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ABSTRACT 

Space-time coding and diversity techniques have been an active research area 

for wireless communication since long, and have been seen to significantly improve 

performances of communication systems. Although similar approaches for radars 

have not been attempted yet, it is rational to expect comparable performance gains for 

the multi-aperture radar provided we can come up with the optimal transmit solutions 

for these space-time systems. To make the most of a multi-aperture transmitter, it 

needs to be considered and utilized as a non-separable sensor in space and time, i.e. 

each aperture propagates a coherent but uncorrelated signal in time and frequency.  

A methodology to create such non-separable space-time signals for various 

illumination optimization criteria is developed, and the performance validated 

through various tests and simulations. By expanding the space-time signal in terms of 

a set of orthonormal basis functions, the problem is reduced to that of finding the 

optimal set of weights for these functions, i.e. a vector. In combination with the 

vector-matrix models developed, the structure enables the use of linear algebraic 

techniques like eigen analysis for determining the optimal solutions.  

Out of the many optimization criteria developed, the most applicable one is 

found to be the mini-max or maxi-min. However solutions to this criterion are not 

easy to find; an iterative procedure having a sound algebraic basis is presented as a 

solution. The efficacy of the method has been demonstrated with relevant results, and 

its dependence studied on a number of parameters. Particularly interesting is the form 
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of the resulting signal, which is examined both at the transmitter and also at the 

targets; some very important conclusions are drawn based on the observations. 
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Chapter 1  

Introduction 

 

1.1 Space-Time Multi-Aperture Radar 

Let us begin with a brief description of a space-time multi-aperture radar as it 

forms the premise for this thesis. One way to visualize the multi-aperture sensor is to 

think about it as a single large radar which has been divided into a number of smaller 

apertures. Such a distributed sensor enables the radar to collect exclusive information 

across a third dimension of space, in addition to the two conventional dimensions of 

time and frequency – i.e. operation in both space and time. 

 The additional angle of arrival information collected (with respect to the 

targets) can greatly enhance radar functionality, and now a single space-time sensor 

can conceivably provide operation in multiple radar modes. For e.g. a single multi-

aperture transmit array can be used to do a wide area SAR (synthetic aperture radar) 

that needs large timewidth and/or bandwidth, or even a GMTI (ground moving target 

indicator) or AMTI (airborne moving target indicator) which require large spatial 

arrays for fine angular resolution. The other obvious advantages that come along with 

the multi-aperture concept are also there. Like a more robust structure wherein the 

failure of one microsat just slightly degrades the performance of the overall system; 

in a comparable monolithic system, such an event will result in total system failure. 

The power requirements for the individual units are much more manageable vis-à-vis 

a single large radar.  Also the radar performance can be enhanced if required at a later 
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stage by the addition of more units in the future. But in spite of the accompanying 

benefits, from our perspective, the biggest advantage or motivation for the distributed 

sensor concept still remains the potential for true space-time operation – i.e. utilizing 

both the transmitter and the receiver as a non-separable function of space and time.    

Although the use of the multi-aperture sensor is not limited to a particular 

platform – ground based, airborne or even spaceborne distributed sensors can be 

developed, some of the more interesting designs have still been formulated keeping 

the spaced- based radar in mind - like the Interferometric Cartwheel [6] and the 

TechSat 21 [7]. For any multi-aperture radar the individual units can act only as 

receivers like in the Interferometric Cartwheel, or as both transmitters and receivers 

as in the TechSat 21 concept. However in either case all the transmitters and receivers 

on the individual units are perfectly coherent, i.e. all the systems work together in 

tandem and the shared data along with the spatial sampling of the configuration 

provides single big virtual radar. Figure 1:1 on the next page shows how a multi-

aperture radar array may look like in space. 
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Figure 1:1 Example of a Multi-Aperture Array - spaceborne platform[7] 

 

