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ABSTRACT

Field-programmable gate arrays (FPGA'’s) have come a long way fromythevdan they served
primarily as glue logic and prototyping devices. Today's FPGA's hataned to the level where
they can host a significant number of programmable gates and @b to create complete
System on Chip (SoC) hybrid CPU+FPGA devices. These hybrid chipssertime potential of
providing a unified platform for seamless implementation of hardaadesoftware co-designed
components. Realizing the potential of these new hybrid chips requiresvahigh-level
programming model, with capabilities that support a far more @tedgview of the CPU and the
FPGA components than is achievable with current methods. Adopting aaljet
programming model can lead to programming productivity improvemenie whithe same time

providing the benefit of customized hardware from within a familiar softwaregroging.

Achieving abstract programming capabilities across the FPAAlLRNdary requires adaptation
of a high-level programming model that abstracts the FPGA akddBGRponents, bus structure,
memory, and low-level peripheral protocol into a transparent computiaptaiform [2]. This
thesis presents research on extending the multithreaded programmitg Bcross the
CPU/FPGA boundary. Our objective was to create an environmentippord concurrent

executing hybrid threads distributed flexibly across CPU and FPGA assets.

To support this generalized model across the FPGA, we have develdgetdware Thread
Interface (HWTI) that encapsulates mechanisms to support synditionifor FPGA based
threads. The HWTI enables custom threads within the FPGA to la¢edreaccessed, and
synchronized with all other system threads through library APRsditionally, the HWTI is

capable of managing “thread state”, accessing data acrossystemsbus, and executing

independently without the need to use CPU.

Current multithreaded programming models use synchronization mechao@nessssemaphores
to enforce mutual exclusion on shared resources. Semaphores depend onoptyations
provided through the CPU assembler instruction set. In multiprocegstents, atomic
operations are achieved by combinations of processor condition instruictiegeated within
memory coherency protocol of snooping data caches. Since these coesh@nisms do not
extend well to FPGA based threads, we have developed new semaplcbenisras that are

processor family independent. We achieve a much simpler solution sted faechanisms (8



clock cycles or less) for achieving semaphore semantics witlatoemic operations implemented
within the FPGA. These new FPGA based semaphores provide synchoonizathardware,
software and combinations of hardware/software threads. We alsatengjeep queues and
wake-up capabilities that are normally associated with each semaptacttee FPGA. The wake-
up mechanism has the ability to deliver unblocked threads either to the CPU or RiGuEDe

and wake-up operation do not incur any system software overhead.

As the total number of semaphore required in a system may ke lamglementing separate
gueues for each semaphore can require significant FPGA resoureeaddiéss the resource
utilization issue by creating a single controller and a global gfoews! the semaphores without
sacrificing performance. We solve the performance issue withMaae and queuing algorithm
solutions. The semaphores are provided in the form of intellectual prgfr cores. We have
implemented recursive mutexes, recursive spin lock and conditicebl@iGores in addition to
the semaphore core. These cores provide synchronization servidas &inhe POSIX thread

library.

Toward the end of this thesis, we present an application study of our hybrid multithreztedd m
We have implemented several image-processing functions in bothdrardwd software, but
from within the common multithreaded programming model on a XILINX ¥ HPGA. This
example demonstrates hardware and software threads executing auhcwséng standard
multithreaded synchronization primitives transforming real-timages captured by a camera

and displayed on a workstation.
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1 INTRODUCTION

Field Programmable Gate Arrays (FPGA's) have matured faigntly from their origins as
simple programmable logic devices (PLDs) used as substitnt&St combinational logic chips.
Over the last three decades, FPGA’s have grown from simpéelggic components, through
moderate prototyping platforms and more recently, as completemsysbe chip (SoC)
components. Today’s modern FPGAs now commonly share portions of thein siiecarea with
a variety of diffused IP, such as multipliers, bulk RAM, and prawessres. The rapid increase
in fabrication technology has spurred increases in system develdgsires to build more
complex systems with these fully capable commodity parts. Unfdelynahe increase in
fabrication capabilities has not been matched with a correspondieg$ecin software tools and
methods for exploiting the full potential of these components. The commthods in use for
circuit design are based on old hardware description languagesgHibat were developed two
decades ago for describing low level SSI, MSI, and VLS| compondiisse languages were
adopted for circuit design and replaced schematic capture for diglicpecific integrated
circuits (ASICs) in the 1980’s. Although they are still in use yotlaey present drawbacks for
specifying the complex subsystems and circuits associated withrmBB&A’s. First, they are
not a particularly efficient languages for driving modern autamsgnthesis tools. This is a
result of their lack of abstraction in their data types and artpitn certain behavior constructs
that do no translate well to logic gates, wires, and finite stetchines. Even though they allow
structural specification, they do not contain constructs that refiecbrganization of modern
FPGA building blocks and interconnect networks. New low level layggiauch as JHDL [51]
have been proposed to address this problem. However, both artifacs Bl the newer JHDL
still present problems for dealing with the complexity of modern FRGFEhis approach requires
specifying individual circuits in terms of bits, combinational logic circulig;ffops, latches, and
I/O drivers. Designing at this low level of abstraction iimpy becoming impractical for
efficiently exploiting the complexity of modern FPGA’s. An additioraincern is that this
approach requires hardware design skills that are not possesséé byajority of system

programmers and software engineers.

New research is now addressing this problem by investigating apgpsoaches to circuit
generation from traditional high-level software languages. g circuit behavior from a
high level language helps in dealing with the complexity of mode®mA#as well as enabling

programmers to access the potential of the reconfigurable fH®jc21, 48]. Although an



important step, enabling circuit specification from a higher level syntax onlgss part of the
problem. The missing component is advancements in not just progrataminges, but also
programming models. A programming model specifies computational compasweh as tasks,
threads, and processes, as well as their interactions such aphsees and inter-process
communications (IPC). Programming models also provide the defimitistandard component
interfaces and abstract data types. Thus, a programming model prtviddeveloper with an
abstraction that alleviates knowledge of low level platfornaitteind allows the expression of

the application in a more appropriate form.

1.1 OBJECTIVE

The goal of this research was to develop such an abstract dgplapibiringing both hardware
and software computations under the familiar multithreaded progranmudgl. This approach
provides the following advantages. First, extending a softwaregmoging capability over the
hybrid device enables programmers to gain access to the potdntie reconfigurable logic.
This is significant, as our current methods of programming the FR@®&ire hardware design
skills not familiar to software engineers and programmerscorgk the use of higher level
abstractions and languages decreases development time and aosgigBn higher levels of
abstractions is also important as the complexity of these comparengdready much greater
than can be efficiently handled with low level methods. Third, the systetnesethat have been
developed to support the programming model provide increased capaliditiime critical
applications that could not be achieved through classical softwareagpps. This enables new

levels of precise control over critical real time applications.

We chose the multithreaded framework as our model as it remeabentype of concurrency
typically found in a range of embedded applications, and is familiarwide range of system
programmers. This is evidence from wide acceptance of POSIK-thmaladed programming.
Additionally this model permits other computational models to be compostap. As a simple
example the data streams model is easily implemented ad¢ af shreads that linearly

synchronize.

The successful realization of a concurrent hybrid system requiniferm concurrency
mechanisms for both CPU based software threads as well as b&@4 hardware threads. The

different concurrency control primitives defined by POSIX includeexes, semaphores and



condition variables. Each of these synchronization primitives seliffesent purposes such as
mutual exclusion, event waiting and controlling countable resources. Blockingyesm#quire
sleep queues and wake-up mechanisms. Another category of concurrenalyisoeterred to as
spin primitive. Spin is useful to serve blocking primitive suchcasdition variables and for
multi-processor environment. In our case spin is helpful to synchroomgent execution of
FPGA hardware threads and CPU based threads. Implementing allntkekanisms in FPGA
either partly or otherwise will depend on feasibility, performas@igancement, resources versus
performance trade-off, and other aspects of hardware software igo-deg-or example
implementing an efficient sleep queue may be costly in terms of FPGA cesatithe size of the

supporting circuits must scale with the number of blocking primitives.

Developing a uniform computational model requires reconciling the reiffeunderlying
computational models of the CPU and FPGA. Whereas a CPU haganpramunter, stack, and
register set, the FPGA has no cycle-by-cycle instructioamsiretack, and temporary register set.
Additionally, with current FPGA technology, system developers mugheasize and map the
data paths and operations that represent the computations of thentwdd@GA before runtime.
These differences require new mechanisms to represent FPGRHaade/are computation to the
thread abstraction, and to support interactions among threads acr@RBUHePGA boundary.
Although it seems that the lack of an existing computation model is a detramghg contrary it
is an asset as it presents an opportunity to create more efficigmamigms. The implementation
of threads in an FPGA must maximize the advantages of usingRG& Pplatform, while
preserving the common multithreaded programming model. At the sammgethe FPGA thread
implementation must not use methods that degrade the efficiengpndirenization across the
CPU/FPGA boundary. Neither should the FPGA methods create any famfaifness between
the FPGA and CPU threads.

On processors, an operating system provides services includinglgeseiurce management to
the software threads. However, on the FPGA, the hardware threads ligvadalirect access to
these system services, and it is not efficient for the hasdthaeads to cross the boundary to seek
services from the operating system running on the CPU. Therseweeal approaches to this
problem. First, new services hardware services can be cgaeifically to serve the hardware
threads. Second, base services can be created in the hardwarakéhate of software threads as
proxies to seek services from the operating system. Stjlley&tting software services can be

migrated into the hardware to serve both hardware and softwaae$hAdthough more complex,



this last approach can enable new levels of performance for seftiwaads as well as providing

non-intrusive services to the hardware threads.

1.2 APPROACH

The objective of this research was to create a programmingealtion environment that
strongly integrated the hybrid CPU/FPGA based computational components unitlar faoiti-
threaded programming paradigm. Our successful outcomes include anbed&ptaware and
software co-design and execution environment within which a given appticcan be realized
as a set computation threads with many possible mappings on both thear@PBPGA
processing assets. Our approach was to bring both the FPGA baseb ahde€PU based
components of an application under the umbrella of the POSIX thread mbdsefirst required
enabling the FPGA to support atomic operations equivalent to cfassiessor load-linked store
conditional instructions. Providing atomic operations is fundamental sigoporting
synchronization operations, which in turn are used for thread synchroniz&bllowing the
creation of new synchronization primitives, the first of two cdgtesefforts focused on
developing appropriate low-level services across and betweerPlHA-GPA assets within the
operating system. The key issue in this co-design effort waddi@ss how to decompose system
services and migrate them into the FPGA. The second co-dediym whs to create the
application level API's callable by both hardware and softwareatls. This required the
creation of small wrappers for software threads, and a newaetistr interface structure for
hardware threads. The abstraction interface encapsulated thddwelgslatform specific details

within procedures that had a similar APl interface with their software difiterparts.

1.2.1 Enabling Atomic Operations

Management of shared resources is fundamental to the successful implemeritatconcurrent
programming model. Accesses to common resources by the concurremtiirexéereads in a
shared-memory system are serialized by synchronization mecisagisgsth as semaphores, or
simple binary locks. On general-purpose processors, synchronizatiomempéions are based

on the atomic operation such as test-and-set or swap instructiorexaraple, the PowerPC755
haslwarx andstwcx instructions with RSRV signal. In multiprocessor systems, atomic operations
are achieved by combinations of processor condition instructions irgégndthin a memory

coherency protocol of snooping data caches. Since these current meshdmisat extend well



to FPGA based threads, new methods have to be developed. In additi@h issues must be
considered:
- The location of each synchronization variable and its associateides either on the
FPGA or processor and system memory.
- The number of synchronization variables in a given system caharged without the
need to redesign the hardware.
- Portability: current System-on-Chip (SOC) has the capalbdityost multiple processor
architectures including digital signal processing (DSP) and ted ttesupport possible

heterogeneous applications.

An efficient atomic operation based on normal write/read pair carasity implemented within
FPGA to support synchronization primitives. These synchronizations b&illICPU family
independent since their accesses utilize standard input/output operatipfesnenting the
atomic operation within FPGA offers an additional advantage, aspieulius cycle and wait

state associated with typical memory (DRAM) will be avoided.

To minimize time to market, system designers are now impigngethe intellectual property
(IP) base design in scheming their hardware system. Adoptingghisach permits modularity,
allowing FPGA based synchronization or other types of IP to be addlee system without the
need to redesign the hardware. However, the need to scale theelRoctite number of
concurrency primitives is also an issue to be addressed, asuahg@der can change at run time

and varies from one application to another.

As multiple threads running on processors and FPGA can accessitheosyzation variables,
the appropriate solution requires the synchronization IP cores t@abheditto the system bus. An
internal bus may be added, to allow FPGA threads to obtain the synetii@mizariables without
crossing the system bus, to reduce the system bus traffic. Hoamveternal bus can be unfair
to the CPU based threads. Independent of the internal bus existence, BeRiGhehreads and
the synchronization IP must have bus interfaces. In addition FPGadthraust have the ability
to initiate and arbitrate the system bus to access the syndtioni#. It must have facilities to

arbitrate the system bus, generating address and relevant bus handshaking andgoatérol s



These basic atomic structures within the FPGA will provide cbasiilding blocks toward
implementing the higher order concurrency control primitives suctseasaphore, mutual

exclusion and condition variables.

1.2.2 Co-design and Hardware Implemented O/S Services

High-level integration of the CPU and FPGA provides opportunitiedisicover new ways of
implementing operating systems especially for embedded systeaditionally, an operating
system is a collection of system software that provides haedalastraction to the application
layer, while the multiprocessing programming is the enabling teagyngdermitting hardware
sharing. Current FPGA devices are not only allowing us to migrateconcurrent control
mechanisms from the CPU into the hardware, but other system softemponents as well,
especially toward achieving processor workload reduction and sysisponse variability

improvement.

In current parallel programming implementation, the synchronizatiarhamésms provided can
be categorized into two types — busy wait or blocking type. The bigdkpe mechanisms, such
as semaphores, require sleep queues to place blocked threads wharetheess contentions.
These sleep queues are traditionally implemented in the systemmnand each semaphore has
its associated sleep queue. Thus, it is natural to migrate gpealeue into the FPGA, as well. In
addition, blocking semaphore must have a facility to wake-up the dalotthreads. As the
awakened threads can be FPGA threads or CPU threads, the blerkiaqghsre should have the
capability to deliver them either to the CPU or FPGA. As the nuoitd@ocking semaphores in a
given system can be large, the issue of mapping the sleep guearelware resources needs to
be addressed. The queue and its wake-up mechanism should expend FPGAgagmimally
and without sacrificing performance. In addition the state of the sleepgjuaue to be protected
between the start of unblocking process until the delivery ohaluhblocked threads, as there

are possibilities of new requests.

Delivery of awakened CPU threads to the scheduler queue requires the geneatmaptidn to
the processor. The scheduler then may need to run the scheduling deqgisindire on the
scheduling algorithm being used. Obviously not all insertion of unblockeshdbr cause
swapping of threads to run on the processor. Independent of scheduling algdelivery of

unblocked threads to the scheduler queue can cause unnecessary exceptiongpmerbsiads.

Obviously migrating the scheduler and key time services hr@d=PGA can eliminate context



switching associated with the unblocking operation. However, the schegidee relocation to
the FPGA affects the handling mechanism of software threads. iTisig, natural extension to
migrate the software thread management into the FPGA, ashuether, whether the system
functionality is implemented in hardware or software, it should bé&raated from the user

application. User applications do not need to know the location of services provided.

The above approach defines new partition for operating systemeseadioss hardware/software
boundaries. On the hardware side, FPGA threads cannot request systeasaising the same
mechanism as CPU based threads, such as traps to the operatimg. $ys conventional
operating services cannot support the hardware threads, new sé@ieeso be invented to
enable hardware threads to have abilities to emulate the softweaels. These new services will
abstract the low-level hardware architecture details fromutex application. The degree of
abstraction required depends on the programming language chosen by thandistre
requirement of application. The operating system is not required tealoalt the hardware
instead it should abstract only the non-customized components. To mansgadhe services
and cope unclear boundary between hardware and software, we propossifiotbla®perating

system components for the hybrid CPU/FPGA devices into four categories:

Software implemented conventional operating system (soft O/S services)
Hardware implemented conventional operating system (hard O/S services)

3. Hardware implemented to service both hardware and softwaredgh(bgbrid O/S
services)

4. Hardware operating system (hardware services or hardware functions)

The second category, which we refer to as hard O/S, is to €ft\ebased software threads
while the fourth category is for FGPA based hardware computatioax&mple of hard services
includes the software thread scheduler mentioned above. The hardwarenfumeclude the
facilities to enables FPGA thread to access memory and concur@rtogl cnechanisms. Access
to system memory enables FPGA threads share data with thé&3ed software threads. These
hardware functions will not cost much hardware resources and, formarfoe consideration,
there are best implemented within individual FPGA threads. Thes$e l@rdware functions are
sufficient to enable FPGA threads to perform tasks within théithmelading environment. The
need to transfer the data to the peripherals can be done with thefhbie first category

operating service component that we refer to as soft O/S. TBA Hiteads however must first



transfer the data into the heap section of main memory. Alteehgtihe support for peripheral
interfaces can be implemented within the FPGA. For example, hadwaiP/IP stack can be
implemented into the FPGA. These new hardware services carelgerized as hybrid services
as it could serve both software and the hardware threads. This attractivensobitonly enables
FPGA threads communicate directly with peripherals, but wibh a¢sluce memory utilization
and free CPU from similar processing task. Concurrent contrdianéms mentioned previously
can be categorized as hybrid services mentioned above, and theg wilkful to control sharing
of the new hardware implemented services. The scope of resedhih thesis however is not to
implement all the mentioned services but rather to identify nedwzaie and software partition
and to create necessary enabling mechanisms that extend mugthpragramming model into
the FPGA.

In implementing this programming model, we have two options: a simple mionetiar desktop
type operating system. As the microkernel is designed to thenedamplexity of the desktop
operating system, it offers small footprint and good timeliness behavior fomtielded system.
The micro-kernel is also an attractive choice when considezswydffort is required to adapt it,
and to add certain system services into the hardware. However, it lackhssystem services and
development tools. Sufficient system service is essential, ciafipe displaying outputs

graphically during the demonstration phase.

1.2.3 Application Level CPU and FPGA Co-design

The acceptance of the multithreading programming model has led defih&ion of a platform
independent operating standard (POSIX) that supports application lewii-threaded
programming. We will use the same approach as the POSIX imdéeted library to provide
application program interface (API) to create our own library. Wik approach the API
iteratively, first implementing basic FPGA-thread creationd athen proceed to hybrid
concurrency control. Essentially, for the synchronization variabidsast two API are needed.
One is to acquire and the other is to release the variables.rizsgg@PIls may cause blocking
operations. The blocking operation on the CPU requires switch of comiéxthange of states.
The release may cause unblocking operation. On the CPU, the unblockiatioopwill change
the thread state and put it back into the scheduler queue. We whikrfuuoncentrate on the

concurrency control mechanism, add more APIs as we adding more features.



FPGA Thread Control

Current FPGA technology requires that logic primitives to be progred prior to execution.
The algorithm that has been specified for a thread must be syetthesid loaded into the FPGA
prior to the run-time. In effect, the configured logic primitive artdrconnections that form data
path and control unit for the hardware computational component must be ged-laéhout
allowing the FPGA thread to execute. When the thread is loaded inEPtBA, the thread will

default to the idle state. It remains in this state unless it receives ecstemand.

To start or suspend an FPGA thread requires creation of a “corittbiéé will manage state
transition similar to the software thread. Useful statesciratrepresent the operation of a thread
includes idle, run, and wait. Similar to the software threads, adhgees to sleep when it is
blocked from getting a semaphore. The thread transitions back tourhetate when it is
unblocked. Therefore, a given state controller must have an irdarfatie form of memory-
mapped command register to accept control word from the CPU or semaflwosést a thread,
an application program interface on the CPU writes a start command &giier. To unblock a
thread, semaphores write wake-up control word to the register. éwmaliy, the argument
registers can be added within the controller to provide options favea ghread to choose

different execution paths.

