

INTELLIGENT TAGGER FOR E-LEARNING

EECS 891 Project Report
Fall 2003

By
Ubayeedurrahman Syed

Advisor
 Dr. Susan Gauch

Committee Members
 Dr. Costas Tsatsoulis

 Dr. Arvin Agah

 2

Table of Contents

1. Introduction

1.1 Overview 3

1.2 Motivation (IKME) 4

1.3 Objective 5

1.4 Approach 5

2. Technical Background

2.1 Reusable Learning Objects 8

2.2 Native XML databases 8

2.3 XML-RPC 9

3. Design Considerations

3.1 Process of creating Learning Objects 11

3.2 Why eXist ? 12

3.3 Determining the preference from the user’s history ? 13

4. Implementation

4.1 Software Requirements 15

4.2 System Design 15

5. Evaluation 24

6. Conclusion and Future Work 31

7. References 33

 3

1. Introduction

1.1 Overview

Traditionally, due to language differences and a lack of standards, Information

Systems were built as stand alone applications that could not inter-operate. Today, the

Web makes communication between these systems far easier, and this makes XML

(eXtensible Markup Language) technology important. XML represents a powerful way to

overcome semantic barriers to information exchange. It allows the author to describe the

data of virtually any type in a structured manner. With XML, data can now be stored in

separate XML files or in databases, allowing developers to concentrate on using HTML

for formatting and display.

The discipline of computer-assisted instruction in the field of Educational

Technology has always been at the vanguard of Knowledge Management Engineering,

and has, in general been an early user of a wide range of learning environments.

Practitioners in this area quickly realized the importance of personal computers and today

they are leading the education technology field with some very interesting uses of XML

in practice. In these initiatives, the basic unit of content is called a Learning Object.

A Learning Object is defined as any entity, digital or non-digital, which can be

used, re-used or referenced during technology-supported learning. Examples of

technology-supported learning include computer-based training systems, interactive

 4

learning environments, intelligent computer-aided instruction systems, distance learning

systems, and collaborative learning environments. Examples of Learning Objects include

multimedia content, instructional content, learning objectives, instructional software and

software tools, and persons, organizations, or events referenced during technology-

supported learning.

Although Learning Objects may encourage instructors to operate in a more

disciplined way, their major disadvantage is that a considerable amount of effort is

needed in providing a description of each Learning Object when it is created. This

requires a lengthy, manual process.

1.2 Motivation (IKME)

The Intelligent Knowledge Management Environment (IKME) is an ongoing

project at the University of Kansas aimed at assisting the Defense Information

Technology Testbed (DITT)/University After Next (UAN) by providing an advanced

reach-back capability for commanders, staff, and other users who have time-critical

needs. The knowledge management environment facilitates the creation of extensible and

reusable learning objects that would lead to faster delivery of content to knowledge users.

The project is based on the idea of using the Extensible Markup language as the

data format for publishing. The environment facilitates the Knowledge creators to create

learning objects, which are stored as XML documents. These learning objects are based

 5

on an XML schema developed by the “Center for Army Lessons Learned” . These learning

objects can in turn be reused to create lesson objects, which in turn are used to create a

manual. This setup facilitates ease of creation and also faster delivery of content to the

end users. Another main advantage of using XML as the data format is the separation of

content and style. The same XML document can be represented in various styles and data

formats using style sheets. For example the manual can be published online using an

XSLT stylesheet and also converted to a PDF file (for printing) by using the XSL-FO

sytlesheet.

1.3 Objective

The main objective of this project is to facilitate the creation of new Learning

Objects by developing a mechanism to identify the user’s preferences from the user’s

history. The current schema has a total of 28 attributes to create a Learning Object, of

which there are seven enumerated ones. Currently when a user creates a Learning Object

they must fill in enumerated fields each time, our enhancements help decrease the effort

required to add new Learning Objects to the system, overcoming one of the major

obstacles in the use of Learning Objects.