The antenna array for a multi-aperture system is made up of a number of 

elements which may be positioned contiguously, or might be spread across a wide 

space to form a three dimensional non-uniformly spaced sparse array (a design more 

suited for the spaced based platforms). For such sparsely populated random arrays the 

location of the nearest grating lobes can be pushed out by minimizing the distance 

between any two antenna elements. Similarly a fine angular or spatial resolution can 

be achieved by increasing the spatial extent of the physical array. But due to its sparse 

nature the array pattern will still have lot of sidelobes within the illuminated area 

which cannot be eliminated [4].  Therefore, care has to be taken to ensure that on the 

transmit side these sidelobes do not fall on the regions which we do not wish to 

illuminate (example would be stationary objects or ground clutter for MTI), and on 

the receive side, on targets whose returns are perfectly ambiguous in range or doppler 

with our target of interest [1]. Even for the contiguous array, means for controlling 
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the illumination pattern becomes an important radar problem; depending upon our 

definitions of the regions which we classify as desirable, or not desirable – i.e. targets 

and clutter. 

The radar design therefore has to be altered to adapt to the different scenarios. 

This can be done through a number of ways like – enhancing the radar hardware, 

modifying the antenna array structure, adding more transmitters or receivers and/or 

changing the radar transmit signal. Out of the above, the most economical or 

convenient method to control radar performance, or the array illumination pattern is 

naturally to control the transmit signal feeding the array. This radar transmit 

waveform is a critical entity, and therefore becomes a very important ‘tunable’ design 

parameter for the whole system (it can be modified depending upon the 

requirements). Consequently, coming up with the optimal transmit signal for the 

various optimization criteria becomes a very important radar problem. The perfect 

radar transmit signal will have two important characteristics – 

• It will distribute the energy equally over our region of interest (the targets), 

and at the same time not illuminate the regions which we are not interested in 

(clutter). 

• It will make the responses from all targets mutually orthogonal to each other. 

Such a perfect transmit signal exists for only the most simple of radar problems, but it 

does provide us with two possible directions towards transmit signal optimization.  

We call the first approach “illumination optimization”, wherein we try to 

maximize the signal to clutter ratio (SCR) by putting most of the illuminated energy 
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on our regions of interest (targets), as compared to the regions from where we do not 

want unwanted signal returns (clutter). This idea of space-time illumination 

optimization forms the core of this thesis. We call it as space-time as both the spatial 

and temporal characteristics of the multi-aperture transmit array are utilized. The 

second approach is called the “ambiguity optimization”, in which we try to minimize 

the correlation between responses from any two targets that have been illuminated. 

The idea is minimize the ambiguity between responses in order to get better 

detection/estimation ability. This study does not form a part of this thesis, but forms 

an interesting problem of its own. Some work has already been done in this area of 

making the responses from different targets as orthogonal as possible; the readers are 

referred to [8] for the complete details.  

Before we describe our approach and methods towards the space-time 

illumination optimization problem mentioned above, let’s first review the kind of 

work that has already been done in the area of optimal radar transmit signal design, 

and space-time antenna pattern synthesis. 

1.2 Related Work  

1.2.1 Space-Time Beamforming – Receive Side 

Most of the work in the area of space-time beam forming or antenna pattern 

synthesis has been done on the receive side. It involves coming up with an optimal 

weight vector “w” for the received measurement samples, given the radar, target set 

and estimation goals. This approach focuses the space-time beam on the receive side 
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for each individual target, so as to discriminate against clutter, noise and ambiguities. 

Examples of such work can be found in [9, 10] and also in [4, 5]. Therefore, even 

though we have multiple antennas, the power of the spatial array is realized only at 

the receiver for space-time beamforming and clutter cancellation.  To exploit the full 

potential of the antenna array, i.e. also on the transmit side, we wish to have an 

equivalent scheme wherein we come up with an optimal space-time transmit code 

“s”, for a similar set of conditions. 

