
TCP Performance over Multilink Long Delay 
Wireless Networks 

 
by 

 
Said Ismail Zaghloul 

 

Bachelor of Science, Electrical Engineering 
University of Jordan, Amman, Jordan, 2002 

 
 

 

Submitted to the Department of Electrical Engineering and Computer Science and the 

Faculty of the Graduate School of the University of Kansas in partial fulfillment of 

the requirements for the degree of Master of Science. 

 

Thesis Committee 
 
 
 

Chairperson: Dr. Victor S. Frost  
 
 
 
 

Dr. Gary Minden  
 
 
 

Dr. David Petr 
 
 

Date Accepted: _____________



 ii 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

© Copyright 2005 by Said Ismail Zaghloul 
All rights reserved. 



 iii 

 

 

 

 

 

To my beloved parents and family for their continuous support  

To my distinguished supervisor for his invaluable guidance  



 iv 

Acknowledgements 

It is impossible to acknowledge all people who had a major influence on the 

conception and the fruition of this work. To the best of my ability, I shall attempt to 

do so. I would like to extend my sincere gratitude to Dr. Victor Frost for his 

remarkable supervision and for his invaluable comments that made this effort a 

reality. I would like to thank Dr. Gary Minden and Dr. David Petr who agreed to be 

on my committee. Special thanks for Dr. Shanmugan who provided me with solid 

understanding of digital communications. 

 

I would also like to thank Abdul Jabbar Mohammad who was a marvelous partner 

who spared no effort in helping me solve intriguing problems. Furthermore, I would 

like to thank the ITTC system administrators for their prompt help and support, 

especially, Brett Becker and Mike Hulet. In addition, I would like to thank my friends 

Adam Bittlingmayer and Timo Kip for being wonderful roommates.  

 

Moreover, I would like to thank the Fulbright foundation and the University of 

Kansas for providing me with the wonderful experience for continuing my Master of 

Science degree. 

 

In closing, I am extremely grateful to my family for their continuous love and moral 

support. 



 v 

Abstract 

TCP is the standard transport protocol for many applications. In some cases, in order 

to satisfy application requirements, it becomes necessary to inverse-multiplex low 

bandwidth wireless links (using multilink point-to-point protocol MLPPP) to achieve 

higher bandwidth. The use of such technologies is required to provide adequate 

Internet access to support field research in remote regions (e.g. Greenland and 

Antarctica) that are only covered by low bandwidth systems (e.g. Iridium). Utilizing 

MLPPP is also a possibility for establishing connectivity over multiple cellular 

channels. The use of these technologies posed new challenges (e.g. call drops) that 

have not been fully analyzed yet. The TCP latency models developed in the last 

decade address a variety of factors that affect TCP throughput such as the effect of 

timeouts and the effect of packet drops due to wireless errors. This thesis focuses on 

TCP over MLPPP, specifically, the evaluation of the effect of call drops on the TCP 

performance. In order to provide insight into the nature of the call drops process, an 

estimate of the probability density function (pdf) of the time difference between call 

drops is determined experimentally. Using this model, the development in [15] is 

extended to account for call drops. Then, the proposed model is experimentally 

validated by field measurements using the Iridium network. Next, the effects of the 

loss probability, the timeout interval, and the ARQ operation on the TCP performance 

are evaluated. Finally, the design of the developed Iridium link management software 

is discussed to provide a complete image of the Iridium system's operation. 



 vi 

TABLE OF CONTENTS 

1. INTRODUCTION......................................................................................................... 1 

1.1 RESEARCH GOALS................................................................................................ 3 

1.2 ACCOMPLISHMENTS ............................................................................................. 4 

1.3 THESIS ORGANIZATION ........................................................................................ 4 

CHAPTER 2. INTRODUCTION TO SATELLITE NETWORKS............................. 6 

2.1 INTRODUCTION..................................................................................................... 6 

2.2 CURRENT SATELLITE SYSTEMS ............................................................................ 7 

2.3 OVERVIEW OF THE IRIDIUM SATELLITE NETWORK............................................. 11 

CHAPTER 3. OVERVIEW OF MULTILINK PPP OVER IRIDIUM..................... 16 

3.1 INTRODUCTION TO THE POINT-TO-POINT (PPP) PROTOCOL................................ 16 

3.2 INTRODUCTION TO MULTILINK PPP (MLPPP) OPERATION ............................... 18 

3.3 MLPPP IMPLEMENTATION OVERVIEW .............................................................. 20 

CHAPTER 4. INTRODUCTION TO MODELING TCP PERFORMANCE.......... 24 

4.1 OVERVIEW TCP DEVELOPMENT ........................................................................ 24 

4.2 GENERAL MODELING OF TCP’S TRANSFER TIME .............................................. 39 

4.3 COMPARISON BETWEEN TCP PERFORMANCE MODELS ...................................... 54 

CHAPTER 5. TOWARDS THE DEVELOPMENT OF A CALL DROP 

PROBABILITY DENSITY FUNCTION ..................................................................... 57 

5.1 THE CALL DROP EVENT ..................................................................................... 57 



 vii 

5.2 CALL DROPS EFFECT ON TCP PERFORMANCE ................................................... 60 

5.3 THE DEVELOPMENT OF THE CALL DROPS PROBABILITY DENSITY FUNCTION .... 63 

CHAPTER 6. LONG FILE TCP TRANSFER TIME ANALYSIS ........................... 68 

6.1 PROBLEM DEFINITION AND BACKGROUND ASSUMPTIONS ................................. 68 

6.2 TCP MODEL MATHEMATICAL DERIVATION ...................................................... 70 

6.3 MODEL VALIDATION.......................................................................................... 74 

6.4 SYSTEM DESIGN ANALYSIS................................................................................ 77 

CHAPTER 7. KUMICS SOFTWARE DESIGN FOR THE IRIDIUM LINK ......... 82 

7.1 INTRODUCTION................................................................................................... 83 

7.2 LINK MANAGEMENT SOFTWARE (KUMICS)..................................................... 85 

7.3 CONTROL MODULE DETAILS.............................................................................. 87 

7.4 GRAPHICAL USER INTERFACE DESIGN DETAILS ................................................ 92 

7.5 A COMPLETE INTEGRATED IMAGE OF KUMICS ................................................ 95 

7.6 EXPERIENCES WITH KUMICS............................................................................ 97 

CONCLUSIONS ............................................................................................................. 99 

FUTURE WORK.......................................................................................................... 100 

 



 viii 

TABLE OF FIGURES 
 
 

FIGURE 2.1:  NETWORKING FUNCTION IN LEO SATELLITE NETWORKS ....................... 10 

FIGURE 2.2 FDMA/TDMA FRAME STRUCTURE.......................................................... 12 

FIGURE 2.3: INTERACTION BETWEEN THE MOBILE UNIT & THE SATELLITE GATEWAY 15 

FIGURE 2.4: THE MULTILINK-IRIDIUM COMMUNICATION SYSTEM .............................. 15 

FIGURE 3.1: PPP ENCAPSULATION ............................................................................... 17 

FIGURE 3.2: PPP PHASE DIAGRAM .............................................................................. 17 

FIGURE 3.3: MULTILINK OPERATION ........................................................................... 19 

FIGURE 3.4: A SIMPLIFIED VIEW OF PPP IMPELEMNTATION OPERATION ...................... 21 

FIGURE 4.1 PERFORMANCE OF A MEAN+VARIANCE RETRANSMIT TIMER..................... 33 

FIGURE 4.2: TCP OVER WIRELESS LINK ...................................................................... 34 

FIGURE 4.3: ARQ OPERATION ..................................................................................... 35 

FIGURE 4.4: MLPPP OPERATION OVER N IRIDIUM MODEMS ....................................... 36 

FIGURE 4.5: PING RTT DISTRIBUTION........................................................................ 38 

FIGURE 4.6: TCP RTT DISTRIBUTION.......................................................................... 38 

FIGURE 4.7: CONGESTION WINDOW (CWND) VS THE ROUND NUMBER (N) ................... 42 

FIGURE 4.8: CORRELATED PACKET LOSSES IN A PARTICULAR CONGESTION WINDOW... 44 

FIGURE 4.9: EVOLUTION OF WINDOW SIZE (W) OVER TIME IN TERMS OF TDPS............ 46 

FIGURE 4.10: PACKETS SENT DURING A TDP ............................................................... 47 

FIGURE 4.11: TCP FLOW WITH TIMEOUTS .................................................................... 49 

FIGURE 5.1: A SAMPLE TCP TRACE ............................................................................. 63 

FIGURE 5.2: INTER-CALL DROP TIME DIFFERENCE PDF.............................................. 64 



 ix 

FIGURE 5.3: MODELING OF THE CALL DROPS PDF OF A MLPPP BUNDLE................... 67 

FIGURE 6.1: TCP RUNNING OVER LOWER LAYER ARQ ................................................ 69 

FIGURE 6.2: TCP FLOW PERIOD................................................................................... 71 

FIGURE 6.3: CALL DROPPING MODULE ARCHITECTURE ................................................ 76 

FIGURE 6.4: MODEL PREDICTIONS FOR VARIOUS CALL-DROP RATES ............................ 76 

FIGURE 6.5: EFFECT OF WIRELESS ERRORS ON AN INMARSAT MLPPP CONNECTION.... 78 

FIGURE 6.6: EFFECT OF THE TIMEOUT VALUE ON AN INMARSAT MLPPP CONNECTION 80 

FIGURE 7.1: OVERVIEW OF SYSTEM OPERATION.......................................................... 83 

FIGURE 7.2: THE STATE DIAGRAM OF AN IRIDIUM MODEM ......................................... 85 

FIGURE 7.3:  KUMICS DESIGN ARCHITECTURE .......................................................... 86 

FIGURE 7.4: XML SCHEMA OF THE CONNECTION DATABASE...................................... 87 

FIGURE 7.5: OPERATION OF THE PPP DAEMON............................................................ 88 

FIGURE 7.6: CONTROL SOFTWARE MANAGEMENT ALGORITHM .................................. 90 

FIGURE 7.7: SECONDARY MODEMS' CONNECTION ALGORITHM................................... 91 

FIGURE 7.8: MAIN WINDOW OF THE KUMICS' GUI ................................................... 92 

FIGURE 7.9: CREATING A NEW MODEM PROFILE ......................................................... 93 

FIGURE 7.10: CURRENTLY CONFIGURED MODEMS ...................................................... 93 

FIGURE 7.11: MLPPP CONNECTION GENERAL ............................................................ 94 

FIGURE 7.12: A SCREEN SHOT OF A CONNECTION MONITORING WINDOW .................. 95 

FIGURE 7.13: KUMICS’ MODULES INTERACTION FOR A TYPICAL CONNECTION ........ 96 

FIGURE 7.14: RELIABILITY OF THE IRIDIUM SYSTEM ................................................... 97 

FIGURE 7.15: THROUGHPUT AS A FUNCTION OF THE NUMBER OF MODEMS................... 98 



 x 

LIST OF TABLES 

 
TABLE �2.1: COMPARISON OF DIFFERENT SATELLITE SYSTEMS ..................................... 7 

TABLE �2.2 SUMMARY OF THE IRIDIUM NETWORK CHARACTERISTICS........................... 13 

TABLE �3.1: SOME PPPD CONFIGURATION PARAMETERS .............................................. 22 

TABLE �3.2: RECOMMENDED PPP PARAMETERS FOR IRIDIUM ....................................... 23 

TABLE �4.1: RENO OPERATION...................................................................................... 28 

TABLE �4.2: RELATIVE ERROR COMPARISON OF VARIOUS TCP MODELS (SHORT 

TRANSFERS)......................................................................................................... 55 

TABLE �4.3: RELATIVE ERROR COMPARISON OF VARIOUS TCP MODELS (LONG 

TRANSFERS)......................................................................................................... 55 

TABLE �5.1: SAMPLE HANDOVER MEASUREMENTS FROM GREENLAND ........................ 59 

TABLE �5.2: A SIMPLIFIED STRUCTURE OF THE CALL DROPS TABLE ............................ 64 

TABLE �5.3: CALL DROP RATES (β) FOR FIELD MEASUREMENTS.................................. 66 

TABLE �6.1: FILE TRANSFERS FROM GREENLAND TO THE UNIVERSITY OF KANSAS 

DURING SUMMER 2004 ........................................................................................ 74 

TABLE �6.2: FILE TRANSFERS FROM THE GREENLAND TO THE UNIVERSITY OF KANSAS 

DURING SUMMER 2004......................................................................................... 75 



 

 1 

1. Introduction 
 
 
 
There has been an enormous growth in the Internet with a tremendous increase in the 

demand for connectivity and high bandwidth. This necessitated the development of 

efficient transport protocols. TCP [1], transport control protocol, is by far the most 

common transport protocol in the Internet. Consequently, researchers concentrated 

their efforts in optimizing the current TCP versions in order to meet the users’ 

expectations. As a result, the topic of predicting the TCP transfer time has received 

considerable attention. Models for predicting TCP performance are pivotal to the 

development of enhanced versions of TCP as they provide better understanding of the 

effect of various network parameters, such as the channel error probability and round 

trip time variations. 

 

Researchers [15] started by modeling long transfers, such as FTP, over wired 

networks in terms of packet loss probability (due to congestion), round trip time 

(RTT), and the maximum window size (Wmax). Such models were based on many 

simplifications related to the specific case of long file transfers. Then, researchers 

[23] investigated short transfer times such as web-browsing. This case is more 

complicated than the long transfer case and leads to more intricate models. 

Researchers [18] managed to develop complex models that capture several aspects of 

TCP such as slow start and the acknowledgement timer expiration effect. The models 

developed rely on numerical solutions to obtain performance results.  



 

 2 

As Internet connectivity became a fundamental aspect of modern societies especially 

with the advent of wireless networking, researchers [27] studied the performance of 

TCP in wireless channels. Since wireless channels have higher error rates, designers 

include reliability mechanisms in the data link layer to mitigate packet losses which 

severely impair the TCP performance. The major challenge in this case is that losses 

might be due to wireless errors or due to congestion. Due to the complexity of this 

problem, researchers have only developed long transfer latency models for wireless 

links. 

 

The connectivity in remote regions such as in Greenland and Antarctica is a 

challenging problem. Any solution has to satisfy the primary user requirements: 

reliable connectivity and adequate bandwidth. Satellite connections are the most 

attractive solution for such a problem. Polar Regions, however, are among the most 

difficult spots to cover by satellites because of the high latitude in these regions. The 

Iridium satellite network is the only satellite network that provides full geographic 

and temporal coverage for Polar Regions. Although the Iridium satellites provide 

coverage, the offered (per channel) data rate is very low (2.4 kbps) [7]. It was shown 

in [4] and [14] that adequate bandwidth (19 kbps) may be achieved by inverse 

multiplexing multiple (eight) Iridium links, using the Multilink Point-to-Point 

Protocol (MLPPP), into a single virtual link. Thus, the bandwidth of the virtual 

MLPPP link equals the total bandwidth of all the physical links. 

 



 

 3 

1.1 Research Goals 
 
 

The main objective of this research is to develop and experimentally validate a TCP 

long transfer model that takes call drops into account. A call drop event means that 

one of the MLPPP channels loses its connection suddenly. There are various reasons 

that might cause call drops to occur such as low signal-to-noise ratio (SNR), handover 

failure, network signaling failures, etc. It has been observed in [4] that a call drop 

results in a TCP timeout. The reason why a call drop leads to a timeout is not 

obvious. It is certain, however, that a call drop leads to losing sufficient number of 

packets (or their acknowledgements) resulting in a timeout.  Thus, a probabilistic 

model for call drops was developed based on experimental measurements from the 

Iridium satellite network. The call drop model is then used to develop a mathematical 

model that predicts TCP performance at variable call drop rates. 

  

In addition, this research aims at providing qualitative description of the  

multi-channel Iridium system performance by studying the effects of the packet error 

rate and the TCP timeout values. Moreover, the relationship between the 

communication channel fading conditions (slow or fast) and the packet error rate is 

discussed briefly. Finally, efficient link management software was developed in order 

to attain optimal operation and collect system operation measurements. The link 

management software enabled the development of the proposed TCP performance 

model. 



 

 4 

1.2 Accomplishments 
 
 
This work resulted in the following accomplishments: 
 
1. A TCP performance prediction model based on call drops and link loss statistics 

has been developed and experimentally validated.  

