returns the computation result.

 When the thread enters the module, it first passes through a blocking priority

router, called BP. Once the thread is emitted from BP, it passes through a non-

blocking priority router(NBP1) and then the selected thread is placed in a register

R1. In the next cycle, the thread undergoes a test for x Є {1, 2} and the boolean result

s is placed to another router. Depending on the value of s the router routes the thread

to the right (s=1) or to the left(s=0).

 If s=1, then neither the value of x nor the value of s are relevant, so they are

simply dropped. For illustration, we show that a register is used to contain the value

1, but in practice, this could be hard coded into that portion of the thread state.

 Next, the thread competes with another thread for the services of another 2-3

router. It is likely that preference is given to this thread. Based on part of the return

 52

information r.dest, the thread is routed to the transformation that issued the call. The

return information ‘r’ is made up of two fields: r.dest and r.index. The router uses

r.dest to route to the calling information. The field r.index may be used by the

calling transformation to look up the calling thread state in a RAM. We’ll discuss this

shortly.

 Backing up to D1, if s=0, then x>2 and the algorithm is no longer trivial.

First, the thread enters a dual transformation to get a communication channel. The

communication block is explained in Section 5.3.3.1. If none are available, the thread

blocks. The dual transformation uses the RAM labeled stk. Once a communication

channel is received, the value of the channel is given by p, and the thread state is

augmented to hold this value. The left port of the dual transformation performs the

function get_pipe_channel ().

 Next, the thread forks into two threads. Note that for illustration we show this

happening in one cycle, but in fact this can be performed in the same cycle that shows

the previous transformation. Now there are two threads with nearly identical states.

We label these threads, left and right based on their position in the figure. The left

thread does not have the value r because analysis shows that the thread does not

return, so r is never referenced, and thus it may be dropped. The thread on the right

does eventually return, so that thread retains the value of r.

 Both threads then perform a subtraction and place the result in a temporary

variable. The value of x is no longer used, so the threads no longer need to maintain

its value. Next, both the threads call fib and pass the parameters x-1 and x-2. The

 53

only state that needs to be in the left stack is the value of p and the states that need to

be stored in the right stack are the values of p and r. On the left, the value r.dest is set

to 1, which is the unique return value for this particular transformation, and the index

of the array in which p is stored is emitted in r.index. When the thread returns, the

value r.index is used to match the return value, stored in t2, with the communication

channel p. A similar event happens to the right, with r.dest set to 2.

 Once the left thread return, the return value (t2) is sent via a mailbox p. Use of

get_pipe_channel () ensures that the channel will be empty. Once the message is

sent, the thread terminates. On the right, the return value is also placed in t2, and then

the thread tries to read the value sent through mailbox p. If no value is sent, the thread

is stored on the stack in location p. Once the message is sent, the dual transformation

emits the thread together with the received message placed in t3. In the next step the

thread releases the communication channel. When that’s complete, the two values t2

and t3 are added. When the addition is complete, the result is stored in t4 and the

value is returned.

 54

i

Figure 32: Model of Computation Fibonacc
55

6.3 Program of Computation: Building Blocks

The basic blocks in this program of computation are registers, multiplexers,

demultiplexers, adders, the call-return block, the communication block, non-blocking

priority routers and the send-receive block. Of all these building blocks the send-

receive block has not yet been discussed and is an ideal example of message passing

dual transformation.

Registers, multiplexers, demultiplexers and decrementers were discussed in Chapter

5.We will discuss the remaining blocks in this subsection.

6.3.1 Examples of Simple Transformations

6.3.1.1 Adder

Adder is an example of simple transformations. The two inputs are added and their

sum is transformed to the output.

Figure 33: Adder

 Output

Adder

 Input 2

overflow_error

Input1

 56

VHDL Pseudo Code

process(input1,input2)
begin
 output_temp <= input1 + input2;
end process;
process(input1,input2)
begin
 if(input1=/’0’)and (input2=/’0’) then
 if(output_temp =’0’) then
 overflow_error<=’1’;
 else overflow_error<=’0’;
 end if;
 end if;
end process;
output<=output_temp;

 Figure 34: VHDL Pseudo Code, Adder with Overflow Error Check

6.3.2 Examples of Routing Transformations

6.3.2.1 Non-Blocking Priority Router

In Chapter 5, we described a scheduling policy where, if more than one thread tries to

access a routing transformation, we give priority to one of the threads over the other

thread. The routing transformation is hence called a blocking priority router. However

this might lead to computational errors. To avoid this kind of error we suggest

another kind of a router, which has a FIFO along with the router. This is called the

 57

non-blocking priority router. In this router the thread that is given the higher priority

is routed to the next transformation and the one thread that has a lower priority is

placed in the FIFO.