In addition to the duty of managing state transition, the controlleige@ewther services as well.
The essential services include synchronizations and input/output opertiainsffectively

enable data exchange across the system bus with other threadenfro#lec performs these
services in response to requests from the user on the hardwar&hsdeontroller interprets a
user request, performs the intended service, for example, obtainéngapalsore. To abstract the
controller low-level details, the hardware implemented applicgtiogram interfaces (APIs) are

provided. The user makes use of these APIs when requesting services from thiecontrol

1.2.4 Experimental Platform and Evaluation

We have chosen as our first experimental platform a commegreiailable development board
that contains a hybrid CPU/FPGA chip; the Xilinx Virtex-l1l PraheTVirtex-1l Pro chip contains
a Power PC 405 core embedded within an FPGA fabric that containd b@&0 CLB’s. This

level of CLB integration provides a sufficient number of deviceur experimental hardware

co-design requirements. We also have access to a signifioearylof VHDL descriptions of IP



cores which can be used a base and modified for our work. This prodideish a true SoC

target from which to proceed.

For evaluation of our hybrid threads, we have chosen to implementlsé@wage processing
algorithms. This evaluation will demonstrate hardware and softwhareads executing
concurrently, sharing data by means of new hybrid semaphores, trangfaeal-time images

captured by a camera and displayed on a workstation.

1.3 CONTRIBUTION OF THIS THESIS

The research presented in this thesis is part of KU Hybrid @HPeaject. This thesis makes the
following contributions in the development of a framework for extendingititimread

programming model across CPU/FPGA architectures:

1) Definition of FPGA based hardware thread context and control.

2) Design, implementation and testing of FPGA based threads.

3) Design, implementation, and testing of hardware implementedféiPéynchronization
services and memory accesses.

4) Design, implementation, and testing of FPGA based recursive spin lock core.

5) Design, implementation, and testing of FPGA based recursive mutex core.

6) Design, implementation, and testing of FPGA based counting semaphore core.

7) Design, implementation, and testing of FPGA based condition variables core.

8) Initial design and contribution to hardware based software thread management.

9) Implementation of synchronization primitive APIs for testing.

10) Integration and synchronization testing of CPU-based threads and FPGA-bas#s] thre

11) Introduction to new partition of hardware and software services.

12) Evaluation of the hybrid multi-threads model using image transformations.

14 QUTLINE

The remainder of this thesis is organized as follows. The negterhpresents background
information on FPGA architectures, and related work in hardware taiopi Chapter three
presents an introduction to the POSIX multithreading programming ntodapter 4 describes
the hybrid thread abstraction layer, context and control for hardwaradrand the VHDL

application interface. Chapter 5 starts with a general descripfi classic atomic operations,

10



followed by descriptions of our evolutionary prototypes for synchronizationitpres. This
chapter then describes the design and implementation of global queusmanters to control
multiple instances of synchronization variables with efficientdWvare costs but not at the
expense of execution times. The integration of all core modules, testing proceduoces)grené
tests and summary of results are covered in Chapter 6. In Cliapterpresent an evaluation of
our hybrid thread model with image processing applications. This tbeiscdudes with future

research direction in Chapter 8.
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2 BACKGROUND

2.1 HELD PROGRAMMABLE GATE ARRAYS TECHNOLOGY

2.1.1 Introduction

The Field Programmable Gate Array (FPGA) was first intredun the mid-1980s, and is in the
class of programmable devices that provide the benefits of cusiohware, but avoiding the
initial cost, fabrication time delay, and inherent risk of conventiorasked application specific
integrated circuits (ASIC). The primary advantage of an FR@& an ASIC is that it can be re-
programmed an unlimited numbers of times to implement a widetyariecustomized digital
systems. In the early days, FPGAs were used as testing antypirtg devices. As fabrication
technology improves, the use of FPGAs have widened to include “glue logic” to rapltiqse
discrete chips with a single components, custom accelerators ital diggnal processing
applications, and as general purpose high performance co-processigste F1 shows the
maturation of FPGA's happened in the last ten years. Within thi®dpeFPGA’'s have
significantly gained in density (200-fold) and speed (20 timesrjdsi their prices continued to
decrease (300 times) [40].
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Figure 2-1 History of Xilinx FPGA in the Last Ten Yee [40]
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Presently, FPGAs have matured to a stage where they can bostpéete embedded system,
including a CPU, support components and other complex application speciftorfisnd-or
example, a XILINX VIRTEX XC4VFX140 device now contains 2 RISC pssoes, 10Megabits
memory, and 140K logic cells, with an operation frequency as high as 500Mhz [61].

The internal structure of a Xilinx FPGA is shown in Figure 2-hisTevice that consists of a
matrix of configurable logic cells (CLBs), with a grid of irdgennecting routing lines and
switches between them. Input/output blocks (IOB) exist around the periteeinterface the
internal interconnect lines and external package pins. The spatifiementation and
capabilities of a CLB varies with the manufacturer of theaeviXilinx CLBs are comprised of
combinational logic and storage cells. The storage cells carsda as look up tables for

realizing Boolean logic equations or as storage devices.

Interconnect Resources
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Figure 2-2 Programmable Logic Arr [34]

The programmable interconnect resources provide routing paths to connect thandpuigputs
of the CLB and IOB onto appropriate networks. Programming or custoyezi FPGA includes

configuring the logic cells to implement Boolean functions and connettimgwitches in the
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interconnect lines to both route variables between functions and alempmse local functions

into more complex functions.

2.1.2 Configurable Logic Block (CLB)

A Xilinx CLB (Configurable Logic Block) element is shown in Figure 2-8sé&ntially, each CLB
contains a pair of single bit flip-flops and two independent look-up faipietion generators.
These function generators are configurable either as four input lcatles (LUT), two bits shift
registers or two bits distributed RAMs. Each look-up table té&es bits of inputs from the
routing network and generates a one-bit output. By filling in the loolable with appropriate
bits, any four-bit logic function can be implemented. The table outpubmtonally be latched

by a flip-flop before being send back to the routing network to other logic blocks.

Configurable Logic Blocks implement most of the logic in an FPEdur inputs is a good size
for a look-up table as suggested by various studies, trading (tiitgplexity of a block) against
utilization (what fraction ends up in use) [34]. The symmetry ofGh8 architecture is also
important as it facilitates the placement and routing of angiweended function. In addition to
the lookup tables, other related logic block resources such as éddieaty chain circuits are

included to facilitate and speed-up common user intended logical operations.
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Figure 2-3 Configurable Logic Block[61]

In addition to CLB’s, current generation FPGAs include additional @itfusardware resources
typically required for embedded systems. For example the XilingBP¥240 (90 nm CMOS
technology, 500 MHz) features dedicated digital signal processingjtsl8nultipliers and
accumulators (MAC), dual port memory block RAM (BRAM), digitatigntrol clock manager
(DCM), 32-bits 5-stage pipeline PowerPC RISC CPU, Ethernet Mf&St input/output
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transceiver (fast /O transmit/receive), significant numitiemput/output pins (I/O), shown in
table 2-1 [61].

Device CLB Other Resources
Logic Distribut | DSP 18KB | DCM CPUs | Ethernet| Fast /O] I/O
cells ed RAM | resource | Blocks MAC TX/RX Pins
(KB) RAM
XC4VFX140 | 142,128 987 192 552 20 2 24 896
XC4VFX100 | 94,896 659 160 376 12 2 20 788
XC2VPro30 | 30,816 428 136 136 2 8 644
XC2VPro7 11,088 154 44 44 4 1 8 396

Table 2-1 Current Generation of FPGAs

2.1.3 Sample of current generation FPGA

The Virtex Il Pro FPGA device family from Xilinx was choses @ur experimental platform
based on the availability of diffused and soft IP. For example a XC2¥ FPGA includes two
PPC405 processor cores with up to 44,096 CLBs. Other resources include HIB&bIRAMS
(BRAMS), 18bitx18bit multipliers and digitally control routing resow.cel he block RAMs are
extremely useful to store temporary data and are used throughout dgm tedhold state
information. The processors operate at clock speeds up to 300 MHz [6(PQ#elogic can be
clocked up to 400Mhz, however the final operation speed will naturallyndepe the critical

path of the implemented Boolean circuits.

Xilinx also provides a library of intellectual property (IP) coré&n IP core is a pre-made logic
block that can be implemented on FPGA or ASIC. As essential elementsgf aesse, IP cores
are part of the growing electronic design automation (EDA) stdnctanponents. IP cores fall
into one of three categories: hard, firm and soft cores. Hard amrgshysical manifestations of
the IP diffused into the silicon circuitry. Soft cores are proviged list of the logic gates as an
HDL module. The soft core IP provided by Xilinx includes serial pdethernet controllers,
processor busses (PLB), peripheral busses (OPB), bus arbiters, yneontmollers and the

micro-blaze processor [61].
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CPU/FPGA Hybrid

Specific to our studies, the Virtex Il Pro V7 has an IBM Power4dR& RISC CPU hard core
embedded in the FPGA fabric logic. This high level of integratidwdsen a CPU and an FPGA
(CPU embedded within the FPGA) allows significant flexibiliyettach peripherals or other IPs
to CPU. A wide range of peripheral IP can be implemented out dfRI&A logic fabric, and
accessible from the CPU via the standard processor local b&} @Plon-chip peripheral bus
(OPB). The details of these busses are described later. drffiguration allows users to create
their own IP and connected it to the CPU via one of the busses. In fact dienastale computer
system that used to be on a printed circuit board can now be implemeitién this single

FPGA chip (except the main memory chips).

Processor resources

The Power PC 405 hard core is based on IBM-Motorola PowerPC RISE€spona@rchitecture.
The Power PC 405 architecture is optimized for embedded syst@ficatipns (low power). It
implements a subset of the PPC32 instruction set with additionatsexte. An application
binary interface (ABI) provided by IBM serves as an interfimcecompiled programs to system
software [52]. The embedded Application binary (EABI) is derived ftbm PowerPC ABI
supplement to the UNIX System V ABI. The ABI differs from #heplement with the goal of
reducing memory usage and optimizing execution speed. The EABI dsscdbeentions for
register usage, parameter passing, stack organization,datelarea, object file and executable

file format.

Several low level details of the Power PC 405 architecture should be mentiong¢dhé&iPower
PC 405 architecture does not have a push/pop instruction for manipulatstgdkelnstead, the
architecture treats the stack pointer register as a denepose register that can be manipulated
using standard load/store register to memory instructions. SebenBPC 405 does not have
expose internal signals necessary to lock the bus for synchronipgéoation (semaphores).
Although there are reserved instructions for synchronization operatsefisl for synchronizing
multiple processors configured in a shared memory processor (SMRguration, successful
concurrency control among multiple processors requires additional dxterolaanisms. This is

a critical issue for realizing hybrid threads in our systemraubssitated the creation of more

efficient hardware based synchronization primitives.
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Core Connect Buses

Xilinx provides the standard IBM Core Connect [50] bus as soft IP to conngul@eii IP cores
to the processor. Core Connect provides three levels of hierdrbhiges: processor local bus
(PLB), on-chip peripheral bus (OPB) and device control bus (DCR). Tdwegsor local bus
(PLB) is used to connect processor cores to the system main ynamebrother high-speed
devices. The OPB bus is dedicated for connecting slower on-chip petigeeices indirectly to
the CPU. The OPB bus supports variable size data transfers avell @s flexible arbitration
protocols. Both the PLB and OPB busses have their own bus arbiterdieatwiot busses are

interconnected by at least one bridge.

Xilinx provides a convenient bus attachment interface layer fon e the three buses in the
form of soft core IP. The attachment, called the IPIF, allowmplperal IPs or other cores to
connect to either of the buses. The IPIF is decomposed into two tayatsw easy migration of
peripheral or IP cores for each of the different system busedirghiayer provides an interface
facility (including set of standard signals) to be used betweenPtteore and the IPIF. The
second layer is a bus specific portion, and interfaces the IRIRetof the buses. To move an IP

core from one bus to another requires only substitution of the second layer.

The IPIF provides two different types of attachment to an IP:carslave and a master
attachment. With the master attachment, user cores have #bilififiate bus transactions. Bus
arbitration logic is included within the master attachment. Hewev is the user core’s

responsibility to re-arbitrate or abort the bus and switch the data bus from slave mode

2.2 PROGRAMMING OF FPGA

In current practice, hardware descriptive languages (HDL)wadely used to implement
applications on the FPGAs. However, using HDL requires knowledge of hardwate siath as
timing issues, propagation delay and signal fan-out. New techniquemarging that attempt to
raise the level of abstraction required to program FPGA’s h Wise techniques, the designers
are no longer required to possess low-level hardware knowledge wipgementing their
applications onto FPGA'’s. In addition, researchers are seekingosaliiti remove the boundary
between hardware and software components. Widely use FPGA progrataminmges are

discussed in the following sections.
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2.2.1 Hardware Descriptive Languages

VHDL [60] and VERILOG [59] are the two most widely used hardwa@escriptive languages
(HDLs) in use today for specifying digital systems. HDL ayxrsind semantics includes explicit
notations for expressing time and concurrency, two primary attrilmfiteardware.  VHDL,
which stands for Very High Speed Integrated Circuit Hardwarsci@ive Language, was
initially developed by Department of Defense for documentation andrdeschange, and later
adopted as standard for hardware language by the IEEE [18]. VHDL, which is basdidaneta
event concurrency model, contains language elements that are oafpsipgorting behavioral,

dataflow and structural models.

In VHDL, the primary hardware abstractions anéities. They are used to identify and represent
digital systems. An entity interfaces to the external worlthwiell-defined input and output
ports. The function to be performed by a digital system is spedifiside thearchitecture
definition within an entity. The function can be described either behaviorally orustilgcor in
combinations of both. Very basic building block entities are spediiddviorally. Then these
basic entities can be structurally connected to form a largéy.eFor example the predefined
Xilinx block RAM entity can be wired to a controller entity toffoa memory subsystem entity.
Interconnection of multiple entities adds up propagation delays, thus care malstib&tensure
that the delay for the critical path of implemented circuit dmgsexceed the system clock period.
The functionality of a large entity can be described using combinationsafiioelgtstructure and

behavior specifications.

VHDL supports a two-level behavioral hierarchy. At the firstele specification can be
decomposed into sets of concurrent processes. At the second levettiaéguecution can be
specified within a process. Additionally, to support notion of time, VHialssignals, which
differ from variables in that their values are defined oweetiThese signals can be activated
either asynchronously or synchronously. These signals are employednamsunication

mechanism between concurrent processes.

Synchronization in VHDL can be implemented in two ways, either ubiagrocessensitivity
list orwait statements. A sensitivity lists provides initiating evdatsevaluating a process. As
such, the sensitivity list must consist of all events or sggtiet can trigger a reevaluation of the
process. To define synchronous processes the clock should be the onlyrsitpeaprocess’s

sensitivity list. Although convenient for simulating processes, gbasitivity list alone is
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insufficient for actual implementation of the circuit in hardwalre.support implementations,
VHDL requires implementing conditional statements within the psodeEsly instead of the

sensitivity list.

Synthesis

After creating and simulating a digital design, then the cincuist be synthesized for actual
implementation. Synthesize is the process of translating a deseymgate level representation
which can be mapped to the hardware resources within the FPGA. fithesiye tool takes the
logic design, target technology features of the FPGA, and constegiatified by the user, and
generates a net-list of gate-level representations. Syrghpeiresses also typically involve
development of logic design in terms of library components, and optiarizan area and gate

delay (the synthesizer is not aware of wire delay).

Implementation

The synthesizer outputs a netlist description of the design. Thetneth standard format that
can then be mapped onto the physical logic elements and interconnection networks/0Ngs i
three steps: the mapping of logic to physical elements, placeshaesulting elements, and
routing of interconnect between the elements. The output of the physipaing is a bit-stream
file. In the case of SRAM based FPGAS, the bit-stream progiagnimol generates the physical
implementation in the form of CLBs, I0Bs, BRAMs, other FPGA resesisnd interconnections

between them.

Download

Download include clearing configuration memory, loading the bit-stré@mfiguration data)
into the configuration SRAM, and activating logic via a startup ggsc For non-volatile
configurations, the bit-stream can be stored in either EPROM BRBE®. The configuration
data represents values stored in SRAM cells: CLB implerdogit¢ with SRAM-truth tables,
SRAM-control multiplexers and routing that makes use of pass stanssRAM switches

(making/breaking the connection wire segments).

Disadvantages of HDL
Hardware descriptive languages such as VHDL offer the adwstgxpressiveness in term of
temporal and fine grain parallelism. As such implementing apgitatin HDL requires

understanding of hardware details including clock cycles, hardwehéetures and signal fan
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infout, thus entails considerable efforts. There have been substegidrch interests
investigating on extending the high level languages to bring themthet hardware domain.
Three of the more common efforts are Streams-C [21], Handel-GBEystemC [54], which

are presented in the next sections.

2.2.2 Streams-C

Introduction

Streams-C [21] was developed for systolic type processing atAlaoeos Laboratories, and
extends the C programming language with capabilities for supportiognfigurable logic
hardware. The objective of the Streams-C project was to bringwa high-level language
capability into the FPGA design environment. The research efternpted to free application
developers from the low level details of gate-level design, enalpiigcation programs for both
the FPGA and CPU to be written in a high-level language. S$r€araupplements the C
language with a set of additional annotations and callable functi@miéibr The annotations are
used to declare and assign hardware resources on the FPGA. Theass$ociude processes,
streams, and signals. The libraries provide communication fasiliggtween different processes

based on low-level handshake signals for hardware process synchronization.

The Streams-C environment includes a multi-pass compiler, and hardne software libraries
targeted for stream based applications. The characteristiteafnsbased computing can be
described as having a high data flow rate, fixed size, smalmstrpayload, and repetitive
computation on the data stream [54]. As such, it is an appropriate tool for iemplegnimage or
video processing type algorithms on FPGAs. A pre-processor cotiversnotations and macro
calls (SC_MACRO) into PRAGMAS, and passes them to the compiberhardware processes,
the compiler generates a Register-Transfer-Level repaggani(or VHDL) targeting multiple
FPGAs on the Annapolis Microsystems Wild Force [58] board. For saftyweocesses, a

multithreaded software program is generated.

An application study of Streams-C has demonstrated that the 'siangidis of compiler-generated
design are 1.37 to 4 times larger than that designed by VHDL. Btihihespent to implement
the applications with Streams-C is favorably short. Streansst@y group claimed that
applications written in Streams-C could be completed five toitesstfaster than designs that

implemented using VHDL [18].
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Hardware (Synthesis Compiler Library)

An application in Stream-C can be implemented as a collectionocégses that communicate
using streams and signals. Processes can run either in sof@Rid¢ghost computer) or on the
hardware (FPGA).

The hardware process module has two main components, a data-path compdbanpidtess)
and an instruction sequencer. The data-path component is decomposed iaipadidantity and
a pipeline control entity. The data path entity can be broken intadtisin decoder and data-path
circuits. The instruction sequencer is a state machine that seguérecinstruction set of the
process module. A process may have interface ports for stregmal, sxternal memory and

block RAM. Processes communicate by means of stream modules or signals.

The stream modules are FIFO (first in first out) based synchroomumsnunication channels
between processes [21]. Each channel has a different data width to matobatimepsyload. It is
parameterized with respect to data register width and FIFO depth. tBheidth ranges from 16-
bit or 32-bit to 64-bit, specific to the size of the stream paylogamiples of stream modules are
StreamFifoWrite (software process to hardware process FIs@)FifoRead (hardware to
software FIFO) and StreamIntraRead (hardware process to ahatlamare process). The stream
module uses signals to indicate it is ready to receive or outpatAlla example of process and

stream declarations in Streams-C is given in Figure 2-4.

