
University of Kansas

Masters thesis defense

by

Srinivas Akkipeddi

June 27th, 2001

Thesis committee

Dr. David Andrews Dr. Perry Alexander Dr. Jerry James
(Advisor & Chair)

Advanced Test Vector
Generation from Rosetta

University of Kansas

Overview

• Introduction

• Problem Statement & Proposed Solution

• DVTG Overview

• Generation of Test Scenarios

• Test Requirements

• Test Vector Generation

• Example

• Evaluation

• Related Work

• Summary and Future Work

University of Kansas

Introduction

• Growing complexity of systems
- Abstraction techniques to manage complexity

- Use of declarative specifications

- Disadvantage with higher levels of abstraction is “the need for validation”

• Validation techniques
- Implementation-based testing techniques focus on actual functionality, overlook intended
behavior

- Specification-based testing techniques

• Help validate implementation with respect to specification

• Expose any ambiguities or inconsistencies in the specifications

• Test cases can be designed as soon as the specifications are complete

University of Kansas

Problem Statement

• Automate selection of test data from requirements specifications
• Address the problem of generating specific input test values from test
requirements
• Translate the generated test cases to a format specific to some testing software

University of Kansas

Proposed Solution
• Approach based on a methodology proposed by Richardson for selecting test
data from requirements specification

• Test Generation process
• Generation of test scenarios from input specifications

• Using the multi-condition strategy proposed by Myers
• Generation of abstract test vectors from generated scenarios

• Instantiating inputs in test scenarios with the corresponding values from test
requirements

• Translating abstract test vectors into concrete test vectors
format specific to some test software or environment

University of Kansas

Rosetta

facet schmidt_trigger(input_voltage:: in real;
output_value:: out bit) is

b :: bit; /* State variable */
begin state_based

/* First pre-condition */
pre1: (input_voltage > 0.0) and

(input_voltage < 5.0);
/* First post-condition */
post1: if (input_voltage < 1.0)

then (b' = 0)
else (if (input_voltage > 4.0)

then (b' = 1)
else (b' = b)

endif)
endif;

post2: (output_value' = b');
end schmidt_trigger;

• A Systems Level Design Language used to design systems at higher levels of abstraction

• Intended to provide specification support
suitable for representing

• Multiple, Heterogeneous perspectives of a
single component

• Systems built from heterogeneous components

• Supports multiple design domains

• state_based, continuous time, discrete time,
logic, finite state, infinite state.

• Basic unit of specification is a facet used to
represent a model or component and provides
information specific to a domain of interest

• Definition of facets can be done by either
defining model properties or by combining
previously defined facets

University of Kansas

Overview of the entire system

Abstract
Test Vectors

Test
Requirements

WAVES
Test Vectors

Rosetta
Specification

Test Scenario
GeneratorRosetta Parser Object

Model

Implement
in VHDL

VHDL
Implementation

Validation of
Implementation

Testing of
Implementation

Correct
Implementation
of Requirements

Correctness of
Implementation

Test Vector
Generator

Test
Scenarios

Test Vector
Transformer

System Inputs

DVTG Tools

Generated outputs

Legend:

University of Kansas

Test Scenario

• A test scenario is a set of Boolean conditions that provide constraints on
values of input and output parameters

• The input criterion is a constraint on input parameters

• The acceptance criterion is a constraint on output parameters

• The test scenarios provide classes of tests to be performed on the system

• Use of the multi-condition strategy proposed by Myers
• enough test scenarios should be generated for the expression under test to take all possible
values

University of Kansas

Terminology

•Driving values
•describe input parameters
•signify that input parameters “drive” system inputs with these values

•Driven values
• describe output parameters
•signify that output parameters are “driven” by the system inputs
•values to observe; specify expected outputs corresponding to driving values

•Controllable predicate
•consists of driving values
•values of variables that make up the predicate can be controlled

•Non-controllable predicate
•consists of driven values
•values of the variables in the predicate cannot be controlled

University of Kansas

Test scenario Generation

• Algorithm

• All the test cases for an operator are listed according to the truth-table definition of operator