At this point, let’s digress a little and explain an important distinction. Note 

what we call space-time here, is a completely different concept from what has until 

now been considered as “space-time”. Typically for multi aperture arrays, we just 

have a single time-frequency signal weighted by a complex weight at each of the 

spatial elements – essentially a “phased array”. And the transmit signal is a separable 

function of space and time; the transmitted waveform being a direct product of the 

temporal signal and the spatial weighting on the array elements. This is very different 

from the true space-time transmitter idea proposed in this thesis. The contention is 

that if each transmit element propagates an independent signal of time and frequency, 

radar performance can be significantly improved and much better results obtained. 

This is indeed found to be true, and the capabilities of the two techniques have been 

compared in later chapters through various simulations.  
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Figure 1:2 Difference between a single aperture, phased array and true space-time transmitter 

The concepts for a single aperture radar, phased array and true space-time 

transmitter have been illustrated in Figure 1.3. For the first two cases we have a single 

temporal signal s , where as for the true space-time transmitter independent signals 

, ,
1 2 n
s s s… propagate on the different transmit elements. As an example say that for 

the first case (single aperture radar) 1000 time-frequency samples define our transmit 

signal s . Then for a phased array with 5 elements we will need to determine 1005 

space-time samples (1000 for s , and 5 for the spatial weights – w1 w2… w5), and 5000 
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for the true space-time transmitter (1000 different time-frequency samples for each 

transmit antenna - , ,
1 2 5
s s s… ). It is evident that this is a more intricate and laborious 

problem than the phased array, but is also seen to give tremendous payoffs in terms of 

performance. Also note that all the individual signals in case of the true space-time 

transmitter are coherent, i.e. they modulate the same local oscillator. 

1.2.2 Transmit Signal Design – Ambiguity Optimization 

Note that although ambiguity optimization is not within the purview of this 

study, some related work in this area has been covered just to demonstrate the space-

time efficacy. Early work in this field involved pushing out the delay-doppler 

ambiguities with the help of pushing codes like Costas and Lee-zero sequences. The 

idea was to get ambiguity functions with a clear area around the center, or an area 

containing no sidelobes in a connected region around the main lobe. This approach is 

consistent with the ambiguity optimization idea described before. Chang and Bell 

[13] have designed a way for constructing frequency coded waveforms for enhanced 

delay-doppler resolution. With the help of Lee-zero sequences which are derived 

from the Costas sequences themselves [11, 12], the delay-doppler ambiguities are 

pushed out of the illuminated area where no targets can exist. Thus locally optimal 

ambiguity functions are realized. Techniques for achieving arbitrary size clear areas 

have also been proposed. However this method relies only on the coding in the 

temporal dimension, i.e. controlling the frequency of each transmitted pulse to come 

up with the optimal ambiguity function. Such time-frequency codes can just push the 
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delay-doppler ambiguities farther away, but cannot knock them out completely. The 

total energy in the delay-doppler ambiguity function remains invariant, and to achieve 

a truly ideal ambiguity function with an infinitely large clear area around the main 

lobe, infinite number of frequencies will be required.  

This constraint is not present for a space-time transmitter/receiver, as now the 

total ambiguity function is approximately the product of the spatial and temporal 

ambiguity functions and thus the energy in it is no longer invariant [4, 9]. Therefore 

it’s even possible (theoretically) to get an ambiguity function with the total integrated 

sidelobe energy of zero – the ideal case. However once the spatial pattern is 

superimposed over the time-frequency, the total ambiguity function would no longer 

stay invariant with target location and the transmit code will need to be optimized for 

all targets simultaneously (instead of a single target). This turns out to be a much 

more difficult problem and requires more rigorous techniques [8].  

The potential of space-time coding/processing for the application of ambiguity 

optimization can be intuited from Figure 1:3. Note that this is an example of space-

time processing (or beamforming) on the receive side, but the same concept can also 

be extended to the transmit side with space-time coding. 
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Figure 1:3 Space-Time Ambiguity function [9] 

As can be seen by superimposing the spatial pattern on the delay-doppler ambiguity 

function the energy in the final ambiguity function is reduced. There are also other 

optimization techniques that work on reducing the sidelobe levels using sequences 

like Barker, Frank and extended Frank codes [14, 15]. However all these transmit 
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codes can knock out the time-frequency ambiguities completely; they can just be 

moved around in the delay-doppler plane to regions where we don’t expect our 

targets to exist. 