2. A satellite system emulator has been developed in order to test the proposed 

model under call drop rates higher than the normal Iridium call drop rates. 

3. An estimate of the call drops probability density function (pdf) has been 

developed. 

4. Efficient link management software has been developed with a user-friendly 

graphical user interface (GUI) that requires minimal configuration. 

5. TCP performance over other satellite systems (i.e. Inmarsat) has been studied in 

terms of RTT and throughput.  

 

1.3 Thesis Organization 
 

In this thesis, a brief introduction to the Iridium satellite network architecture is given 

in Chapter 2. Then, the MLPPP protocol architecture and operation is summarized. 

Afterwards, the main aspects of the TCP latency models for long and short transfers 

are surveyed with focus on long transfer models. Next, a thorough discussion of the 

call drop process is given showing complete details of modeling call drops over a 

MLPPP bundle. Then, the TCP performance prediction model which considers the 

call-drop effect for TCP connections running MLPPP is derived and experimentally 



 

 5 

validated using the Iridium system. Afterwards, a selection of system design 

parameters (round-trip-time and timeout value) is discussed.  Finally, the 

development of the link’s management software is described in detail.  

 

 



 

 6 

Chapter 2. Introduction to Satellite Data Networks   
 
 
2.1  Introduction 
 
 

The communications industry witnessed enormous growth in the last decade. With 

the development of the Internet many applications became practically feasible. 

Connectivity and mobility are almost becoming the two main features of modern 

communication systems. There are many different methods that attempt to achieve 

those goals at a minimum cost and at the best quality, such as third generation cellular 

systems, fiber optic based networks, and satellite systems. Perhaps the most unique 

feature of a satellite system is its ability to cover wide areas of the Earth’s surface [1]. 

This unique feature makes it possible for satellite systems to cover large areas of the 

globe at a relatively low cost. This makes satellite systems an attractive solution for 

establishing connectivity to remote points and distant locations where it is practically 

impossible to have other means of communications. Examples are desserts, oceans, 

and Polar Regions.  

 

Satellite systems fall into three main categories depending on the selection of their 

orbits and their orbital dynamics: Geostationary Earth Orbit (GEO), Medium Earth 

Orbit (MEO) and Low Earth Orbit (LEO) as shown in Table �2.1.  



 

 7 

 
Table �2.1: Comparison of Different Satellite Systems [1] 

 
 LEO MEO GEO 

Satellite cost Maximum Minimum Medium 

Satellite life (years) 7-9 10-15 10-15 

Hand-held terminal Possible Possible Very Difficult 

Propagation delay Short Medium Large 

Propagation loss Low Medium High 

Network complexity Complex Medium Simple 

Hand-off Very Medium No 

Development period Long Short Long 

Visibility of satellite Short Medium Always 

 
 
 
2.2 Current Satellite Systems 
 
 

This section briefly surveys the current data communications satellite systems. There 

are several GEO satellite systems currently available. For example, the Inmarsat 

network consists of four satellites located at an altitude of 35800 km along the 

equator covering most parts of the globe. Inmarsat is planning to launch a fourth 

generation of satellites in 2005 [3] that will support a new Broadband Global Area 

Network (BGAN) which promises to deliver Internet and intranet content and 

solutions: video-on-demand, videoconferencing, and LAN access at speeds up to 



 

 8 

432kbit/s in most parts of Africa and Asia, including many parts of Russia, China, 

Indonesia and Australia [3]. BGAN will also be compatible with the third-generation 

(3G) cellular systems. The new system is expected to provide at least 10 times as 

much communications capacity as today's Inmarsat network. Other similar systems, 

Intelsat and PanAmSat, consist of a few (2-8) large satellites. Each satellite covers up 

to one third of the Earth’s surface and has high transponder capacity to be shared by 

users in its footprint. They are easier to maintain, have a long life, and are very 

reliable.  

 

Although GEO systems have many advantages, they have several limitations that 

make them unsuitable to use for some applications. Due to the high altitude of the 

GEO satellites, the two-way propagation delay (uplink/downlink) ranges from 240 ms 

to about 270 ms depending on the elevation angle. This does not take into account 

any processing or queuing delays, or even retransmissions (for IP traffic). The other 

effect of the large distance is the large propagation loss. It is well known that the 

distance has a square relationship with power, which makes battery life and the size 

of mobile devices a non-trivial issue. Being geosynchronous with one point above the 

equator makes the satellite partially visible or even invisible at high latitude points, 

such as the Polar Regions, since high latitude locations require a very low elevation 

angle. For example, Inmarsat has partial coverage in Greenland while most systems 

are not accessible beyond 70 degrees N or S latitude [4].  

 



 

 9 

LEOs have been designed to tackle the problems of GEO satellites. Examples of 

LEOs include ORBCOMM, Iridium, Globalstar, ICO, and Teledesic. The orbital 

period of these satellites is much lower than that of the Earth (between 90 and 120 

minutes). They are visible for a very short time from any given point on earth. Since, 

the footprint size is proportional to the height of the satellite, the number of satellites 

needed in LEO systems is much higher than that in GEO. A thorough discussion of 

the derivation of the approximate number of satellites can be found in [2]. These LEO 

satellites are located at a relatively low distance (700-1000 km) from Earth [4]. Each 

satellite covers a small area on the Earth and provides connectivity for approximately 

10-30 minutes. Examples of LEO networks are Iridium, Globalstar and Odyssey.   

 

It is clear that LEO systems are a constellation of satellites that constitute a complete 

network. The way to establish the networking function varies from one LEO network 

into another. For example, the networking function could be implemented by simply 

completing the radio link between the ground stations through the satellite network. 

Thus, the satellite network only passes the signals to the next ground station.  The 

more complex approach is to have "a homogenous autonomous system" [5] that 

consist of a constellation of satellites that communicate switching information 

between them using inter-satellite links (ISL). The switching is done completely in 

space by a smart switching algorithm. This is the fundamental difference in satellite 

network design approaches between the ground-based Globalstar satellite networks 

and the interconnected Iridium satellites. Figure �2.1 shows the network layer 



 

 10 

architecture of the Globalstar and the Iridium network. It is clear that complex 

switching systems are harder to upgrade or modify as they implement satellite 

onboard switching, whereas simple ground (bent-pipe) systems are much simpler to 

modify and upgrade. In the next section, a more detailed discussion of the Iridium 

network will be investigated.  

Simple Ground Switched System (Globalstar) 

 

Complex Constellation Switching System (Iridium) 

 

 
Figure �2.1:  Networking Function in LEO Satellite Networks [adapted from [5]] 



 

 11 

2.3 Overview of the Iridium Satellite Network 
 
 

Motorola's original design of the Iridium system consisted of 77 satellites [6]. The 

name Iridium was suggested by Motorola's cellular systems engineer, Jim Williams, 

after the Iridium element which has 77 electrons. The design was modified later to 

consist of 66 satellites only. The Iridium satellite constellation was launched in May, 

1998. It is currently maintained by Boeing [7]. The 66 satellites are organized in 6 

planes with 11 satellites in each plane. The planes are circular around the Earth with 

inclinations of 86.4 degrees. The altitude of the satellites is 780 km with each satellite 

weighing 689 Kg. The expected lifetime of each satellite ranges from 7 to 9 years.  

 

As discussed in Section �2.2, Iridium uses a complex system of inter-satellite links 

(ISLs). The ISLs operate in the frequency range of 23.18 to 23.38 GHz. The actual 

details of the ISL operation are not published. Nevertheless, it is known that most 

satellites have four links: two inter-planner (east and west) and two intra-planner links 

(north and south) [8]. Each satellite has an orbital period of approximately 100 

minutes.  

 

Unfortunately, the complete details of the Iridium physical layer design are 

proprietary. Some sources ([2], [4] and [6]), however, state that the Iridium network 

uses the frequencies from 1610 to 1626.5 MHz for both uplink and downlink. The 

10.5 MHz bandwidth is divided into 240 channels. Each channel occupies 31.5 kHz 



 

 12 

bandwidth and is separated from other adjacent channels by 41.67 kHz guard-bands 

[8]. Each satellite has three-phased array antennas with 16 beams per antenna. Thus, 

the satellite footprint is divided into 48 spots or cells. The satellite's footprint's radius 

of 2209 km results in a cell area on the order of 319,000 km2/cell [4]. Thus, one 

Iridium satellite covers a cluster of 48 cells. The frequency reuse factor is 12 which 

results in 240 divided by 12 which leads to 20 frequency channels per cell. Each 

frequency channel is time divided into four uplink channels and four downlink 

channels.  Thus, the multiple access technique is FDMA/TDMA. Each TDMA frame 

is 89.96 ms with four uplink channels and another 4 downlink channel slots as shown 

in Figure �2.2. Each slot occupies 8.28 ms burst time. The modulation scheme used is 

QPSK for both uplink and downlink. The system is assumed to have a raised cosine 

filter with a rolloff factor of 0.26. This leads in 50 kbps (31.5/1.26*2) data rate per 

frequency channel. But since each slot is 8.28 ms, taking the 3/4 coding into account, 

this leads to a data rate of 3.45 kbps per channel [4]. The Iridium voice coder rate is 

designed at 2.4 kbps. The used of the rest of the bandwidth is not published. Table �2.2 

summarizes the Iridium network's design characteristics. 

 
Figure �2.2 FDMA/TDMA Frame Structure 

(Adapted and Modified from [8]) 
 



 

 13 

Table �2.2 Summary of the Iridium network characteristics 
 

Number of Satellites 66 plus 6 in orbit backup Satellites 

Orbit Height 780 km or 485 mi 

Inclination of Orbital Planes 86.4 

Orbital Period 100 mins 

Weight 689 kg 

Satellite Lifetime  7 – 9 years 

Modulation Technique QPSK 

Frame Structure  FDMA/TDMA 

Frequency L-band from 1610 to 1626.5 MHz 

Inter Satellite Links Frequency Ka band from 23.18 to 23.38 GHz 

Ground Segment Links Ka band: Uplink:       29.1 – 29.3 GHz  

                Downlink: 19.4 – 19.6  GHz 

Ground-Based Digital Switches Siemens GSM-D900 

Multiple Access Technique FDMA / TDMA 

Digital Voice and Data Rate 2.4 kbps 

Error Protection FEC 3/4 

TDMA Slot Length 89.96 ms 

Inter-slot Guard Time 0.1 ms 

Slot Time 8.28 ms 

Inter-Satellite Handover 9-10 min 

Minimum Elevation Angle 8.2 degrees 

 

Iridium operates in a similar fashion to GSM. The Iridium system utilizes multiple 

regional gateways in order to connect to the PSTN network. Although in theory, the 

Iridium only requires one regional gateway, the designers of the network decided to 

use multiple gateways to support redundant paths and to simplify the satellite 



 

 14 

switching. The Iridium network should always keep track of the user's location as he 

roams. Once, the user turns his mobile unit on, it sends a "ready-to-receive signal" to 

the nearest gateway through a series of ISLs [8]. Once the gateway completes 

authenticating the mobile unit, the mobile's location is saved in the home location 

register (HLR) and/or the visited location register (VLR).  After finishing "the 

camping on the cell" procedure, the mobile is ready to make phone calls. Once a user 

requests a call, the signaling has to go to the HLR/VLR in order to get his location 

and the receiver's location (if it is Iridium mobile) and in order to complete 

authenticating the caller. If the receiver is not an Iridium mobile device the 

connection is setup is established through the gateway and then data starts to go 

through the gateway. However, if the connection is between two mobile users, the 

gateway provides the signaling that allows the data/voice packets to flow completely 

in the satellite network without the gateway's intervention. Figure �2.3 summarizes the 

call setup procedure. 

 

Since the Iridium system is only capable of supporting a very low data rate of  

2.4 kbps, many user applications may not be able to execute properly. In order to 

satisfy the applications requirements, multiple Iridium links may be combined into a 

virtual link, using the multilink point-to-point (MLPPP) protocol, with bandwidth 

equal to the sum of the individual links' bandwidths, as shown in Figure �2.4. The 

virtual link introduces new challenges to the TCP operation as the individual links 



 

 15 

might experience call drops. This effect has to be taken into account when predicting 

file transfer times over such MLPPP links.  

 

 

Figure �2.3: Interaction between the Mobile Unit and the Satellite Gateway 
 

 

Figure �2.4: The Multilink-Iridium Communication System 
(Adapted and modified from [14])  

Iridium Satellite Network 

U
S

B
-S

E
R

IA
L Modem n 

Modem 2 
Modem 1 

A
ntenna 
G

rid . . . . 
.  

Local Subsystem 

Local 
System 

PPP client 

U
S

B
-S

E
R

IA
L Modem n 

Modem 2 
Modem 1 

A
ntenna 
 G

rid 

Remote  
System 

PPP client 

Remote Subsystem 

. . . .  

Satellite 
Network 

Gateway 
Ready to Receive 

Ready to Receive 
- Authenticate 
- Register location 

in the HLR/VLR 
Registered Registered 

Time 

Request a Call  
[To a Mobile Device] 

Request a Call 

- Authenticate 
- Locate the caller 

and the recipient 
- Page the recipient 
- Send ring to 

caller 
- Establish the 

connection once 
the recipient 
accepts the call 

- Now all data 
flows over the 

“Established” “Established” 

Release 

Release 

Mobile  
Unit 



 

 16 

Chapter 3. Overview of Multilink PPP over Iridium 
 
 

Multilink Point-to-Point Protocol (MLPPP) is commonly used when the available 

technologies (for example at a remote location) do not meet the applications 

bandwidth needs. This process is referred to as inverse multiplexing [4]. MLPPP 

provides the end user applications with higher bandwidth by aggregating multiple low 

rate connections to one virtual higher speed connection. Thus, the transport layer (and 

hence the application layer) is completely unaware of the inverse multiplexing 

process as the whole “bundle” appears as a single high speed connection.  

 

This chapter goes through the main aspects of the point-to-point (PPP) protocol, 

discusses the MLPPP operation briefly, and goes through MLPPP implementation 

details. 

 

3.1 Introduction to the Point-to-point (PPP) Protocol 
 
 

The Point-to-Point Protocol (PPP) was designed to encapsulate layer 3 protocols’ data 

in a standardized frame format and transport it over point-to-point links such as T1, 

ISDN, or dial up. This is accomplished by the seamless interaction between the three 

main components that comprise PPP: an encapsulation mechanism, a link control 

protocol (LCP), and a family of network control protocols (NCPs) [9].  



 

 17 

PPP encapsulation, shown in Figure �3.1, is designed to be carried out efficiently on 

most of the available hardware. This is achieved by having the hardware simply 

examine simple fields that fall into 32-bit field boundaries.  

 

 
Figure �3.1: PPP encapsulation 

     

 

The link control protocol (LCP) is primarily used to negotiate the encapsulation 

format options and packet sizes, establish the end-to-end link, terminate the link, 

detect failures upon their occurrence, and optionally carry out authentication. The 

network control protocol (NCP) is used to configure the network layer protocols 

when a connection has been established. NCP could be viewed as the access point 

between the network layer and PPP.  The PPP phase diagram [9] is shown in Figure 

�3.2. 

  

 

Figure �3.2: PPP Phase Diagram (adapted from [4] and [9]) 

Protocol 
8/16 bits 

Information Padding 

 

Dead 
 

Authenticate 
 

Establish 

 

Terminate 
 

Network 

Up Opened Success 

Fail Fail 

Closing Down 



 

 18 

It is clear from Figure �3.2 that PPP starts and ends at the “dead phase”. When a 

connection is ready to start, LCP proceeds to the link establishment phase where link 

configuration parameters are negotiated. Once the configuration parameters have 

been exchanged successfully, authentication (using the Password Authentication 

Protocol (PAP) or the Challenge Authentication Protocol (CHAP)) might take place. 

Then, PPP moves to the network phase where NCP configures the network layer. At 

this point, data packets start to flow over the link until a request to terminate or a link 

failure occurs. Failures are detected by means of sending periodic echo messages. In 

the termination phase, PPP informs the network layer protocols in order to handle the 

event properly. In addition, PPP performs all clean up actions needed in this stage 

before finally returning to the “dead phase”. 