• Cases for which expression evaluates to true are selected

• Notion of driving or driven values is then used to filter out redundant test cases

• No scenarios are generated if the expression is a pre-condition

• Every expression in Rosetta facet is a boolean expression

• Generate different values for predicates in expression by evaluating expression to true

• If predicates are complex then rules are applied recursively

University of Kansas

Logical Operator (OR)

P(x) Q(y) P(x) or Q(y)
0 0 0
0 1 1
1 0 1
1 1 1

• Possible test scenarios when P(x) or Q(y) is
evaluated to true are

P(x) = false AND Q(y) = true
P(x) = true AND Q(y) = false
P(x) = true AND Q(y) = true

• Disjunction P(x) or Q(y) is true if P(x) is true regardless of value of Q(y)
• P(x) controllable & Q(y) non-controllable, consider only scenarios where P(x) is false
• P(x) non-controllable & Q(y) controllable, consider only scenarios where Q(x) is false
• P(x) non-controllable & Q(y) non-controllable, need to consider all scenarios
• P(x) controllable & Q(y) controllable => need to consider all scenarios if it is not a pre-condition

•Possible test scenario when P(x) or Q(y) is evaluated to false is
P(x) = false AND Q(y) = false

University of Kansas

Example-Test scenario generation

Scenario1: (a = true) AND (b = false) AND (d’ = true)
Scenario2: (a = false) AND (b = true) AND (d’ = true)
Scenario3: (a = false) AND (b = false) AND (d’ = true)

(a AND b) OR d’

Input Rosetta expression

Generated test scenarios

a,b,c :: boolean

• Evaluating this expression to true, generated test
scenarios are

(a AND b) = false AND (d’ = true)

• The expression evaluates to true when (a AND b) is false
irrespective of value of d’.

• Evaluating expression (a AND b) to false gives the
following scenarios

(a = true) AND (b = false)

(a = false) AND (b = true)

(a = false) AND (b = false)

University of Kansas

Logical Operators
• Logical operators

Operator Rosetta expression Generated test scenarios

implies (x’ implies y’) (x’ = false) AND (y’ = false)
(x’ = false) AND (y’ = true)
(x’ = true) AND (y’ = true)

if-then-else if x=1 then y’=x else z’=x (x = 1) AND (y’ = x)
(x = 0) AND (z’ = x)

nand (x’>10) nand (y=2.05) (x’ =< 10) AND (y = 2.05)
nor (x=<3) nor y’ (x > 3) AND (y’ = false)
xor x’ xor y’ (x’ = false) AND (y’ = true)

(x’ = true) AND (y’ = false)
xnor x’ xnor y (x’ = false) AND (y = false)

(x’ = true) AND (y = true)

and (x=5) and y’ (x = 5) AND (y’ = true)
or (x’=0) or (y’=1) (x’ = 1) AND (y’ = 1)

(x’ = 0) AND (y’ = 0)
(x’ = 0) AND (y’ = 1)

not not(x<4.5) (x >= 4.5)

University of Kansas

Relational Expressions

Operator Expression Conditions to evaluate exp.

To true To false

< x < y x < y x >= y
=< x =< y x =< y x > y
> x > y x > y x =< y
>= x >= y x >= y x < y
= x = y x = y x /= y

/= x /= y x /= y x = y

• Impossible to obtain all the values of operands for which expression is evaluated to true or false

• For example, consider the expression (x > 20)

• The expression divides the range of x into two categories. One greater than 20 and the other
less than or equal to 20

• If the expression is evaluated to true then the class of values greater than 20 come under the
satisfy class

University of Kansas

Test Requirements

• Indicate coverage desired for generation of specific input values and
determine number of test cases to be generated

• Requirements are specified for input parameters
• Based on the most frequently used range of values, confidence, time constraints, acceptable
risk factors, etc

package testrequirements is
begin logic

test_req(v::label; lbound::number; ubound::number; steps::number) :: bunch(number) is
sel(x::number | (lbound =< x) and (x =< ubound) and

exists(n::natural | x = (n*steps + lbound)));

test_init(num::integer;vector::univ)::univ;

init(num::integer;vector::univ)::univ;

export all;
end test_logic;