 Efforts have also been made to optimize the ambiguity function in just one 

dimension, for either a range or doppler resolution radar. In [16] the authors propose 

polyphase pulse compression transmit sequences, derived from Frank and Extended 

Frank codes to reduce the sidelobe levels for a range-resolution radar. Such a 

technique would work excellently if we do not have any moving targets in our target 

scenario or the doppler associated with each target is precisely zero. But for a remote 

sensing SAR that is never the case, and hence these techniques find little use. Even if 

we suppress the sidelobes in range, the ambiguities will move closer in the doppler 

dimension as the integrated sidelobe energy has to be a constant for plain time-

frequency codes.  

Nevertheless, this approach does suggest a useful concept of pushing all the 

ambiguities in a subspace where no targets can exist (here all ambiguities are moved 

to the non-zero doppler region). For a three dimensional target space, where each 

target is identified by two dimensions of space and one of radial velocity, we need at 

least a four dimensions of transmit signal to be able to push our ambiguities in a 

region where no targets can exist. Such a 4-D transmit signal space can be realized by 

means of true space-time transmit codes where we have two temporal frequencies (in 

form of delay and doppler), and two more spatial frequencies - along the horizontal 

and vertical directions of the plane perpendicular to the direction of radial velocity. 
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Therefore if we can come up with a radar transmit code that pushes all the 

ambiguities in one dimension of this 4-dimensional space, then the total available 

transmit energy can be placed in the remaining three dimensions. 

1.2.3 Transmit Signal Design – Illumination Optimization 

All the work listed so far has been in the direction of ambiguity optimization. 

However as pointed before, although interesting, that does not form the objective of 

this study. Our work deals primarily with the problem of “space-time illumination 

optimization” mentioned earlier.  

Related work in this area of illumination optimization has been done by J.R. 

Guerci of the Defense Advanced Research Projects Agency (DARPA) and others [17- 

19]. In [17] they propose a method for jointly determining the optimal transmit pulse 

and receiver impulse response to give the maximum SINR in the presence of signal 

dependent clutter and noise. However the method is optimized for just a single target, 

which is characterized by its known impulse response and the characteristics of the 

surrounding clutter and channel noise are known in terms of their power spectral 

densities. Using a host of complex signal analysis and mathematical tools, an iterative 

numerical procedure is developed to come up with the best transmit signal-receiver 

impulse response pair.  

It turns out, that this solution involves finding an eigenfunction solution 

corresponding to the largest eigen value of an integral equation. This type of eigen 

analysis is a very powerful tool for our problem (as will be seen later), and is 

employed repeatedly even in our algorithms to find the best transmit signal code for 
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different criteria. By modeling linear systems in the form of matrices, the eigen 

vector–eigen value procedure enables us to find solutions in subspaces most 

orthogonal to clutter; thus allowing us to place most of the energy in dimensions least 

aligned with clutter, the kind of idea described earlier. For the problem of [17] the 

transmit signal turns out to be a critical factor, especially in cases where clutter is 

significant and often outperforms the standard chirp signal by a great amount. 

In other papers like [18] and [19] the authors extend the problem to practical 

implementations using discrete time signals, so as to search for our optimal transmit 

signal in finite dimensional vector spaces. The target impulse response can be now be 

modeled by a matrix and the optimal solution is the eigen vector associated with the 

minimum eigen value of the correlated noise and clutter correlation matrix. But the 

underlying idea remains the same - to place maximum energy in the dimensions 

having minimum interference. Several versions of this approach have been tried - 

where the transmit vector is either along the best dimension, or is allowed to span 

several of the better dimensions giving it more flexibility to spread out over the entire 

band not occupied by clutter. The second approach takes advantage of the rank 

deficient nature of interference and makes use of all the eigenvectors which have 

eigenvalues at or below the noise level. A third method where the constructed 

waveform is made to resemble one of the traditional radar waveforms, like the linear 