 

3.2 Introduction to Multilink PPP (MLPPP) Operation 
 
 
“Multilink PPP (MLPPP) is a method of splitting, recombining, and sequencing 

datagrams across multiple logical data links [10]”.  MLPPP is an example of inverse 

multiplexing multiple lower rate links into a higher bandwidth virtual link. The goal 

of the multilink operation is to coordinate multiple independent PPP links between 

fixed pair of systems providing a virtual PPP link with greater bandwidth than any of 

the constituent links. 

 

MLPPP is designed to operate over various types of links, frames might arrive out-of-

order. For example, if a MLPPP bundle is composed of a T1 line and an ISDN-B line, 



 

 19 

then based on the intricacies of the telephone network, the delays of the two lines 

might vary significantly. This might result in out-of-order reception of the MLPPP 

protocol data units (PDUs). This problem is solved in MLPPP by including a non-

decreasing 4-octet sequence number in the MLPPP packet header. MLPPP operation 

is illustrated in Figure �3.3. 

 

Figure �3.3: Multilink Operation 
 

Since MLPPP is an extension to PPP, the multilink functionality is provided by 

negotiating a LCP option which indicates whether the other end is able to combine 

links into a “bundle”. Multilink is negotiated by sending the multilink option in the 

initial LCP option negotiations phase [11]. Once the multilink option is negotiated 

successfully, the maximum received reconstructed unit (MMRU) is negotiated. 

Depending on the network layer packet size, the member links’ properties, and the 

current load, MLPPP might fragment network layer packets into multiple PDUs to be 

reassembled at the receiving end.  

M
L

PPP 

M
L

PPP 

MLPPP PDUs 

Layer 3 Packet 
Link 1 

Link 2 

Link n 

5 4 2 

1 6 

7 

2 

3 

Sender Receiver 

MLPPP PDUs 
reassembled 

into the 
original layer 3 

packet 

MLPPP fragments 
have non-decreasing 
sequence numbers 

Network Layer Network Layer 

MLPPP 
fragments 

layer 3 packets  



 

 20 

3.3 MLPPP Implementation Overview 
 
 

This section provides a brief discussion about the Linux implementations of 

PPP/MLPPP. Protocols that wish to support PPP/MLPPP are required to implement a 

generic class referred to as the “PPP channel”. A channel class provides a general 

mechanism to transport PPP/MLPPP frames over arbitrary links [12]. Thus, the 

complexity of the channel structure varies depending on the underlying technology. 

However, the channel class only exposes simple standardized methods that allow 

sending and receiving PPP/MLPPP frames, and handling input/output control 

requests. The channel implementation is usually included in the Linux kernel. The 

kernel provides a generic PPP layer that uses the channel structure in order to provide 

a general standardized layer for programmers implementing PPP/MLPPP 

functionality. Thus, MLPPP implementations are completely relieved from the task of 

handling physical/data link layer issues. For example, currently PPP is supported over 

synchronous and asynchronous serial ports, and over Ethernet. Programmers dealing 

with PPP/MLPPP implementations use the generic layer to transmit and receive 

PPP/MLPPP frames regardless of the underlying hardware interface. The software 

implementation that uses the generic layer functionality to provide PPP/MLPPP 

operation to the end user is called the PPP daemon. Figure �3.4 summarizes the 

interactions between MLPPP generic layer and the PPP daemon (PPPD).  

 



 

 21 

In short, MLPPP implementations are split into two parts: the generic PPP layer 

provided by the kernel and a PPP/MLPPP implementation installed optionally by the 

user. For example, in this thesis, Paul's PPP package (PPP-2.4.3) [13] is used in the 

Iridium system design.   Thus, the user is mainly concerned with configuring the 

installed PPPD package in order to establish the MLPPP connection. Some 

configuration parameters are listed in Table �3.1. 

 

Figure �3.4: A Simplified view of PPP impelemntation operation 
 

Serial Link 1 

Serial Link 2 

Channel 

Channel 

PPP G
eneric L

ayer 

PPP Im
plem

entation Softw
are 

MLPPP 
connection 

N
etw

ork L
ayer 

IP  
Packet 

Kernel PPP Software 



 

 22 

Table �3.1: Some PPPD configuration parameters 
 

Parameter Description 

PAP-restart Timeout interval before issuing another authentication 

request 

LCP-restart Sets the retransmission timeout interval for LCP 

configuration packets during the link establishment phase  

LCP-max-configure Maximum number of retrials for sending configuration 

packets 

LCP-echo-interval Time between LCP echo packets. Echo packets are primarily 

used by LCP to make sure that the link is still alive 

LCP-echo-failure Maximum number of echo packets without receiving replies. 

Once this parameter is exceeded a link failure is declared. 

Connect-delay 
 
 

Time needed to establish the physical connection, for 

example to dial and establish a serial connection before LCP 

starts sending negotiation packets. 

 

Finally, Table �3.2 illustrates the recommended values for running MLPPP over the 

Iridium network [4]. 



 

 23 

 

Table �3.2: Recommended PPP parameters for Iridium 
 

Parameter Recommended values for Iridium 

PAP-restart 10 – 15 sec 

LCP-restart 10 - 15 sec 

LCP-max-configure 10 

LCP-echo-interval 30 sec 

LCP-echo-failure 2 

Connect-delay 5000 ms 

 



 

 24 

Chapter 4. Introduction to Modeling TCP Performance 
 
 
This chapter introduces three TCP versions (Tahoe, Reno and SACK) briefly. Then, 

some aspects of modeling TCP performance are explained. Finally, several analytical 

TCP models are surveyed with focus on the models for long-transfer latency which 

constitute the necessary background information for the proposed TCP model 

presented in this thesis.  

 

4.1 Overview TCP Development 
 
 

Transmission Control Protocol (TCP) is the most widely used transport protocol for 

Internet browsing and file transfers. The current TCP implementations are the fruit of 

the enormous efforts of the research accomplished by several entities: universities, 

research laboratories, and the Internet Engineering Task Force (IETF).  

 

TCP is a reliable data transport protocol. The TCP sender assigns unique sequence 

numbers to its data units, called segments, in order to keep track of the segments’ 

order and to ensure the delivery of all segments to the receiver. The receiver informs 

the transmitter about the successful reception of data by sending an acknowledgement 

to the transmitter. The time at which an acknowledgement is sent back to the 

transmitter is a protocol parameter. In fact, TCP standards (RFC1122) recommend 



 

 25 

that the TCP source send one acknowledgement for every two segments or whenever 

the acknowledgement timer expires, whatever comes first.  

 

TCP avoids overwhelming the receiver by implementing the sliding window 

algorithm for flow control. The receiver periodically informs the transmitter about its 

capacity by advertising the so-called maximum window size Wmax back to the 

transmitter. The Wmax estimate is a function of the bandwidth-delay product and the 

receiver’s maximum buffer size.  

 

TCP evolved through different releases. The next section goes over three versions of 

TCP (Tahoe, Reno and SACK) briefly. Afterwards, some main TCP procedures 

(delayed acknowledgements and round trip time (RTT) estimation) are discussed. 

 

4.1.1 The Evolution of TCP Tahoe 
 

The first deployed version of TCP known as TCP Tahoe was developed after the 

Internet congestion collapse in October, 1986. Van Jacobson made a major 

contribution to explaining the reasons behind the congestion collapse and to solving 

the problem by developing TCP Tahoe.  

 

Jacobson proposed a mechanism, referred to as the slow start algorithm, which 

increases the congestion window size (cwnd) by one TCP segment, referred to as 



 

 26 

Maximum Segment Size (MSS), for every received acknowledgement (ACK). This 

effect is referred to by the “multiplicative increase”. The window size continues to 

grow up to a certain point, called the slow start threshold (ssthresh), where the 

window size reaches a limiting value. Afterwards, i.e., when cwnd > ssthresh, the 

window size is linearly incremented by the minimum of 
cwnd
MSS 2

 for every received 

acknowledgement or one MSS for every RTT [17]. If delayed acknowledgements are 

taken into consideration this results in an increase by one MSS every two RTTs. The 

process of incrementing the congestion window size is repeated until the maximum 

window size maxW is reached. Afterwards, the flow keeps a constant window size of 

maxW . 

 

TCP as described by Jacobson [16] is a self-clocking protocol. This means that the 

received acknowledgements trigger sending new packets. Thus, no new packet is sent 

until it is assured that one packet exited the network. Since the acknowledgements 

need data and data need acknowledgements to be sent, slow start initiates the first 

pulse for the clock and keeps increasing the data size until reaching the threshold. 

 

According to Jacobson [16], 99% or more of the packet losses are due to congestion. 

Since TCP has a robust RTT estimation that prevents TCP timers from firing 

unreasonable timeout, then a timeout may only be due to congestion. Thus, following 

a timeout, it is required that a conservative mechanism (i.e., slow start) that recovers 



 

 27 

from losses and avoids driving the network into congestion be implemented. Thus, 

after a timeout, slow start is initiated with (ssthresh = cwnd/2).  

 

Finally, Tahoe adds the fast retransmit algorithm to the original TCP implementation. 

The fast retransmit algorithm is executed upon the reception of enough (three) 

duplicate acknowledgements indicating a missing packet. Thus, upon the arrival of 

the third duplicate acknowledgement, Tahoe immediately sends the lost packet 

immediately and enters the slow start phase avoiding the need for a timeout. 

4.1.2 The Introduction of TCP Reno 
 
 
In April 1990, Van Jacobson sent an email [19] describing a new congestion control 

mechanism. In his email, Jacobson illustrated that the sender has two window 

controlling mechanisms: slow start and congestion avoidance. If the duplicate ACK 

threshold is small (3 acknowledgements in practice [20]) compared to the bandwidth-

delay product, the loss will be detected with the pipe almost full. To illustrate, for a 

congestion window of 18 packets, the loss is detected with the pipe (1 – 3/18 = 83%) 

full. One might be tempted to say that a 10% loss might lead to 10% degradation in 

throughput. However, according to [19], this results in a severe degradation of 

throughput (50%-75%) due to the frequent slow starts. Thus, it would be very 

beneficial, especially for long fat network pipes (LFNs) (or large delay-bandwidth 

lines), to have the average throughput degrade as a function of the loss probability 

rather than the product of the loss probability and the bandwidth of the pipe. Hence, 



 

 28 

the target of Reno is to keep the pipe nearly full and to always have accurate 

estimates about the packets traveling in the pipe.  

 

In short, Jacobson states that TCP “Reno” should enter a new mode, called the 

recovery mode, upon the reception of three duplicate acknowledgments instead of 

going to slow start with cwnd = 1 as in TCP Tahoe. Thus, upon the reception of 3 

acknowledgements, the lost packet is retransmitted, the congestion window is halved, 

and the slow start threshold (ssthresh) is set to the same value of the new congestion 

window size. Afterwards, the flow enters the recovery mode during which cwnd is 

increased by one upon the reception of any acknowledgement. This process is 

repeated until the acknowledgement of the lost packet is received or the timeout value 

has been exceeded. At that point, the recovery mode ends and the congestion 

avoidance phase starts with cwnd reset to ssthresh.  Table �4.1 illustrates an example 

of the operation of TCP Reno. 

Table �4.1: Reno Operation   
[Duplicate acknowledgements are assumed, ssthresh = 4] 

Round cwnd Packets # ACKs Mode 
1 1 1  Slow Start 
2 2 2 3 1 Slow Start 
3 3 4 5 6 1 Slow Start 
4 5 7 8 9 10 11 2 Cong. Avoid 
5 6 12 13 [14] 15 16 17: 14 is lost 3 Cong. Avoid 
6 6 14 15 16 17 18 19 3 F. Recovery 
7 4 20 21 22 23 24  2 Cong. Avoid 

 
On round 5, packet 14 is lost. On round 6, 3 duplicate acknowledgements on packet 

14 are received (for packets {12,13}, {15,16}, {17}). This results in entering the fast 



 

 29 

recovery mode in round 6. Thus, the new congestion window is given 

by
�
�
�

�
�
�

��

�
		


==
2

,2max
cwnd

hnewssthrescwnd . But cwnd is modified immediately to 

account for all those packets leaving the network (since 3 duplicate 

acknowledgements of packet 14 due to packets (15, 16, 17). This results in an 

increment of 3 to the current value of cwnd. This allows sending two more packets 

(18 and 19). In round 7, the acknowledgement of packet 14 is received along with the 

acknowledgement of packets 18 and 19 (in practice the receiver sends a cumulative 

acknowledgement for packet 19). Thus, cwnd is updated to be 8.  But since the fast 

recovery mode ends by receiving the acknowledgement of 14, the congestion mode 

starts again with cwnd = 8/2=4. Note that when returning to the congestion avoidance 

mode again, there is no sudden burst of packets (i.e., cwnd ≠ 8 ) and that is what 

Jacobson meant by saying "there is no sudden burst of packets as the `hole' is filled". 

It is noteworthy to reemphasize that the fast recovery is performed in one round 

which is much faster than recovering by slow start, which requires 4 steps to achieve 

the same cwnd of 4, as in Tahoe. 

4.1.3 Introduction to TCP SACK (Selective Acknowledgements) 
 

TCP SACK extends TCP Reno by including new fields (up to three) in the TCP 

segment header for selective acknowledgements (SACK) which allows the receiver to 

inform the sender about multiple received blocks. In other words, the gaps in the 

acknowledgements will indicate losses. For example, if the receiver informs the 



 

 30 

sender that it received packets from 1-4, 6-8, this means that packet 5 is lost. SACK 

performs the fast recovery phase exactly as in Reno. The main difference is that 

SACK is able to send multiple lost packets in the same round. More details on 

multiple loss scenarios in TCP SACK can be found in [21]. 

 

4.1.4 Delayed Acknowledgements 
 

Normally, TCP does not send an ACK the instant it receives data. Instead, it delays 

the sent ACK, hoping to have data going in the same direction as the ACK, so that the 

ACK can be sent along with the data (ACK piggybacked with the data) [22]. The 

main reason why delayed acknowledgements are used is to avoid overwhelming the 

link with small ACK packets unnecessarily. When the first packet in the flow arrives, 

the receiver waits eagerly for another packet but in vain. Thus, the acknowledgement 

for this packet is sent after the acknowledgement timer expires.  For example, 

Windows NT4 and Win95 use a delay timer that has a uniform random distribution 

between (100-200 ms) while UNIX uses a uniformly distributed timer between (0-

200 ms) [23].  

4.1.5 Round Trip Time and Timeout Estimation 
 

 
TCP sets the timeout value based on its estimated value of RTT between the two ends 

of the connection [24]. Since RTT values vary depending on: the connection’s type, 

bandwidth, and the congestion conditions, the choice of a proper timeout value is not 



 

 31 

a straightforward problem. The original approach of estimating the round trip time 

before the Internet congestion collapse in 1986 was based on the following algorithm: 

 
RTTSampleRTTEstimatedRTTEstimated _)1(__ ×−+×= αα  

RTTEstimatedTimeout _2×=  
 
where α is between 0.8 and 0.9. The choice of a large value of α leads to a stable 

behavior; however, it might not be quick to adapt to changes in the network. On the 

other hand, small value of α  might result in intolerable instabilities and oscillations. 

Note that a value of twice the estimated RTT was used in order to account for the 

variance in the RTT value. 

 

An enhancement was introduced to the original algorithm by Karn and Partridge to 

have a back-off similar to Ethernet. Thus, whenever the flow times out, the timeout 

value is doubled for the next time. Moreover, they solved the problem of the 

ambiguity associated with the received acknowledgements after retransmitting 

packets. The difficulty was in the fact that it is impossible to know with which packet 

this acknowledgement is associated (the original or the retransmitted). The solution 

was to ignore those acknowledgements when estimating RTT. 

 

In 1988, Jacobson and Karels (in two different papers) proposed a new method of 

estimating the RTT by taking the variance of the samples into consideration. The new 

approach is as follows: 

 



 

 32 

DeviationRTTEstimatedTimeout

DeviationDifferenceDeviationDeviation

DifferenceRTTEstimatedRTTEstimated

RTTEstimatedRTTSampleDifference

×Φ+×=
−+=

×+=
−=

_

)(

)(__
__

µ
δ

δ
 

 

where δ is a value between 0 and 1, µ = 1 and Φ = 4. It is clear that for a large 

variation of RTT, the Deviation term will dominate. On the other hand, for low 

variation of RTT, the Timeout value is close to the Estimated_RTT [24]. 