The scheduling policy used by us is given in the following VHDL code. Consider the

two inputs of the ROUTER to be input1, input2 and FIFOOUT and the outputs to

be output and FIFOIN.

VHDL Pseudo Code

OUTPUT_Selection:process(select,input1,input2,FIFOOUT)
begin
 case select is
 when "000" =>output<=(others=>'0');
 when "001" =>output<= FIFOOUT;
 when "010" =>output<= input2;
 when "011" =>output<= input2;
 when "100" =>output<= input1;
 when "101" =>output<= input1;
 when "110" =>output<= input1;
 FIFOIN <=input2;
 when "111" =>FIFOIN <=input2;
 output<= input1;
 when others=>NULL;
 end case;
 end process;

 Figure 35: VHDL Pseudo Code, Non-Blocking Priority Router

 58

FIFO

Output

ROUTER

n Fifoout

Fifoin n

n

n
n

Input 2 Input 1

select

FIFO

Figure 3 6: Non-Blocking Priority Router

6.3.3 Example of Dual Transformations

6.3.3.1 Communication Block

 In the fibonacci program, the communication block is one of the most significant

blocks and is a good example for dual transformation. On a request instruction a

channel number is emitted out of request port and on a release instruction a channel is

released.

 59

 Request Release

 Figure 37: Communication Block

This block is similar to the Call-Return Block discussed in Chapter 5.Consider

the SRAM elements to be the nodes of a linked list. head is a register pointing to the

free element in the SRAM. addr, di and we are the inputs to the SRAM and do is the

output of the SRAM. Data is read from the SRAM only when there is a thread issuing

a request instruction. The SRAM elements are initialized such that the first element

points the second, the second to the third and so on. On system start up the head

register points to the first element of the SRAM.

Figures 38 and illustrate the scenario where a thread issues a request and no thread

issues a release.

we

 SRAM

di do

addr

Head

channel number Figure 38:Communication Block (Request Only)

 60

Channel_number<= head
addr <= head
head<= do

 Figure 39:Request Only

During the request process a channel_number is emitted out of the communication

block.The value of the head register points towards the first free element of the

RAM. The head register output is the output of request function. The do of the

SRAM updates the head register, i.e., now head points to the next free address.

Next we consider a case in which no thread requests a channel and one thread

releases a channel. This is shown in Figures 40 and 41.

head

release_channel

we

 SRAM

di do

addr

Figure 40: Communication Block (Release Only)

 61

addr<= release_channel
di<=head
head<= release_channel

 Figure 41: Release Only

 During the release process a thread with some release information is placed on

the input of the release function.The release_channel is latched on the addr port of

the SRAM. The contents of the head register are latched on the di port and then the

content of the head is updated with the release_channel.

In the scenario explained below, two threads enter the communication block

simultaneously. One of the threads issues a request instruction and the other thread

issues a release instruction.

Channel_number <= release_channel

 Figure 42: Both Request and Release

The process for handling this scenario is simple. There is no access to the

RAM. The release_channel becomes the channel_number.

 62

Figure 43 shows the hardware of the Communication Block.

0

mux

mux

muxmux

Head
10

1

0

1

0

1

Head in

Head out

channel data

release_channel

 channel_number

we

 SRAM

di do

addr

 Figure 43: Communication Block

6.3.3.2 Send-Receive Block

In the example of fibonacci design, the most significant block is the Send-Receive

block. This block is used for message passing and is an example of dual

transformations. The function of message system is to allow threads to communicate

among themselves in a more organized way than shared memory. Indirect

communication [6] is one of the ways in which threads that communicate refer to

each other. With indirect communication, the messages are sent to and received from

“mailboxes”. A mailbox is an object into which messages or threads can be placed

 63

and from which messages and threads can be removed. Each mailbox has a unique

identification.