/Il PROCESS_X controller

/I INPUT frame_input /[ input stream

/Il OUTPUT frame_output // output stream

/Il PROCESS_X_BODY

SC_FLAG(tag) /I stream element with one-bit flag
SC_REG(frame_word, 32); /I 32-bits stream port

SC_STREAM_OPEN(frame_input);  // stream operation open
SC_STREAM_READ(frame_input, frame_word, tag);
/IIPROCESS_X_END

Figure 2-4 An Example of Streams-C Process Declaration
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Streams-C Language Construct

The Streams-C language consists of a small set of annotatiofibrary functions callable from
a conventional C program. The annotations are used to declare anéytoraseurces on the
FPGA to these following objects: processes, streams, and sifhallbraries provide low-level
hardware stream communication facilities and synchronizations &etprecesses. An example

of a stream-oriented computation is depicted in Figure 2-5 [55].

External Interface

Memory Interface
Process 1 Process 2
ream ream
Strea Datapath Strea Datapath Stream
Module Module
Module
Data from Pipeline Pipeline Data to
CPU Ctr Ctr CPU
Inst. Inst.
Decode Decode
Datapath Module Datapath Module
Instruction Instruction
Sequencer Sequencer
FPGA Chip

Figure 2-5 Streams-C Hardware Process

The hardware process 1 (on the left) receives stream ofatdatagges) from a software process
running on the CPU via the PCI bus. Then hardware processes 1 and 2 mathipidaeam, and

the result is returned back to another software process (on kite higthis example, processes
communicate and synchronize via the low-level hardware stream @sodiie figure also shows

a memory interface to enable hardware process 1 to accesgghrabmemory. Each hardware
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process has instruction sequencer and data-path modules. Streampdatessed in the data-

path module while the sequencer is the activity coordinator.

Streams-C Compiler
The Streams-C compiler [18] as depicted in Figure 2-6 is basetieomtulti-pass (Stanford

University Intermediate) SUIF infrastructure compiler [56].

app.sc

Streams-C pre processor

app_syn.cpp app.cf

SUIF based
Streams-C Compiler

app_all.vhd
@(@

Hardware
Library

Runtime
Library

C Compiler

CAD Tools
(synthesis + implemetation)

Figure 2-6 Organization of the Streams-C Compileg]

It translates the C program (the FPGA processes part) irgstBeTransfer-Level (RTL) or
VHDL and is capable of generating pipelined stream computationsiwides processes are
written in a subset of C, and compiled into data-path modules on the .FR&AIres of the
Streams-C compiler include semantic validation of processeansdt pipelining, state machine

generation for sequencing and stream communication libraries.
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2.2.3 HANDEL-C

Introduction

Handel-Cs approach to bringing high-level languages into the hardigaign domain, shares
commonalities with Streams-C. Like Streams-C, it adopt&ké€ dyntax that can be directly
compiled into synchronous digital hardware. The Handel-C languagetsarfssibset of the C
programming language and additional “low-level” augmentations forcritbisy parallel

operations and specific hardware components [48].

Being not a hardware descriptive language, its compiler does not progtimized hardware
circuits. It is however focused on fast prototyping and optimizinghatalgorithmic level.
Program execution in Handel-C by default follows a sequential patierrthan maximizing
concurrency. Although programs execute sequentially, Handel C supporf@rtte®nstruct
(parallel), to enable a process to spawn multiple sub-processesh&sh All sub-processes
within the parallel construct will be executed concurrently, and exectiow rejoins when all
the sub-processes complete. Any sub-processes that complete aatlyvait for all other

processes to complete.

Handel-C Computation Model

Handel-C is based on the Communication Sequential Processes (G&#)[49], and extends
the C language to overcome concurrency deficiencies of the laagjaage. Handel-C allows
programs to be specified as set of concurrent processes, usinguctsngtat simplify the

specification of communication and synchronization between these pmc€ssamunication

between concurrent processes can be achieved by means of messayg pdth named non-
gueue communication channels. A process block must wait until the otheaspris ready to

send or receive data over the channel.

The Handel-C compiler [49] was designed to hide the low gate-titalls such as propagation
delays, clock skews, and pipeline lengths. Handel-C augments théemaghanguage with the
capability to express the notion of time. The notion of time is siimglinto two specifications;
time advances in a computation in units of one clock cycle, andbla@@signments require

exactly one clock cycle. Thus it allows only the design of synchronous digital gircuit
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In contrast to HDL, which supports the specification of low-level aoency, Handel-C adheres
to the sequential flow of the governing C program. Each assignmeihiei source program
executes in exactly one clock cycle. An application can be broken ddavséts of sequential
units of computations called branches. Parallel branches communieate memed non-buffered
blocking communication channel. One branch has to wait (block) anothehlicairsending and

receiving of data over.

Language Construct

Handel-C basically consists of a subset of the C language extaiittheddditional constructs

such agar to exploit hardware parallelisrdglay for timing, ram for built hardware component
and others. A list of the Handel-C language constructs is givéneiriable 2-2. Programs in
Handel-C by default are made up of sequential constructs. However designgake advantage

of hardware parallelism (using par construct) for parallel processing.

Constructs Descriptions

Par Parallel execution

Delay One clock delay

Chan Channels for communications
? Reads from channel

! Write to channel

prialt Select first active channel

seq Sequential execution

signal Hold value for one clock cycle
interface External connection
Width(...) Determine number of bits
ram/rom Memory devices

Table 2-2 Example of Handel-C Language Constructs

Unlike conventional C which variable size cannot be reduced tohass3 bits width, hardware-

optimized constructs sudiit-width can be used to size variables or constants to as small as one

bit width, when declaring a simple flag, allowing efficient usehafdware resources. The

channel construct is to support CSP synchronous channel point-to-point comioaniogter
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constructs include special data path variables (variables mappeeégisters), logical, bit
manipulation, arithmetic, relational operators, delay construct,raseig and flow control. The

delay instruction takes one cycle.

Handel-C Program Examples:
a) Declaration syntax extended for bit-width (int n x);
int4x,y; /I define variable x, y as 4 bits variable

unsigned int 2 z ; // define variable z of type integer, size is 2 bits

b) Sequential Expression

{

x
1]

1; /I assignment statement execute sequentially

2; /I requires two clock cycles

<
I

c) Parallel Expression
par {
x=5; /[ assignment statement run in parallel

y=2; [/l statements withpar take one clock cycle

d) Synchronization between parallel branches:
An example of two concurrent processes (two parallel branches) cooataubiy via a

channel is given in Figure 2-7:

Branch 1 Branch 2

channel —» Y

Figure 2-7 Two Parallel Processes
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The communication between the two branches can be achieved by the following constructs:
channel ? variable - to read a value from a channel and assigns it to variable

channel ! expression - writes a value resulting from expression evaluation to d channe

In each case the writer or reader is made to wait if flsaliea reader or writer at the other end of

the channel (branch X has to wait for Branch 2 to reach state Y, if it reaches state).

224 SYSTEMC

Introduction

Recently, multiple components including CPU, digital signal processoesnories, busses,
interrupt controllers, busses, and embedded software can be impleméhiadavsingle chip
called system-on-chip (SOC). To manage complexity of these &@CGo reduce design time,
designers are focusing on raising the design abstraction to skestehdesign environments.
System level design environments enable designers to deahavillvare and software design
tasks simultaneously [44]. These tasks include modeling, partitiorénijcation and synthesis
of a complete system. Current approaches of providing system level design toals [28]:

- Reusing existing hardware languages, adapting and recreatinqetiodologies. For
example System VERILOG adapting VERILOG to include creationvamification of
abstract architectural level model.

- Extending high-level languages with hardware design capabilEesmples of these
efforts include Spec C, Handel C and System C.

- Creating new languages like Rosetta.

System C extends the C++ language with hardware systempliestsitargeting SOC devices. It
allows hardware modeling with explicit concurrent processes and cowationi channels.

System C supports multi-level communication semantics to enalstesrsinput/output protocols
with different level of communications abstraction. A port is artrabon used to describe
communication interfaces at different levels of abstractiorudtiafy data transaction level and

bus cycle level [45, 46].
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System C Language

System C language includes constructs such as processes, moduieg]schiaterfaces and
events. A system may be modeled as a collection of modules dhtirc processes, ports,
channels,and even other modules. As modules can be instantiated within other modules
structural design hierarchies can easily be built. A channel ébfect that serves as a container
for communication and synchronization. A chanimplements one or more interfaces. An
interface is simply a collection of access methods or functiomitiefis within a channel.
Therefore the interface itself does not provide the implement&tiprocess accesses a channel’s
interface via a port on the module. Ports and signals enable comtiamicf data between
modules, and all ports and signals are declared by the user to sipeeifec data type. An event
is a low-level synchronization primitive that can be used to aactstother forms of
synchronization. Channels, interfaces and events enable designers toamwidie range of
communication and synchronization that can be found in the system design. FeatystsnoiCS

class library include [46]:

Modules:
Modules are considered as container classes (like C++) or funtadrbailding blocks. They are
hierarchical entities that other modules or process can be defitl@d them. Modules and

processes communicate by means of functional interfaces.

Processes:

Processes define the behavior of a particular module and provide méddrodgpressing
concurrency. Processes can be hardware or software. Processes candlerstatities or can
be contained within modules. Process abstractions include asynchronousabldsyschronous
blocks. Processes communicate through signals. Explicit clockasarkto order events and

synchronize processes.

Signals:

Signals can be resolved or unresolved types. Resolved signalsri@deiver while unresolved
signal can have more than one driver. Clocks are considered & sjmptals. Multiple clocks
with arbitrary phase relationship are also supported. Mechanismasuwediting on clock edges
events, signal transition, and watching for event like resett@re included to support reactivity

modeling.
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Rich set of signal type (data type):

System C has rich set of signal types to support differentrdesignain and abstraction level.
The abstraction level ranges from high-level functional modelowo Hegister-transfer level.
Signal types include single bit, bit vectors, fixed precision tgspdcially for simulations or
digital signal processing), four-states logic, arbitrary precinteger value, and floating point
[43].

245 Summary

In summary, advancements have been made in bringing high-leveagewinto the domain of
hardware design and toward seamless integration of hardware am@rsoftomponents.
However the research efforts described above are lackingiapét terms of hardware and
software integration. For example, in the case of Stream-C, the comtrmmizetween hardware
and software components is achieved by using low-level streams and signatsévi@eeam-C
is designed to handle systolic-based computation only. Handel C resiarctvas mainly focus
on raising the abstraction level to program the FPGA. Languagé&waisssuch as “interface”
and “ROM/RAM” in Handel C still require some knowledge of hardwatetails. The
synchronization of software and hardware components in Handel C enviroisnaehieved by
means of low-level communication mechanisms. These efforts do notcalstey the boundary
between hardware and software components. Therefore new approactezpimesl, including
adopting system level and programming model methodologies to reslobse issues.
Programming models, specifically the multithreading programming hidescussed in the next

chapter.
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3 MULTITHREAD PROGRAMMING

3.1 INTRODUCTION

It is standard for operating systems today to support multiple mexas order to achieve better
resource utilization and processor throughput. The multithread programmahe) evolved as a
light multiprocessing model where each thread has it's own exeqatbn but all threads share
the same address space. On single CPU machines, this allows a thread to blesloorca and
allows other threads within the same program to continue executionthfded scheduler
achieves this capability by interleaving processing resourcegede multiple threads, thus
giving the illusion of concurrency on a single processor. Performamgmvements can be
gained on a single processor system as it allows slow input/outyige dperations to overlap

with computations on a processor.

3.2 THREAD

A thread is an abstraction that represents an instruction stream thatts etdeute independent
of all other threads. A thread possesses its own stack, reggstexecution priority and program
counter as summarized below and shown in Figure 3-1. Additionally, each thrésddassagned

a unigue identification code (ID)

» Program counter (current execution sequence).
e Stack pointer
e Stack frame

» State (other registers value beside stack pointer and program counter)

In addition to its own private execution context, all threads withinoagss share the process
resources such program code, heap storage, static storage, opesofikes descriptors, other

communications ports, and environment variables equally.
In a single-processor system, only a single thread of executiomrngng at a given time. The

CPU quickly switches back and forth between several threadsre@tecan illusion of

concurrency.
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Thread T1
Stack Frame (T1) Stack
Pointer
Thread T2
Stack ——————» Stack Frame (T2)
Pointer
Thread T3 Stack Frame (T3)
Stack
Pointer
o
Heap
Static (bss)
Program
Counter
(T3) Program
Program Code CO‘Ilir]jt(-3r
Counter ——» ™
(T2)

Figure 3-1 Threads within a Process

This means that a single-processor system supports logical @mmyrrnot physical
concurrency. On multiprocessor systems, several threads do iexiaite in parallel. Thus
physical concurrency is achieved. The important characteristimbithreading is that it creates
logical concurrency between executing threads that can also bemiemiéxl using physical

concurrency, option based on the platform configuration.

Thread context switching is much cheaper than the context switcljnigerd between processes.
To switch threads, only the execution context is needed, so minimal kermees are required.

This leads to at least two approaches for thread scheduling:

« User-level threads are scheduled independent of the kernel using a thread library. To the
kernel, the multiple threads appear as a single-threaded probesadiantage of this
approach is that switching between threads is fast as modéisgits not needed and

fairly portable. The disadvantage of this approach is it does requit@adtcode to be
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written in assembly. For example context switches and certaim gfatbde must be able
to execute atomic instructions. This type of thread complicatéspiementation, as all

I/O must be handled in a non-blocking manner.

Kernel-level threads are scheduled in the kernel together with threads of other precesse

This approach has the advantage that multiple threads can be @ssigrmaultiple
processors. The drawback of this approach is that two mode switehesjaired when

scheduling different threads.

The advantages of multithreading can be summarized as follows:

Better utilization of the CPU in the presence of slowerdiices, by switching out
threads that are waiting on I/O devices, and switching in a thread that is ready to r
Concurrency can be used to provide multiple simultaneous serdcasets. Users
perceive improved application responsiveness, if dedicated threadssed to serve
different services such as displaying outputs or reading inputs.

The use of threads increases code visibility and makes codaesmExt simple as it
provides more appropriate structures for programs to interact tivéthenvironment,
control multiple activities, and handle multiple events.

Some applications are inherently concurrent in nature. For exangdéabase server
may listen for numerous client requests, service concurrentlyeaot data ready
connections. Scientific calculations that compute terms in an ,aeagh term
independent of the others can be broken into multiple threads.

Multithreading provides benefits to a large job when it can bieeti into smaller jobs
and distributed amongst multiple processors for greater efficidinrgads also can help

to deliver scalable multiprocessor systems.

Thread concurrency can introduce race conditions when multiple threads atessgs to shared

data without proper coordination. Race conditions are introduced by non-deterreixgstition

sequences from input or output completion, signals, and the preemptive action of a scheduler.

Accesses to the shared resources are serialized and conwittiéide aid of concurrency control,

or synchronization mechanisms. Proper use of synchronization mechanismasitges the

elimination of these race phenomena. The standard synchronization regehamiuse in

multithreaded programming are discussed in the following section.
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3.3 SYNCHRONIZATION MECHANISMS

Management of shared resources is fundamental to the succegg@rmentation of concurrent
programming model. Accesses to the shared resources by the congexeatiting threads must
be serialized to avoid programming errors or undesired inconsistarits. Processes or threads
that share access to these resources must execute in a mexahlsive manner. These shared
resources are also known exclusive resources because they ragsefsed by one thread at a

time.

Accesses to these exclusive resources are usually coordinatextlgXm} programmers, using
concurrency control mechanisms such as locks, mutual exclusion (mwexgptsores and
condition variables. Semaphores are useful for controlling countalaerces, while condition
variables are employed for event waiting. These synchronizatiathamisms are enabling
mechanisms that elevate the concurrent programming to a higkétHan individual processor
instructions, permitting segments of programs to execute in appadérisible operations with

no interleaving.

These sequences of statements that must execute in a mutualgivexmanner are typically
referred to critical sections [33]. There are a number of regeines that need to be satisfied
when processes or threads execute within critical sections toeefauress and symmetric

progression [33, 39].

Mutual exclusion:
* Only one process is in the critical section at one time.
Progress:

* Progress in absence of contention. If no process is executing inittbal gection, a
process that wishes to enter a critical section will gefliis ensures that if one process
dies, the others are not blocked.

» Live-lock freedom: process must not loop forever while in critical section.

» Deadlock freedom: if more than one process want to enter aataéction, at least one

of them must succeed.
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Bounded waiting:
» Getting fair chances to access to a critical section andcan@tibn: if a process wishes to
enter a critical section it will eventually succeed. No ttirea process is postponed

indefinitely.

For a long critical section, threads that fail to acquire an llaél@ synchronization variable
should be put to sleep instead of wasting processor resources busy.viiath semaphore can
have an associated queue in which to place the sleeping threads. Winaplaose is released, a
wake-up mechanism transfers a thread from the semaphore wait guieuthe ready to run
gueue. Such synchronization mechanisms that support sleeping threacdemexl to as
blocking synchronization primitives. Although blocking synchronization pres are
advantageous, there are many scenarios in which polling the synchiooizariable is more
desirable. As an example, in a multiprocessor system it is efficeent to busy wait for rather
than block when the rescheduling overhead is more expensive than shomgpimes, and

when bus contention is low. This kind of synchronization is called spin type synchronization.

Lock

The simplest type of synchronization mechanism is a mutual excliasibror more commonly
referred to as a lock. A lock is essentially a binary Weighat has two states: locked or
unlocked. It is normally used around a critical section to ensure hexaksion or to obtain
exclusive access to a shared resource. Only one thread can oackthed time. While a thread
holds the lock, all other threads are prevented from opening the ldatkealinquished by the
owner thread. Thus locks protect critical sections from being ee@sirhultaneously by multiple

threads.

Soin Lock

A characteristic of a spin lock is that a thread ties up @ @Rile attempting to unsuccessfully
gain access to a critical section. Conversely a spin lockeatificient when the amount of wait
time for the lock is smaller than the time required to perfonorgext switch. Thus it is essential
that spin locks execute for only extremely short durations. In patijciiey must not be held
across blocking operations. Depending on system requirements ilstagesirable to disable
interrupts on the current processor prior to acquiring a spin lock. The main agvahtesing the
spin lock is that its operation is inexpensive when the probability of lock contentimn.iWWhen

there is no contention on the lock, the cost of both acquiring and relaghsingck typically
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amounts to few CPU cycles only. Thus, they are ideal to protextsttaictures that need to be
accessed briefly or when the critical section is short. Theyalo normally used to protect

higher order synchronization mechanisms.

Blocking Lock/Mutex
Depending on the length of the critical section, a thread may nekdldoa lock for long

duration. For such situations, it is more efficient for the thréaatswish to own the lock go to
sleep instead of wasting processor precious cycles, busy waitinge lock to be available.
Going to sleep involves inserting the requesting thread id inteep sjueue and calling the
system scheduler to perform a switch context (changing itstetateck, sleep on this resource,
and relinquish the processor to another thread). When the current lock exitsethe critical
section, it releases the lock, which generates a wake-up tigtte scheduler. If there is at least
on thread in the queue, the wake-up mechanism will de-queue one or titehds from the
sleep queue, change their state to ready and transfer them to tthélescheeue. The next mutex

owner can then be decided according to the scheduling algorithm.