 

It is noteworthy to compare Jacobson/Karels method with the original scheme. As the 

load on the network increases, the delay and its variance increase. The factor of 2 was 

chosen to take care of RTT variations in the original algorithm is not appropriate as it 

works only for loads up to 30% [19]. In fact, this method was proven to be 

completely inefficient for congested networks as it worsens the situation. An 

underestimation of the timeout value makes the sender retransmit the packet too 

early, adding more congestion to the network. On the other hand, in Jacobson's 

algorithm, the RTT variance is estimated and the timeout value takes this estimate 

into consideration. Figure 1 illustrates the retransmit timer estimated values based on 

the real network RTT samples. 



 

 33 

 
 

Figure �4.1 Performance of a Mean+Variance retransmit timer 
(Adapted and modified from [19]) 

 

4.1.6 A Brief Discussion of Round Trip Time over Wireless Links 

 
TCP has been optimized to run over wired links with low bit error rates (BER). A 

packet drop typically indicates congestion over wired networks. However, in wireless 

networks, this assumption does not hold [25]. A packet might be dropped due to a 

link error as the BER of the wireless link is usually much higher than the one for 

wired networks. Thus, running TCP over a wireless link may result in a large number 

of unnecessary timeouts which severely impair the observed TCP throughput.  

 



 

 34 

In order to alleviate this problem, a reliable transmission mechanism is added to the 

medium access layer. This is achieved by an automatic repeat request (ARQ) 

mechanism that is completely transparent to TCP.  As a result, one can think of TCP 

as a mechanism that only protects against end-to-end packet losses primarily from 

congestion while ARQ protects against packet errors between the wireless hops. 

Figure �4.2 shows the architecture of TCP over wireless links with ARQ in the data 

link layer.  

 
Figure �4.2: TCP over Wireless Link 

 
There are many types of ARQ algorithms in the literature, one example is the  

Go-back-N ARQ scheme described in [26]. The ARQ transmitter divides the TCP 

segment into n ARQ frames as shown in Figure �4.3. The n frames are sent over the 

wireless link using a transmission window of N frames. The choice of the ARQ’s 

frame size depends on the communication system design parameters in terms of the 

expected fading scenario, the Doppler bandwidth of the channel, the BER of the 

channel, etc [27]. 

TCP 

ARQ 

Layer 4 

Layer 2 

TCP 

ARQ 

Layer 4 

Layer 2 

Transmitter Receiver 

Wireless Link TX RX 



 

 35 

 
Figure �4.3: ARQ Operation 

[Assuming that an IP packet is mapped to one Layer 2 (MLPPP) frame]  
 

In the Go-back-N ARQ protocol, once an ARQ acknowledgement (ACKARQ) is 

received, the ARQ window is moved forward by one frame. If the receiver receives a 

single frame in error (note that the corrupt frame marks the beginning of a cycle 

(window) of N frames as the previous frames are already acknowledged), the receiver 

drops the following N-1 frames and sends back an explicit message instructing the 

transmitter to go back to the first frame in the cycle (which is the corrupt frame). It 

follows that since the receiver ignores the next N-1 frames, then having multiple 

errors within the same transmission window does not cause multiple retransmissions. 

In other words, in a window of 5 frames, if the first and the third frames are corrupt, 

the transmitter needs to retransmit the 5 frame window only once to fix the errors. 

 

 Here, TCP acknowledgements (ACKTCP) are contingent on the arrival of the 

ACKARQ for the whole n ARQ frames. Since, TCP works on top of ARQ, the TCP’s 

round trip time will suffer from an increased mean and variance due to the ARQ 

retransmissions. For example, the standard deviation of RTTTCP over Iridium using 

. . . . 1 2 N n 

TCP Segment 

IP Packet 

MLPPP frame size 

ARQ transmission window = N ARQ frames 

. . . . 

Each TCP segment corresponds to n ARQ frames 
 



 

 36 

[NAL Model A3LA-D] modems is in the vicinity of 8 seconds with an approximate 

average of 20 seconds. Although the design details of the ARQ mechanism for the 

modems are not published, the following example may explain the high value (20 

sec) of the observed RTT. Recall from �Chapter 2 that under high loads MLPPP does 

not fragment packets in order to use the available bandwidth as efficient as possible. 

This means that a packet is always transmitted on a single 2.4 kbps link. For a single 

Iridium connection, the theoretical RTT is 6 sec taking the effect of the ARQ into 

account (the details of estimating the single link RTT with ARQ is given in [25]). The 

average of the observed RTT, however, is 20 seconds irrespective of the number of 

modems. This is due to the fact that Linux 2.6.x kernel implements a transmission 

queue size of 3 packets (including the packet being sent). Figure �4.4 shows a 

simplified conceptual diagram for the operation of MLPPP over Iridium. Under full 

load (steady state conditions), all the modem queues will be full as well as the 

MLPPP queue.  

 

Figure �4.4: MLPPP operation over N Iridium Modems 

MLPPP packet 
switching element   

Packets are sent on the first 
free link. No fragmentation 
is assumed. 

PPP queue size = 3 
packets including 
the one being sent  

M1 M2 Mn 



 

 37 

As a result, a new packet that arrives needs to wait for the two packets ahead of it to 

be processed before it gets served. If TMP is the average modem transmission 

(clocking) time plus time spent in ARQ retransmissions (see eq. (47)) and QP is the 

MLPPP queue size, then the RTT is given by, 

RTT =  QP TMP 

For the Iridium system, since the propagation delay = 0.5 sec, then TMP = 6.5 sec (see 

[25]), and QP = 3 packets, then the average RTT = 19.5 sec which is approximately 

equal to the average observed RTT. Here, note that the transmission time of a single 

packet is given by (sec)5
2400

8*1500 = . In other words, if the channel was completely 

error free, i.e., no ARQ retransmissions, then (TMP = transmission time = 5). As a 

result, the average observed RTT would be 15 seconds. Finally, it is noteworthy to 

say that such RTT is different from the one measured by a 64 byte ICMP packets 

using the PING tool as such a low packet size does not overload the link in a similar 

way as the TCP transfer does. Moreover, a 1500 byte PING can not be used to imitate 

TCP because the PING reply (1500 bytes) is much larger than the small TCP ACKs 

which are of the order of few bytes. Figure �4.5 shows a 100 byte PING RTT 

distribution and Figure �4.6 shows the RTT distribution of a TCP RTT based on RTT 

measurements from a file transfer using FTP. 



 

 38 

 
Figure �4.5: PING RTT Distribution 

[PING packet size 100 bytes, PING every 2 sec, 2000 Measurements, Greenland - 
Kansas , 7/16/2005, Mean =3.3 sec, Standard Deviation = 4.8 sec] 

 
Figure �4.6: TCP RTT Distribution 

[TCP segment size 1448 bytes, 4645 Measurements, 6 Modems, ITTC  
Laboratory, 3/19/2005, Mean = 21 sec, Standard Deviation = 8.7 sec] 

 
Since TCP and ARQ implement similar retransmission mechanisms (although ARQ 

is usually a much simpler protocol), they may enter into conflict and hence cause 

throughput degradation [25]. The conflict occurs when the ARQ retransmission 

process spends more time than the TCP timeout value. Thus, the TCP timeout fires 

and causes the stream to go into slow start. Finally, it is noteworthy to state that if the 



 

 39 

ARQ algorithm used has a predefined maximum number of retransmissions, then the 

ARQ recovery failure may result in a TCP packet loss. 

 
 
4.2   General Modeling of TCP’s Transfer Time 

 
Over the past ten years, many contributions were made to model the latency and 

throughput of TCP in terms of round trip times and loss probabilities. Initially, 

researchers started with modeling long file transfers, for example FTP transfers, as 

this leads to closed form solutions [28]. Nevertheless, few other researchers tried to 

model finite (short term) TCP flows such as HTTP transfers. Developing analytical 

models provides better understanding of the sensitivity of TCP to several network 

parameters (such as the packet loss rate and the round trip time), and helps the TCP 

designers develop enhanced protocols and evaluate their efficiency.  

 

In this section, the two primary TCP transfer time models (long term transfers and 

short term transfers) are discussed. More focus will be on the bulk (long term) 

transfer models as it is the most suitable to estimate the long term FTP transfer time 

over an Iridium connection.  

 

In order to develop TCP latency models, it is necessary to have mathematical 

representations for several operational aspects of TCP which play a role in defining 

the TCP throughput. Such operational aspects include: the connection setup time, the 



 

 40 

delayed acknowledgement timer effect, the mean timeout value, and the packet-loss 

patterns incurred. 

 

4.2.1 Models for Some General TCP Sub-Procedures 
 

Here, a brief introduction on modeling connection establishment, timeout interval, 

and the effect of delayed acknowledgements on the period of the slow start phase is 

given. Modeling connection establishment and the effect of delayed 

acknowledgements is very important for short transfers as they might have a 

considerable impact on the transfer time. However, models that try to characterize 

long TCP transfers ignore these effects as they are insignificant to the total transfer 

time. 

Connection Setup Time 
 
Let Ph(i,j) be the probability of having a successful 3 way handshake [29], with a 

probability of i failures for transmitting SYNC packets followed by j failures for 

SYNC ACK packets is given by: 

)1()1(),( f
j

fr
i

rh PPPPjiP −−=  
 
where Pr is the probability of failure in transmitting the SYNC packet and Pf  is the 

probability of failure in transmitting the SYNC ACK packet. 

 
Let Ts be the timeout period for each SYNC message to be declared lost. Since the 

timeout value doubles after having a timeout, the latency can be found as follows: 



 

 41 

��
−

=

−

=

++==
1

0

1

0

.2.2),(),(
j

k
s

k
i

k
s

k
h TTRTTjiLjiLatency  

 
TsRTTjiL ji

h ).222(),( −++=  
 

Thus, the expected value of the latency can be approximated as follows [29], 
 

��

�
�
�

��

�
�
�

−
−
−

+
−
−+= 2

21

1

Pr21
Pr1

}{
f

f
h P

P
TSRTTLE  

 
if Pr = Pf = p, then as stated in [30]: 
 

�
�
�

�
�
�

−
−
−+== 1
21

1
2}{

p
p

TSRTTLETsetup h  

 

 The Effect of Delayed Acknowledgements on the Slow Start Phase  
 
 
In the current TCP implementations, the receiver sends one ACK if it receives two 

packets, or if the acknowledgement timer expires, whatever occurs first. The delayed 

acknowledgements timer in UNIX implementations is defined as a random variable 

uniformly distributed between 0 to 200 ms (expected delay of 100 ms), while in MS-

Windows based systems timer values are uniformly distributed between 100 to 200 

ms (expected delay of 150 ms) [29]. 

 

In the case of delayed acknowledgements [24], the congestion window grows by one 

MSS upon the reception of two acknowledgements: 

��

�
		


+=
2

# ACK
MSSCWNDCWND  



 

 42 

It is essential for transfer delay estimation in the case of short transfers, which spend 

most if not all of  the time in the slow start phase, to be able to model the congestion 

window size as accurate as possible. Alman and Paxon [31] proposed the following 

method to estimate the congestion window size during the slow start phase. 

ii
i

ii cwndcwndb
b

cwnd
cwndcwnd γ=+=+= +

+ )/11(1
1  

where b is the number of acknowledgements sent by the receiver for every k segments 

received and i is the round number. Since b=2 in most implementations of TCP, then 

it follows that 5.1=γ  because the receiver sends one acknowledgement for every 

two packets.  

Sikdar’s model [30], however, considers the effect of the acknowledgement timer 

expiration on the development of the congestion window. Sikdar’s proposed window 

growth function averages the two cases with delayed ACK timer expiration and 

without ACK timer expiration, to find cwnd(n) as follows: 

�



�
	
�

	
+=

−−
2

2
2

1

22)(
nn

ncwnd    where n is the number of rounds 

 

 
Figure �4.7: Congestion Window (cwnd) vs the Round Number (n) 



 

 43 

 Expected Value of Timeouts 

 
The average timeout period is estimated taking the exponential back-off of the  

re-transmit timer into account [28]. The first step is to consider the probability 

distribution of the number of timeouts (k) in a timeout sequence given that there is a 

timeout, i.e, )0/( >= kkRP . If the probability of loss is denoted by p then there are  

(k-1) timeouts and one successful transmission. 

)1()0/( 1 ppkkRP k −=>= −   
 

�
∞

= −
=>==

1 1
1

)0/(.}{
k p

kkRPkRE  

 
Now, the target is to estimate the average duration of the timeout sequence. The 

standards state that exponential back-off takes place up to 6 times afterwhich a 

constant value of 64T0 is used instead [28]. 

�
�
�

≥−+
≤−

=
7)6(6463
6)12(

0

0

kTk

kT
L

k

k  

 
Thus, the expected value of the timeout period can be calculated as follows: 
 

p
pppppp

TkkRPLToE
k

k −
++++++=>==�

∞

= 1
32168421

]0/[}{
65432

0
1

 

 

4.2.2 Packet Loss Models 

 
Most TCP models in the literature assume that only packets may be lost but not the 

acknowledgements. The packet loss probability is assumed to be fixed in most 

models. The assumption made about the packet loss mechanism is a key issue in the 



 

 44 

discussion of TCP performance. According to [32], there are two common packet loss 

mechanisms: 

• Bernoulli (independent packet loss pattern): The loss of a packet does not 

affect any of the following packets. All packets in the flow suffer from the 

same loss probability, p. This model is most suitable for networks that 

implement RED [30] as packets are lost according to a uniformly distributed 

random variable. This model may also be reasonable for wireless connections 

running ARQ, especially in the cases with fast fading, were losses may be 

assumed to be independent (as discussed in [25]). 

• Drop-Tail (correlated losses pattern): In this mechanism, if a packet gets lost 

in a particular round all the following packets in the same round are lost as 

shown in Figure �4.8. In other words, before the first packet loss, any packet is 

lost with a probability of p. However, after this loss, all packets in the same 

round are lost. This model is suitable for Internet as most routers use simple 

drop-tail (FIFO) queues which drop all received packets when their queues get 

full. 

 
Figure �4.8: Correlated packet losses in a particular congestion window 

 
 

It is clear that the loss assumptions play an important role in estimating TCP 

throughput. For example, a simulation based performance comparison between 

Starting 
packet 

Lost 
packet 

Last packet 
in the round 



 

 45 

Tahoe, Reno and SACK was carried in [33] where losses are assumed to be 

independent had more optimistic delay results than in the model in [30], which 

assumes correlated losses.  

 

In this thesis, the physical layer errors are assumed to follow a two-state Markov 

model. In fast fading scenarios, the losses become independent (see [25] and [27] 

for more details). TCP is losses due to call drops are assumed to be correlated (see 

�Chapter 5 and �Chapter 6 for complete details).  The reasons why those models are 

chosen will be clear after reading Chapter 5 and Chapter 6. 

4.2.3 Modeling Long Lived Transfers 

 
Modeling the TCP transfer latency for long transfers, such as FTP transfers, received 

more attention as it is possible to reach tractable analytical results without sacrificing 

accuracy. Padhye’s model, proposed in [28], is one of the most popular models used 

for predicting the latency for long transfers for TCP Reno. The discussion in this 

section is largely based on Padhye’s model. 

 

From the previous discussion about Reno, it is clear that a loss indication is triggered 

by the reception of triple acknowledgements for the same packet. Thus, if the slow 

start phase is ignored (which is a fair assumption for long transfers as it takes up only 

few cycles relative to the over all number of cycles), one can view the TCP flow as a 

random periodic process with period limits defined by the triple duplicate 



 

 46 

acknowledgements (TDP)s. During a TDP, the flow is running in the congestion 

avoidance mode. A TDP starts with an initial congestion window (Wi) equal to half 

the congestion window size at the end of the previous period as illustrated in Figure 

�4.9 (For the moment, timeouts are ignored).  

 
Figure �4.9: Evolution of window size (W) over time in terms of TDPs  

(Adapted from  [28]) 
 
Assume a TCP flow (without timeouts) consisting of N TDPi periods starting at half 

the previous transmission window (Wi-1) and ending by a loss indication signaled by 

receiving triple acknowledgements for the same packet. If Ai is the duration of a TDPi 

and Yi is the number of packets transmitted during Ai, then it can be shown that the 

average throughput ( NTB ) can be written as: 

             
{ }
{ }AE
YE

BNT =  
 

(1) 
 

Let X be the penultimate (last) round index in the ith TDP and b be the number of 

packets per acknowledgement, then the congestion window undergoes a linear 

increase with a slope of 1/b as shown in Figure �4.10.  