frequency modulated (LFM) chirp is also provided. Such waveforms have a lot of 

other desirable characteristics besides providing the maximum SINR, and are seen to 

be more appropriate with respect to other radar parameters. However the fundamental 
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idea behind each of these approaches does not change, and that is to somehow 

concentrate all the interference energy in a specific portion of the spectrum. The radar 

transmit waveform can then be made to occupy a temporal eigen space orthogonal to 

this interference region, where no clutter can exists. However this may or may not be 

entirely possible depending on the interference power spread across the spectrum. If 

the clutter is significant, then there may not be any ‘empty’ portions in the eigen 

spectrum for the transmit waveform to fill. But the whole idea can be better exploited, 

if we opt for space-time codes instead of pure temporal codes. With these codes, we 

have more space-time degrees of freedom or more flexibility available to confine our 

clutter to a smaller subspace, or place our transmit energy in subspaces independent 

of clutter.  

Thus we find that although all these methods are useful and potent in their 

own respect, none of them make use of the real potential of space-time codes as 

shown in Figure 1.3. Moreover all these algorithms are designed to give optimal code 

for just one target – point or distributed. In any real life radar scenario there are bound 

to be multiple targets present at any given time. Thus there is a need to come up with 

codes which give maximum SINR for multiple scattered targets, or which are 

optimized with respect to more than one target simultaneously. Also, in all these 

algorithms there is a tradeoff between SINR improvement and the quality of the radar 

waveform. As the eigen space used to find the optimal waveform gets smaller, the 

optimized waveform gets poorer with respect to other characteristics like resolution 

and ability to control sidelobes. For example in [19] the optimized waveform for 
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detection of T-72 battle tank turns out to be long duration, narrow band continuous 

waveform (CW). Although such a long duration CW waveform is consistent with the 

idea of placing the transmitted energy in a narrow band of spectrum not occupied by 

clutter, it does not provide the necessary range resolution which is inversely 

proportional to the signal bandwidth [1].  

In addition none of these optimal waveform–matched illumination concepts 

seem to work well in the cases of high clutter to noise ratio (CNR), which is typically 

the case for stationary ground targets. As a result these optimized waveforms will find 

application mainly for a moving target indicator (MTI), rather than a traditional SAR 

which images stationary objects. All these factors contributed to the motivation for 

this research - towards finding true and optimal space time codes for improving radar 

performance in multiple modes. Before we go about describing some of the other 

advantages of true space-time codes, the topic of the next section, let’s briefly touch 

upon the subject of space time codes and beamforming in the area of wireless 

communications.  

1.2.4 Space-Time Codes for Communications 

A lot of work has been done in the field of space-time coding for 

communications [20-25]. Space-time codes are used in communications mainly to 

overcome the effects of fading, and also achieve higher data rates. Temporal and 

spatial correlation is introduced into signals being transmitted from different transmit 

antennas, which provides diversity at the receiver even with a single receive element - 

as done in the Alamouti scheme [24, 25]. Thus using space-time codes, more data can 
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be transmitted over a multi-path fading channel for the same amount of available 

bandwidth. This effectively means saving time and bandwidth at the expense of extra 

spatial dimensions, and thus directly translates to coding gain or increased system 

capacity. Although there are a few similarities between space-time codes for 

communications and radars, they inherently remain two different problems. To 

understand this difference, let’s once again consider the two fundamental goals of a 

space-time code or any transmit code for that matter – 

• To make all the responses as energetic as possible, so that they stay above 

the noise level. 

• To make all the responses as uncorrelated as possible, so that they can be 

distinguished at the receiver.   