1.4 Approach

Users create Learning Objects, which are stored as XML documents. The options

for enumerated fields in the Learning Objects are automatically generated from the

 6

Learning Object Schema using a schema parser. The values for these enumerated fields

are read from a sample template XML file. The template file initializes all enumerated

fields to blank values, hence when the user each time creates a new Learning Object

he/she has to manually select the values for the enumerated fields. This project is an

effort to facilitate the user by providing the user with the values that closely match to his

or her preferences, hence saving a valuable amount of user’s time when creating a new

Learning Object.

eXist, a Native XML Database (NXD), is used as the backend to store all the

Learning Objects or XML documents. Tools are provided to store documents into the

database. User can choose the number of latest documents to be considered for his history

to determine the most preferred tag value.

Our technique is based on exploiting user history to automatically customize the

create Learning Object form based on the user’s most popular frequent field values. This

approach can be seen in commercial websites. For example a user “John” requesting for a

web server with a login system may find the value “John” already existing in the user

name.

Cookies are a very popular technique for allowing web-servers to keep track of

sessions, so that the server can easily identify the same user preferences from one request

to the next. They can store login information, keep track of shopping patterns, record

your preferences for that particular site, and more. Although cookies are useful, they are

 7

disliked by many people mainly because of privacy and security concerns. Another

disadvantage is that they provide very little information about the user’s likings. We need

a longer user activity history trend, so we did not choose to base our system on cookies

instead we have designed a more sophisticated mechanism.

The login system of ChatTrack, another ongoing project at University of Kansas,

has also been integrated with IKME to require users to be registered members of IKME

in order to create Learning Objects.

 8

2. Technical Background

2.1 Reusable Learning Objects

Traditional content development techniques face many problems in terms of

extensibility or reusability. Any modification to, or reuse of the content requires effort

and time from the publisher. Reusable Learning Objects represent an alternative approach

to content development. In this approach, content is broken down into chunks of

information. Object-orientation highly values the creation of components called “objects”

that can be combined or recombined in multiple contexts to create the customizable

learning tracks. This is the fundamental idea behind Learning Objects. Instructional

designers can build small components that can be reused a number of times in different

learning contexts. One main advantage of following the Learning Objects approach is

that when appropriate content already exists, they reduce development time considerably.

Content creators can create customized manuals or lessons at much faster rate than using

conventional techniques.

2.2 Native XML databases (NXD)

Native XML databases are databases designed especially to store XML

documents. They also provide support features commonly found in other databases like

transactions, security, multi user access, programmatic API’s, query languages etc. The

main difference from other databases is that their internal model is based on XML. The

 9

XML:DB Initiative offers the following formal definitions for a Native XML database:

a) Defines a (logical) model for an XML document and stores and retrieves

documents according to that model. Examples of such models are the XPATH data

model, the XML Infoset, and the models implied by the DOM and the events in SAX 1.0.

b) Has an XML document as its fundamental unit of (logical) storage, just as a

relational database has a row in a table as its fundamental unit of (logical) storage.

c) Is not required to have any particular underlying physical storage model. For

example, it can be built on a relational, hierarchical, or object-oriented database, or use a

proprietary storage format such as indexed, compressed files (source:

http://www.xml.com/pub/a/2001/10/31/nativexmldb.html).

NXD’s do not really represent a new low-level database model, and are not

intended to replace existing databases. They are simply a new tool intended to assist a

developer by providing robust storage and manipulation of XML documents.

2.3 XML-RPC

XML-RPC is a specification and set of implementations that allow software

running on disparate operating systems and in different environments to make procedural

calls over the Internet. It's remote procedure calls uses HTTP as the transport protocol

and XML as the encoding. XML-RPC is designed to be as simple as possible, while

allowing complex data structures to be transmitted, processed and returned. Remote

 10

procedural calls and input parameters are serialized into XML before sending to the RPC

server; at the server side the XML input is un-serialized into its local data structures. The

output is again serialized from local data structures into XML before sending it back to

the client. In this way disparate systems could communicate irrespective of their

computing environment.

XML-RPC diagram (source: http://www.xmlrpc.com/)

 11

3. Design Considerations

3.1 Process of Creating Learning Objects

Learning Objects may use different instructional strategies to promote learning.