 

 47 

 
Figure �4.10: Packets sent during a TDP (adapted and modified from [28]) 

 

Since b = 2 in most implementations (due to delayed acknowledgements), then the 

linear development of the congestion window size during a TDPi is given by: 

             
22

1 ii
i

XW
W += −  

 
(2) 

 
If rij represents the round trip time in a TDPi, then it follows that: 

�
+

=
= 1

1

iX

j iji rA  

Assuming that the congestion window growth is independent of the round trip time, 

then: 

     }{)1}{(}{ rEXEAE +=          (3) 

Let p be the probability of a packet loss, then it can be shown that the average value 

of the number of packets sent during a TDPi is [28]:  

     }{
1

}{ WE
p

p
YE +−=          

 
(4) 

 
As shown in [28], the average congestion window size and the average number of 

round trips in a TDP period is given by (5) and (6). 



 

 48 

     
2

3
2

3
)1(8

3
2

}{ �
�

�
�
�

� ++−++=
b
b

bp
p

b
b

WE          
 

(5) 
 

   

     
2

6
2

3
)1(2

6
2

}{ �
�

�
�
�

� ++−++= b
p

pbb
XE          

(6) 
 

 

Consequently, substituting (5) and (6) into (3) and (4) respectively, one gets:   

     { }
2

3
2

3
)1(8

3
21

�
�

�
�
�

� ++−+++−=
b
b

bp
p

b
b

p
p

YE         
 

(7) 
 

 

     { }
�
�

�

�

�
�

�

�
+�

�

�
�
�

� ++−++= 1
6

2
3

)1(2
6

2
2

b
p

pbb
RTTAE         

 
(8) 

 
Thus, the throughput for a flow without timeouts is found by substituting (7) and (8) 

into (1) as shown in (9). 

     

�
�

�

�

�
�

�

�
+�

�

�
�
�

� ++−++

�
�

�
�
�

� ++−+++−

=

1
6

2
3

)1(2
6

2

3
2

3
)1(8

3
21

2

2

b
p

pbb
RTT

b
b

bp
p

b
b

p
p

BNT         
 

(9) 
 

 

Once the throughput equation (with no timeouts) has been established, one can follow 

similar analysis to discuss the estimated time for a flow that undergoes timeouts. Let 

TOZ be the duration of a sequence of consecutive timeouts, and TDZ  be the interval 

between two consecutive timeout sequences. Then, in this case the TCP period S can 

be defined as the sum of the time spent without timeouts (which is subdivided into 

sub TDP periods) and the timeout interval TOZ  (see Figure �4.11). 



 

 49 

TOTD ZZS +=          
 

(10) 
 

 
Figure �4.11: TCP flow with timeouts (Adapted from [28]) 

 
 

Now, one can extend the previous analysis about flows without timeouts by defining 

the following set of variables.  

ni   : Number of TDPs spent in a TD
iZ period 

Yij  : Number of packets sent in TDP(i , j) 

Aij  : Time period spent in a TDP(i , j) 

Xij  : Number of rounds spent in TDP(i , j) 

Wij  : Window size at the end of a TDP(i , j) 

Ri  : Number of packets sent during the timeout period TO
iZ  

Mi  : Number of packets sent during the iS  period 

Let M be the number of packets sent during the TCP period (S), then the throughput 

for a TCP flow with timeouts can be written as: 

             
{ }
{ }SE
ME

BTO =  
 

(11) 
 



 

 50 

Let Yij be the number of packets sent in TDP(i , j) and ni be the number of TDPs in the 

TD
iZ period. Then, it follows that Mi , the number of packets sent in iS  period, is 

found by summing all Yij packets and any packets (Ri) sent during the timeout period.   

             i

n

j
iji RYM

i

+=�
=1

 
 

(12) 
 

If Aij denotes the time period spent in a TDP(i , j) then the TCP period (S) is given as: 

             TO
i

n

j
iji ZAS

i

+=�
=1

 
 

(13) 
 

 

In short, after taking the loss scenarios into consideration, it was shown in [28] that 

after estimating E{S} and E{M}, the throuput of a TCP flow with timeouts can be 

approximated by: 

             

)321(
8

3
3,1min

3
2

1

2
0 pp

bp
T

bp
RTT

BTO

+�
�
�

�
�
�
�

�
+

≈   
(14) 

 

 

4.2.4 Modeling Short Lived Transfers 

 
For completeness, it is beneficial to provide a summery of the development of short 

transfer models. Caldwell [29] was among the first researchers to address the problem 

of modeling short lived transfers where he tried to predict both long and short transfer 

times. The proposed model extends Padhye’s steady state model by taking the 

connection establishment time and slow start into account. The transfer latency 



 

 51 

equation is given as a function of the transfer size, average round trip time (RTT), and 

packet loss rate.  

 

One of the shortcomings of Caldwell’s model is that it ignores the effect of the 

delayed acknowledgements timer on the development of the congestion window 

especially for short transfers. Assuming an acknowledgement every two packets, the 

average window size at the end of the ith round is given as, 

             iii cwndcwndbcwnd γ=+=+ )/11(1   (15) 

To get more accurate latency estimates for short transfers, Sikdar [30] accounted for 

the effect of the delayed acknowledgements timer expiration and proposed a new 

average window growth function as: 

             �



�
	
�

	
+=

−−
2

2
2

1

22)(
nn

nw  
 

(16) 
 

According to [30], the number of packets transmitted in the first k rounds, denoted as 

pkt(k) (where k is the round number), can be expressed as, 

12.4)2(32
2

23
2)2(32)()( 8

34
2

1

1

8
34

2
1

−+=−−+==
−+

=

−+

�
kkk

n

kk

nwkpkt      
(17) 

 

Here, pkt(k) gives the index of the last packet in the kth
 round. Note that the slow start 

ends when the slow start threshold (ssthresh) or if the maximum window size is 

reached. In order to model the transfer time for a certain flow, an average estimate is 

evaluated for three different cases: transfer without losses (tnl), transfer with a single 

loss (tsl), and transfer with multiple losses (tml)  as: 



 

 52 

  
)())1()1(1(

)}({)1()()1()(
1

1

Ntppp

NtEppNtpttNT

ml
NN

sl
N

nl
N

dacksetuptransfer

−

−

−−−−

+−+−++=
    (18) 

where p is the packet loss probability, N is the total number of packets, tsetup is the 

connection setup time and tdack  average delayed acknowledgement time after 

transmitting the first packet. 

 

Sikdar’s analysis for estimating tnl is summarized here. Let Nwm represent the number 

of rounds required to reach the maximum window size, Wmax. This could be found by 

solving (16) for w(n) = Wmax 

    �



�
	
�

	
�
�

�
�
�

�

+
=

21

2
log2 max

2

W
nwm       (19) 

The expected value of the number of packets transferred when cwnd reaches  

Wmax = Nexp (nwm does not include the last round with Wmax packets) can be expressed 

as: 

 

max
8

34
2

1

exp

1
maxmaxexp

2
23

2)2(32

)()(

WN

WnwWnpktN

wmwm

wm

nn

n

n
wm

+
�
�



�

	
	
�

	
−−+=

+=+=

−+

=
�

         (20) 

According to Sikdar, the transfer time for a lossless transmission of N packets is  

�
�

�

�
�

�

�

>
�
�



�

	
	
�



�
�

�
	
	


 −
+

≤
�
�
�

�

	
	
	




�
�
�

�
�
�
�

�

+
++

=

exp
max

exp

exp8/52
)2(322

2342
log2

)(

NNRTT
W

NN
n

NNRTT
N

Nt

wm

nl         (21) 



 

 53 

The next step is to estimate the transfer time for a single loss case for a flow 

consisting of N packets. Note that the correlated loss model is assumed, i.e. packets 

from the ith packet to the last packet in that round are lost. The effect of fast recovery 

is considered in the analysis by taking either one or two rounds after the loss 

indication with congestion windows of 1
icwnd  and 2

icwnd  respectively.  

[ ]
[ ]�
�
�

++++
+++

=
timeoutswithRTTnatTOEnrtit

timeoutswithoutRTTnatnlossit
Nt

linTOnl

linnl
sl _),(}{)()(

_),(1)(
)(         (22) 

where:  
   

)(itnl  Transfer time required to transmit the first i packets without losses 

nloss  Number of packets lost in the round that has the loss 

r(n) Number of rounds needed to reach the slow start threshold n 

),( natlin  Time needed to transmit a packets in the congestion avoidance mode 

with an initial window size of n  

TOt  Number of rounds spent before a timeout (this is mainly a consequence 

of considering fast retransmissions) 

}{TOE  Average duration of timeout periods 

 
In order to estimate the time spent in the case of multiple losses, the flow with M 

losses is broken into two parts separated by the loss (at the mth packet): a transfer with 

a single loss (first loss) at the ith packet and ending with the second loss [ )1( −mtsl ], 

and a transfer with M-1 losses separated by (M-2) average distances (Dave)  

[ )(_ avelossM Dt ]. 



 

 54 

 
1

1

_

_

−
+−==

M
mN

N

N
D

sindicationloss

leftpackets
ave         

)}({)2()}1({)( _ avelossMslml DtEMmtENt −+−=  

(23) 

It is clear that short transfer models are much more complex than long transfer 

models. This is primarily due to the fact that the time short transfers take is in the 

order of few rounds. To attain an accurate estimate of the average transfer time, 

several factors have to be taken into consideration, for example: the delayed 

acknowledgements timer expiration effect, the connection setup time, and the time 

spent slow start. Such factors were reasonably ignored in some long transfer models 

[28] as they do not affect the performance estimate significantly because the TCP 

flow spends most of the time in the congestion avoidance phase. 

 
4.3  Comparison between TCP Performance Models 

 
This section provides a comparison between the predictions of Padhye’s and Sikdar’s 

models based on the results in [32]. Table �4.2 shows the relative prediction error 

(with respect to the ns simulation results performed in [32]) calculated as  

|Model Prediction – Simulation Result| / (Simulation Result) for the two models 

where p denotes the packet error/loss probability. Results show that Skidar’s model is 

most accurate most of the time with the exception for high error rates where Padhye’s 

model provides more accurate results.  

 

 



 

 55 

Table �4.2: Relative error comparison of various TCP models (Short Transfers) 
(Results are adapted from [32]) 

Model p=1% P=3% p=5% p=8% p=10% 

Sikdar 0.15 0.41 0.25 0.51 1.06 

Padhye 1.05 1.35 0.77 0.52 0.42 

 

Similar analysis is performed for long transfers as shown in Table �4.3. In this case, 

Padhye’s model provides more accurate predictions most of the time except for very 

low error rates. Padhye’s model is a relatively simple model which makes it very 

attractive to be extended to account for various effects such as ARQ [25], bit error 

rate, etc.  

Table �4.3: Relative error comparison of various TCP models (Long Transfers) 
(Results are adapted from [32]) 

Model p=1% P=3% p=5% p=8% p=10% 

Sikdar 0.78 1.82 0.38 4.75 16.12 

Padhye 0.96 1.22 0.35 2.08 10.57 

 

Finally, this chapter summarized known results concerning TCP performance taking 

into consideration various operational aspects such as the channel’s probability of 

error, the effect of the acknowledgement timer expiration, etc. Nevertheless, the 

operation of TCP over MLPPP needs to be addressed. Since, in this thesis, a MLPPP 

connection is formed by inverse-multiplexing multiple wireless links, each link is 

susceptible to call-drops. A single link loss due to a call-drop results in a TCP 

timeout, as will be discussed in �Chapter 5. Thus, in order to predict TCP performance 



 

 56 

under MLPPP, the probability density function of the time interval between call drops 

is estimated empirically. Then, this probability density function is used to extend 

Padhye’s model to account for the effect of call drops on TCP transfers running over 

MLPPP connections (see �Chapter 6). 

 



 

 57 

Chapter 5. Towards the Development of a Call Drop 

Probability Density Function  

 
 
The performance of TCP over MLPPP over Iridium has been experimentally 

examined in [4] and [14]. Experiments were carried out to transfer data from Kansas 

to Greenland using the system described in �Chapter 7. TCP transfers are carried out 

using IPERF and packets are captured using TCPDUMP. The captured packets are 

studied using the TCPTrace package which provides detailed set of TCP related 

graphs. In this chapter, the reasons why call drops occur are discussed, the 

relationship between call drops and timeouts is investigated, and finally a 

probabilistic model for the time difference between call drops is developed. 

 

5.1  The Call Drop Event 
 
A call drop is the event of losing an established connection suddenly. Such event is 

not favorable from the user’s point of view. Operators should always keep the call 

dropping rate as low as possible to satisfy their customers' expectations. Call drops 

are common in cellular systems and in circuit switched wireless systems in general. In 

this work, a call drop event means that one of the MLPPP channels loses its 

connection. Once a call drop is detected, the connection is automatically  

re-established by the link management software, discussed in �Chapter 7. 

Nevertheless, in the interim, several packets are lost. There are various reasons that 



 

 58 

might lead to call drops such as low signal-to-noise ratio (SNR), handover failure, 

network signaling failures, etc. In this work, two key reasons that may result in call 

drops are investigated: SNR and handovers.  

 

The developed link management software, described in �Chapter 7, records the call 

drop information (modem, time of occurrence). A module has been included in the 

management software to acquire SNR measurements every 4 seconds. According to 

[34], however, the modems used for obtaining measurements provide delayed 

measurements during handovers. In other words, if the modem is continuously (every 

2 seconds) probed for SNR measurements, it returns the SNR measurement after 4 

seconds (relative to the probing time). However, when a handover takes place, the 

modem returns its SNR measurement after 6 (or more) seconds. Thus, the delay 

property was utilized in order to detect handovers by keeping record of the 

measurement intervals. SNR measurements for 48 hours were performed. Then, the 

time differences between the call-drop measurements were calculated and sorted. 

After investigating the measurements, it was clear that all measurements with return 

periods longer than 6 seconds were separated by multiples of 10 minutes which 

correspond to the Iridium inter-satellite handover event. However, not all handover 

events were detected due to hardware limitations of the modems used. Thus, a simple 

linear interpolation was used to predict the missing handover events. Once the 

handovers table is compiled, it was matched with the call-drops table for each modem 



 

 59 

in order to correlate call drops with the corresponding handover failures. A sample of 

the measurements is shown in Table �5.1.  

Table �5.1: Sample Handover Measurements from Greenland 
 

Event Time Measured/Interpolated 

7/16/2004 13:21 Predicted 

7/16/2004 13:31 Observed 

7/16/2004 13:41 Predicted 

7/16/2004 13:51 Predicted 

7/16/2004 14:01 Predicted 

7/16/2004 14:12 Observed 

7/16/2004 14:22 Predicted 

7/16/2004 14:32 Observed 

7/16/2004 14:42 Predicted 

7/16/2004 14:52 Observed 

 

In order to estimate the effect of the inter-satellite handovers on the call-drop process, 

182 call drops were observed on a seven-modem MLPPP connection. The call drop 

times were then matched with the prepared handover time measurements table (Table 

�5.1). Here, exhaustive search, data manipulation and matching operations were 

performed using the MySQL database engine along with the Sun JAVA programming 

language. The results of the matching operations showed that 10% of the call drops 

are due to handovers. This low effect of handovers on call drops suggests that the call 

drop process is not a periodic random process.   

 



 

 60 

For completeness, it is noteworthy to state that the SNR measurements showed that if 

the link’s SNR gets below 0 dB for more than 16 sec, a call drop will occur. In 

general, it was also observed that operation below 2 dB for more then 20 sec results 

in call drops. Such observations, however, can not be directly used for modeling call 

drops as the information about the signaling layer is not published. 

 

5.2  Call Drops Effect on TCP Performance 
 
 
Multiple long TCP transfers have been performed using IPERF. TCP dumps were 

collected and analyzed using the TCPTrace tool. The plots generated by TCPTrace 

were then processed to add call drop information to the TCPTrace graph files. 