University of Kansas

Generic Requirements

• Uses the function “test_req”, that takes a variable, lower bound, upper bound and step size

• All numbers within the specified lower and upper bound are selected such that they vary by
step size

• Requirements can be specified for input parameters or for the property of input parameters

test_req(A,1,3,1);

test_req(B,4,6,1);

(A = 1) AND (B = 4);

(A = 1) AND (B = 5);

(A = 1) AND (B = 6);

(A = 2) AND (B = 4);

(A = 2) AND (B = 5);

(A = 2) AND (B = 6);

(A = 3) AND (B = 4);

(A = 3) AND (B = 5);

(A = 3) AND (B = 6);

University of Kansas

Initial Vectors
• Specified using the functions “test_init” and “init”, that take a sequence number and the vector as
arguments

• Sequence number provides information about the order in which vectors are used for the system
to reach a particular state

• Vectors obtained from the “init” function are used to evaluate scenarios only once before all the
other test cases

• Vectors obtained from “test_init” are used to evaluate scenarios before every test case obtained
from generic requirement “test_req”

req1: init(1,(A=1) and (B=0));

req2: test_init(1,(A =1) and (B=1));

req3: test_req(A,1,2,1);

req4: test_req(B,4,5,1);

A=1 and B=0 (vector from init function)

A=1 and B=1 (vector from test_init function)

A=1 and B=4

A=1 and B=1 (vector from test_init function)

A=1 and B=5

A=1 and B=1 (vector from test_init function)

A=2 and B=4

A=1 and B=1 (vector from test_init function)

A=2 and B=5

University of Kansas

Test Requirements (cont.)

• Generic requirements are specified for property of the input
• User must provide a mechanism to generate actual values of input given the value of its
property in a Rosetta facet

• Rosetta facet is translated to a matlab function

•Makes use of predefined or user-defined matlab functions that are declared in a Rosetta
package “matlabpackage”

University of Kansas

Abstract Test Vectors

• Actual test cases generated from the specification. They contain
• Values of input parameters

• Expected values for output parameters corresponding to input parameters

• Generated by combining test scenarios and test requirements

• Use of Boundary testing strategy proposed by Myers
• Boundary value is one that is directly on, above or below the limit of the range of values
specified in a condition

• For example in the condition (x > 10)

• three equivalence classes (x < 10) (x= 10) (x > 10)

• boundary values (x = 9) (x = 10) (x=11)

University of Kansas

Abstract Test Vectors (cont..)

• The vectors are obtained by instantiating input parameters with the
corresponding values obtained from test requirements

• Generic format, not specific to any testing software

• Abstract test vectors are translated into concrete test vectors for traditional
simulation systems

• In this case they are translated into WAVES test vectors for VHDL simulation

WAVES format was developed to support users in the exchange of waveform

information between different simulator and tester environments. Stimulus waveforms

that are produced by the WAVES data set are applied to VHDL model, the model

produces its output response based on stimulus presented.

University of Kansas

Example : Schmidt Trigger
facet schmidt_trigger(input_voltage:: in real; output_value:: out bit) is

b :: bit;
begin state_based

l1: (input_voltage > 0.0) and (input_voltage < 5.0);
l2: if (input_voltage < 1.0) then (b’ =0)

else (if (input_voltage > 4.0) then (b' = 1) else (b' = b) endif)
endif ;

l3: (output_value' = b');
end schmidt_trigger;

FACET schmidt_trigger_TEST(input_voltage::in real; output_value:: out bit) IS
b :: bit;

BEGIN state_based
INPUT_0 : (input_voltage > 0.0) AND (input_voltage < 5.0);
ACCEPT_0: (input_voltage < 1.0) AND (b' = 0) ;
ACCEPT_1: (input_voltage > 4.0) AND (b' = 1) ;
ACCEPT_2: (input_voltage >= 1.0) AND (input_voltage =< 4.0) AND (b' = b);
ACCEPT_3: (output_value' = b');

END schmidt_trigger_TEST;

University of Kansas

Example : Schmidt Trigger (cont..)