A mutex has a flag to represent the usage state and a queue bdokktetl threads. A locked
mutex may contain zero or more threads waiting in its queue. Whenutles is not locked, the
gueue is empty. When the mutex is unlocked and while its queue is not empty, one of the blocked
threads will be removed from the queue and transferred to theteeady queue. The following

are application program interface (API) provided for POSIX mutex:

pthread_mutex_init(mutex ) - to initialize a mutex variable.

pthread_mutex_lock(mutex) - to acquire a lock or mutex before accessiriiical
section. The calling thread blocks if the mutex is not
available.

pthread_mutex_trylock(mutex) — to test whether a mutex is locked wittemge the
calling thread to block. Therefore, a thread can do other

work instead of blocking if mutex is already locked.

pthread_mutex_unlock(mutex) to release a mutex and unblock a sleepfttireais

one in the mutex queue.
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Semaphore

A semaphore is a synchronization mechanism normally used for contetivegs to a countable
shared resource. Each semaphore has a counter that can be used tmiggnctultiple threads
and a sleep queue to hold blocked threads. The counter can be incremanteddsitive value
or can be decremented to a nhon-negative value. Two atomic operationsed to change the
value of the counter — wait and post operations. The wait operatioragesrthe value of the
counter by one. If the value is already zero, the wait operatioesdus calling thread to block
until the value of the semaphore becomes positive. When the semapbaitetsbecomes
positive, it is decremented by one and the wait operation completes.i&sesien the value of
the counter is zero, any wait operation will cause threads to bkedland queued into the
sleeping queue and the counter value remain unchanged at zero. A pasbrojereeases the
semaphore counter value by one when the queue is empty. If the sleefisquatuempty, a post
operation causes one of the threads in the queue to be unblocked, and theremaintar zero.

The unblocked thread will be transferred to the scheduler queue.

sem_wait(semaphore)
- Decrements the semaphore counter value or the calling thread lilasksurrent value

is zero.

sem_post(semaphore)
- Increments the semaphore counter value if queue is empty or wakatsieast one

waiting thread and counter value remains zero.

Condition variables

Waiting in the sleep queue implies blocking until some event oc&urendition variable waits
atomically on an arbitrary predicate, which makes it a convenienhanism for blocking threads
on combination of events. A condition variable itself does not contain the actuai@omalitest,
instead it is a variable that allows threads to block s&felyit) when the condition is not true. It
has an associated lock that protects the condition to be testegufiported with three atomic
operationswaiting, signaling andbroadcast. These operations allow threads to block and wake-
up within the context of the lock. To prevent lost wakeups, the loplassed as an interlock
when a thread blocks on the condition. Thus a condition variable supplemgtsts lotk by

allowing threads to block and await signals from other threads whamd&ion is not true. When
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the running threads change the predicate, a condition variable wakes afiethe blocked
threads. The awaken thread will attempt to obtain the lock bedstang the condition. The

following are application program interfaces (APIs) provided by POSIX for gondiairiables:

pthread_cond_wait(condition variable, mutex lock)

- Causes the calling thread to block on the condition variable and release its mutex lock

pthread_cond_signal(cond)

- Awakens one thread waiting on condition variable.

pthread_cond_init( cond)

- Toinitialize a condition variable.

pthread_cond_broadcast(cond )
- Wakes up all threads waiting on a condition variable. These aedkéreads contend
for the mutex lock. If more threads are waiting, one is selént@dmanner consistent

with scheduling algorithm.

Atomic operation

All synchronization mechanisms rely on hardware to provide atomicatiges. An atomic
operation is an operation that, once started, completes in a logiadillisible way (i.e. without
any other related instruction interleaved) [33]. Many systems geoan atomic Test-And-Set
instruction or an atomic Swap instruction. Test-And-Set sets aorgdocation and returns its
old value. If the return value is one, the lock is already own byhandread. Swap has two
arguments and swaps the values of its arguments atomicallyT &dteAnd-Set must executed
atomically, even on multiprocessor systenik. Test-And-Set instructions are attempted

simultaneously by multiple CPUs, they must be executed sequentially.
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3.4 THREAD SCHEDULING

Figure 3-2 shows the possible states a thread may assume datifgy iTypically, in a single
processor environment, a scheduler manages the sharing of the Ciitdhing the threads
context in and out at periodic intervals. Many algorithms exist ftaragéning when and how to
select a thread for scheduling. By far, the simplest schedubijogthm is the first come first
served (FIFO) algorithm. In this approach, a thread that is rumndngtains the CPU until it
relinquishes the CPU via blocking or termination. All other threm@sthen scheduled in the
order that they were added to the ready to run queue. In the sirRdeakgorithm, a currently
running thread cannot be pre-empted thus potentially achieving poor aiggregstem
performance. In contrast to the non-preemptive FIFO algorithmmptae scheduling
algorithms allow the currently running thread to be taken off tHe &Rl replaced by a different
thread. Preemption can be implemented based on time slicing, otypassignments to the
threads. For time slicing, a hardware timer normally gereratgeriodic interrupt to the
scheduler to perform a forced scheduling decision. This type of tioesl periodic scheduler
allows other threads of the same priority to gain a slicenté tn the CPU. This approach is
referred to as a round-robin scheduler. Additionally threads can lgmedgriority levels, and a
thread with a higher priority that has been moved from a blocked gqoi¢lue ready to run queue
can immediately cause a preemptive scheduling decision. Thuby¢lad with highest priority

level will always be running on the CPU.

timer interrupt
/\ dead
eM

f\/)

i/o event or scheduler dispatch
semaphore

i/o event or
complete

semaphore
~ 3

Figure 3-2 Thread States
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While a thread is in theun state, it may transit to theait state when it fails to gain a resource
needed and is blocked. The resource includes a synchronization variadiEaofrom a
peripheral. The following are events that can cause a thread nigeclita state and results in
context switching:

1. Synchronization — A thread that fails to gain a synchronizatioablarivill change its
state toblocked or wait, places itself in a waiting queue (waiting queue associatéubto t
requested synchronization variable), and then calls the thread schedallew another
thread to run.

2. Preemption — Preemption occurs if a running thread does somethingubkas a higher
priority thread to becomeunnable. The actions that causing this to happen include
releasing a lock, changing the priority level ofumnable thread upward, lowering its
(active thread) priority downward.

3. Yielding — The scheduler will dispatch another ready thread, ifattiere thread
voluntarily yields and there is at least one thread in the schegubeie. Otherwise an
idle thread will run on the CPU.

Threads wait in sleep queues while in thegit state. A wake-up mechanism will change their
state taready and put them back into the scheduler queue when the requested synchronizations or
the data from the peripherals become available. Description of edusefdtates is described in

table 1.

States Descriptions
Ready Ready to run, but waiting for a processor or CPU.
Run Currently executing on a processor. At least one is running withxanum

equals to number of processors.

Blocked Waiting for a resource other than the processor to become availdide

or wait resource is a synchronization or data from peripheral device.

Terminated Completes its execution but not yet detached or joined.

or dead

Table 3-1 Thread State Descriptions
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3.5 CONTEXT SWITCHING AND QUEUES:

Thread Queues:

- Conceptually threads migrate between the various queues during theirdifeti

- The queues are actually used hold thread ID or pointers to thread control blocks. (TCBSs)

- Scheduler ready queue: ready queue points to the TCB (Thread cdotk) Bf the
threads ready to execute on the CPU.

- Synchronization blocked queue: it is for threads wait or block onpexifgc
synchronization variable.

- Device blocked queue: one blocked queue per device, and is used to hdli@Bhe
pointers of threads blocked waiting for an I/O operation (on that device) to complete.

- When a thread is switch out at a timer interrupt, it i$istilhe ready to run state, so its
TCB pointer stays on the ready queue.

- When a thread is switched out because it is blocked on a semapkoation, its thread
ID is moved to the semaphore blocked queue.

- When a thread is switched out because it is blocked on an I/Ctiopeits TCB pointer
is moved to the blocked queue of the device.

- An example of threads execution states on a CPU with various queeas, skacks, and

thread control blocks (TCB) is shown in Figure 3-3.

Except for certain operations and dependent on the scheduling algorithnead scheduler
normally invokes context switch procedure when the periodic schedutivey &xpires or the
thread blocks. The following are examples of events that can cangext switching and the
corresponding sequences of operations that occur during the associated switiching

operations.

Periodic Timer Interrupt:
a. Thread executing
b. Timer Interrupt occurs
c. Program counter changes to the vector of timer interrupt haadtecurrent thread state

is saved

o

Interrupt Service Routine (ISR) runs
i. Disables interrupt,

ii.  Checks if the current thread has run long enough
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N ]

> @

If YES post software (SW) trap
Enables interrupt
Returns from ISR
Check if SW Trap posted?
i. If NO: Restores thread state
ii. If YES: Performs context switch
Thread Stack Frames
Synchronization blocked queue 1 T1 T2 Tn
ot N O O R o oo
| - | s»—»
| Synchronization blocked queue m |
<L L LT T T T T [ [m)ey
| Scheduler queue (ready queue) |
— [ Jes
Thread Control Blocks (TCBs)
ID Tn o o o T2 T1
state wait wait ready
sP Thread Program Code
PC
MSR o o o
o o o PC —p
<+
regn

regn
<+ o
CPU

MSR A
Scheduler SSP registers
Context oo
Switch

1. TCBs and queues are in the static (bss) memory section.
2. Stack frames are in the stack memory section

3. Thread program code in the text memory section

4. PC is program counter

5. SP is stack pointer

6. MSR is machine state or condition code register

Figure 3-3 Thread Execution Representation and Supporting Structures
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Blocking I/O call:
a. Thread executing
System Call I/O
SW Trap handler runs in kernel. Saves the current thread state
Kernel code (OS) runs the I/O call
I/O operation starts (I/O driver)
Updates thread state to WAITING
Adds thread ID to the Wait Queue of the requested I/O device

-~ 0o 2 o0 T

S @

Performs Context Switch
I/O done (/O interrupt)

j.  Wakes-up waiting thread, moves it from the Wait Queue to the Scheduler Queue

Blocking semaphore call:
a. Thread executing
b. Thread calls Semaphore API
c. Software Trap handler runs in kernel. Saves the current thread state.
d. Kernel code (OS) executes the semaphore call
e. |If block:
i. Updates TCB thread state to WAIT
ii.  Adds thread ID to Semaphore Wait Queue

iii.  Calls scheduler to perform context switch to allow another thread to runs

—

The thread that currently owns the semaphore performs release call

Software Trap handler runs in kernel

> @

Kernel code (OS) executes the release call

The semaphore is available now

i.  Wakeup at least one thread waiting in the Wait Queue

ii.  Move thread ID from Wait Queue to Scheduler Queue
3.6 THREAD SCHEDULING POLICIES
Threads that are queued and waiting on a synchronization variabldenagblocked using
various policies. These policies define the semantics when a eyirdtion variable is released

and there is more than one thread waiting to acquire the resouseatigly a scheduling policy

defines which waiting thread shall acquire the synchronization whemntrent owner releases it.
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With a FIFO scheduling policy, threads waiting for the lock wél granted the lock in a first
come first served order. This can help prevent a high prioritadhirem starving lower priority

threads that are also waiting on the synchronization variables.

With a priority driven scheduling policy, the thread with the highe&irity can acquire a
synchronization variable even though there may be low priority threadsng in the
synchronization queue. This can lead to a starvation phenomenon, which iloytipgority
threads may never acquire a synchronization variable especially when thighe dgsntention for
the variable and always at least one high-priority thread ngaftr the same variable. When
there are multiple threads with the same priority levelingifor a synchronization variable, one

of the other scheduling priorities will determine which thread shall acquiredke |

Conversely, situations can occur when a low priority thread ownskaoimovhich a higher
priority thread is blocked. If the lower priority thread is lit¢#ocked on a different lock that
must be released by yet another higher priority thread, then the poiwdty thread may never
get scheduled to release the lock to the blocked higher priorggdhr Although a symptom of
bad usage of locks, this situation, termed priority inversion, can asdodoar. Most operating
systems address this issue by allowtimg priority of the thread that owns the lock to be raised to
at least the priority of the highest priority thread blocked onldick. In this fashion, the

currently running thread will eventually get access to the CPU and relinquisitkhe |

3.7 DEADLOCK , STARVATION AND PRIORITY FAILURE

Deadlock can occur when two or more threads are each blocked, viaititmnditions to occur
that only the other ones can cause. Since each is waiting on thereiteer will be able to
continue. A deadlock can happen when a thread needs to acquire multigleHoclexample
thread T1 holds resource R1 and tries to acquire resource R2. Adntieetisne, thread T2 is

holding R2 and trying to acquire R1. Neither thread can make progress.

Starvation is the situation in which a thread is prevented frokingnaufficient progress in its
work during a given time interval because other threads own slernee it requires. This can
easily occur when a high priority thread prevents a low pridnityetd from running on the CPU,

or one thread that always win over another when acquiring a lock are examplesaiosisirv
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Priority inversion is a scenario that occurs when a high prititigad attempts to acquire a lock
that is held by a lower priority thread. This causes the executitredfigh priority thread to be
blocked until the low priority thread has released the lock, éfedgtinverting the relative
priorities of the two threads. If other threads with medium lpvigrities attempt to run in the
interim, they will take precedence over both threads. The detygition of the high priority
thread (after the low priority thread release the lock) noyngdles unnoticed and causes no
harm. However on some occasions, priority inversions can cause praspeasally in a real
time system. If the high priority thread is deprived of a resolong enough, it may lead to a
system malfunction or triggering of corrective measure sucWaishdog timer resetting the
whole system. The priority inversion can also causes threadsdotexe such sequence that the
required work is not performed in time to be useful anymore. POSiKedethe two standard
mechanisms to avoid priority inversion: priority inheritance and ipyiareiling protocols.
Priority inheritance allows a low priority thread inherits ptipmf a high priority thread, thus
preventing medium priority threads from preempting the low pridhitgad. Priority ceiling is a
procedure that assigns the thread that possesses withdkigh or ceiling priority. This works

well as long as other threads do not possess priority levels higher than the eediribrity.

3.8 POSIX THREAD LIBRARY :

Thread Management
Pthreads contains a runtime library to manage threads in adranspvay to the users. The
package includes calls for thread management, scheduling and syratiooniZhe thread

management APIs are given below:

int pthread_create(thread_t id, void *( *start_function) (int), int argumnet, int griorit

- Create a thread to execute a specific function

void pthread_exit( void *value_ptr)

- Causes the calling thread to terminate without causing entire process to exit

int pthread_join(thread_t id, void **value_ptr)

- Causes the calling thread to wait for the specified thread (thread id) to exit

pthread_self() - return caller’s identity or thread ID
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int pthread_yield()

- Threads can voluntarily release CPU to let other threads run by callind_thiedd.

Threads can be dynamically created and terminated during the exectiti program. However
the total of number threads is subject to the resource limitatbresmach given system. For
example the number of threads can be limited by the scheduler queu&tsizads are created
dynamically with thethread create APIl. The thread create reserves and initializes a thread
control table and adds a thread ID into the scheduler queuestarhdunction is the name of a
function or routine that the thread calls when it begins execution.sthefunction takes a
single parameter specified by the argument. The start routimsea pointer (pointer of type

void), which later to be used for an exit statusHsthread_join.

Threads exit in two ways. First, by returning from the thread fondtimplicit exit). For this
implicit exit, the return value from the function is passed badkagarent thread as the return
value. Alternatively, a thread can explicitly exit by callilmgetadthread exit. The argument to
thethread_exit is the thread return value. Th@ue_ptr parameter value is available to its parent

thread _join.

A parent threadises thread_join to wait for all its children to terminate, before it can ésielf.
This will avoid de-allocating of data structures that its chiidray still require. Théhread_join
API takes two arguments, the thread ID of thread to wait for and a pointeoid*avariable that

will receive the finished threads’ return value.
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4 HYBRID THREAD

4.1 INTRODUCTION

General programming models form the definition of software componamis governing
interactions between the components [14]. Achieving abstract progngnuapabilities across
the FPGA/CPU boundary requires adaptation of a high-level programmudgl that abstracts
the FPGA and CPU components, bus structure, memory, and low-level paripto¢ocol into a
transparent computational platform [3]. The KU hybrid threads projest ¢leosen a
multithreaded framework as our model, supporting concurrent hybrid thitesudisuted flexibly
across the systems CPU and FPGA assets. Within our modbtealtls adhere to the policies of
accepted shared memory synchronization protocols for exchanging datayraniosizing
control. To support this generalized model across the FPGA, we heemplkd a Hardware
Thread Interface that encapsulates mechanisms to support syncliwonfpat FPGA based
threads. Under this unified model, application programmers perform precealls from within
both VHDL and C to access high level synchronization primitivegdert threads running across
both hardware and software computations. The set of Hardware Thteddde components as
well as a standard software interface component form our systefybrid thread abstraction

layer as shown in Figure 4-1.

CPU

Software
Thread 2 © o ©

Software
Threadl

Software Thread Interface Component

< ¢ system bus _
i Hardware Threads 3
Hardware Thread Hardware Thread Hybrid
thread

Interface
Component

Interface
Component

abstraction
layer

User
Hardware
Thread 1

Figure 4-1

User
Hardware
Thread 2

Hybrid Thread Abstraction Layer
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4.2 HYBRID THREAD ABSTRACTION LAYER

Concurrent execution of FPGA based threads and CPU based threaseragé drigure 4-2
illustrates the low level services provided within the hybrid thread alisindayer. As shown in
Figure 4-2, thread F3, an FPGA based thread and T11, CPU based threamhicamicate and
synchronize with thread concurrency control operations. The concurrencglanetthanisms
include blocking and queue facilities enable threads to block othexdthr&hreads T8, T4, F2
and T9 enter blocked states when they attempt to acquire MUTEXa&ddy locked by another
thread. CPU threads T2, T5, T12 are iruanable state waiting to be scheduled on CPU. Within
the abstraction layer the following services are supported:

- Fundamental atomic operations that form the basis of higher codeurcency protocols.
These “atomic operations” are CPU family independent, and are tabldandle
multiprocessor environments.

- Uniform concurrency mechanisms that able to enforce mutual exclasi shared resources
accessed by both CPU based software threads and FPGA based hdndezds. These
control primitives are enabling mechanisms that elevate comcyrit@gher than low-level
processor instructions.

- Blocking synchronization mechanisms that include queues and wakerupesefor
concurrency control functions. The queuing operation and wake-up serviceasteoper
autonomously and require no overhead from the operating system running ©RUhén
addition, the wake-up facility includes delivery of wake-up threadhie scheduler queue.
The performance of the queuing and wake-up facilities is independehe ofumber of
blocked threads in the queues.

- Synchronization mechanisms that enable for mutual exclusion, evdéirigwaontrolling
countable shared resources and arbitrary blocking conditions in ordaeppors assorted
applications. Also synchronization mechanisms that avoid lost wakedip'thundering
herd” problems.

- A hardware thread support layer that acts as an interpogtesér computations to request
synchronization and access the system memory. Within this fageheduler has also been
created to manage hardware threads with no overhead required orPthe T@read

management operations are also provided to software programs
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- Application programming interfaces (APIs) are presented to thadsien the CPU to access
the new concurrency control mechanisms. The APIs have two lalerstigh level layer
which provides an interface for application programs, and a low layet that provides an
interface for the operating system.