In our design this unique identification is called the channel number and is provided

by the communication block discussed before. Communication is possible between

two threads only if they share a mailbox. The Send and Receive primitive are

defined as follows:

Send (A, message) – Send a message to mailbox A

message=Receive (A) – Receive a message from mailbox A

Send Receive

 Figure 44: Send-Receive Block

 The mailbox is implemented using a Distributed SelectRAM, explained in

Section 6.3.3.1. The mailbox can be empty or full. At the system start-up the RAM

elements are empty and therefore are all initialized with all zeroes. The two least

significant bits of the data written into the RAM are the status bits and describe the

status of the data in the RAM that is whether it is empty or contains a message or

contains a thread. Figure 45 shows the status bits.

 64

 There are three possibilities when a thread reaches the Receive input

with mailbox M: another thread has sent a message and it is waiting in the RAM,

another thread is sending to the same mailbox M in the same clock cycle, or there is

no message in M. If there is a message in M, or if the sender is sending to mailbox M

in the same cycle, then the receiver is emits out r1_o. Otherwise, the active thread

state of the receiver is placed in the mailbox at address M and the status bit set to

11.When a thread sends a message to mailbox at address M, and there is a previously

stored thread then the thread is “awoken,” paired with the message, and emitted out

on bus r2_o. Note that there is a scenario when a thread is emitted out of both r1_o

and r2_o simultaneously. Analysis shows that the there is no output from the send

port.

 Figure 45: Status Bits

 Send Receive

 r1_o

 r_is_i Status Bits

00 – Empty
01 – Message
10 – X
11 - Thread

Msg/Thread

No output awaken thread
r2_o

picknmove thread

 65

Next, we describe the working of the Send/Receive block in detail under the scenario

where there is a sending thread and no receive thread.

we

 SRAM
di
 do

addr

1

0

empty

msg

LSB

 Figure 46: Send-Receive Block (Send Only)

send(s.msg, s.addr)
if (M[s.addr].status == empty) then
 M[s.addr] <= s.msg
 M[s.addr].status <= msg
else if (M[s.addr].status == thread) then
 r2_o.msg <= s.msg
 r2_o.data<= M[s.addr].data
 M[s.addr].status <= empty
else ERROR

 Figure 47: Send Only

During the send process, depending on the status either a message is written

into the RAM for the receiver to receive, or a receiving thread previously stored by

the receiver is awaken, paired with the message and removed from the RAM. If there

 66

is a previously stored message in the mailbox (status bits 01) then an error is

generated, when some other sending thread sends a message to it.

During the receive process depending on the status either a thread is written into the

RAM for the sender to awaken it or a message stored by the sender is retrieved out of

the RAM. This is illustrated in Figures 48 and 49.

we

 SRAM
di
 do

addr

1

0

empty

 thread

LSB

 Figure 48: Send-Receive Block (Receive Only)

receive(r.thread, r.addr)
if (M[r.addr].status == empty) then
 M[r.addr] <= r.thread
 M[r.addr].status <= thread
else if (M[r.addr].status == msg) then
 r1_o.msg<= M[r.addr].msg
 M[r.addr].status <= empty
else ERROR

 Figure 49: Receive Only

 67

If there is a previously stored thread in the mailbox (status bits 11) then an

error is generated, when some other receiving thread sends a thread to it.

Finally we consider the scenario where there are two threads, one sending and another

one receiving.

 send(s.msg, s.addr), receive(r.thread, r.addr)
 if (s.addr == r.addr)
 r1_o.msg <= s.msg
 r1_o.data<= r.thread

 Figure 50: Both Send and Receive at the Same Mailbox

 When one thread is sending a message to a mailbox and another thread is

trying to receive from the same mailbox then the message from the sender is

appended to the receiver input. Note that there is a case when a sending thread has a

message for a mailbox and at the same time a receiving thread is receiving a message

from another mailbox. This case is a complex case and has not been dealt by us. The

implementation of this scenario requires more than one clock cycle, which is not our

criterion.

 68

Figure 51 shows the hardware for the send-receive block.

0

mux

we

 SRAM

addr
 do

di

1

s.addr

1

0

r.addr1

0
empty

msg

1

0

empty

thread

 ux m

mux

mux

 Figure 51: Send-Receive Block

6.4 Capacity and Scheduling

In the Fibonacci program, the number of threads is exponential in the size of x, which

can quickly overwhelm the capacity of modern FPGAs. However, by studying the

behavior and straightforward use of transformations and thread scheduling, we can

easily manage the complexity and maintain high utilization of the system.