FACET schmidt_trigger_TEST_VECTORS(input_voltage:: in real;
output_value:: out bit) IS

b :: bit;
BEGIN state_based

ACCEPT1: (input_voltage = 0.1) AND (b' = 0) AND (output_value' = 0);
ACCEPT2: (input_voltage = 0.6) AND (b' = 0) AND (output_value' = 0);
ACCEPT3: (input_voltage = 0.9) AND (b' = 0) AND (output_value' = 0);
ACCEPT4: (input_voltage = 4.1) AND (b' = 1) AND (output_value' = 1);
ACCEPT5: (input_voltage = 4.6) AND (b' = 1) AND (output_value' = 1);
ACCEPT6: (input_voltage = 1.0) AND (b' = 1) AND (output_value' = 1);
ACCEPT7: (input_voltage = 1.1) AND (b' = 1) AND (output_value' = 1);
ACCEPT8: (input_voltage = 1.6) AND (b' = 1) AND (output_value' = 1);
ACCEPT9: (input_voltage = 2.1) AND (b' = 1) AND (output_value' = 1);
ACCEPT10: (input_voltage = 2.6) AND (b' = 1) AND (output_value' = 1);
ACCEPT11: (input_voltage = 3.1) AND (b' = 1) AND (output_value' = 1);
ACCEPT12: (input_voltage = 3.6) AND (b' = 1) AND (output_value' = 1);
ACCEPT13: (input_voltage = 3.9) AND (b' = 1) AND (output_value' = 1);
ACCEPT14: (input_voltage = 4.0) AND (b' = 1) AND (output_value' = 1);

END schmidt_trigger_TEST_VECTORS;

Test Requirement - test_req(input_voltage,0.1,4.9,0.5);

Generated Vectors
% input_voltage output_value

0.1 0
0.6 0
0.9 0
4.1 1
4.6 1
1.0 1
1.1 1
1.6 1
2.1 1
2.6 1
3.1 1
3.6 1
3.9 1
4.0 1

Comment character

List of
input and output
parameters

University of Kansas

Evaluation

• Alarm clock system
• It allows test vector generation for typical register transfer level specification

• Tests If-Then-Else, And, Implies operators

• Tests the tool when initial vectors are provided in the test requirements

• Schmidt Trigger component
• Covers relational and logical operators, tests for nested operators

• Demonstrates effectiveness in representing and utilizing test requirements.

• Satellite Communication preprocessor defined by TRW
• Tests the tool when the test requirements are provided for the property of the input signal
to preprocessor (Signal-to-Noise ratio)

• Deals with synchronization and timing issues.

University of Kansas

Related Work

• Krishna Rangarajan– Automated test generation from Rosetta specifications
• Similar methodology but improved test generation techniques
• Support for packages and functions in Rosetta
• Allow user to specify initial values for internal state variables
• Ability to generate test vectors for input parameters from properties specified for those
inputs
• Demonstrated automatic generation of abstract and concrete test vectors

• Offutt et al – Generating tests from UML specifications
• Similar methodology but different techniques used

• Tse et al – Test case generation for class-level object oriented testing
• Technique for test generation is different

• Stocks and Carrington – Introduce the use of test templates (TTs) and test template
frameworks (TTFs) for specification based testing

• Test Templates similar to Test Scenarios, while TTFs provide structuring of the test space

University of Kansas

Summary

• Specification-based testing techniques are used to augment and complement
implementation-based testing

• Generation of test vectors from specification and using it against the
implementation is a way to establish that implementation conforms to the
specification

• Achieved the primary objective of automatically generating test vectors
from Rosetta specification.

• Enables testing intended behavior as well as actual functionality

• Examples demonstrate success of the methodology in small test situations

University of Kansas

Future Work

• Handling of broader sets of types

• composite types - records, tuples

• user-defined types

• Support for “structural specification”

• Generate concrete test vectors in other data formats

• Support for different custom coverage requirements
• user can then specify, for example Gaussian distribution of test cases over a specified
range.