HW thread IP HW thread IP Semaphore IP Other IP
F3 F4
vo
Hardware Hardware
API API

v v v v

Mutexes IP ‘-KD
F3 —

F1 T7
S cru b oo
O — — PR v
o T8 T4 F2 T9 T15
St bt
Threads in sleep queues (blocked on mutexes) A
«» P T11

|
T5 T2 T12
T

CPU Threads ready to run on CPU v

Figure 4-2 Hybrid Threads System

The Hardware Thread Interface (HTI) component is provided dsrarylifor inclusion within
user-defined hardware threads. The hybrid thread abstraction |lgyemients all interactions
between source hardware threads and other system components throughniaed and status
register pair. This capability is particularly useful for debnggand is used during runtime to
interact with other system components, such as our semaphore meshi@miimead blocking
and wake-up. During debug, the status register is accessible usemprograms allowing

developers to monitor and control the execution state of a hardware thread.
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4.3 HARDWARE THREAD

4.3.1 Introduction

Some applications naturally decompose into as collection of distisks that can be executed
concurrently. Traditionally these concurrent tasks are implemesgegrocesses or threads
executing either on a single or multiple processors. A thread c#imobght as independently
executable sequence of instructions. For software threads, thesetioss are stored in the
system memory and are available to be executed by multiple invocations of a coneadn thr
To extend the multithreaded programming model across the processarffelR@dary, we must
first understand the operational semantics of a hardware thread, uRiike software threads, a
hardware threads do not share a common code base. Instead, each hardadrs a unique
physical parallel hardware compute engine built within the configaréddic fabric. The
execution sequence of the thread is based on a finite state mauathiinetanodeled on the von
Neumann stored program architecture. As hardware threads are indepere®itable entities,
we can capitalize on the potential of the FPGA to support true plhygsiocurrency. This view
exposes the FPGA to wider pools of system designers. Other incentives includes:
* Reduce development times in implementing applications in FPGA
» Offering new insights and techniques toward a more unified platforhaware and
software co-design and presenting a more integrated view of powcaad FPGA
components.
» Provides faster and more deterministic system response ttimgh the co-designed
system services.
To promote portability and platform independence of the user computatiortfeoomderlying

platform, we provide the Hardware Thread Interface (HWTI) shown in Figure 4-3.

To enable these hardware-implemented computations, new serviceassisginchronization,
thread management and other operational support must be created. onadditer services
such input and output infrastructure are necessary to enable user camputashare data with
other threads across system bus. The collection of these neweseavid necessary support
hardware forms the hardware thread interface. The support hardwdmdeis register sets,
architecture dependent and independent system bus interface logic, and havdwallers. The

services are packaged in the form of a standard application prdgtarface (API). User
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computations use these API's to request services from theaiceerfhe interface responds to

requests and provides feedback to the user computation in form of a return status.

Bus Interface (Architectural dependent + independent components) H
1L W
State Machines*: T
. - Bus Master Handshake
Ijj State Machines: H
Rl - Thread state scheduler* gdgﬁiggee;g R
- Status process us v
- Data in/out E
- Command process t—» L
- Bus Slave Handshake - Synchronization tests, A
Busy wait
result2 D
address >
[ operation | [ status ] > |
d dat - N
read data
T
E
Block lock/mutex: Spin lock: R
{ do once loops until status = lock acquired F
address <= mutex N address { A
operation <= mutex address <=lock L address Other APIs
parameter 1 <= thread_ID operation <= spin lock C
} parameter 1 <= thread_ID E
if status = lock fail, waits }
User Hardware Thread (Application)
Use APIs (operation=mutex, mutex_id=xx, parameter=thread_id)

* Hardware Thread State Controller

[ ] UserHardware Thread Interface Registers

[ ] CPUinterface Registers

Figure 4-3 Hardware Thread Interface

At this time both the user-specified and the interface componensymathesized and loaded into
the FPGA before run time. However, this interface has beenndelstg serve as the common

interface for dynamic reconfiguration of the FPGA.
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4.3.2 Hardware Thread Interface

The Hardware thread interface (HWT]I) is placed between the sysiend the user thread. The
HTI acts as interpreter that translates user thread reqoestgjuences of actions and provides
feedback when the actions are complete. In the opposite directi@spidrds to commands
issued by the CPU and other entities on the system bus. One nevemamiifor supporting
hardware threads when compared to existing approaches is the abditthread to write in
addition to read from memory mapped locations. The bus interface supptbrisus slave and

master modes. As a bus master, bus transfers can be requested on behalf of thediser threa

To serve user computations efficiently, we divide the Hardwhread Interface component into
three subcomponents according to their distinct functions: a CPUaceerd hardware-thread
state controller, and a user hardware-computation interface. Thinteésice defines a set of
platform independent functions implemented within the library API'she APl uses set of

interface registers to request services from the thresel tatroller. The thread state controller
accepts the user requests, performs the necessary operationsiargllreth the status and the
requested information. The command register defined within the HWU i@terface enables

the system CPU, or any other bus controller, to interact with the user hardwade threa

HWTI - CPU Interface

The CPU interface contains the bus interface, the command/stgister pair, argument and

result registers. These registers collectively enableCE and other system bus entities to
control the execution of the hardware thread. These registenseanery mapped components

instantiated with the hardware thread HWTI.

This interface provides an application program running on the CPlartooststop a hardware
thread’'s execution. Writing a command into the command registealegous to the software
thread create and exit operations. During run time, this faciliyples other system bus entities
such as semaphores to wake up a sleeping thread. This capalal#y garticularly useful for
debugging purposes. A CPU based application thread may also inspestatthe register to

determine the state of the hardware thread’s current execution.

We provide an application program interface (API) library functonilar to current software

thread packages for thread creation and deletion. In software bak#treading packages, the
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scheduler does not guarantee immediate execution of a newly ctiegtad. Instead, the API
contains a call to the scheduler that may or may not immediatelthe new thread. In contrast
to this approach, a hardware thread is an independent computational compuhevili &e

executed immediately upon creation. The API to create the harthvaesl is shown in Figure
4-4. To initiates hardware thread execution, the API writes of a unjgueode into the thread’s

command register.

hw_thread addr = hw_thread_base + (thread_id * 256);

#define cmd_reg_offset  0x05;

#define argl_reg_offset 0x07;

#define arg2_reg_offset 0x07;

#define cmd_run 0x03;

hw_thread_start(thread_id, argl, arg 2) {

*(hw_thread_addr + argl _reg_offset) = argl;
*(hw_thread_addr + arg2_reg_offset) = arg2;
*(hw_thread_addr + cmd_reg_offset) = cmd_run;

}

Figure 4-4 Pseudo Code for Hardware Thread Create API

HWTI - Thread State Controller

Our approach for controlling hardware threads is to provide therstatieine template shown in
Figure 4-5. Threads that have not yet started or have terminated are ie ttatell Threads that
are currently in the run state enter the wait state wheneadhequests, or continues to be
blocked on, a semaphore. Threads request a semaphore by executingiguAMbs discussed
in Chapter 5. Our API's implement a semaphore request by wihtnaddress of the semaphore
into an address register, and writing a unique op_code into the operatisterre When the
request is made, the controlling state machine transitions tresltirem the running to the wait
state. The status of this, or any operation, is available to thel ird®e status register. As long
as a thread remains in the wait state, no further execution oSénehread is allowed. A thread
in the run state releases a semaphore by executing a rewaaphsre library APl. The
implementation of the release API is similar to the requédt Asing semaphore address and

operation registers.

52



Our state machine supports both spin lock and blocking semaphores foateattmeads. For
hardware threads task switching on a blocking semaphore is notetcasrthe thread does not
contain shared resources that should be rescheduled. Instead, the diddicdweare thread
simply idles in the same fashion as it would with a spin lock. fdreware thread interface

component however does perform different processing for spinning and blocking semaphores.

For the spinning semaphore, the hardware thread interface transiittotisread state into the
wait state, issues a single request for the semaphore alceobsid, and returns the thread to

running when the status of the request is returned into the status register.

reset

CPU writes to
command
register

cmd_run

.

usr_request
or

usr_stop

cmd stop

hw thread
waits for lock

or semaphore
Figure 4-5 Hardware Thread States

In contrast, for a blocking semaphore the hardware thread intéréansitions the thread to the
wait state, issues the request for the blocking semaphore aerd tbavthread in the wait state if
the semaphore is in use. Upon a grant or release the state maithinen transition the thread
back into the run state. The semaphore IP's discussed in Chaptaildtie differences in the
semaphore logic for the two types of semaphores. The thread scheduler managasitioaing
between states during the lifetime of the thread. The staasséle via the status register to all
other threads. User computations are treated as autonomous threads aedstopped by the
controller at selected points of execution. This implies that acgseputation may decide when
it is appropriate to check the status register and controbwils operation. This allows
independent hardware threads to be stopped by a controlling CPU basedtohfead new

operating information or configuration.
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4.4 HARDWARE THREAD INTERFACE ARCHITECTURE

The diagram of hardware thread interface RTL representatigivén in Figure 4-6. The
hardware thread interface can be decomposed into the following hardware components:

- Architecture dependent bus interface

- Architecture independent bus interface

- Thread Scheduler

- Bus master controller

- Register processes

Bus Interface Bus Interface (Architecture Dependent + Independent)
addiL iidata IIr:gk/ RdReq ack WrReq II addr TT
Read/Write ACK, MUX ) Read Addr Gen
| Address
MUX
Cmd run/stop/wakeup Bus Master (BM) ) Write Addr Gen
II - read/write reqgs
- coordinate test
A Delay bet Reads
—/
Thread Scheduler  { Repeat Rd Max
idle/run/block ¢
- request to Handlers
- wait response fr BM Read Req Handler Mutex Test
states Write Req Handler Sema Test ﬁ
iL Mutex Req Handler Write Data A
(— cmd | Data Out
MUX
Status sem Sema Req Handler Write Data B
Control mtx
read
write Spin Lock Handler Read Data <:|
o o
latch  Release Handler °
4L it
[ Status | [ param2 l&— latch
args addr le— latch
operation
4L \
APls User Application

Figure 4-6 Hardware Thread Hardware RTL representation
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The system bus components that can instantiated within the harduwaeal tinterface is:
processor local bus (PLB) or peripheral or off-processor bus (OH®)se buses support
facilities that include communication exchange protocols and bus &dritrAa standard set of
signal interface (IPIF) is used on the IP core side to en#hlehenent of different IP modules to
either bus. This IPIF interface facilitates migration of core nexlidcluding the hardware thread

from one system bus to another.

The kind of services that IPIF provides include address decoding,bdéfexing, interface
registers, and peripheral interrupts. The details technical geicih these system busses can be
found in IBM and XILINX datasheets [50,61].

Instead of creating a new interface, we utilize the IPI& part of our hardware thread interface
to serve as a layer between the system bus and architecture independeetfags icbdmponent.
In implementing the architecture independent interface we sbiectslave and bus master
services common in most microprocessor-based system. Adoptingpinégeh enables users to
replace only the architecture dependent interface portion when portthgdra threads to other

hardware platforms.

The collection of interface, thread scheduler, bus mastering and rggstesses can be grouped
into two distinct functions: a control unit to manage user thread éapartid data path for data
flow in and out of the user thread. The control unit is broken into deéhierarchical processes or
state machines as shown in Figure 4-7. The hierarchical statd@mas are identified as A, B and
C as shown in the Figure 4-7. Each hierarchy state machine herfa#composed into several
concurrent state machines or processes as indicated in the disligaanchical state machine A
is made up of thread scheduler state machine (Al), status rgmistess (A2), and so on. B1
represents group of request handler processes and B2 is the busnmasaeée machine that
provides input/output access services across the system bus amsization ownership tests.
The interface procedure (API) in hierarchy process U genaxppesepriate address and operation
codes for the thread scheduler upon a request from the user prograansdfoaphore request,
the API calculates the semaphore variable address from thaplsera base address and the

semaphore ID.
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Figure 4-7 Hardware Thread Hierarchical Processes

The API then writes an appropriate code into the operation regi$teroperation code can be
one of the different types of synchronizations requests or data input/dtgpsactions. The
specific hardware procedures available to a user thread atesshscin next section. The user
program then waits for status register to be updated by the sahetlhke scheduler then
transitions from the run state to one of the waiting statesmdigied by the operation register
content. The state machine of the thread scheduler is given ire FiglirAs shown in the state
machine diagram in the Figure 4-8, there are five differeniigessxecution paths the scheduler
must follow depending on the request made by the user program. The @x@ath can be for a
spin lock, block lock, semaphore wait, read or write transactionwfite transaction is not only
for sending data out but also for spin un-lock, mutex un-lock or semaphorepgostion. It also
needs to switch the bus from bus slave to the bus master, sincee@®dnd bus master write
transaction uses the same data lines. When the scheduler movebdram state to the wait
state, it issues a signal to latch the address and the parawgisters (the user interface

registers).
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Figure 4-8 Thread Scheduler State Machine



Then it generates a request signal to the request handlemsizttiene B1, which in turn causes

bus master B2 to perform the intended operation on behalf of the scheduler.

The state machines for different request handlers are givaguireM-9. The task of the request
handlers is to deliver the scheduler request only when the bus nisastehe idle state. This
approach permits concurrent processes and ensures that the requast bél missed. Then it
sends an acknowledgement to the scheduler to indicate the reqirestragiress and for the
scheduler to de-assert it's request and move to another waiting state. ReqdiestBianot only
ensures the request will not be missed but also prevents the bus noastepieating a requested
task when it returns back to idle state once it has complatedity. The state machine diagram
for the bus-master controller is given in Figure 4-9. Depending ornyfhee of responses it
receives from the bus master, the scheduler returns to the terosigoes into blocking state.
The scheduler remains in the block state until a synchronizatiorsends a wake-up command
to it via the command register. Upon receiving the wake-up commiamacheduler resets the

command register to the init state.

The responsibility of the bus-master controller is to accept different busdtians@quests from
one the request handlers, and generate read or write request tsighalbus master interface. If
a request is for a semaphore acquisition then it also must peafegmchronization ownership
test. As shown in Figure 4-9, there are four possible paths the btes mdisfollow depending
on which request handler it receives signal from. If the reqsidst a semaphore, the bus master
carries out a read operation to fetch the requested semaphotdeyaial proceeds to perform

synchronization test to determine whether it has ownership of the requested semaphore.

For the spin lock and binary blocking lock operations, the read datemisared with the thread
ID. If the read data is the same as the thread ID, the lockt&@ned. For the semaphore wait
operation the read data is compared with zero. If they are equsériephore is exhausted. It

then sends an appropriate acknowledgement (semaphore fail or success) to therschedule
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Figure 4-9 Bus Master State Machine
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As mentioned in the previous section, the status register issaegde represent the execution
state of the hardware thread and the status of user request. Thusf$benregisters bits are used
to represent the state of hardware, while other bits are used to irtleatatus of a user request.
An additional requirement is that the status must be in a folmatid meaningful to the user
program rather in terms of low-level hardware details. Thumple technique of copying the
hardware thread states into the status register will probe fnadequate and not user friendly.
We take an approach that a single process (A2) is dedicated te tpelatatus register with all
required information provided as inputs to this process as shown in Hgl@e The status
register bits however do not represent every possibility of imabmations, but instead reflect

useful states and conditions meaningful to the user thread.

Valid values of status
register/ constant

1. Main controller states H
2. Command
3. Bus master I: status register process status register

synchronization test:

- mutx_acquired

- mutx_acq_fail

- sema_acquired

- sema_acq_fail

4. Bus master read/write:

- write_req_done

- read_req_done

Figure 4-10 Status Register Process

As mentioned previously, the command register is provided to controbgbeation of the

hardware thread from the system bus. Process A3 is responsihlgdating the command
register and deliver commands to the thread scheduler. This prbeeggs this register state in
response to system resets, CPU commands, or acknowledgemerntisefthnead scheduler. The
valid states of this register are INIT, IDLE, RUN, and WAKI. It goes into the initial state
following a system reset. Either the CPU or the semaphoreréPwriting a command codes into
this register causes it's a state change into a RUN, IDLEBVAKE-UP state. The thread
scheduler detects this register state change, and responds by saratikgaaviedgement back to

the process. The process in turn resets this register back to initial state.
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4.5 HARDWARE THREAD USER INTERFACE

A combination of register sets and hardware-implemented procedepessent this sub-
component. This interface provides hardware threads with standard pescedor
communicating with other entities or cores such as semaphores #waystem bus. The set of
registers in this interface are the operation, status, addreasygiars, and read data registers.
The operation and status register pair serves as the intéofaceordinating between the user
thread control unit and the thread scheduler. In addition to the controlddriss, read data, and
parameter registers are provided as data paths for exchangindateseacross the bus. These
registers also provide storage and buffering of temporary datah&ruser computation.
Temporary data includes data brought in from memory, and data corningufer hardware

thread going out to other cores connected to the bus.

The set of functions or hardware procedures callable by the usad thre provided in form of
standardized program interface. The programming tasks that tortoenpel by the user are

significantly reduced by means of this standardized program interface (API).

Pseudo API Opcode Return Code
Read_data() READ READ_OK
Write_data() WRITE WRITE_OK
Sem_post( ) WRITE SEM_POST_OK
Sem_wait( ) SEM_WAIT SEM_WAIT_OK
Mutex_lock MUTEX_LOCK | MUTEX_LOCK_OK
Mutex_Unlock WRITE MUTEX_UNLOCK_OK
Spin_lock() SPIN_LOCK SPIN_LOCK_OK

Spin unlock() WRITE SPIN_UNLOCK_OK

Table 4-1 Hardware Thread Application Program Interfaces (APIs)

The control protocol for all API's includes writing a unique code ihdperation register and
reading the status register. The set of operations provided Byththe operation code and the
return code expected from the status register is shown in tdbl&he implementation details of

the application interface are described later in section 4.5.2
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45.1 Interface Registers

The functionality of each register in the hardware thread interface are sagurizelow:

a) Command register
- It is a CPU writable register, for starting/stopping execubf the hardware thread. If
the thread is already in the run state, the user has to decideomtteeck the command
register in order to stop at safe or allowable states.
- Semaphore controller writes wake-up code into this registeintbbock the hardware

thread from the blocking condition when a synchronization variable becomes available.

b) Status register
- This register represents the current execution state of tHe/dn@ thread and the status
of the user request. Therefore, it is updated by the thread contmudlés accessible from
the user programs. The user programs or computations wait or progerexiosequence

depending the status return by this register.

¢) Argument registers

- These registers are used to hold arguments. A program runningmPd ar a hardware
thread writes arguments such as addresses of shared data onfotiheation to these
registers before commanding a hardware thread to start executibrexBmple a
software program writes pointers into these register after memorattlooperation.

- User program read these register either to determindgbiétiam it has to execute or to
obtain addresses of shared data in memory it can access to. Fleexser program
may execute different image processing algorithm depending on waltites into one

of these registers.

d) Result registers
- User program has option to use these registers to store teyngEsalt of computation
and write it out to memory. In addition, programs in other entitiay nead these
registers to get the results. User program can signal other thretitis toanputation has

completed by using synchronization primitives.

62



e) Operation register

User program writes operation codes to this register to requesedtfearvices from the
thread controller or scheduler. User program can request for synatiomiar memory
accesses. User program then read status register to deté@fsimext step. If the user
program requests for a semaphore and no more semaphore availatiiegdtegoes to

blocking state and the state is returned by the status register.

f) Address register

APl writes an address of memory or synchronization variabl¢ ithaneeds to
communicate with. To write or read data, user program needs to protidéaadress of
data to be sent out to or to read from. However to request forapbkem, user program
needs to specify the semaphore ID instead of the semaphore addeg®|Tcalculates
the semaphore address from the semaphore ID and semaphore base addnesises

appropriate semaphore addresses into this register.

g) Parameter/output registers

These registers used by the user program API for multiple pgptisvrites data that
need to be transferred to memory into one of them. In addition it caseb® hold other

parameters such as thread id and the number of semaphore to request.

h) Input register

45.2

These registers provide temporary storage for read data.pdsgram API reads this
register after the controller has fetched data from the mearnaigvice connected on the
system bus. User program knows that data is already available in thismadiseh status

register returns success status on its read request.