Instructional Strategy may be defined as a set of rules with which learning content may

be structured or sequenced. One can apply different Instructional Strategies depending

upon the task to be learned and the learner’s style. Different templates/tools may be used

to create the learning objects.

The sample template (XML file) has all the required tags for a Learning Object

initialized with blank values. Whenever the user creates the Learning Object this template

file is loaded and displayed on to the screen using the user’s browser. After the Learning

Object is created it is stored in the XML database. There are fields in the Learning

Objects whose values must be assigned from an enumerated list, e.g., FORMAT can be

assigned either MIME type or TEXT/HTML type depending upon the data

representation. The enumerated values used frequently remain the same for a sequence of

related Learning Objects created by a particular user. Yet, with the current system, the

user must select the desired value each time. To customize the Web page to aid the user,

we will adapt the sample template for the user based upon their history.

 12

3.2 Why eXist?

To obtain the history of a user’s choices for the enumerated values, one of the

designs considered was a flat-file mechanism. In other words, a history-file is maintained

for each user that stores the values for the enumerated tags in a specific format.

Whenever the user creates new Learning Objects, the history file corresponding to the

user is accessed and processed to determine the field value. The limitations of this

approach are that the data is isolated and separated, and each user maintains his or her

own set of data. The file structure has to be defined by the program code, at the time of

creation the system must search the file for each value, and space is wasted. In addition,

any schema change may need a new program and incompatible file formats could also be

a problem.

We also considered using cookies to store the user’s preferences. Cookies can be

used as a trick or a simple technique to store user identification or other information for

each visitor to a website. They allow user specific functions like personalization of web

pages for each user, tracking of visitors, etc. One good use of cookies is that they gather

statistics such as the number of unique visitors to the site, provide the information about

the movement of the user through the site, provide information such as how long and how

often a user viewed a particular Web page, etc. ProFusion is one of the best examples that

use cookies. In our case, determining the user’s preferences from the user’s history is a

key factor. Using cookies, one could get only the last preference of the user, hence

knowing the user’s history for the enumerated tags is not possible by using cookies.

 13

Because of the limitations of the flat file system and cookies, a database approach

was chosen. We found by experimentation that the XML files in the eXist database are

stored in chronological order, i.e., querying the database returned the latest documents

first. The knowledge of order of documents in the database allowed us to easily retrieve

the most recent values from the database. The database can be queried from the

application and the recent values for the enumerated fields can be retrieved from the

database. Once the recent values are obtained, a selection process can be applied to

determine the final value from the results. The user is also able to choose the number of

recent documents to be considered for his or her history.

3.3 Determining the preference from the user’s history

 When the user creates a new Learning Object, our system sets default values for

each of the enumerated fields based upon the most frequently used value for that field in

the user’s recent past. To do this, at first the system parses the comma delimited file

‘ table.txt’ created by one of the code file Parse_Schema.pl. ‘ table.txt’ contains formatted

information for tag/value pairs in the Learning Object. The system parses this file to

identify the enumerated tags in the schema and stores them in a one-dimensional array

called enumerated-tag-array.

 For each enumerated tag in enumerated-tag-array, the system queries the

database for the most recent N Learning Objects. This returns the N Learning Object ids

and the enumerated field in XML format. These results are parsed, the values of the

enumerated tags are extracted and stored in a temporary one-dimensional value array.

 14

 The one-dimensional value array is passed to a sub routine that identifies the most

frequently occurring value. This sub routine has a temporary one-dimensional count-

array which is of the same size as the value array. The count-array stores the count for

each value in the value array that appears in the next index locations, for e.g., the

enumerated field ‘PORTIONMARK’ has the following value-array from the recent five

Learning Objects ‘Value-Array [5] = { 'T','TS','T','TS','S'} ’ . Its count array will be ‘Count-

Array [5] = { '2','2','1','1','1'} ’ . The index with maximum count in the count array is noted

as the index of the most frequently occurring value in the value array. When two or more

indexes have the same maximum count in the count array, the smaller index is chosen to

select the most recently used value. In the previous example, the index 0 would thus be

chosen, resulting in ‘T’ as the selected value.