 In our example, we have not provided the details for resolving competition

between recursive calls. In particular, the 3-1-merge transformation at the top of the

model needs to be defined. One possibility is a round robin approach, which

 69

guarantees fairness but would employ a breadth-first strategy, and cause an explosion

in the number of threads as shown in figure 52.

 X

X-1 X-2

X-2 X-3 X-3 X-4

 Figure 52: Breadth-first search

 If however, preference is given to one caller, then the computation resembles

more of a depth- first search, making it quite tractable as shown in figure 53.

 X

X-2 X-1

X-2

X-3
 Figure 53: Depth-first search

 To implement the preference, the top router should be augmented with a RAM

to queue threads that it cannot immediately service. This is the non-blocking priority

router discussed before. In this model a fair scheduler is not the most efficient

implementation.

 70

Chapter 7

Results and Future Work

In this chapter, we describe the simulation and synthesis results. The VHDL Code for

factorial and fibonacci is simulated using Modelsim XE II 5.8c and synthesized using

Xilinx ISE 6.3i.

7.1 Simulation Results

Table 1 shows the results from the factorial example. The column named input

indicates the values that are presented to the Factorial program. Note that the

implementation allows for multiple threads to be actively executing at the same time.

In the case where multiple threads were presented, we show the values and the cycle

number in which they start and end the program.

 71

Input

Input Cycle
Number

Output

Output Cycle
Number

2 1 2 3
3 1 6 8
4 1 24 13
5 1 120 18
6 1 720 23
7 1 5040 28
8 1 40320 33
9 1 362880 38
10 1 3628800 43
1,7 1,2 1,5040 3,29
2,10 1,2 2,362880 3,44
1,8,2 1,2,3 1,2,40320 3,5,34
1,10,2,5 1,2,3,4 1,2,120,362880 3,5,21,44

Table 1: Factorial Results

Observations:

The time taken to obtain the factorial of a number is independent of the number of

threads. This is because of the scheduling policy used by us. We opted for blocking

priority in which a new thread is blocked until an old thread has completed its

execution.

Table 2 shows the results for the Fibonacci.

 72

Input

Input Cycle
Number

Output

Output Cycle
Number

1 2 1 3
2 2 1 3
3 2 2 15
4 2 3 25
5 2 5 36
6 2 8 48
7 2 13 75
8 2 21 103
1,2 2,3 1,1 3,4
1,3,5 2,3,4 1,2,5 3,26,41
1,2,4 2,3,4 1,1,3 3,4,29
1,2,5,6 2,3,4,5 1,1,5,8 3,4,61,63
1,2,3,4,5 2,3,4,5,6 1,1,2,3,5 3,4,25,36,50
1,2,3,4,5,7 2,3,4,5,6,7 1,1,2,3,5,13 3,4,30,55,90,124

Table 2: Fibonacci Results

Observations:

We observe that the time taken to obtain the fibonacci of a number is dependent on

the number of threads. This is because of the non-blocking priority scheduling

scheme used by us.

7.2 Synthesis Report

In this section, we present a summary of the resources that it would take to implement

the Factorial program in Xilinx 2vp20ff1152-7 FPGA.

 73

 The following figure gives a summary of the synthesis report.

The following figure gives a summary of the synthesis report when the Fibonacci

program is synthesized for Xilinx 2vp20ff1152-7 FPGA.

Design Statistics
 # IOs:47
Macro Statistics
 # RAM: 1
 # 64x10-bit single-port distributed RAM: 1
 # Registers: 8
 # 10-bit register: 1
 # 12-bit register: 4
 # 16-bit register: 1
 # 48-bit register: 2
 # Multiplexers: 4
 # 2-to-1 multiplexer: 4
 # Multipliers: 1
 # 36x4-bit multiplier: 1

Device utilization summary
Selected Device: 2vp20ff1152-7
 Number of Slices: 179 out of 9280 1%
 Number of Slice Flip Flops: 161 out of 18560 0%
 Number of 4 input LUTs: 289 out of 18560 1%
 Number of bonded IOBs: 46 out of 564 8%
 Number of MULT18X18s: 3 out of 88 3%
 Number of GCLKs: 1 out of 16 6%

Timing Summary
Speed Grade: -7
 Minimum period: 8.877ns(Maximum Frequency: 112.651MHz)
 Minimum input arrival time before clock: 2.689ns
 Maximum output required time after clock: 10.593ns
 Maximum combinational path delay: No path found

 Figure 54: Summary of Synthesis Report, Factorial

 74

The following Figure 55 gives a summary of the synthesis report for the Fibonacci

program.