Hardware Thread Application Program Interfaces

The following are partial portion of application program interfa@RIs) provided within the

hardware thread interface to allow user thread to request ferattfkind of synchronization

operations and memory accesses. Synchronization APIs make use eofatd®esses of

synchronization cores that are passed as generics to caladat®n of each variable. An

example how to use one of these APIs is as follows: sem_wait(sem ID).
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procedure write_data

( signal address . out std_logic_vector(0 to addrbus_width);
signal addr . in std_logic_vector(0 to addrbus_width);
signal opcode : out std_logic_vector(0 to 3);
signal param : out std_logic_vector(0 to databus_width);
signal data : in std_logic_vector(0 to databus_width)) is
begin

address <= addr;
opcode <= WRITE;
param <= data;

end procedure write_data;

procedure read_data

( signal address . out std_logic_vector(0 to addrbus_width);
signal addr . in  std_logic_vector(0 to addrbus_width);
signal opcode : out std_logic_vector(0to 3) ) is

begin

address <= addr;
opcode <= READ;

end procedure read_data;

procedure sem_wait
( signal address . out std_logic_vector(0 to addrbus_width);
constant sema_id : in std_logic_vector(0 to 5);
signal opcode : out std logic vector(Oto 3))is
begin
address <= sem_baseaddr(0 to 12) & sema_wait & hw_thread_id & sema_id & “00”";
opcode <= SEM_WAIT;

end procedure sem_wait;
procedure sem_post

( signal address : out std_logic_vector(0 to addrbus_width);

constant sema_id : in std_logic_vector(0 to 5);
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signal opcode : out std_logic_vector(0O to 3);
signal param . out std_logic_vector(0 to databus_width) ) is
begin
address <= sema_baseaddr(0 to 12) & sema_post & hw_thread_id & sema_id & “00”;
opcode <= WRITE;
param <= x"00000" & “000” & hw_thread_id;

end procedure sema_post;

procedure spinlock_lock

( signal address . out std_logic_vector(0 to addrbus_width);
constant spinlock id : in std_logic_vector(0 to 5);
signal opcode : out std_logic_vector(0to 3) ) is

begin

address <= spinlock_baseaddr(0 to 12) & sp_lock & hw_thread_id & spinlock_id & “00";
opcode <= SPIN_LOCK;

end procedure spinlock_lock;

procedure spinlock_unlock

( signal address . out std_logic_vector(0 to addrbus_width);
constant spinlock_id : in std_logic_vector(0 to 5);
signal opcode : out std_logic_vector(0 to 3);
signal param : out std_logic_vector(0 to databus_width) ) is
begin

address <= spinlock_baseaddr(0 to 12) & sp_unlock & hw_thread_id & spinlock_id & “00";
opcode <= WRITE;
param <= x"00000" & “000” & hw_thread_id;

end procedure spinlock _unlock;
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5 HYBRID THREAD SYNCHRONIZATION

51 INTRODUCTION — ATOMIC OPERATION

Management of shared resources is essential to the implemantindjithreaded programming
model. Current multithreaded programming models use synchronization msubkasuch as
binary semaphores to enforce mutual exclusion on shared data to avoidre&minaacess by
multiple threads. Thus, providing atomic operations are fundamentalhieviny efficient
semaphore semantic§emaphores are implemented on general purpose CPU's with atacic re
and (conditional) write pair operations such as the load linked andcstodéional, test and set,
and test-swap instructions [39]. For example MIPS R4000 and Digithdlea AXP processors
use load and store instruction to provide an atomic read-modify-opieation [42]. While
semantically correct, these existing mechanisms introduce addlitomgplexity in the system
design that is not easily extendable to hardware threads. Instead of reptleagmgiechanisms,
we use the FPGA to implement more efficient mechanisms tha&rRU family independent, and
require no additional control logic to interface into the system eangmoherence protocol for
hardware threads. As such, our new mechanisms are easily portabdesharesl and distributed
memory multiprocessor configurations and are also available tdREFBA systems with only

software threads.

During the course of this research project, we developed sevavamethods of achieving
atomic operation to implement semaphores in FPGA. Our first pittenas to mimic the classic
standard atomic write and read operation pair. We created memory mappedaedloesiwner
registers and a simple control structure within the FPGA that condiiawlkpted or denied the
request. The sequence of operations executed by a thread requestingaslto write its thread
ID into the request register followed by a read operation of an awggister to see if the request
had been accepted. The order of these operations was reversed frotastie read first,
followed by conditionally write to request and check the success of obtaining thpteem We
created a second method based on this first attempt that redudaab timstruction pair into a
single atomic read bus transaction. This single operation approachossible by using the
address lines to encode the requesting thread ID during a normahbuspegration. The control
structure within the semaphore IP then conditionally accepted or dingigeéquest during the

single read bus operation.
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This approach was then extended to support blocking semaphores that mendomsituations
where shared resources must be locked for long durations. To enablaglseknaphores,
gueues are required to hold the thread id’s of the sleeping threads-u¥akechanisms are also
required that select a blocked thread id or multiple id’s to msfieared from the blocked queue
onto the schedulers ready to run queue. In multi-processor environments, howevecksyind
still appropriate synchronization primitives as their overheadoisparatively lower than a
blocking semaphore. This is method of choice when application progridirbsisy wait for less
time than required to perform context switching. Obviously for a sipgbcessor environment,
spin locks can cause deadlock since the lock owner has no chankmase the lock while the
other thread spins. This phenomenon can be avoided if the owner is not pabemiite owner

has to release the lock before it goes to sleep.

We have support and have implemented both type spin and blocking lohks thvé FPGA. In
addition to extending the multithreaded programming synchronization céeabib hardware
threads, these new synchronization primitives are also signlfidamter overhead for threads
running on processors. We achieved lower overhead by:
- Migrating operating system functionality associated with msiog semaphore requests
and maintaining the semaphore into the FPGA.
- Creating the capability to port other operating system sniitto the FPGA to further
reduce the overhead of operating system services that improve system réspesaed

provide more deterministic delays.

In our first prototypes, we implemented each semaphore with dedi€BeA resources. As the
number of semaphores in most system can be large, this approach dichleotvell within
FPGA's with limited resources. To minimize the resources requirementbgwereated a single
control mechanism that managed multiple instances of the semapilithiesa single entity. In
addition, the semaphore entity was designed to exploit our single readitmsection approach to
achieving atomic operations. This reduced the application progranfageefAPI) to a single
read instruction, instead of a write followed by read instruction pairequest and check the
success of obtaining the semaphore. We préserttomplete evolution of our implementations in
order, starting with a simple single semaphore and proceeding throughptimizations leading
to our final implementation of our multiple spinning and blocking semaptibatsise a single

control entity and are accessed with a single atomic read operation.
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5.2 $IN LOCK PROTOTYPE

The block diagram for a spin lock is shown in Figure 5-1. The ARIduseode for accessing the

binary spin lock is given in Figure 5-2.

Data Bus

v

[ request | [lock own | [ release |

‘ Spin Lock Controller ‘

Figure 5-1 One Spin Lock

spin_lock request(&sema, thread_id) {
grant = 0;
while(!grant) {
thread_id> request_reg
if (lock_owner == thread_id)
grant = 1,
else delay(); } }

spin_lock_release(&sema, thread_id) {

thread_id> release }

Figure 5-2 Spin Lock Pseudo Code API

The semantics for accessing a lock for both hardware and softweagls are identical. API's for
both hardware and software threads and are made available ag fdardnes to the system
developer. To request the semaphore, the API first writes thedthickinto the request register.
After the thread_id has been written, the API then reads the lockrawegister (lock_own) and
compares it with its own thread_id. To release the semaphore, the thread svtitesaid_id into
the release register. When a thread_id is written into the rempgister and the semaphore is

free, the state machine control logic implemented within the gieona IP updates the lock
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owner register. If the semaphore is currently locked, then theotbwgic performs no update.

After the first access, the lock is only freed when a thread writes into dasealegister.

53 SIN COUNTING SEMAPHORE PROTOTYPE

The block diagram of a spinning counting semaphore is shown in Figburel'be user API
pseudo code for accessing this structure is shown in Figure 5-4. @kecmh register is
initialized to the maximum number of resources initially avadafihe thread first gains access
to the counting semaphore request registers by accessing the dpimatgck. The binary spin
lock protects the next two instructions that first write the retpgenumber of resources and then
reads back a status. A requesting thread writes its requeatrfomber of resources into the
req_num register. The semaphore logic then checks to see dientffiesources are available
and appropriately sets the grant register. [f insufficierdwe®s are available, then a Boolean
value of 0 remains in the grant register. If sufficient resesiiare available, then the Boolean
value 1 is written into the grant register. In either evéetthiread reads the result of the request
from the grant register. The control logic resets the gragtes upon read. The grant flag will
stay valid for the request and will not change until the requestor perfoemeading of the grant
flag. No other requester can cause recalculation to occur agdbest/grant check pair are
protected by the spin lock. Even if these two sequential operatierigtarrupted by a valid
release request, the grant flag will not be affected andcwaiitinue to reflect the value of the
count when the requesting task entered into the spin lock. A threaglease any number of
resources by writing into the rel_num register. Accessing thelepk is not required for the

resource release, as its operation does not affect the grant register.

P Data Bus o
w »
[ max_cnt | [ grant0:1 lock_own
[ reg_num request
[ rel_num release
Spin Counting Spin Lock
Semaphore logic Controller

Figure 5-3 Spin Counting Semaphore

69



spin_sema_request(&sema, thread_id, value) {
grant = 0;
while (grant) {
spin_lock_request( &sema, thread_id)
value> req_num
grant& grant0:1
spin_lock release(&sema)
if (!grant) delay(); } // end while

spin_sema_release(&sema, value) {

value~> rel_num

}
Figure 5-4 Spin Counting Semaphore API

54 MULTIPLE SPIN LOCKS IP

The block diagram for achieving multiple spin locks using a siogfgroller is shown in Figure
5-5. This single entity provides control for sixty-four spin locks. Wge the address lines to
encode both the semaphore ID and thread ID during a normal bus read operation. Asingle c

structure within the semaphore IP then conditionally accepts or dbriesquest during a single

read bus operation.

Owner registers

Thread_7

Thread_1

Controller

Address bus:
6 lines for spin lock id
9 lines for thread id
2 lines for operation code

Figure 5-5 Multiple Spin Locks IP
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We migrated the multiple owner registers of our previous designtihe on chip BRAM thus
eliminating the FPGA gates that were used to implement theidondi owner registers. This
resulted in significant savings of the FPGA’'s CLBs. The @i ID that is encoded within

the address is directly decoded to select the semaphore in the BRAM.

To request a semaphore, the API issues a read to an addresstbgremebding the semaphore
ID and thread ID as the least significant bytes of the baseesgldin response to this read
operation, the spin lock controller decodes the address lines andsktyitthe semaphore and
thread ID’s. The extracted thread ID is then compared with thadHi2 stored in the owner
register to determine if the semaphore is empty or curranthgéd. If the owner register is free,
it will be updated with the requested thread ID. If the lock iserily locked, then the control
logic performs no update. After the check is performed, the comtpliees the appropriate
thread ID from the current owner thread id onto the data bus and t&stha bus cycle. The
controller takes eight cycles to complete the request. €agelthe semaphore, the APl writes
its thread ID to an appropriate address. The controller state meattitén decodes the address

lines and updates the selected owner register to non-owner status.

5.4.1 Multiple Spin Lock Hardware Architecture

Our final architecture for multiple spinning binary semaphores dsnsis1) interface and error
registers 2) lock owner registers, recursive counters (andoitgroller) 3) operation mode
controllers 4) atomic transaction controller 5) soft reset d¢sciigure 5-6 shows the RTL level
description of this architecture. The figure does not include the reset circdariby.c
1. Interface and error registers:

* Lock ID register

e Thread ID register

» Error status register (recursive overflow)

» Data Multiplexer (API return value: error bit and lock owner)

2. Owner registers and its controller
* 64 Owner registers implemented within BRAM (Lock BRAM)
* 64 Recursive lock counters (implemented within Lock BRAM also).

 Lock BRAM access controller
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Operation mode controller

Atomic transaction component

Soft reset counters

Address counter used to reset all the owner registers and recursive counters

system bus

g

7

Bus Slave Interface

A | NN
rdre wr_req sdata
qd rd_ack erack saddr

B Atomic transaction

1. Write request ack

- control lock owner
register read

- read request ack
delay counter

2. Atomic read operation

— a_enable —»

— arlw —»

addr from

lock_id
register

lock_id register process

(

lock_ID

D  Operation mode

- Decode address & riw

- Determine lock/unlock

- Generate signals to
locks controller

— request —»
— release —»

read —»

thread_id register
process

thread_ID

data_out

‘ data_mux

error —»| error status

Multiple Multiple
lock lock
recursive owner
counters registers
A thrid

opr addr data_in
| Jent engble T T

C Multiple Locks Controller

1. Select locks
2. Request lock
- update owner register
if free.
- add recursive counter
- error if recursive counter
overflow
3. Release lock
- reduce recursive counter
- free lock
4. Soft Reset all registers

Figure 5-6 Multiple Spin Locks Hardware Architecture
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Lock ID register

This register holds a requested lock ID decoded from the addres®uruapplication program
interface (API) uses address lines A24:A29 to encode the locR k. number of address lines
used for encoding the id is set during design and based on the numbeeof Isgks set by the
developer. For this example, sixty-four spin locks are supported Witlsrsingle entity. The
address lines are latched into this register when eitherddereguest or the write request signal
goes high. The BRAM Access Controller then uses this registan index to select one of the

sixty-four owner registers within the BRAM.

Thread ID register

The thread ID register latches and holds the thread ID encoded ossalifties A23:A14. These
nine lines support 512 active threads (256 software threads and 256 hatlohgads). The

content of this register is then compared with the contents afpilr@priate owner register. This
register is also used as a transit place to hold a thread i@ekteansferring it to one of the
owner registers. In addition, this register also encodes a NO ERMilue when a lock is

released to free a selected owner register.

Lock Owner registers (Lock BRAM)

The Lock owner registers hold the thread IDs of the threads that currently own the lock

Recursive counters

The recursive counter register holds the number of grants for am twe&d to support recursive
lock semantics. We currently implement 64 recursive countersfooreach of our sixty-four
spin locks. To implement the counters, we divided each 16 bit BRAMN aritr two columns:
one that holds the 9 bit thread id for the current owner, and the second mhadsociated 6 bit

recursive counter.

Lock BRAM Access Controller (lock & recursive counter controller)

The Lock BRAM access controller updates the lock owner regiatat recursive counters. The
state machine for this controller is shown in Figure 5-7. This sta@chine waits for the
Operation Mode controller to issues run signals. When a lock redggesi & received, the
controller starts by reading the selected lock BRAM location and determithesréquested lock
is free. If free (rcnt = 0), the controller writes the regimgsthread id (thr id) into the owner

register. If the lock is not free, the controller then compdresréquesting thread ID with the
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owner thread ID read from the lock BRAM. If identical, the contrathen checks if the recursive
counter is already at maximum value. If the counter value (restrhas not reached it's
maximum value, the recursive counter is incremented and storedribadcke BRAM. If the

recursive counter is already at maximum, an ERROR sighasirtad within the error status
register. If however the two thread IDs compared do not match, dtiieoller immediately

returns to the init state. When the Operation Mode controller isslesk release signal, the
controller reads the recursive count and if the read value is nptt@®srements the recursive
count. If the read value is one, it first sets the owner regiith a NO OWNER value before

decrementing the recursive counter to zero.

Operation Mode Controller

This controller serves as an interface between the applicatgnapn and the spin lock IP. The
operating mode controller decodes the application program interfguesteand generates the
appropriate control signals for the other controllers. The supported op thatlean be issued by
our API's are given in table 5-1. This controller uses read aiité wequest signals, and two
address lines to decode requests. Based on the request, the cohenllentputs the following
signals: lock request, lock release, and lock (owner registér) This controller works
concurrently with the Atomic Transaction controller to processteglest transactions. (Atomic
Transaction controller will be described later). This controlleo generates signals that initiate

processing of the lock BRAM Access Controller.

Spin lock (recursive lock/unlock)

Write Read Al13 | A14 | Operations Error &

Request| Request Status

0 1 0 0 Read a spin lock (owner register) N/A

0 1 0 1 Spin_lock() Recursive
overflow

0 1 1 1 Spin_unlock() N/A

Table 5-1 Operations Request by the Application Interface
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Atomic Transaction Component

This component consists of two processes. The first process acknowtezlggstem buses write
operation, which occurs when a lock is released. The acknowledgesresgeirted on the next
cycle, immediately after the write request occurs. The secaragss acknowledges an atomic
read request, which occurs when a spin lock is requested. An at@dipmacess is initiated
when the read request line goes high. However it does not immgditainate the bus read
request cycle with an acknowledgement. Instead, the controlles wil the selected owner
register update (by the Lock BRAM access controller). As shewhigure 5-6, the atomic
transaction controller outputs two signals - enable (a_enable) athdacknowledge (rd_ack).
These signals are asserted at six and eight cycles reshediter the read request to the owner
register occurs. The enable signal causes the owner register raddrgitioe lock ID to be read.
The read acknowledgement signal to bus request occurs two citeletha owner register has
been accessed. The two cycle delay is required to allow the oegister's data output to
stabilize on the system bus. Updating the owner register upda&tdrtim the initial read request

occurs in six cycles.

Data output multiplexer (API return value)
The result of each request is the returned of the owner threatliha error status as shown in
Table 5-2. Both the error status and/or thread ID are input to thenddtiplexer prior to being

driven on the data bus.

Return values: bits (0 to 31)

Spin Lock  |Recursive| Notused |Lock Owner
APls Error Zeroes Thread ID
(4 bit) (19 bits) (9 bits)

Descriptions

spin_owner thread ID read lock owner
spin_unlock write operation
spin_lock 0 thread ID success

spin_lock 0 other thr ID |lock not avail
spin_lock 1 thread ID recursive cnt overflow

Table 5-2 Spin Lock API return values
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reset

lock_release

l

/enable = yes
Jopr = read

uread
wait

/addr = lock_id

soft_reset
Ireset_cnt_start

lock_request

lock ID counter

Jaddr = lock_id
counter

lenable = yes

Jopr = write

Jaddr = lock_id

/enable = yes /datain = zero
Jopr = read \
cnt_addr =
last_addr
read reset \e—

wait

done

init

soft_reset_low

not equal

(recursive (other
yes unlock) (lock is thread
free, thread QU D
obtained get the
- the lock) [
(free lock owner(lock ID) = CUR OWNER
the recur cnt(lock ID) = rent(lock ID) - 1 ferror
oLy (recur no
lock owner(lock ID)_= thread ID count (recursive
recur cnt(lock ID) =1 overflow) lock)
/addr = lock_id
lock owner(lock ID) = NO OWNER /enable = yes
recur cnt(lock ID) =0 /opr = write update recur count only:
/data = recur cnt & lock owner(lock ID) = CUR OWNER
thread ID recur cnt(lock ID) = rent(lock ID) + 1
v v
init init init init init

BRAM fields : recursive count (0 to 7) & zeroes(0 to 14) & thread ID (0 to 8)

Figure 5-7 Multiple Spin Lock BRAM Access Controller State Diagram
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5.4.2 Resources Analysis

Tables 5-3 and 5-4 show a comparison between the resources requirgdietoent one spin
lock from our first prototype against the resources required temgit 512 spin locks from our
final design. Even though the multiple spin lock IP supports 512 spin, libaksly requires a
slight increase in the total number of slices, flip-flops, and Ltdmapared to a single spin lock
prototype. This was a result of implementing the 512 lock ownerteegiand 512 recursive
counters within a BRAM instead of using LUT based registers awichdha single controller

handle all requests.

Spin lock #used | #total % used
Slices 72 4928 1.46
Flip-flops 96 9856 0.97

4 inputs LUTs 71 9856 0.72
BRAMSs 0 44 0.00

Table 5-3 One spin lock prototype

Spin lock #used | #total % used
Slices 104 4928 211
Flip-flops 157 9856 1.59

4 inputs LUTs 82 9856 0.83
BRAMSs 1 44 2.27

Table 5-4 512 multiple spin locks implementation
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55 BLOCKING SYNCHRONIZATIONS

Blocking synchronization allows threads that are not granted atcet® semaphore to be
gueued and suspended, thus enabling more efficient usage of the compuingesesand
decreasing congestion on the system bus. For our prototype, the basimgolooktrol
mechanism includes queue structures associated with each blockagghseento hold the thread

ids of suspended threads or next lock owner threads.