 15

4. Implementation

This chapter provides an overview of the code written for this project.

4.1 Software Requirements

• Perl Version 5.0 and later

• Apache Web Server

• Exist V0.9 and later

• Additional PERL Modules

o CGI

o RPC::XML

o RPC::XML::Client

o XML::Twig

o XML::Sablotron

o Data::Dumper

4.2 System Design

The inputs to the system are a Sample Template file and the Query-String. The

system output is an updated Sample Template file. The two scripts in the implementation

of this project are create_temp.pl, which takes in the system inputs and outputs a

temporary XML file and Generate_default_values.pl, which takes in the temporary XML

 16

file from the output of create_temp.pl as input and produces the updated sample template

file as its output.

Sample Template file, is an XML file that has all the mandatory tags of the XML Schema

and Query String, is the array of attribute values obtained from the users Web page as a

cgi query string when creating Learning Objects.

CREATE_TEMP.PL

GENERATE_DEFAULT_VALUES.PL

Sample
Template Query String

Query String Temp.xml

Updated Sample Template

 17

4.2.1 Parse_schema.pl

This script parses the XML Schema and produces a comma delimited flat file as

output. This file follows a specific format with different characters in it. The tags that end

with ‘$’ can have text boxes in the XSL and only these values will be modified. The tags

that end with ‘$$’ are enumerated tags in the schema. One of the restrictions is that only

the tags that are coded as <xs: element> in the schema will be processed. For example if

we have an XML file.

<A>

 <C type=""/>
 <D/>

 <E/>

 The output flat file (table.txt) would be as follows

/A 1 A # B # C ! type !! D # E ## -

/A/B 1 B # C ! type !! D ## -

/A/B/C 1 C ! type !! $

/A/B/D 1 D $

/A/E 1 E $

The output file is called ‘ table.txt’ and is loaded each time by the other script files. It

contains special characters like ‘#’ , ‘ !’ , etc which are useful in inserting the attribute

values provided by the user to the right fields.

 18

4.2.2 Create_Temp.pl

The purpose of this script file is to produce a temporary XML file depending upon

the field to be modified. For example, in the XML file considered above, if field A is to

have to its value modified, then the temporary file produced would contain field A and all

its children. For IKME version 1.0, the XML-Schema has 5 main fields: ‘metadata’ ,

‘ tracking’ , ‘ content’ , ‘views’ and ‘ reconstruction’ . The field and its children nodes are

extracted from the sample template file which is also an XML file. This temporary file is

overwritten whenever the user clicks a different field. It calls XSLT to display the

temporary file

4.2.2.1 Algorithm:

I nput s – Sample Template, Query String

Out put s – Temporary file

a. Load the Sample Template

b. Extract the required field

c. Print the field into the Temporary file

d. Use XSLT, print the Sample Template (with default values)

on to the screen

 19

4.2.2.2 Module Design

4.2.2.3 Module Specifications

Title Run_sablot
Purpose Runs the sablotron to display the XML file
Returns None
Input None
Note It displays the ‘ /home/academy/htdocs/ikme/phoneix/temp.xml’

Title Print_metadata
Purpose To check if the required tags of metadata are filled
Returns None
Input None
Note It’s a java script function

Title Print_tracking
Purpose To check if the required tags in tag Tracking are filled
Returns None
Input None
Note It’s a java script function

Title Print_block
Purpose Prints the tag and all its sub tags into the temporary file
Returns None
Input None
Note It is called while creating a new XML twig

Create_temp.pl

Run_sablot Print_block

Print_metadata

Print_tracking

 20

4.2.3 Generate_default_values.pl

This is the main script file of the project. It modifies the values of the enumerated

fields by reading from cgi query string. It loads the output of Parse_Schema.pl to insert

the contents into the Learning Object (XML file). When modifying the tags, the

enumerated tag contents are identified and stored in an array. It accesses the empty

temporary file written by Create_Temp.pl. Whenever the user clicks ‘done’ it updates the

temporary file with all the contents from the user and then combines the updated

temporary file with the original document.