According to the results of [4] and [8], and the outcome of more than 50 experiments 

carried out as part of this work, all call drops for various number of modems in the 

MLPPP bundle (2 – 8) modems resulted in TCP timeouts. The reason why a call drop 

leads to a timeout is not obvious. Many factors are involved for the timeout 

occurrence and some of these factors are hardware/software dependent. It is certain, 

however, that a call drop leads to losing sufficient number of packets which result in a 

timeout most of the time. Moreover, a link loss may result in the dropping of several 

acknowledgements for packets that were successfully received. It is known [18] that 

multiple losses lead timeouts in TCP Reno. For TCP SACK to timeout, half the 

packets in a congestion window need to be dropped (when operating in the 

congestion avoidance phase) [18]. In a long delay network (given the size of: modem 

buffers, serial card buffers, and MLPPP buffers), the number of lost packets is the 



 

 61 

sum of all the packets sent before detecting the call drop plus all the packets stored in 

the sender’s and the receiver’s buffers. For example, suppose that a MLPPP 

connection formed with the following parameters, 

Datalink and physical layer parameters 

Number of Modems = 4 

Modem transmission rate (R) = 300 bytes/sec 

Modem buffer size (BM) = 4.5KB 

Serial card buffer size (BS)= 1.5 KB 

MLPPP buffer (BP) = 1.5 KB 

Average time before detecting a call drop on the physical layer (TL) = 10 sec 

 

TCP parameters 

Maximum TCP window size Wmax = 22.5 KB  

RTT (propagation delay) = 1 sec 

TCP segment size (P) = 1.5 KB  

 

Here, the number of packets lost before detecting a call-drop indicates the average 

time of detecting the loss of the physical link. Prior to this time, the upper layers 

assume that the data is being transmitted, while in reality the data is getting lost. 

Assuming that a call drop only causes the packets stored at the receiver's modem 

buffer to get lost (while the other buffers at the receiver's end are assumed to deliver 

their packets correctly), then the total packet loss is the sum of the total packets 



 

 62 

assumed to be transmitted while in fact being lost plus all the packets stored in the 

transmitter's buffers (modem's and serial-card's buffers) and the packets stored in the 

receiving modem's buffer as, 

Total packets lost = 
P
1

[ TL R + BM + BS + BM ] =  (1.5)-1 [10*0.3 + 4.5 + 1.5 + 4.5]  

                               = 9 packets  

Total number of bytes lost = 13.5 KB > max2
1

W . Therefore, it is obvious that even TCP 

SACK will timeout if a call drop occurs. Note that a very conservative value of TL 

was used in this example. In the deployed Iridium system this time is at least of the 

order of 30 seconds which assures that if a call drop occurs then a TCP timeout event 

will take place. 

 

Tests of MLPPP connections using a range from 2 to 8 Iridium modems also showed 

a strong correlation between call drops and timeouts. Moreover, the tests showed that 

timeouts due to link errors were negligible. Figure �5.1 shows a sample time sequence 

graph, obtained using TCPTrace, with call drops indicated by vertical lines.   

 

Thus, after performing a wide range of TCP over MLPPP measurements, it became 

clear that in order to study the effect of call drops on TCP performance, it is 

necessary to model the call-drop process. To do that, the first step is to estimate the 

probability density function (pdf) of the time difference between call drops for a 

given MLPPP bundle, as will be shown in Section �5.3. 



 

 63 

 

Figure �5.1: A sample TCP trace 
[Experiment on 7/17 of a 33 min file transfer using IPERF from Greenland to 

ITTC at the University of Kansas] 
 
 

 
5.3  The Development of the Call Drops Probability Density Function 
 
 
Several tests were performed from the field (in Greenland) and the laboratory (in 

Kansas) in order to collect sufficient number of call drop events. Call drops were 

collected in a per link basis and stored in a MySQL database. A simplified structure 

of the MySQL table used is shown in Table �5.2, where modems were labeled after 

state names.  

 
 

00:05:00 00:10:00 00:15:00 00:20:00 00:25:00 00:30:00 

 

 

 

 

 

 

Sequence Number [x100,000]  

Time 

29100 
 

29095 
 

29090 

29085 

Call Drop 

Call Drop 

Call Drop 

Call Drop 

29105 
 

29080 



 

 64 

 
 
 

Table �5.2: A Simplified Structure of the Call Drops Table 
 

Modem ID Drop Time 

Kansas 7/16/2004 13:51 

Nebraska 7/16/2004 15:37 

 

Measurements of 394 call-drops were collected as part of the scientific field 

experiments carried out between a research site in Greenland and the research 

laboratory at the University Kansas. In order to study call drops for the whole MLPPP 

bundle, the time difference between call drops (∆) for a single link is investigated. 

This inter-call drop time difference (ICTD) is a function of the network. Thus in order 

to estimate the pdf of per link ICTD, a proper number of call drop events (394 events 

in this case) over multiple long connections was collected. Then, the ICTD was 

calculated. Results showed that the ICTD of the Greenland-Kansas connections 

followed an exponential distribution as shown in Figure �5.2. 

 
Figure �5.2: Inter-Call Drop Time Difference PDF  

[Greenland-Kansas 2004 Measurements] 



 

 65 

It is noteworthy to summarize the procedure of estimating the ICTD probability 

density function. Once sufficient data samples were collected, a histogram of the data 

samples is developed. Then, the data bins of the histogram are scaled by the area 

under the curve so that the graph constitutes a valid pdf. Next, using a curve fitting 

tool, an approximate (exponential) distribution is obtained. Afterwards, the chi-square 

goodness-of-fit test is applied to the estimated distribution along with the data bins. 

Finally, the rate of the exponential distribution (β) is adjusted so that the goodness-of-

fit is satisfied for the chosen significance level (5%) and the number of bins (15).  

 

Since the per link time difference between call drops follows an exponential 

distribution, then the per link call-drop process is Poisson with a rate of β. Assuming 

n independent and identical links, it follows that the random process characterized by 

the time difference between call drops for the whole bundle can be modeled by 

merging the n Poisson random processes into a single Poisson random process with a 

rate of  (λ = nβ). The time difference between call drops for the whole bundle (ZCD) 

is given by 

�
�
�

<
≥

=
−

00
0

)(
t

te
tf

t

Z CD

λλ
 

The modeling of the bundle’s pdf is summarized in Figure �5.3. The average call drop 

rates per modem β  were studied by establishing MLPPP connections in the 

laboratory and by analyzing the call-drop measurements obtained from the field tests 

in Greenland. The average call drop rates are given in Table �5.3.  



 

 66 

 
Table �5.3: Call Drop Rates (β) β) β) β) for Field Measurements  

 
Connection Kansas-Greenland Kansas-Kansas 

Per Link Drop Rate (ββββ) 1/50 mins 1/52 mins 

 
 

The main reason for the difference in the call drop rates in both cases may be 

explained by the fact that the transmitters and the receivers for the Kansas-Kansas 

MLPPP connection communicate through a single satellite, where as two different 

satellites connect the Kansas and Greenland sites. Thus for the second case (Kansas-

Greenland connection), call drops due to handover failures, signaling failures, 

weather differences, etc, will increase the call drop rate. 



 

 67 

 

Figure �5.3: Modeling of the Call Drops PDF of a MLPPP Bundle 
 

Now, that the call drops distribution of the bundled connection has been established, 

the next step is to use this result in order to estimate the TCP transfer time for large 

files taking the call drops effect into account. 

Modem 1 

∆: ∆: ∆: ∆: Inter Call Drop Time 

β =β =β =β =
∆
1 :  Modem Call Drop Rate  

 
∆∆∆∆ 

Time 

Modem N Time 

Time 

∆ ∆ ∆ ∆ is an exponentially distributed 
random variable. Thus, the 
inter-drop times for the 
aggregate connection of N 
modems is a merging process of 
N Poisson processes with a rate 
of λλλλ = N β β β β  

Inter-Call Drop Times for an MLPPP Connection with N Modems 



 

 68 

Chapter 6. Long File TCP Transfer Time Analysis  
 
 

This chapter focuses on TCP over MLPPP, specifically the evaluation of the effect of 

call drops on TCP performance taking the empirical estimate of the probability 

density function (pdf) of the call-drop process (developed in �Chapter 5)  into 

consideration. Using the estimated call-drop model, the development in [15] is 

extended to account for call drops. Then, the proposed TCP model (that takes call 

drops into account) is experimentally validated by field measurements using the 

Iridium network. Afterwards, TCP performance over multiple Inmarsat connections is 

predicted using the proposed model by varying the call drop rate, packet loss 

probability and the timeout interval. Finally, the effect of the ARQ on the RTT and on 

the packet loss rate is analyzed. 

 

6.1  Problem Definition and Background Assumptions 
 
 
The goal of this chapter is to derive an estimate of the transfer latency for a TCP 

connection running over MLPPP. This section explains various assumptions 

necessary to incorporate the call-drops effect into Padhye’s model [15]. In addition to 

Padhye’s model assumptions, the following factors need to be taken into account: 

1. Each wireless link runs a physical layer reliability assurance mechanism such 

as automatic-repeat-request (ARQ) discussed [25] and [26] to compensate for 

wireless errors (see Figure �6.1). Thus, packet losses due to wireless errors 



 

 69 

only cause retransmissions (resulting in a halving of the congestion window) 

but not timeouts. Here, the ARQ is assumed to have a maximum number of 

retrials before it delivers a corrupt packet. The delay incurred at the maximum 

number of retrials is assumed to be lower than the timeout value. Hence, 

timeouts are assumed to be solely due to call drops and the probability of 

packet losses visible at the TCP layer is very small. 

 
Figure �6.1: TCP running over lower layer ARQ 

 

2. The link is restored before TCP leaves the slow start phase after experiencing 

a timeout caused by a call-drop. This is assumption is due to the fact that 

Padhye’s model [15], extended here, does not consider slow start.  

3. Delayed acknowledgements are assumed, leading to a window increase every 

1/b packets (usually b =2). 

4. The proposed derivation is meant to be a general derivation independent of 

any software implementations. Thus, no primary links are assumed. (A 

primary link is a link that its loss causes the whole bundle to be dropped).  

TCP 

ARQ 

Layer 3 

Layer 1 

TCP 

ARQ 

Layer 3 

Layer 1 

Transmitter Receiver 

Wireless Link TX RX 



 

 70 

5. Since timeouts are assured in the case of call drops, the difference between 

TCP versions has minor impact. Thus, the proposed method can be used to 

predict the performance of other TCP versions such as SACK and Tahoe. 

6. Network parameters are not captured in this model due to the difficulty in 

validating the assumptions. For example, the number of satellite hops may 

impact the call drop rate due to the increased network signaling between 

satellites as the number of satellite hops increase.  

7. In the case of a long file transfer, it is assumed that the flow runs in the 

congestion avoidance mode until a loss or a timeout occur.  

8. In order to avoid unnecessary modeling of some implementation specific 

parameters (i.e., MLPPP software and modem hardware parameters), the RTT 

variations due to MLPPP and ARQ buffering are not modeled. Instead, the 

long term average RTT is used for the model prediction purposes.  

 

6.2  TCP Model Mathematical Derivation  
 
Based on the discussion presented in Section �4.2.3, the goal of this section is to derive 

a formula that considers the call-drop events in the estimation of the TCP transfer 

latency over a long delay MLPPP connection with average TCP throughput (B) 

packets/s. The TCP transfer latency for fs bytes given the TCP maximum segment 

size (MSS) can be written as: 

 

(sec)B
MSS

f
T s

d �
�

�
	
	


=  

 
(24) 

 



 

 71 

 

Here, B is estimated by extending the TCP latency model in [15] to include the effect 

of call drops. In this model, as in [15], the TCP flow is viewed as a complex periodic 

random process (see Figure �6.2). Each period (S) consists of two intervals: a data 

transfer interval (ZD) and a timeout interval (ZTO), i.e., S=ZD+ZTO. Since the limits of 

the TCP transfer period (S) are defined by call-drop events, then S is assumed to 

follow the call drop distribution previously denoted as ZCD. 

 
Figure �6.2: TCP Flow Period (adapted and modified from [15]) 

 
The data transfer period consists of n triple duplicate acknowledgement periods 

(TDP). Each TDP has a length of (A) during which (Y) packets are transmitted. In this 

case, it is assumed that those losses are mainly due to link errors that were not 

recovered by the physical layer ARQ. On the other hand, the timeout period ZTO 

represents the time that the flow spends before it enters the slow start phase after a 

timeout. The number of packets sent during successive timeouts is given by R.  

 

TDPj 
ZTO 

S 

Wmax  

Event: ARQ fails  Event: call drop  

TDPj+1 

Event: call drop  

ZTO 

ZD 



 

 72 

In order to estimate B, the TCP throughput (packets/s) in the absence of timeouts 

(BNT), i.e., with no call drops, is considered first. BNT  can be written as: 

{ }
{ }AE
YE

BNT =    (25) 

 
It was shown in [15] that the mean number of packets sent during a TDP period given 

the packet loss probability (p) is: 

{ } }{
1

uWE
p

p
YE +−=  (26) 

 
The average unconstrained congestion window size E{Wu} was derived in [15] in 

terms of (p) as: 

{ }
2

3
2

3
)1(8

3
2

�
�

�
�
�

� ++−++=
b

b
bp

p
b

b
WE u  (27) 

 
Since the window size is usually restricted to a maximum value (Wmax), then in the 

case considered here where the low packet error rate is small, it is reasonable to 

assume that E{Wu}= Wmax. 

 
The mean TDP period of length (A) given the average round trip time (RTT) was 

derived in [15] as, 

{ }
{ }

{ }�
�

�

�
�

�

�

≥��
�

�
��
�

�
+−+

<
�
�

�

�

�
�

�

�
+�

�

�
�
�

� ++−++

=

max
max

max

max

2

2
.

1
8

1
6

2
3

)1(2
6

2

WWE
Wp

p
W

b
RTT

WWE
b

p
pbb

RTT
AE

u

u

 (28) 

 

 



 

 73 

Substituting (26), (27) and (28) into (25) and rearranging gives, 

{ }

{ }
�
�
�
�
�

�

�
�
�
�
�

�

�

≥

��
�

�
��
�

�
+−+

+−

<

�
�

�

�

�
�

�

�
+�

�

�
�
�

� ++−++

�
�

�
�
�

� ++−+++−

=

max

max
max

max

max
2

2

2
.

1
8

1

1
6

2
3

)1(2
6

2

3
2

3
)1(8

3
21

WWE

Wp
p

W
b

RTT

W
p

p

WWE
b

p
pbb

RTT

b
b

bp
p

b
b

p
p

B

u

u

NT  (29) 

If M represents the number of packets sent during a period S, then the throughput (B) 

(in the case of call drops) is given as, 

{ }
{ }

{ }
λ/1

ME
SE
ME

B ==  (30) 

It was shown in [3] that if To is the initial period for timeout then: 

{ }
p

pppppp
TZE TO

−
+++++++=

1
32168421 65432

0  
 (31) 

 

The value of M can be expressed as the product of the number of the TDP periods (n) 

and the number of packets sent in each TDP period plus the number of packets sent 

during ZTO. Assuming that n and Y are statically independent, the mean value of M is 

given by: 

{ } { } { } { }REYEnEME +=    (32) 

The mean value of n can be obtained by the ratio of the means of ZD and A as follows: 

{ } { }
{ }

{ } { }
{ }

{ }
{ }AE

ZE
AE

ZESE
AE

ZE
nE

TOTOD −=−== λ1
 (33)

It was also shown in [15] that the number of packets, R, sent during ZTO is given by, 



 

 74 

{ }
p

RE
−

=
1

1
 

(34) 

Substituting (8) and (10) into (7) gives, 

{ } { } { }
{ }

{ } { } { }
λ

λ

λ 1

1

1

REYE
AE

ZE
REYEnE

B

TO

+−

=+=  (35)

But BNT=E{Y}/E{A}. So, by substituting (29), (31) and (34) into (35) and rearranging 

one gets, 

p
B

p
pppppp

TB NT −
+�




�
	
�




−
+++++++−=

11
32168421

1
65432

0
λλ     (36) 

 
6.3  Model Validation 

 

The proposed TCP latency model (eq. 36) was tested using eight-Iridium links (2.4 

kbps each) connecting the field site and the laboratory during the summer of 2004. 

Several long file transfers have been performed using Iperf and gftp client. The 

results, as shown in Table �6.1, agree with the predictions of the model. The variance 

in the results may be due to RTT variations caused by the physical layer ARQ and the 

MLPPP queuing. 