Releasing a blocking lock can generate a wakeup event that twdus interfaced to the
operating system scheduler as well as the independent hardwaaesthiiéhus blocking
synchronization mechanism must have the capability to deliver ttidawk owner or wakeup
signal to the responsible subsystem. For a hardware thread teeregkeup signal, an
additional supporting interface and control infrastructure is requiredséftware threads, an
interrupt to the processor is required to place the “unblocked” thdebdck into the scheduler
ready to run queue. The scheduler then may need to run a schedulingndéegpreemptive,

priority based scheduling policy is in use. Obviously, not all inserbdbasew thread id into the
ready to run queue would result in a swapping of the currently runningdthvih the new

unblocked thread. Independent of the outcomes of any scheduling decision, irtetingts

from external semaphores into the scheduler on the CPU will nesaltiditional overhead
processing and jitter. Obviously, migrating the scheduler andylstgrs time services into the
FPGA can eliminate the overhead and jitter of the interrupt psogesind context switching
associated with the unblocking operation. Instead of directly intengufiie processor to deliver
the “next lock owner” to the scheduler, the blocking semaphore comnemidiectly with a

new hardware module, the software thread manager, which then iatesdih a hardware
resident scheduler. A detailed description of the thread managedimglits design and
implementation can be found in [61]. Interfaces and communication protmteleen blocking

semaphores and the hardware based thread manager will be discussed in Section 5.8.1.

Independent of the actual location of the scheduler, blocking synchronigaaranisms need to
deliver the thread IDs of unblocked software threads into the scheguérie, and issue
additional wake-up commands directly to hardware threads. For teptingoses, we
implemented the additional interface structure shown in Figure Svebrtthe CPU and the

individual blocking synchronizations. This structure simplifies theiinpt logic needed between
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the blocking synchronization components and the CPU, and reduces the unydogssapt

overhead. This structure interrupts the CPU via the interrupt controller module.

Data Bus A >
Thread_8 to CPU interrupt
Thread_5 Interrupt
controller
Thread_3 Queue Manager
SW Threads

Figure 5-8 Blocking Synchronization CPU Interface

5.6 MUTEX PROTOTYPE (A BINARY BLOCKING LOCK )

The block diagram of our first single MUTEX prototype (prototype kilog binary lock) and its
APl are shown in Figure 5-9 and Figure 5-10 respectively.

< Data Bus
[owner | [ release |
Thread_5 -
Thread 3 Spin Lock Control
Thread_2 Thread Queue Manager

Figure 5-9 Single MUTEX (a Blocking Binary Lock)

The blocking semaphore API writes a thread id into the requédsteegnd then follows up with
checking the owner register similar to the binary spin lockhdfthread did not receive the lock,
then the API puts the thread to sleep in the case of a soffwvasalf or into the wait state in the

case of a hardware thread. Once awakened, the thread will read the owner register

blk_lock_request(&sema, thread_id) {
grant = 0;
while(!grant) {
thread_id> rgst_reg
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if(lock_owner == thread_id)
grant = 1,

else sleep() //context switch }

blk_lock_release(&sema, thread_id) {
thread_id> release }

Figure 5-10 Blocking Binary Lock API

The lock is released by writing the thread_id into the relesgister similarly to releasing a spin
lock. Unlike a spin lock, the control logic must now queue a requéstedd id if the lock is
currently owned by another thread. The depth of the request queue for owperdgod system
parameter set at design time.

5.7 MULTIPLE BLOCKING SYNCHRONIZATIONS

In traditional operating systems, a sleep or wait queue is asswcivith each blocking
semaphore. A thread goes to sleep by queuing itself into the approguiete. The first
prototype of a blocking mechanism (described previously) includedasimileue structures
associated with each blocking semaphore to hold the thread ids of suspended thrémdstals
number of synchronization variables in a system may be quite, lamgéementing separate
gueues for each semaphore required significant FPGA resourcesddMssed this resource

utilization issue by creating a single entity to control queuingnaiaup operations for multiple
blocking locks.

Additionally, this approach created a single global queue for all ingalemaphores. The global
gueue size need only be equal to the total number of threads in thm.s@sinceptually, this
global queue is configured as multiple sub-queues associated witmemnliffsemaphores.
However, the combined lengths of all sub-queues need not be greaténdhatal number of
threads in the system as sleeping threads cannot make additignests for other semaphores.

Releasing a blocking semaphore triggers de-queuing of the semaphexe’owner. To manage
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the global queue efficiently, we created a single waiting queateig divided into four tables -

Queue Length, Next Owner Pointeast Request Point@ndNext Next-Owner.

The Queue Length Table maintains the length of each semaphores qukigaacessed by
indexing into the global queue table using the semaphore ID. Th&&gqsest Table contains
either a thread ID or pointer to the Next-next owner table. Thi® tablalso indexed by

semaphore ID. The table is used to point to the last semaphore request.

The Next Owner Table contains the next owner thread IDs, whichdstoisedex into the Next-
Next-Owner Table. When a semaphore is released, this pointedisouseovide fast lookup of
the next semaphore owner. After the next owner has been accessachtiom lis updated with
the new next owner by reading the next-next owner table. In summariettieNext owner

entry serves as the head of a linked list of all blocked threads for a given seanaphor

5.8 MULTIPLE MUTEXES IP

The block diagram for a multiple block lock (MUTEX) IP is showrFigure 5-11. This single
entity carries sixty-four block locks (64 owner registers inrABR. In addition to the lock owner
registers, other structures include the global wait queue used tthibadlldread ID’s of blocked

threads.

Owner registers Tables
Link
Thread 9 Pointer
Last
Thread_7 Request
Next
Owner
Thread_1 Queue
Length
Controller

- mutex or blocking lock
- tables/queue
- bus master

Address bus: Data Bus
6 lines for mutex id
9 lines for thread id
2 lines for operation code

v \

Figure 5-11 Multiple Blocking Locks IP Core
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Each sub-queue within the global queue has its own queue length that fvane zero to
maximum number of thread in the system. The controller responds milardiashion to the
controller for a spin lock. However, if the owner is not free, fh@epriate queue length will be
updated and the requested thread ID will be queued. The controller takes eighiocyataplete

the request.

To release the semaphore, the API writes its thread ID tp@no@riate address. The controller
will decode the address lines and update the selected ownerrrégiatsm-owner status if the
gueue is empty. If the queue length of selected semaphore ID is not zero, thieggéuwill be
decremented and the next owner pointer will be read to de-queue a nexttowad ID, and the

owner register will be updated with the next owner.

5.8.1 Multiple MUTEXES Hardware Architecture

Our final blocking lock (mutexes) architecture consists of: 1) intedadestatus registers 2) lock
owner registers, recursive counters (and its controller) 3) hiioitikeads global queue 4) global
gueue controller 4) other sub-controllers 5) soft reset circuiggiré&i5-12 shows the hardware
components of the blocking binary semaphore (mutexes). The figure hodea&mnot include

the reset circuit.

1. Interface and status registers:
* Single Mutex ID register
e Single Thread ID register
» Busy status register
» Error status register
e Output MUX (API return status)

2. Owner registers, recursive counters and its controller
* Up to 512 mutex owner registers implemented within BRAM (Mutex BRAM)
e Upto 512 recursive counters implemented within BRAM (within the Mutex BRAM)

* Mutex BRAM access controller (Multiple Mutexes controller)
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3. Queue and its controller
* Queue implemented within BRAM (Queue BRAM)
*  Queue Controller

* Next Mutex Owner register (unblocked thread register)

4. Other Controllers:
» Operation Mode controller
* Atomic Transaction controller
*  HW/SW Comparator and Next Owner Address Generator

e Bus Master

5. Soft reset circuit
» Part of global queue and lock BRAM controllers: to reset the recursive countkrs, loc
owner register and global queue.
» Counter generates addresses used to reset all the ownerrsegisterecursive
counters

» Counter generates addresses used to reset all the global queue cells

Mutex ID (Lock ID) register

This register latches the mutex ID encoded in address lines A24TA2Oaddress lines are

latched into this register when the read request signal goesThiglregister is used as an index
by the Mutex BRAM Access Controller to access one of the $ixtiylock owner registers, and

as an index to access tables in the next owner queue.

Thread ID register

The Thread ID register is used to hold thread ID to be comparbdadaick owner register. This
register is additionally used as transit storage for a thileabtbefore it moves either into the
global queue or an owner register. The Queue Controller uses ftisieres an index to access
the Link Pointer table in the queue. It holds NO OWNER default vahen a lock is released

and no new owner available in the queue.
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Figure 5-12 Multiple Mutexes IP Hardware Architecture

Operation Mode Controller
This controller serves as an interface between the applicatignapn and semaphore hardware.

It decodes the application program interface request and genapaiepriate signals to other
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controllers. The allowable operations that can be requested by thea#ippliprogram and
control signals output by this controller are given in table 5-5. ds usad request and two
address lines to decode an application request and outputs: lock request, lockanetergdock
signals. This controller works concurrently with the Atomic Transaatontroller to service lock
request transactions. (Atomic Transaction will be described.ldtee generated outputs initiate

the Lock BRAM Access Controller operation, which in turn will caaeer controllers to start

operations.

Write Read Al3 | Al14 | Operations Error &

Request| Request Status

0 1 0 0 Read a mutex (owner register) N/A

0 1 0 1 Mutex_unlock(), release a mutex, dequeuiBgsy
a next owner if there is one in the queue.

0 1 1 0 Mutex_lock(), request for a muteXRRecursive
enqueuing the calling thread if the requesgteserflow,
mutex is not free. Busy

0 1 1 1 Mutex_trylock, request for a mutex, but|deail/Succeed
not enqueue the calling thread if the mutex Busy
not free.

Table 5-5 Mutex Application Interface Requests

Atomic Transaction Controller

For a description of the Atomic Transaction Controller see section 5.4.1.

Busy Status Mechanism and Error Status registers

Busy status serves as a busy indicator to the API request WleQuieue controller has not
completed delivery of next owner (unblocked thread) thread id to thedthmanager. Even
though the de-queue operation takes at most nine cycles, the delpexation across the bus
may be delayed by other system bus activities. The busy status mechanism inaudegsters:
Previous Status and Current Status. The status in the Previdus &fgister along with error

status and other information as shown in table 5-6 is returned to thredAlest. The error status
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register provides an error indicator (the error bit is set)nwine number of recursive lock

requests surpasses the maximum value of the recursive counter.

The start and completion of an unblocked thread delivery event chesgéartrent Status register
to change state to “busy status” and “non-busy status” respectiviehy APl request (lock,
unlock, or try lock request) causes transfer of status from thee@ Status register to the
Previous Status register. Therefore an API request that doetuween the start and completion of
the delivery will receive a “busy status”. When an API reegia busy status, it must retry its
request. As the Lock BAM Access controller will not returntsoinitial state if the delivery of
unblocked thread is not completed, any new API request will not cayseea operation. Since
the new API request will not cause any operation and not affebuthestatus (if the unblocked

thread is not delivered yet), the integrity of all internal core operationsirgaimeed.

Data output multiplex (API return value)

Hardware returns busy status, recursive error status and ttideasl $hown in Table 5-6 to
response to the API request (return value read by the API). TdedthD is read from one of the
owner registers chosen by the atomic transaction controller. Hbes sand thread ID are

transferred to the data bus through a data multiplexer.

Return Values: bits (0 to 31)

Mutex Busy |Recursive|Not used|Not used| Mutex Owner .
Descriptions
APIs status Error | Zeroes | Zeroes Thread ID
(4 bits) | (1 bit) | (11 bits) | (8 bits) (8 bits)

mutex_owner

current mutex owner

mutex_unlock | 1010 not busy or success
mutex_unlock | 1110 busy

mutex_lock 1010 0 thread ID not busy, get mutex
mutex_lock 1010 1 thread ID not busy, recursive error
mutex_trylock | 1010 thread ID not busy, get mutex
mutex_trylock | 1010 other thr ID not busy, mutex not avalil
mutex_trylock | 1110 busy

Table 5-6 Mutex API Return Values
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Mutex BRAM Access Controller (Recursive Mutex Controller)

The MUTEX BRAM access controller has several responsillitieluding updating the lock
owner register, modifying the recursive lock counters, and aictivaueue (en-queue or de-
gueue) operations when necessary. The state machine of this coigrgilen in Figure 5-13.
This controller waits for the Operation Mode controller to issuéndiate processing signal.
When it receives a lock acquisition signal, it starts by reatimgelected lock BRAM location to
determine whether the requested lock is free. If it is freat & 0), the controller updates the
owner register with the requester thread ID. If the lock isfreat, the controller compares the
requester thread ID with the thread ID (thr id) it just readnfthe lock BRAM. It they are the
same, the controller then checks if the recursive counteraadsirat maximum value. If the
counter value is not maximum, it increments the recursive coumdesave the new counter value
(recur_cnt) into the BRAM. If however the two thread IDs aretintsame, it raises a signal to

command the Queue Controller to en-queue the requester thread ID.

When the Operation Mode controller issues a lock release sidnal,controller makes
comparison whether the recursive count is equal to one. If the cosiiiet equal to one, the
recursive count is decremented and the new value is saved intckH&RAM. If the recursive
counter is equal one, the controller will issue the dequeue sigried QQueue Controller. It then
waits for a response from the Queue Controller. If the Queue Centrefiponse indicates that
there is no next owner in the queue, it will update the lock BRAM WiD_OWNER and reset
recursive count to zero. If the Queue Controller responds that therexisaumer, it will issue a
signal to busy status mechanism, and update the owner register néthh owner thread ID and
set the recursive count to one. The busy status signal is tthéag is busy and waits for Bus
Master to deliver the de-queued next owner to the final destinatitwer(scheduler queue or
hardware thread). Upon received of delivery completion acknowledgesiggratl from the Bus
Master, it resets the Current Status register to NOT_BUSY status antsret init state.
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Ireset_cnt_start
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lock_release lock_request

trylock
read read
recur
cnt Jaddr = lock_id

/addr = lock_id

/enable = yes init
/enable = yes Jopr = read
/opr = read
/seq_done
lock owner(lock ID) = thread ID
recur cnt(lock ID) =1
trylock
acquire
[error (fail to
acquire lock
/seq_done

init

not equal
(recursive (other
yes unlock) " thread
(toet 5 attempt to
free, thread
] get the
/seq_done obtained lock)
the lock)
(free lock owner(lock ID) = CUR OWNER
the recur cnt(lock ID) = rent(lock ID) - 1 /seq_done Jerror lenqueue
lock) (recur no
lock owner(lock ID) = thread 1D count (recursive
recur cnt(lock ID) =1 overflow) lack)
Jaddr = lock_id
lenable = yes /seq_done
Jopr = write update recur count only:
/data = recur cnt & lock owner(lock ID) = CUR OWNER
thread ID recur cnt(lock ID) = rent(lock ID) + 1
/dequeue v \4
init init init init
none
> deque? v
done enque
I _ wait
lock owner(lock ID) = dequeued thread ID Lock free, no owner update:
el aniliuedln) = i lock owner(lock ID) = NO OWNER
recur cnt(lock ID) =0 enque_done
init

msc_done——>»  init

Note:

mutex fields : recursive count (0 to 7) & zeroes(0 to 14) & thread ID (0 to 8)
API status return: busy status(0 to 3) & error (0 to 3) & recursive cnt (0 to 7) & zeores(0 to 7) & thread ID(0 to 8)

Figure 5-13 Mutex BRAM Access Controller
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Global Queue

The global queue is designed to hold up to 512 thread IDs blocked on any siktyhiour
MUTEXES. The queue is divided into the four tables shown in Figure Satidisamplemented
within the BRAM (Queue BRAM).

000 00
‘ semal/lock id register = 2 ‘ —— 007 Next next owner = 009 -
lock id is extracted from 008 00
address bus (6 lines)
——>» 009 Next next owner = 011 *‘
‘ thread id register = 11 ‘
thread id is extracted from \—> 011 00 <«
address bus (9 lines)
‘ next owner register ‘ : .
Indexed by 325 Link Pointer
thread id Table
511
Address lock owner SO = 00
000 Last Request = 4
lock owner S1 = 00 indexed
by —» 002 Last Request = 11 o
lock owner S2 = 99 lock id

lock owner S3 = 00

Last Request =5

lock owner S26 = 00

Last Request

lock owner S27 = 00 Pointer Table
{ > 62

63
Interface _
o the bus lock owner S40 = 00
e 000 Next owner = 8
! indexed
! by —» 002 Next owner = 07 —_—
| lock id
i Address _
i + 64 lock owner S63 = 01
i Next owner 20
i Semaphore or lock owner registers
Next Owner
Pointer Table
62
63
000 Queue length = 0
indexed
by —>» 002 Queue length = 3
lock id
Queue length = 8
Queue Length
Table
62
63

Figure 5-14 Global Blocking Queue and Lock Owner Structures
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The individual tables implemented are the Queue Length, Last RetjigestOwner and Link
Pointer tables. Except for the Link Pointer, all other tablesnalexed by the mutex ID (lock ID

or semaphore ID). The Link Pointer table is indexed by the threaggibter. An example of the
operations performed on the global queue for a given mutex is shownuire FHglL5. In this
figure, the Next Owner Pointer (one of the Next Owner table)amdistains a next owner thread
(thread ID). The Last Request Pointer (a table cell) contamthtead id that has made the latest
mutex request, and it is used to update the Link Pointer table. For a given mutex, the Lk Point

table provides a link list of all its next owners as shown at the bottom part of the figur

Last Request, Next Owner and Queue Length Tables
indexed by MUTEX ID (a given MUTEX)

Contains the most recent request thread ID, and it is

Il;ecl)?rt]tlzrequest 019 used as a pointer to update Link Pointer. The Link
Pointer will be used by the Next Owner Pointer during
de-queueing operation.

Next Owner 030 Contains next owner thread ID, use it to update

Pointer Next Owner register and as a pointer to get a new next owner

in order to update Next Owner table with a new value.

Queue Length

Pointer 004 Contains queue length of given MUTEX queue

Link Pointer Table (LP)
slots indexed by thread

ID:
slot = 030 slot = 010 slot = 007 slot = 019
Enqueue 010 007 019 XXX
Operation
Update LP slots to create a link list of next owner B
Blocked thread IDs: 30, 10, 7, 19 Last Request =019 —»
slot = 030 slot = 010 slot = 007 slot = 019
Dequeue 010 007 019 XXX
Operation
A link list created above for a
Next Owner =030 ———————— given MUTEX. Use LP to get a >
next next owner, to update next
owner table

Figure 5-15 Global Queue Operation
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Next Owner Register
The Next owner register saves the next owner thread ID de-quenedhfe global queue by the
Queue Controller. This enables the Queue Controller to continue marniagiggeue and at the

same time allows other controllers to start initiating processing dglfehe next lock owner.

Queue controller

The Queue Controller is responsible for three distinct tasks: myemd dequeing a locks next
owner, and initializing all queue tables. The state machine diagfamQueue Controller
operations (queue and removal elements from the Queue BRAMareigiFigure 5-16 and 5-
17. It follows three different paths responding to three different iignals - ENQUE,
DEQUEUE and SOFT RESET. If the SOFT RESET is activiraitsitions to the reset state.
While in transition, it outputs a signal to initialize the BRAMdeess counter. The BRAM
address counter generates BRAM cell addresses. In the tasettlsis controller initializes all
the BRAM cells or locations. After clearing all the queue BRAddations, it moves into the
QueResetDone state, and asserts thgem Rst Done signal. It remains in this state and

continuously asserts ttfgem_Rst_Done until the soft reset signal is de-asserted.

A Request for an owned lock initiates an en-queuing operation. An en-queuing opseatoby
reading the Length Queue pointed by the Lock ID register. If the dgiemggh is zero, the
controller increases the queue length by one. Next it uses lock #D Bndex to access both the
Last Request Pointer and Next Owner Pointer, and initializes both poiritierswent requester
thread ID.