After the original document is written, it stores the document into the eXist

database. It queries the database for each enumerated tag, processes the top ‘x’ number of

results where ‘x’ is the number of recent documents to be considered for user’s history

chosen by the user. For all the enumerated tag content, we pick the most common user’s

preference from the retrieved results and insert these preferences into the template

document. This CGI calls the XSL processor every time to display changes.

In the next login, when the user creates a new Learning Object, create_temp.pl

displays the template file, the user can find some pre-existing values for these enumerated

fields that closely match to the his or her likings. The restriction of this CGI is that all

files being created or modified validate against the schema that was parsed into a table

(output of parse_schema.pl).

 21

4.2.3.1 Algorithm:

I nput s – Temporary File, Query String

Out put - Updated Sample Template

a. Store the Learning Object into the database

b. Identify and store the enumerated fields in the Schema.

c. FOR each enumerated field DO

 - Query the database and retrieve the content

d. Process the top result to determine the default value

e. Modify the Sample Template file with the default values.

4.2.3.2 Module Design

4.2.3.3 Module Specifications

Title Process_post
Purpose To get the values from the post method
Returns An array – that stores post query
Input An array
Note None

Generate_default_values.pl

Run_sablot

Print_temp_file Print_metadata

Print_tracking

Process_post Split_name_val_arr Load_schema_table

Remove_sqaure_braces

Get_etag_text_from_db

Process_top5_etag_content Print_enum_into_template_file

 22

Title Split_name_val_arr
Purpose Decode the Query String to split into name and value arrray
Returns Scalar value
Input 3 arrays - name_val, name_arr, value_arr
Note Refer the code for more information.

Title Load_schema_table
Purpose To load the o/p of parse_schema.pl into hash variable ‘schema_table’
Returns Hash table
Input None
Note This function access the o/p file

“ /home/academy/htdocs/ikme/phoneix/table_ubayeed” produced by
parse_schema.pl. This o/p file has a specific format to know where to
insert the post values when read.

Title Print_temp_file
Purpose To print the temp file
Returns None
Input None
Note Temp file is at ‘ /home/academy/htdocs/ikme/phoneix/temp.xml’

Title Run_sablot
Purpose Runs the sablotron to display the XML file
Returns None
Input None
Note It displays the ‘ /home/academy/htdocs/ikme/phoneix/temp.xml’

Title Print_metadata
Purpose To check if the required tags of metadata are filled
Returns None
Input None
Note It’s a java script function

Title Print_tracking
Purpose To check if the required tags in tag Tracking are filled
Returns None
Input None
Note It’s a java script function

Title Remove_square_braces
Purpose To remove square braces and number present in the path
Returns None
Input None

 23

Note None

Title Get_etag_text_from_db
Purpose To determine the value for each enumerated tag in the sample template

a) query Database for each enumerated tag
b) apply the selection process on (a)

Returns None
Input None
Note a) E.g. of Xpath Query used

“$query = 'xcollection('/db/ikme_ubayeed')/.portionmark”
b) calls the function ‘process_top5_etag_content’
c) calls the function ‘print_enum_into_template_file’

Title process_top5_etag_content
Purpose It’s a selection process to determine the final value for the enumerated

tag.
Returns A string
Input String – values from result of query
Note None

Title Print_enum_into_template_file
Purpose To print the final enumerated values into the sample template file
Returns None
Input None
Note Modifies the file

/home/academy/htdocs/ikme/phoneix/sample_template_new.xml

4.2.4 Print_html_file.pl and Print_html.pl

The first script prints out the html page to name the new Learning Object being

created. The latter script prints out the HTML page with all the high level fields of the

schema “Metadata, Tracking, Content, Views, and Reconstruction” . Clicking each field

executes another script file (create_temp.pl), which produces the customized web page

with all the sub-fields of the main field.

 24

5. Evaluation

5.1 Sample Scenario

This section shows the login screen created for the IKME system that restricts access to

the database for creating, viewing, or modifying the Learning Objects.

Figure 5.1 The IKME login page

 25

5.2 Name the Learning Object

The user begins by naming the new Learning Object

Figure 5.2 Naming the Learning Object

 26

5.3 Highest Level fields in the Schema for IKME Version 1.0

The user is presented with the highest-level fields of the Learning Object schema.