 
Table �6.1: File Transfers from Greenland to the University of Kansas (Summer 

2004),T0=60s, p = 5E-4,β,β,β,β = 1/50 min-1,MSS=1448, RTT=19s,Wmax= 47.9KB 
 

File Size (MB) 1.38 5.62 20.6 35.7 
Measured Transfer Time (min) 11 46 180 315 
Predicted Transfer Time (min) 12.5 51 187 324 

 



 

 75 

Model predictions were also tested for a various number of links [note here that Wmax 

is a function of bandwidth]. The results agreed with the field measurements (see 

Table �6.2).  

Table �6.2: File Transfers from the Greenland to the University of Kansas during 
summer 2004, T0=60s, p = 5E-4, ββββ = 1/50 min-1, MSS = 1448 Bytes, RTT=19s 

 

Number of  Links 3 4 5 6 7 8 
File Size (MBytes) 4.82 0.85 1.91 1.39 3.40 1.40 
Wmax (KBytes) 16.1 22.0 28.3 34.7 41 47.9 
Measured  Time (min) 96 15 21 13 30 12 
Prediction (min) 98.1 13.4 24.1 15.4 33.2 12.7 

 
Next, the model will be validated at different call dropping rates. Thus in order to 

perform this test, a software module was built and added to the developed link 

management software as shown in Figure �6.3. The added software module generates 

call drops according to a Poisson process for any given dropping rate. Thus, one can 

increase the call dropping rate of the MLPPP bundle over the base provided by the 

Iridium system. Several 10 MB file transfers were conducted over six modems in the 

MLPPP bundle in the laboratory. The rates used are 1/52 min (the base Iridium 

system call-dropping rate), 1/30 min, and 1/20 min. The results, illustrated in Figure 

�6.4, indicate that the higher call dropping rate leads to an exponential increase in TCP 

transfer latency. The proposed model agrees well with the measurements’ mean. The 

Iridium network call dropping rate is slightly lower than that of Greenland since the 

transmitters and the receivers are at the same location as discussed in �Chapter 5. 



 

 76 

 

Figure �6.3: Call dropping module architecture 
 
 

 
Figure �6.4: Model predictions for various call-drop rates [Observed average is 
based on eight measurements at each call dropping rate, error bars correspond 

to the 25% and the 75% percentiles, RTT = 18.2 sec, p = 5E-4 

Connect 

Connected? 

Wait 10 sec 

Get a starting value for the 
countdown timer thread  

Poisson Process 
with β dropping 

rate  

ββββ = input 

Timer 
Expired? 

Drop the 
link 

Wait 5 sec 



 

 77 

6.4 System Design Analysis 
 
This section discusses the effects of both the packet loss probability (due to ARQ 

failure) and the of the timeout value due to RTT variations. Then, ARQ effect on the 

average RTT value is discussed. 

 

6.4.1 The Effects of the Packet Loss Probability and the Timeout Value 
 
In this section, the effects of the wireless errors and the impact of the timeout value 

are studied. It should be emphasized that in this study a wireless error refers to the 

errors that the physical layer ARQ could not handle. The effect of such errors is still 

appreciable in some cases even though they do not result in timeouts. This is due to 

the fact that a wireless error leads to the halving of the TCP congestion window. This 

effect is amplified for low bandwidth connections such as Iridium as it takes many 

(long time) RTTs before the connection reaches the maximum window limit again. 

For example, this time may be of the order of 30-40 seconds for an eight-modem 

connection (for a single packet loss). Frequent losses result in throughput impairment. 

Thus, the importance of an efficient physical layer ARQ that minimizes wireless 

errors as much as possible is emphasized. 

 

Since the effect of call drops is significant when working under a long delay network, 

the parameters for Inmarsat GEO satellite network were used [36]. The number of 

modems in the bundle =4, file size =100MB, the per link bandwidth=128Kbps, 

RTT=0.61s (considering ARQ effect [5]), MSS=1KB and Wmax=40KB. The range of 



 

 78 

wireless errors with loss rates of (0.05% - 0.15%) is investigated.  Figure �6.5 shows 

the effect of the packet loss probability on the performance [low values of p are 

considered because the proposed latency model assumes that losses are very low due 

to ARQ and no timeouts occur]. It is clear that a slight increase of the packet loss 

probability (over the studied range) results in approximately 25-minute increase in the 

transfer time. This emphasizes the importance of an efficient physical layer ARQ that 

minimizes wireless errors as much as possible.  

 
Figure �6.5: Effect of wireless errors on an Inmarsat MLPPP connection 

[Number of Modems = 4] 
 

The timeout value is a significant factor that determines the impact of a call drop on 

the performance of a TCP flow. As discussed in Section �4.1.5, the initial timeout 

value is given by: DeviationRTTEstimatedTimeout ×+= 4_ . Thus in a connection 

with a significant RTT variance, the deviation term will dominate. In the case of 

point-to-point connections, the key reasons for the RTT variations are the physical 

layer ARQ and the MLPPP queuing. For example, a MLPPP packet might undergo 



 

 79 

multiple ARQ retransmissions before it is received by the MLPPP layer.  The worst 

case is when the MLPPP connection is running in the fragmentation mode, the failure 

of the ARQ on one link to transmit the MLPPP fragment results in discarding all the 

MLPPP fragments for that packet from all the other links. Thus, the timeout value is 

increased due to the significant RTT variations. As a reminder, it is assumed here that 

ARQ does not interfere with TCP operation.  

 

Using the developed model (eq. 36), the effect of the timeout value has been studied 

for the same Inmarsat parameters in the range from 60 to 120 seconds as shown in 

Figure �6.6. The timeout value becomes an important factor when the call drop rate is 

high. This is due to the fact that frequent long timeouts will result in severe 

degradation of the TCP performance. Again, this adds another factor to consider 

when designing an ARQ algorithm. Moreover, this might be a reasonable motivation 

to optimize the current round-and-robin MLPPP frame distribution (i.e., on the 

modems) algorithm. Good ARQ and MLPPP frame distribution algorithms must 

always keep the RTT variance as low as possible in order to keep the value of the 

timeout as low as possible.  



 

 80 

 
Figure �6.6: Effect of the timeout value on an Inmarsat MLPPP connection  

[Number of Modems = 4] 
 

 

Finally, the results of the developed model suggest a potential advantage of 

modifying the operating system’s kernel in a way that the kernel generates a triple 

acknowledgement once a call drop is detected. This instructs TCP to switch to the 

recovery mode instead of timing out. Thus, in this way, a call drop will only trigger a 

packet loss instead of resulting in a timeout. It is clear that implementing this 

technique requires that the kernel and/or the MLPPP drivers be modified to keep 

track of the received TCP acknowledgements. Consequently, the proposed model 

collapses back into Padhye’s model [28] with the packet loss rate (p) approximately 

equal to the call dropping rate. 

 

 

 



 

 81 

6.4.2 The Effect of the ARQ Operation on RTT 

 
This section discusses the effect of ARQ on the performance of TCP, specifically, the 

impact of the ARQ operation on the TCP transfer latency. As discussed in Section 

�4.1.6, RTT varies due to ARQ variations (see Figure �4.6). The mean RTT is a 

function of the physical channel [25]. This can be explained by the fact that the 

number of retransmissions needed to deliver ARQ frames vary with the SNR seen at 

the receiver side. The physical channel state may vary with the mobile speed (m/s) 

and the data rate [27].  RTT models are of significant importance if one needs to 

develop short transfer models. Since the mean RTT is higher for wireless links, RTT 

models may be used to detect wireless links. ARQ must be designed such that it does 

not lead to sudden variations in RTT as this may result in unnecessary timeouts at the 

TCP layer [25]. 

 

In the future wireless broadband standards, such as in WiMax, the user terminal may 

change its data-rate according to the wireless channel conditions. Allowing variable 

mobile speeds and variable data rates would affect the ARQ performance and 

eventually would impact the observed RTT.  The physical channel multi-path profile 

plays an important role in determining the effect of the ARQ on the RTT. The ARQ 

effect on the RTT may be described in terms of the mean RTT and the RTT variance. 

Such observations open the scope for a potential area of future work in this research. 



 

 82 

Chapter 7. Software Design for the Iridium Link 
 
 

Inverse-multiplexing multiple Iridium connections into a single MLPPP connection 

was first tested in Greenland in 2003 [4].  The connectivity between the laboratory 

and the field was established using 4 Iridium modems providing an aggregate rate of 

9.6 kbps. In order to achieve higher data rates over the Iridium network, one needs to 

use more modems. The target of this work is to establish connectivity over eight 

modems. The original software developed in [4] was based on simple UNIX scripts. 

The software required several code modifications to perform trivial tasks such as 

changing the order of dialing the modems or even changing their numbers. Moreover, 

changing MLPPP parameters such as the LCP-echo-interval required changing all 

modem configuration files manually. In addition, the system lacked a logging 

mechanism which is vital for system administrators to keep track of the system 

operation events such as call drops and number of the call-establishment failures. 

Finally, there was no easy way for the end user to check the current status of the 

system (i.e. the status of each link in the MLPPP bundle). It is clear that running the 

system using the software in [4] requires a very experienced user.  

 

Thus, the goal for this effort is to support an average throughput of 16 to 20 kbps 

using eight modems by providing simple software that does not require experienced 

users to operate it. The software should also provide graphical means for monitoring 



 

 83 

the status of the individual links (up, dropped, etc). Finally, the system should keep a 

log of all the events per modem in a common format that can be easily analyzed by 

any commercial tool. This chapter discusses the development of the Iridium link 

management software and explores the design of the main components of 

management software.  

 
7.1 Introduction  

 

As shown in �Chapter 2, the interaction between the two ends of the system is 

accomplished by using MLPPP to inverse-multiplex the application traffic into eight 

Iridium links. Figure �7.1 provides a general view of the developed system. 

 

Figure �7.1: Overview of System Operation (adopted from [14]) 
 
 

Due to the nature of connectivity over multiple satellite links, links disappear due to 

call drops. Call drops might occur due to low signal strength, inter-satellite handover 

App 

Agent 

8 Modem Links 

MLPPP MLPPP 

Iridium Network 

App 

Agent 

Receiver 

 HTTP 

FTP 

 TCP 

UDP 

   Transmitter  



 

 84 

failures, or due to any other signaling failure inside the satellite network. Since call 

drops are inevitable, a mechanism needs to be employed in order to bring those links 

up again once a call drop occurs. Moreover, the number of connection retrials in case 

of failed connection establishment attempts has to be limited in order to avoid 

disturbing the Iridium network.  

 

The algorithm discussed in [4] can be extended as illustrated in Figure �7.2. In the 

following discussion, the terms modem and link are used interchangeably. Each 

physical modem starts in the connecting state. In this state, the modem dials the 

receiving end modem which is in the waiting state. If the MLPPP connection gets 

established by any modem, the link is considered to be in the connected state. The 

modem stays in the connected state until it experiences a call drop. Once a call drop 

occurs, the link moves into the dropped state and stays idle for a predefined period of 

time (Td ), once Td seconds elapsed, the modem goes back into the connecting stage. 

If the modem does not connect (for example, if the signal strength was low, the 

satellite network was busy, etc), then it moves to the failed state and remains at this 

state for (Tf ) seconds. Then, it goes back to the connecting state. If the maximum 

number of connection attempts (Max_Attempts) has been exceeded, the modem 

moves from the failed state to the blocked state. The modem stays idle (in the blocked 

state) for a relatively long period of time (approximately for one hour) before it goes 

back to the connecting state. 



 

 85 

 

Figure �7.2: The State Diagram of an Iridium Modem 
 
 
 
7.2   Link Management Software (KUMICS) 
 
 
The proposed link management software, Kansas University Multilink Iridium 

Communication System (KUMICS), consists of three primary modules that interact 

with each other. Figure �7.3 illustrates the architecture of the KUMICS software. The 

number of modems supported by KUMICS ranges from 1 to 8 modems. The modems 

pool block represents the physical modems. The control software module handles the 

MLPPP bundling and link management. The graphical user interface (GUI) module 

provides a user friendly way to control the communication link. Each modem has a 

profile that contains it characteristics: modem name, number to dial, serial port, log 

file, etc. These files are stored in text formatted files in the modem profiles database. 

The connection database module represents the format and the structure of link states.  

Dropped 

Failed 

Connecting 

Blocked 

Connected 



 

 86 

 

Figure �7.3:  KUMICS Design Architecture 
 
 
The connection database is stored in XML format. XML is a standard format that can 

be easily parsed and manipulated by commercial database engines (for example MS-

SQL Server 2003 and MySQL). The XML schema of the database is shown in Figure 

�7.4. The heading of the document contains the connection start time (unified for all 

modems), modem name, modem index. The modem index is a sequence number used 

to identify the modem for a given connection. The index with value of one indicates 

the primary modem as will be discussed later.  

 

 

 



 

 87 

 
<?xml version="1.0" encoding="utf-16"?> 
<xs:schema xmlns:b="http://schemas.microsoft.com/BizTalk/2003" 
xmlns:xs="http://www.w3.org/2001/XMLSchema"> 
  <xs:element name="connection"> 
    <xs:complexType> 
      <xs:sequence> 
        <xs:element name="modem name" type="xs:string" /> 
        <xs:element name="modem index" type="xs:int" /> 
        <xs:element name="connection_time" nillable="true" 
type="xs:string" /> 
        <xs:element minOccurs="0" maxOccurs="unbounded" 
name="entry"> 
          <xs:complexType> 
            <xs:sequence> 
              <xs:element name="entry_id" type="xs:int" /> 
              <xs:element minOccurs="0" maxOccurs="unbounded" 
name="event"> 
                <xs:complexType> 
                  <xs:sequence> 
                    <xs:element name="state" type="xs:string" /> 
                    <xs:element name="time" type="xs:string" /> 
                  </xs:sequence> 
                </xs:complexType> 
              </xs:element> 
            </xs:sequence> 
          </xs:complexType> 
        </xs:element> 
      </xs:sequence> 
    </xs:complexType> 
  </xs:element> 
</xs:schema> 

 
Figure �7.4: XML Schema of the Connection Database 

 
 
 
7.3 Control Module Details 
 
 
The operation of the current implementation of MLPPP for Linux (pppd 2.4.3) is 

illustrated in Figure �7.5. The first modem that makes a connection creates the bundle 

and keeps track of who joins the bundle. In other words, the first connection process 

plays three roles: monitoring the PPP interface, creating the PPP bundle and 



 

 88 

managing the connection of the first modem. The primary modem process keeps track 

of the MLPPP member links in the form of a small database.  

 

The flow chart of the control software module, which controls the operation of 

multiple links and ensures a proper operation of the MLPPP bundle, is illustrated in 

Figure �7.6. The main process starts by selecting a primary modem. KUMICS selects 

the modem with the best call-drops history to be the primary modem. Afterwards, the 

primary modem is dialed. If the connection is successful, the secondary modems 

processes are spawned. If the maximum number of connection retrials for the primary 

modem is exceeded, the corresponding modem is blocked for N minutes and another 

modem is selected.  

 

 

Figure �7.5: Operation of the PPP Daemon  
 

Connection Server  
& 

Primary Connection 

First modem that connects 
establishes the bundle and 
manages other connections 

Secondary 
Modem 

Connection 

Secondary 
Modem 

Connection 
. . . . . . . . .  

Once the primary connection 
is established all others join 
the MLPPP bundle 

Jo
in

 B
un

dl
e 

If no connection 
is active, the 

whole MLPPP 
bundle is deleted 



 

 89 

Once the secondary modem processes are spawned, the main process enters the 

monitoring state. In this state, the main process watches the primary connection and 

at the same time monitors the MLPPP bundle. If the primary link drops, it reports that 

to the connection status database. If the bundle disappears (which happens if and only 

if all modems drop at the same time), the main process performs connection clean up 

and starts a new connection. It should be emphasized that the term “connection”, 

refers to the MLPPP connection once started by a primary link. The connection ends 

when the bundle disappears. Each connection is stored in the database separately.  



 

 90 

 

Figure �7.6: Control Software Management Algorithm 

Read Modem Pool 

Select a Primary 
Modem 

Dial the Primary 
Modem [N Retries] 

Bundle 
Established? 

Yes 

No 

Block Current  
Primary Modem 
[After N Retrials] 

Start Logging for 
all Modems 

Spawn a New 
Process for Each 

Secondary Modem 

Bundle 
Exists? 