If the queue length is non-zero, the controller must perform seaddifional tasks. First it
updates the queue length. Then it reads Last Request to get the indek Bbinter and writes
the current requester thread ID into the Link Pointer table. It uses the index itthasrieged as
a pointer into the Link Pointer table. The Link Pointers servesasies of link lists of all the next
lock owners for a given lock or semaphore. The link pointerslaceused later by the Next
Owner Pointer to find a new next lock owner. Finally it updated_&st Request with current

requester thread ID.
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reset

/

Enqueue Reset
enqueue ‘ soft_reset ‘
dequeue soft_reset/qreset_cnt_start
Dequeue /gaddr = q_addr_cnt
read reset /qdata_in = empty
QuelL /gaddr = queL_tbl & sem_id Que /genable = yes

/genable = yes
/gread_write = read

QuelL

/gqread_write = write

\

qent_adr =
glast_addr

reset /

done /soft_reset_done

soft_reset_low

Qinit

Ptrs Update

‘ If Queue Length>0———

If Queue Length =0

/gaddr = quelL_tbl & sem_id
/gdata_in = data_out + 1
/genable = yes
Iqread_write = write

Ptrs
Initialization

/gaddr = LastReq_tbl & sem_id
/qdata_in = thread_id

/genable = yes

Irqead_write = write

Qinit
/gaddr = NxOwn_tbl & sem_id
/gdata_in = thread_id
/genable = yes

Igread_write = write

lenque_done

update
NxOwn

Lagends:

link_ptr_tbl : address offset for Link Pointer tabl

nx_own_tbl : address offset for Next Owner table o
quel_tbl  : address offset for Queue Lengttietab Qinit

LastReq_tbl : address offset for Last Request table
gread/write : gr/lw read or write to the queue

/gaddr = queL_tbl & sem_id
/gdata_in = data_out + 1
/genable = yes
/gread_write = write

read /gaddr = I:astReqith & sem_id
/genable = yes
LastReq /qread_write = read
read
wait

/gaddr = LinkPtr_tbl & q_dataout
/qdata_in = thread_id

/genable = yes

/gread_write = write

)

/gaddr = LastReq_tbl & sem_id
«—/qdata_in = thread_id

/genable = yes

Iqread_write = write
lenque_done

Figure 5-16 Queue Controller Enqueue State Machine
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Releasing a lock causes the de-queuing to begin. The state mfachheede-queue operation is
given in Figure 5-17. As shown in the state machine diagram, the de-qperation has three
execution paths depending on the length of the next owner in the queue. ThHasgadue
operations start with first checking the queue length. The queué lengetrieved from the

Queue Length table by using the lock ID as an index.

If the queue length is zero, which means no next lock owner, the de-queatioopends here. It
then notifies the Lock BRAM Access Controller by raising theQDEE_NONE signal. The Lock
BRAM Access Controller then frees the lock by writing NO_OVR\#alue into the owner

register.

If the queue length is one, controller proceeds to reduce the queue bgngtie. Then it de-
gueues the next owner from the Next Owner table into the Next Owgistar and signals the
Hardware/Software Comparator (including Next Owner Address Gengtta start its task,
which in turn will signals the Bus Master. The Bus Master dedithe next owner (unblocked

thread) to either the Software Thread Manager or hardware thread.

If the queue length is more than one, the controller needs to exewetal s@ore steps in
addition to mentioned above. First it updates the Queue Length table wéw length. Next it
de-queues the next owner, and transfers it to the Next Owner regsig¢ signals the
Hardware/Software Comparator. It also needs to update the Next Oafle with a new next
owner. To get a new next lock owner, it uses the next owner thest itgtrieved as an index to
read the Link Pointer table. Then it updates the Next Owner tathiiéhe new next owner it just
obtained from the Link Pointer table. The Next Owner table updateharnukekt owner delivery

(notification) in actual run concurrently, as shown in the state machine diagram.

HW/SW Comparator & Next Owner Address Generator

This controller includes a comparator, a process to calculatedetiestination (of next owner
or unblocked thread), a state machine, and a pair of register to place the unblockkaldtiress
and its wake-up code: ADDR_OUT and DATA OUT.
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' reset
read

queL |

Dequeue
/gaddr = quelL_tbl & sem_id
/genable = yes
/gread_write = read

Dequeue update
Next Owner Ptr Update

,7Queue Length > 1

Dequeue
one

Queue Length = 1*‘

5

/gaddr = quelL_tbl & sem_id Dequeue /gaddr = queL_tbl & sem_id
/qdata_in = gbram_out - 1 None /gdata_in = gbram_out - 1
/genable = yes ‘ /genable = yes

/gread_write = write /gread_write = write

Queue Length =0 i
/gaddr = nx_own_tbl & sem_id Jgaddr = bl id
r v gaddr = nx_own_tbl & sem_i
ead /genable =yes deq non| /deque_done read /genable = yes
nx_own /gread_write = read — nx_own Jgread_write = read

/latch next owner Qinit

s

Qinit
/qaddr = link_ptr_tbl & gbram_out
read /genable = yes
link <//qread_write =read
ink_ptr /msc_start
/deque_done

/msc_start
/deque_done

read
linkptr

Lagends:
wait

link_ptr_tbl : address offset for Link Pointer tabl

Qinit nx_own_tbl : address offset for Next Owner table
quelL_tbl  : address offset for Queue Lengttetab
) LastReq_tbl : address offset for Last Request table
/gaddr = nx_own_tbl & sem_id - . .
update \«— /qdata_in = qdata_out ie. new nx own gread/write : qr/w read or write to the queue
nx_own /genable = yes

/gread_write = write

Figure 5-17 Queue Controller De-queue Operation

Upon receiving a signal from the Queue controller, this contradlershown in Figure 5-18)
determines whether the next owner (unblocked thread in the next owner registajdware or

software thread. The Software Thread Manager requires a eraxhdtion in order to put the

94



unblocked thread back into the scheduler queue. However, hardware thexpdee r

synchronization IP to write wake-up codes into command register in order to unblock.

reset

msc_start
/do_compare

.

if thread ID > 255
/I hardware thread
address = hw_thr_base + thread ID * 256
data = wake_up code
hw_sw_thr = hw

else
cmp /I software thread
. address = sw_thread_manager + thread ID * 4
waitB hw_sw_thr = sw
\ \
hw_sw_thr = hw hw_sw_thr = sw

0

Iwrite_request /read_request

write_start_ack read_start_ack

hW/S'W' bus_master_last_ack
cmp init Imsc_done
\J delivery 4/
done

Figure 5-18 HW/SW Comparator & Next Owner Address Generator

In the case of a software thread, an address is calculated by &laeliSoftware Thread Manager
base address with the thread ID multiplied by four. For hardwaradfrehe address of a
command register is calculated by adding the command registesaduffset, the base address
for hardware threads location in system memory map and the prodbhotad ID with hardware
thread size. In addition, a hardware thread requires a wake-up cogiadesl into the

DATA _OUT register. The base addresses of both hardware base sadahetshe software
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manager as well as the hardware thread size are passedesicg during system set-up. The
controller then asserts either a read or a write request tofdhe request handlers of the Bus

Master, and wait for acknowledgement.

When the controller receives the acknowledgment from the BusMadtstle-asserts its request
and proceeds to the wait state. It waits in this state uniicitives delivery acknowledgement
(LAST_ACK) from the Bus Master. Upon receiving this acknowledginit issues DEQ_DONE
(MSC_DONE) and returns to the initial state. The DEQ_DONEdmiired to signal the Lock
BRAM Access controller and busy status process that the delifehe unblocked thread has

completed.

Bus Master

Unlike spin locks, blocking locks must master the bus in order 4quene blocked threads to
either the thread manager or a specific hardware thread commgister. The Bus Master
hardware includes Bus Master controller and a pair of request mandince the
Hardware/Software Comparator makes available the destinatdress and data registers, this
module does not provide multiplexers and registers for both the dataddreks buses. The
responsibility of the bus-mastering controller is to accept @iffiebus transaction requests from
one the request handlers, generates read or write request signaBue Master interface either

to read in data or write wakeup code to hardware threads.

As shown in Figure 5-19, there are two possible paths the Bus Maktevs depending on
which request handler it receives signals from. The Bus Mpstéorms read operation to the
software Thread Manager to deliver next lock owner to the scheglugere. Otherwise the Bus
Master writes the wake-up code to the appropriate hardware tAreadstate machine asserts
read/write request, with the address bus and data bus connected t®EHR GUT and
DATA_OUT registers respectively, and waits for acknowledgrfrem the bus interface. When
it receives acknowledgement, it de-asserts its request,sisSsA8T_ACK signal to the

Hardware/Software Comparator and return to init state.
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reset reset

m_state = msc init
and
write_request*

m_state = msc init
and
read_request*

Iwrite_req_in
Iwrite_req_ack

Iread_req_in
Iread_req_ack

Generate one write request Generate one read request
if bus master is not busy if bus master is not busy
<—\ reset
send wakeup read to software
code to hw thread thread manager
write_req_in read_req_in

Asser bus intf request lines
/MstWrReq to bus interface

Assert bus intf request lines
/MstRdReq to bus interface

bus interface init bus interface
write_ack read_ack
send ‘/Deassen bus intf request lines k

done Deassert bus intf request lines

ms
init

C
I /bus_master_last_ack

Figure 5-19 Bus Master State Machine

/bus_master_last_ack

5.8.2 Resource Utilization

Tables 5-7 and 5-8 show the resource comparisons for our blocking loakmmphtions. It is
interesting to observe that our new design, which fully supports 512 idpltkiks now requires
less slices, flip-flops, and LUT’s that the original design fairayle blocking lock. Our new

approach does require an additional BRAM.
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Block lock #used| #total % useg
Slices 584 4928 11.12
Flip-flops 572 9856 5.80

4 inputs LUTs 808 9856 8.20
BRAMs 1 44 2.27

Table 5-7 Hardware Resources for a Prototype MUTEX

Block lock #used| #total % useg
Slices 357 4928 7.24
Flip-flops 381 9856 3.87

4 inputs LUTs 548 9856 5.56
BRAMSs 2 44 4.56

Table 5-8 Hardware Resources for Multiple (512) MUTEXES

5.9 BLOCKING COUNTING SEMAPHORE PROTOTYPE

The block diagram of a blocking counting semaphore is shown in Figk@e Bhe API pseudo

code for a blocking counting semaphore is shown in Figure 5-21.

P Data Bus o
[ max_cnt | [ grant0:1 lock_own
thread2 [ reg_num request
thread?7
threads [ rel_num release
Block Counting Spin Lock

Queue Semaphore logic Controller
Manager

Figure 5-20 Blocking Counting Semaphore (Prototype)

With the blocking counting semaphores if the resources are available, the thréagesoiat run.
However, if insufficient resources are available, then theathwll be queued and suspended

similarly to a blocking binary lock. The semaphore IP wiluessll queued thread_ids for
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rescheduling when resources are released. Just as in the sgaheenpotocol, writing a value
into the request number register (req_num) causes a Boolean vhkiedbin the grant register.
If insufficient resources are available, then the thread_id nedus queued before the spin lock

is released.

blk_sema_request(&sema, thread_id, value){
grant =0;
while (Igrant) {
spin_lock request(&sema, thread_id)
value~> rgst_num
grant& grant0:1
if (grant)
spin_lock release(thread_id)
else {
gueue thread_id/&command_reg
spin_lock_release()

sleep() //context switch }}}

Figure 5-21 Blocking Counting Semaphore API

5.10 MULTIPLE BLOCKING COUNTING SEMAPHORES IP

The block diagram for our final multiple blocking counting semaphisresown in Figure 5-22.
This entity carries sixty-four counting semaphores (64 counters WVBRIn addition to the
counters, there is a wait queue to hold the thread ID’s of blockeadir&his single queue is
designed to queue all threads blocked on all of the sixty-four semapfiaerequest for a
semaphore, theem wait( ) APl issues a read to an address formed by encoding the semaphore
ID and thread ID as the least significant bytes of the baseesgldin response to this read
operation, the controller decodes the address line and extracts bo#mntaehsre and thread
ID’s. The controller reads the counter pointed by the extracted sermalihoplaces the read
value on data bus, terminates the bus cycle, and performs additiorsti@pedepending on the
value of the counters. If the counter value is non-zero, the contideldleements the counter by
one, otherwise extracted thread id is en-queued. If the returned sateeoi the API puts the

thread to sleep. The API pseudo code for blocking counting semaphore is shown in Figure 5-23.
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A A
Counters Tables
B Link
4 Pointer
0
3 Last
Request
> Next
) Owner
Queue
Length
Controller
- semaphore
- tables/queue
- bus master
Address bus: Data Bus
6 lines for semaphore id
9 lines for thread id
2 lines for operation code
v v

Figure 5-22 Blocking Counting Semaphore

sem_wait(sema_id, thread_id) {
address <= encode sema_id , thread_id;
if location(address) == zero
sleep();
else

continue;

sem_post(&sema, thread_id) {
address <= encode sema_id , thread_id;

thread_id> location(address);

Figure 5-23 Blocking Counting Semaphore API
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To release the semaphore, e post() API write its thread ID to an appropriate address. The
controller state machine then decodes the address lines and reagsethied counter. If the
selected counter is non-zero, it will incremented by one. Otheifvibe counter is zero, the
controller proceeds checking the queue length of the selected semdptimmegueue length is
zero, the counter will be incremented. If the queue is not zero, theemazaphore owner will be

de-queued and the counter will not be updated.

5.10.1 Multiple Counting Semaphore Hardware Architecture

Our final multiple counting semaphore IP hardware architecture stensf: 1) interface and
status registers 2) semaphore counters and its controller 3) gjabak 4) global queue
controller 4) other controllers 5) soft reset circuits. Figug#l shows the hardware components

of the semaphore. The Figure 5-24 however does not include the reset circuit.

Semaphore counters and its controller
* Semaphore counters implemented within BRAM (SEMA BRAM)
» SEMA BRAM access controller

Interface and status registers:
e Semaphore ID register
* Thread ID register
» Busy status register
» Error status register

e Output MUX (API return status)

Global queue and its controller
* Global queue implemented within BRAM (Queue BRAM)
e Queue Controller

* Next Owner register (next semaphore owner or unblocked thread)

101



system bus

L i} L ir

A B
Bus Slave Interface (IPIF SLAVE) - ﬁgfg@fggéﬁ”“e
| A | T < oy
rdreq  rd ack Wr feqwr ack Sar‘gdr sd@ta API ret status xdata xaddr +
v T v T ﬂ 4L & xack control
‘ Data mux
C Atomic transaction PN sel D Bus Master
. status 6
1. Write request ack error bit cc&nt
2. Atomic read operation 1. Request Handlers
- rd counter before update |~ @_enable —» 2. Bus Mastering
- read ack delay — a_riw —» Multiple - reader
semalD ) semaphore - writer
prev status — counters
s TSR
cur status Ted ack addr_out
‘ reqister ‘ ‘ error bit ‘4—, : r ? adar cmnt wreq data_out
g error ‘p enable | | datain ‘ \ \
msc_start : .
K API return status ‘W_done E Contrgller for multiple F Comparator
- Status busy/OK < counting semaphores
- Xfer status betw regs 1. Determine next owner:
<+ 1. Manage semaphores cnt HW or SW thread
. request | 2- Initialize each semaphore 2. Generate read or write to
G  Operation mode — count resource value, Bus Master
- Decode address & riw 7% error if count too big 3. Calculate next owner
- sem_wait, sem_post Lﬁlhle> 3. Incr/ decrement count address
4. Generate enque & deque
5. Soft reset all own registers
‘ sema_id register ‘ —— A T
U ‘ \ A msc_start nx_owner
; . \ deq_done ‘ L
‘ thread_id register ‘ enque  deque enq done MSC_ do_compare
done
. nx_owner v (’:>
Queue with 4 tables
q data_out
H  Queue Controller
: : addr_out
Link Pointers . .
d wi 1. Sem_wait: queue blocking threads L
<— gread_write — i .
2. Sem_signal: dequeue next semaphore addr_out &
<— genable owner data out
Last Request - signals D via F to deliver next owner reqs
3. Manage queue of 4 tables 9
l 4. Soft Reset, clear all the table
Next Owners ﬁ ‘ v
[ A latch_next_owner
qdata_out u ¢ J  Next Owner Address Generator
Queue Lengths ‘ next_owner register ‘ Parameters:

- HW thread base address

- HW Thread size
nx_owner
Note: gwne - SW thread Manager address

request* = sem_wait or sem_trywait or read counter

ack = bus_master_last_ack

rreq = read_request control = MstWrReq, MstRdReq

wreq = write_request xack = bus interface read_ack or write_ack

Figure 5-24 Counting Semaphore Hardware Architecture
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Other Controllers:
» Operation mode controller
» Atomic transaction controller
e Comparator/Next Owner Address Generator

e Bus master

Soft reset mechanism
e Toinitialize global queue and semaphore counters
» Semaphore address counter generates addresses of all the semapltorbe tieatt.

* Queue address counter generates addresses of all global queue location to be reset.

Semaphore ID register

See description in binary blocking semaphores or mutexes (Section 5.8.1)

Thread ID register

See description in binary blocking semaphores or mutexes (Section 5.8.1)

Busy status and error status registers

The error status register provides error indicator (the ertds bet) when the initialization value
is greater the maximum value of the semaphore counter. SimitaetMUTEX busy status, a
status mechanism serves as a busy indicator to the API requestthelogieue controller has not
completed its delivery of next owner or unblocked thread from previ®igeguest. The busy
status mechanism includes two registers: Previous Status amenCGtatus. The start and
completion of thread delivery events cause the current statissereip change to “busy status”
and “non-busy” status respectively. Every API operation includint; wast and try wait causes
transfer of status from the current status register to theopiestatus register. The status in the
Previous Status register is returned to the APl. When an &Pivaes busy status, it should retry
the request. API requests that occur while the current transaction is gatplete will cause no
harm. If the current transaction is busy, SEMA BRAM access @tiwill not return to initial

state, thus any new API requests will not cause any new operation.
Operation Mode Controller
This controller serves as an interface between the applicatignapn and semaphore hardware.

It decodes the application program interface request and genapaiepriate signals to other
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controllers. The type of operation requested by the application progracoindl signals output
by this controller is given in table 5-9. It uses read requeit vaguest and two address lines to
decode application requests and generates appropriate signals: SEWAIGHE, SEM_POST,
SEM_WAIT, SEM_TRYWAIT, SEM_INIT. This controller works concurrgntiith the atomic
transaction controller in response to semaphore wait API requésmi@Atransaction controller
will be described later). The generated signals trigger FM/ASBRAM Access Controller and

Queue Controller to start to execute, which in turn cause other controllers to $tassttwe

Write Read Al2 | A13 | Al4 Operations Error &

Request| Request Status

0 1 0 0 0 Sem_getvalue( ), read a semaphoi\
counter

0 1 0 0 1 Sem_post( ), add count, unblock&iisy
thread if there is at least one in the
queue

0 1 0 1 0 Sem_wait( ), decrement count, | Busy

block if counter is O

0 1 0 1 1 Sem_init status* Error
(Count>max),
Busy

0 1 1 0 0 Sem_trywait(), request a Success/Fail,

semaphore, thread will not block ifBusy

not successful

1 0 0 1 1 Sema_init( )* initialize a N/A

semaphore counter

Table 5-9 Semaphore Application Interface Requests

Semaphore Counters (SEMA BRAM)

This semaphore IP entity supports sixty-four 8-bit non-negative coum@temented in the
block RAM (BRAM). The current implementation can support up to 512 senamamters
within this BRAM (we named it SEMA BRAM). The read and writgeration on the SEMA
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BRAM is controlled by an access controller (SEMA BRAM accesstroller) that will be

described later.

Atomic transaction controller

This component consists of several processes. The first protesaclsnowledge the system bus
write operation. This process asserts acknowledgement on the next acthaftrite operation
occurs. The second process is t