Clicking each field produces all its sub-fields.

Figure 5.3 Access the high level fields of the Learning Object

 27

5.4 Metadata – At first login, Sample Template spits out blank values

After the user selects the field, all its sub-fields are extracted from the Sample Template

and displayed on to the screen (with the help of XSLT). At the first login, the user finds

empty values for the enumerated fields, since the Sample Template has no default values

assigned initially. The Schema in this version has a total of seven enumerated fields.

Figure 5.4.1 blank enumerated fields of Metadata

 28

More enumerated fields.

Figure 5.4.2 more blank enumerated fields of Metadata

 29

5.5 Metadata – Next logins, Sample Template is customized to user’s liking

The next time they create a Learning Object, the user will find default values for the

enumerated fields based on their previously created Learning Objects. It can be noted that

enumerated fields like TYPE, PORTIONMARK etc are already filled in.

Figure 5.5.1 enumerated fields of Metadata with default values

 30

More enumerated fields with default values

Figure 5.5.2 Sub-Fields of Metadata with default values

 31

6. Conclusions and Future Work

We have developed a system that learns a user’s preferences. All the initial requirements

of the project have been successfully fulfilled. This project can be used as a platform for

building more sophisticated statistical patterns for learning the user’s preferences. Below

some advantages, limitations, and the future work of this approach are discussed.

6.1 Benefits and Costs

The benefits of this approach are that, in determining the history of the user,

nothing has to be put on the client’s machine. The user can thus work from any machine.

There is no redundancy in storing and defining data, hence there is no wastage of space.

Moreover users have the flexibility to choose the number of recent documents to be

considered for their history.

In this approach, the user must login each time to create Learning Objects. The

main cost comes from accessing and updating the database. Each time the user creates a

new Learning Object, the database has to be queried M times, where M is the number of

enumerated fields in the XML Schema. However, in our case, since there are only seven

enumerated fields, there is no difference observed in the performance time.

 32

6.2 Future work

One goal would be to extend the functionality of the login system to support

multiple users with individual logins. Doing so requires a mechanism that makes use of

the login information and information in the ‘actor tag’ , a child tag of ‘ tracking’ . We

should also extend the functionality of this version to learn the user’s preferences on the

optional enumerated fields. Doing so requires a change in the template file.

The next step would be to investigate how much history is needed to get the best

default values, i.e., what N is best, where N is the number of recent Learning Objects

created by the user. We should also investigate methods of weighting recent values more

highly than older values for quicker adaptation.

 33

7. References & Resources

The following are the references for all the resources that were used in this project. The

latest date that these websites were accessible was Friday, January 22, 2004.

• Demo URL

http://onlineacademy.org/ikme/demoV1.0/demo_menu.html

• The Comprehensive Perl Archive Network – Excess of PERL modules

http://www.cpan.org/

• XML:DB Initiative

http://www.xml.com/pub/a/2001/10/31/nativexmldb.html

• eXist Home Page

http://exist-db.org/index.html

• Paper on eXist: An Open Source Native XML Database

http://exist-db.org/webdb.pdf

• Syntax of queries to the eXist database from applications

http://exist.sourceforge.net/devguide.html

• XML::Twig Home Page

http://xmltwig.com/xmltwig/

• RPC::XML Home Page

http://www.blackperl.com/RPC::XML/

• XML-RPC Home Page

http://www.xmlrpc.com/

• Introduction to XML:: XML-Future of the web

http://www.acm.org/crossroads/xrds6-2/future.html

• Comparison between XML-RPC & SOAP

http://weblog.masukomi.org/writings/xml-rpc_vs_soap.htm

• Intro to Native XML databases

http://www.xml.com/lpt/a/2001/10/31/nativexmldb.html

• XML for Data: Native XML databases

http://www-106.ibm.com/developerworks/xml/library/x-xdnat.html

 34

• About Learning Objects

http://www.uwm.edu/Dept/CIE/AOP/learningobjects.html

http://www.eduworks.com/LOTT/tutorial/learningobjects.html