Design Statistics
IOs: 14
Macro Statistics
RAM: 4
128x14-bit single-port distributed RAM: 3
64x22-bit single-port distributed RAM: 1
Registers: 16
 # 13-bit register: 4
 # 14-bit register: 6
 # 19-bit register: 4
 # 20-bit register: 1
 # 25-bit register: 1
Adders/Subtractors: 1
 # 5-bit adder: 1
Comparators: 1
 # 6-bit comparator equal: 1

Device utilization summary
Selected Device: 2vp20ff1152-7
 Number of Slices: 1088 out of 9280 11%
 Number of Slice Flip Flops: 346 out of 18560 1%
 Number of 4 input LUTs: 1762 out of 18560 9%
 Number of bonded IOBs: 12 out of 564 2%
 Number of GCLKs: 2 out of 16 12%

Timing Summary
Speed Grade: -7
 Minimum period: 7.454ns (Maximum Frequency:134.156MHz)
 Minimum input arrival time before clock: 7.728ns
 Maximum output required time after clock: 8.960ns
 Maximum combinational path delay: 8.879ns

 Figure 55: Summary of Synthesis Report, Fibonacci

 75

7.3 Future Work

 In the summary of the synthesis report we see that 11% of the CLBs were

used. This is number is quiet modest but can still be reduced by using

BlockRAM instead of Distributed SelectRAM.

 The programs were limited to input sizes that were small. Increase in the input

size would increase the number of resources used.

 The next step to improve this computational model will be to implement

pointers to functions to include memory management capabilities.

7.4 Conclusion

The Computational model developed by us has the following features

 Fully recursive

 Allows high-level concurrency

 Implements complex constructs such as call-return subroutine and

message passing

 Utilizes modest resources

There is now a computational model that allows reconfigurable logic to provide an

excellent base for design and implementation of various complex algorithms such as

genetic algorithms in hardware. The emerging high-level synthesis technology with

this computational model raises the level of abstraction for FPGA programming from

gate-level parallelism and will help the system designers to bridge the gap between

hardware and software.

 76

Bibliography

1. Virtex-II Pro Platform FPGA Handbook

2. Streams-C. Webpage: http://www.streams-c.lanl.gov/index.shtml

3. Jan Frigo, Maya Gokhale, Los Alamos NationalLaboratory Dominique

Lavenier-

Luciano Lavagno Ellen Sentovich Cadence Berkeley Laboratories,” ECL: A

Specification Environment for System-Level Design”.

4. Handel-C. Webpage: http://www.celoxica.com/techlib/files/CEL-

W0307171L48-63.pdf

5. Linked List. Webpage: http://cslibrary.stanford.edu/103/LinkedListBasics.pdf

6. Silberschatz, Galvin and Gagne, Operating System Concepts, Sixth Edition

7. David Andrews, Douglas Niehaus, and Peter Ashenden, “Programming

Models for Hybrid FPGA/CPU Computational Components”. IEEE

Computer, January 2004

8. http://www.xilinx.com/

9. Yedidyah Langsam, Moshe J. Augenstein and Aaron M.Tenenbaum, Data

Structures Using C and C++, Second Edition

10. David Andrews, Douglas Niehaus, razali Jidin, Michael Finley, Wesley Peck,

Michael Frisbie, Jorge Ortiz, Ed Komp and Peter Ashenden, “Programming

Models for Hybrid FPGA-CPU Computational Components: A Missing

Link”, IEEE Micro, July/August 2004(Vol. 24, No.4), pp.42-53

 77

11. Razali Jidin, David Andrews and Douglas Niehaus, “Implementing

Multithreaded System Support for Hybrid FPGA/CPU Computational

Components”,Pro.Int’l Conference On Engineering of Reconfigurable

Systems and Algorithms, CSREA Press, June 2004.pp. 116-122

12. Kavi Arya, “Handel-C: A New Paradigm in Embedded Systems”

13. Christian Peter, Oxford University Computing Laboratory, UK,“Overview:

Hardware Compilation and the Handel-C language”

14. www.celoxica.com

15. www.jhdl.com

16. www.systemc.org

 78