Monitor the 
Primary and  
the Bundle 

Yes 

Clean up the Dead 
Connection Files 
and Save Reports 

No 

Connection 
Database 

Modem 
Profiles 



 

 91 

Figure �7.7 shows the secondary modems’ connection algorithm. The secondary 

modems get connected in a similar faction to how the primary modem gets connected. 

The main difference here, is that if the primary link is lost it never gets connected 

again until the whole bundle drops (i.e, a new connection is re-established). This is a 

known problem in PPPD 2.3.4 package for Linux.  

 

 
 

Figure �7.7: Secondary Modems' Connection Algorithm 
 
 

Dial Modem 

Connected? N Retrials 

Block for 
N Minutes 

No 

Yes 

No 

Monitor the Secondary 
Modem Connection 

Dropped? 

Connection 
Database 

No Yes 



 

 92 

7.4 Graphical User Interface Design Details 
 
 
The graphical user interface (GUI), shown in Figure �7.8, handles several tasks that are 

required before loading the control module discussed in Section �7.3. After making the 

proper hardware connections to the corresponding serial ports, the GUI allows the 

user to perform configuration on a per-modem basis. The information required (see 

Figure �7.9) for each modem is: the modem name, the serial port that the modem 

connects to, the file name to be used for PPPD for this modem profile, and finally the 

phone number to dial.  

 

 
Figure �7.8: Main Window of the KUMICS' GUI 

 



 

 93 

 
Figure �7.9: Creating a New Modem Profile 

 
 
The next step is to select the modems to be used for the current connection as shown 

in Figure �7.10. KUMICS allows the user to have multiple modem profiles, thus, it is 

necessary to specify which modems’ profiles to be used for the MLPPP connection.  

 

  
Figure �7.10: Currently Configured Modems 

 
 

Next, one specifies the parameters to be used for the current connection: PPP 

username, PPP password, state of compression on the MLPPP layer, the state of the 



 

 94 

Data After Voice (DAV) Mode, the number of modems of the currently configured 

modems to be used (this number is set to be the same as the number of the configured 

modems by default), and the MLPPP parameters (described in �Chapter 3): PAP-

Restart, LCP-Restart, LCP Max Configure, Keep-alive Interval, Keep-alive Retrials 

and Connect Delay. 

 

Once all configurations have been created, one saves the current configurations in a 

connection profile file that can be retrieved later. The final step is to compile the 

current settings into PPPD configuration files. The GUI module contains a compiler 

sub-module that compiles user configurations using a pre-defined template into PPPD 

configuration files.   

 

  
 

Figure �7.11: MLPPP Connection General 



 

 95 

7.5   A Complete Integrated Image of KUMICS 
 
 
Once the current configuration is compiled into working PPPD configuration files, 

one can start an Iridium connection by a simple click on the connect menu. In the 

background, the GUI module creates an instance for each modem and shows it on the 

screen. For the sake of this discussion, we will refer to these objects as the modem 

objects. The main function of these instances is to keep track of the current modem 

status and visually report it to the user using different colors for each state. Once the 

modem objects are created, the GUI launches a monitoring thread that refreshes the 

modem objects just created every few seconds in order to reflect the status of the 

control module. This information is passed in temporary files that are read by the 

modem objects once refreshed by the monitoring thread. Figure �7.12 shows a screen 

shot of the connection monitoring window that KUMICS provides where each state is 

represented by a different color. Modems were named after US state names. 

 

 
Figure �7.12: A Screen Shot of a Connection Monitoring Window 



 

 96 

The control module, as discussed in Section �7.3, performs MLPPP bundle 

management, handles the reporting to the database module, and updates the status of 

the GUI module. Once disconnected, the database reports might be processed offline 

to extract some performance metrics such as the number of call drops and their 

distribution. It is noteworthy to state that the control software also keeps track of the 

average time between call drops for each modem and uses this information in the 

initial primary modem selection. This information can be a valuable resource that 

provides an instant metric for system administrators about the performance of each 

modem. The database reports provide the time at which each state is encountered. 

Figure �7.13 summarizes the integration of the three modules in KUMICS. 

 

 
Figure �7.13: KUMICS’ Modules Interaction for a Typical Connection 

 
 

GUI 

Spawn a Monitoring 
Thread for the N 

Configured Modems 

Modem 1 

Modem N 

Temporary Status Files 

Control 
Module 

DB 

pppd 
Configuration 

 

Modem 
Configurations 

 

Post Processing 



 

 97 

7.6  Experiences with KUMICS  
 
 

KUMICS was first installed on the Iridium communication system as part of the 

scientific research performed in Greenland in the summer of 2004. The system 

provided a reliable MLPPP connection formed by eight Iridium modems. The system 

delivered full throughput (i.e., when all modems are connected) 87% of the time and 

maintained 97% of connectivity with at least one modem [37] as shown in Figure 

�7.14. In Figure �7.14, the term primary call drops refer to the times at which 

connectivity is completely lost (i.e., no modem is up). 

 
Figure �7.14: Reliability of the Iridium System  

[Call drop pattern for an 8x8 Iridium test for 12 hrs, 
 Average time between call drops = 3 hrs] 

 

The system was able to support the desired throughput (the product of the number of 

modems and the single modem rate of 2.4 kbps) as shown in Figure �7.15. More 

information about the system performance is available in [37]. 



 

 98 

2.49

4.97

6.93

8.98

12.08

13.90

16.43

18.60

0
2
4
6
8

10
12
14
16
18
20

1 2 3 4 5 6 7 8
Number of modems

T
hr

ou
gh

pu
t (

K
bp

s)

 
Figure �7.15: Throughput as a function of the number of modems  

 
 

In summary, this chapter discussed the main elements of the link management 

software for MLPPP systems. The developed software package, KUMICS, consists of 

a graphical user interface (GUI), a link control module, and a link monitoring and 

reporting system. Tests showed that the system had at least one connected modem 

97% of the time with a maximum throughput (8 modems) of 18.6 kbps. 

 



 

 99 

Conclusions  

Many researchers have studied TCP behavior for various applications and in various 

environments. For instance, models were provided for long transfers such as FTP 

transfers over wireless cellular networks. Recently, efforts resulted in successful 

utilization of the MLPPP protocol to provide connectivity in Polar regions, which is 

covered by 2.4 kbps Iridium satellite connections, by inverse-multiplexing eight 

Iridium links into one virtual MLPPP connection. It was observed that a call-drop on 

an individual Iridium link results in a TCP timeout.   

 

In this thesis, we studied the time difference between call drops on a MLPPP 

connection and suggested that the call drop process can be modeled by a Poisson 

process. We used this knowledge to extend the TCP transfer latency model in [15] to 

capture the effect of call drops for TCP connections over long delay MLPPP links. 

Then, we used the Iridium network to validate the proposed TCP transfer latency 

model. We also confirmed that TCP performance can be enhanced by employing an 

efficient physical layer ARQ in order to minimize the number of wireless packet 

errors. Finally, we successfully designed, implemented and tested in the field a user 

friendly MLPPP link management software package. The developed system provided 

full connectivity 87% of the time and connectivity with at least one modem 97% of 

the time. 

 



 

 100

Future Work 

 
The presented work in this thesis can be extended to predict the performance of TCP 

over multilink-PPP cellular systems. In cellular systems call drops are widely affected 

by handovers. Thus, a new call drop model needs to be developed. This effect may be 

challenging in the third generation (3G) cellular systems which implement Mobile IP. 

Handover failures modeling in the case of 3G systems with Mobile IP is more 

involved than in the case with handover modeling for circuit switched cellular 

systems like in GSM and IS-95. Nevertheless, once the call drop model is developed, 

the expected value between call drops is estimated from the probability density 

function of the time between call drops for the whole MLPPP bundle. One should 

always remember that the mobile speed plays an important role in the performance of 

the handover algorithms. The impact of the mobile speed on the operation of the 

physical layer ARQ needs to be investigated as the multi-path profile may change 

depending on the mobile speed. 

 

The effect of the MLPPP queuing on the average and the variance of the RTT can be 

studied and incorporated to the developed model (eq. 36). The queuing algorithm 

used in the MLPPP implementation needs to be investigated and its performance 

needs to be evaluated. Moreover, choosing the size of the maximum received 

reconstructed unit (MRRU) for MLPPP needs to be studied. The effect of the size of 



 

 101

the MRRU can be incorporated in the TCP throughput prediction, (eq. 36), provided 

in this thesis.  

 

Moreover, the operating system kernel can be modified in a way that it generates a 

triple acknowledgement once a call drop is detected. This instructs TCP to switch to 

the recovery mode instead of timing out. Thus, in this way, a call drop will only 

signal a packet loss instead of causing a timeout. Implementing this technique 

requires that the kernel and/or the MLPPP drivers keep track of the received TCP 

acknowledgements. 

 

Furthermore, the transient properties of RTT for MLPPP connection should be 

addressed when developing models for short TCP transfers such as web-browsing. 

Although this aspect does not have significant impact on the predictions for long TCP 

transfers, it affects the accuracy of the predictions for short transfers. This is due to 

the fact that short transfers do not last for a long time and using the long term average 

of the RTT does not lead to acceptable predictions.  

 
Finally, software enhancements for the link management software need to be 

performed whenever there is a new release of the MLPPP drivers' package [13] or a 

new feature offered by the satellite modems. The software might also be enhanced by 

supporting remote administration where users can monitor the status of the system 

using a remote terminal avoiding using complex Linux commands. Moreover, the 

system can be enhanced by providing a standby communications line (regular 



 

 102

telephone, cellular, or satellite) that is used to make a phone call to the system 

administrators in case of severe problems.  



 

 103

References 

 
[1] “RFC 793 – Transmission Control Protocol”, 1981, web resource, available at: 

http://www.freesoft.org/CIE/RFC/793/index.htm. 

[2] A. Jamalipour, “Low Earth Orbital Satellites for Personal Communication 

Networks”, Artech House, Boston.London, 1998. 

[3] “About Inmarsat”, web resource at: http://about.inmarsat.com/satellites.aspx. 

[4] A. Mohammad, “Multi-Link Iridium Satellite Data Communication System”, 

Master of Science thesis, University of Kansas, 2004. 

[5] Y. Zhang, “Internetworking and Computing over Satellite Networks”, Kluwer 

Academic Publishers, 2003. 

[6] R. Nelson, “Iridium: From Concept to Reality”, web resource at: 

http://www.aticourses.com/news/iridium.htm. 

[7] “Iridium Satellite System Website”, web resource at: 

http://www.iridium.com/corp/iri_corp-understand.asp. 

[8] S. Pratt, “An Operational and Performance Overview of the Iridium Low Earth 

Orbit Satellite system”, IEEE Communication Surveys, 

http://www.comsoc.org/pubs/surveys/, 2nd Quarter 1999, pp. 1-15. 

[9] “RFC 1661 – The Point to Point Protocol (PPP)”, 94 at: 

http://www.faqs.org/rfcs/rfc1661.html. 

[10] “MLPPP Introduction”, web resource available at: http://www.cisco.com. 



 

 104

[11] “RFC 1990 – The PPP Multilink Protocol (MP)”, 96 at: 

http://www.faqs.org/rfcs/rfc1990.html. 

[12] P. Mackerras, “PPP Generic Driver and Channel Interface”, 2002, web resource 

available at: http://www.ibiblio.org/peanut/Kernel-2.6.10/networking/ppp_generic.txt. 

[13] “PPPD 2.4.3 Software”, web resource available at: http://ppp.samba.org/. 

[14] A. Mohammad, V. Frost, S. Zaghloul, “Overview, Performance and Reliability 

from summer 2004 SUMMIT, Greenland Field Experiments July 14-July 25, 2004”, 

web resource available at: 

http://www.ittc.ku.edu/~frost/KU_IRIDIUM_GREENLAND-FIELD-

TESTS_2004.ppt. 

[15] J. Padhye and V. Firoiu and D. Towsley and J. Krusoe, “Modeling TCP 

Throughput: A Simple Model and its Empirical Validation”, Proceedings of the ACM 

SIGCOMM '98, pp. 303-314, 1998. 

[16] V. Jacobson, “Congestion Avoidance and Control”, Proc. ACM SIGCOMM, 

Stanford, CA, Aug. 1988, pp. 314–329. 

[17] “RFC 2001 - TCP Slow Start, Congestion Avoidance, Fast Retransmit, and Fast 

Recovery Algorithms”, web resource available at: 

http://www.faqs.org/rfcs/rfc2001.html. 

[18] B. Sikdar, S. Kalyanaraman and K. Vastola, “Analytic Models for the Latency 

and Steady-State Throughput of TCP Tahoe, Reno and SACK”,IEEE/ACM 

Transactions on Networking, pp. 959-971,vol. 11, no. 6, Dec. 2003. 



 

 105

[19] V. Jacobson, “Modified TCP Congestion Avoidance Algorithm”, web resource 

available at: ftp://ftp.ee. lbl.gov/email/vanj.90apr30.txt. 

[20] “New Congestion Avoidance algorithm”, web resource available at: 

http://www.opalsoft.net/qos/TCP-30.htm. 

[21] K. Fall and S. Floyd, “Simulation-based comparisons of TAHOE, RENO, and 

SACK TCP,” ACM Comput. Commun. Rev., vol. 26, no. 3, pp. 5–21, 1996. 

[22] W. Stevens, “TCP/IP Illustrated, Volume 1”, Addison-Wesley, 1994. 

[23] N. Cardwell, S. Savage, and T. Anderson, “Modeling the performance of short 

TCP connections”, Technical Report, Washington University, 1998. 

[24] L. Peterson and B. Davie, “Computer Networks: A Systems Approach”, 3rd Ed, 

Morgan Kaufmann, 2003. 

[25] A-F Canton, T-Chaled, “End-to-end Reliability in UMTS:TCP over ARQ”,  

Globecom’2001, San Antonio, Nov 2001. 

[26] D. Bertsekas and R. Gallager, “Data Networks”, 2nd Ed, Prentice Hall, 1992. 

[27] M. Zorzi, R. R. Rao, L. B. Milstein, “Error Statistics in Data Transmission over 

Fading Channels”, IEEE Transactions on Communications, Vol. 46, No. 11, 

November 1998, pp. 1468-1476. 

[28] J. Padhye, V. Firoiu, D. Towsley and J. Kurose, “Modeling TCP Reno 

performance: A simple model and its empirical validation”, IEEE/ACM Trans. on 

Networking, vol. 8, no. 2, pp. 133-145, April 2000. 

[29] N. Cardwell, S. Savage, and T. Anderson, “Modeling TCP latency”, in Proc. 

IEEE INFOCOM, Tel Aviv, Israel, Mar. 2000, pp. 1742–1751. 



 

 106

[30] B. Sikdar, S. Kalyanaraman and K. Vastola, “Analytic Models for the Latency 

and Steady-State Throughput of TCP Tahoe, Reno and SACK”,IEEE/ACM 

Transactions on Networking, pp. 959-971,vol. 11, no. 6, Dec. 2003. 

[31] Mark Allman and Vern Paxson, “On estimating end-to-end network path 

properties”, SIGCOMM ’99, August 1999. 

[32] Yujian Peter Li, “Modeling Web/TCP Transfer Latency”, (Thesis) , Calgary, 

Alberta January 2004, web resource available at: 

http://pages.cpsc.ucalgary.ca/~yli/thesis.pdf. 

[33] K. Fall and S. Floyd, “Simulation-based Comparisons of Tahoe, Reno, and 

SACK TCP”, Lawrence Berkeley National Laboratory, web resource available at: 

http://www.icir.org/floyd/papers/sacks.pdf. 

[34] “ISU AT Command Reference”, model: A3LA-D Iridium modems, version 2.1, 

web resource available at: 

ftp://ftp.nalresearch.com/Satellite%20Products/Standard%20Modems/A3LA-

D/Release%203.2.3/A3LA-D%20Manuals/AT%20Command%20Reference%20V2.1.pdf. 

[35] J. Devore, “Probability & Statistics for Engineering and the Sciences”, 

Brooks/Cole, 1982. 

[36] M. Allman, C. Hayes, H. Kruse, S. Ostermann, “TCP Performance over Satellite 

Links”, 5th Intl Conference on Telecomm Systems, Tennessee, USA, ‘97. 

[37] “ Experiences with 8 Modem Multi-Link Iridium Satellite Data Communication 

System-2004”, , web resource available at: 

http://www.ittc.ku.edu/~frost/KU_IRIDIUM_GREENLAND-FIELD-TESTS_2004.ppt. 



 

 107

 