In the case of communication systems, these responses correspond to the 

various symbols being transmitted over the channel, while for a radar, the responses 

are from the different targets we are trying to image. Now for a communication 

system we have a number of different transmit symbols (depending on the modulation 

scheme), going over the single channel. Hence for each symbol, we are allowed to 

come up the best space-time code for the same propagation channel. The solution is 

therefore a code matrix, where each column is the optimum code for one transmitted 

symbol. This communications space-time problem is illustrated in Figure 1.4. The 

channel is modeled as a matrixH , the space-time vectors for each of the transmitted 

symbol are denoted by 1 2 ns ,s s… , and the corresponding channel responses 
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as
1 2 n
ρ ,ρ ρ… . The goal is to form a code matrix 1 2 nS s s .... s    ====       such that the 

matrix [[[[ ]]]]n21
ρ....ρρΡ ====  turns out to be unitary (assuming unit energy for each 

transmit code vector). 

 

Figure 1:4 Space Time Codes for Communications 

 

 

Note: The superscript  
H
  stands for conjugate transpose and I is the identity matrix. 
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Figure 1:5 Space Time Code for Radar 

  

As can be seen, for the radar problem we have just one space-time transmit 

signal, and multiple channels as each target has a different location in space. The 

propagation paths from the transmitter to individual targets, and also back to the 

receiver make up several independent channels. Also there is no notion of multiple 

transmit signals, as the radar is not involved in transmission of information unlike a 

communication system. We just have one transmit code for a given scenario, and 

need to find that one code which will optimize the performance for several different 

channels concomitantly. Thus the optimal solution for this problem is a vector - s , 

and not a matrix like the previous case. Clearly this is a more difficult, more 

challenging problem than before, and makes up for a really interesting study. 
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1.2.5 Smart Antennas 

A final word about the space-time beamforming techniques employed in 

wireless communications before moving onto the next section. These techniques 

employ multiple transmit apertures for controlling the antenna illumination pattern, 

and can thus be considered as a form of space-time coding (although as will be seen, 

not the true space time coding defined previously). Probably the most prevalent 

application of this technique in cellular communications is “smart antennas” [26-28].  

Smart antennas consist of a number of apertures and can be used to 

dynamically change or fine tune the coverage pattern based on the changing traffic 

and RF conditions in the cell. The magnitude and phase associated with each array 

element can be dynamically controlled, for beam-steering or synthesizing sculpted 

illumination patterns to suit the topology of a cell or sector (much like the phased 

array approach). Highly directional beams can be obtained both on the transmit and 

receive sides, which result in reduced network interference. Since cellular systems are 

mainly interference limited, this results in higher capacities, improved quality and 

better coverage. The whole idea of using a narrow beam to track each mobile in the 

network and minimize interference from unwanted directions, is very analogous to 

the radar problem, where we want to put energy on only those areas which we wish to 

detect or estimate, and no energy on areas we are not interested in. Figure 1:6 

highlights the concept of a smart antenna system. 
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Figure 1:6 Smart Antenna concept - Sculpted patterns to fit the topology of the sector. 

 Minimizes transmit power, reduces interference and balances load [28] 

 

Even though it may seem like smart-antennas are the solution to the “space-

time illumination optimization” criterion described before, essentially they are just 

the phased array systems of Figure 1.3. The fact that each array element propagates 

the same time-frequency signal (just modified in magnitude and phase at each 

antenna) weans away a lot of power from the transmit array. As seen before, the 

degrees of freedom available to such an arrangement are far lesser than that to a true 

space-time structure, which directly affects the effectiveness of these systems in 

coming up with the desired illumination patterns. Similar work has been done in the 

field of radars where the spatial pattern is used to place nulls in the direction of 

maximum disturbance [29]. In all these cases the only unknowns to be determined are 
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the complex weights on each of the spatial apertures, and thus the transmit vector 

reduces to a plain spatial code; but that is completely different from what we striving 

for in this research – “dissimilar time-frequency signals on each transmit element or 

true, non-separable space time solutions". We now move on to the next section, 

which outlines some of the other propelling factors behind the true space-time code 

design. 

1.3 True Space-Time Codes – Motivation  

This topic probably does not require separate categorization as we have 

already covered many advantages of space-time coding and processing in our earlier 

sections; but it might still be a good idea to summarize all the points at one place. 

Like stated before, the true potential of a multi-aperture transmit array is realized only 

when each antenna propagates a different function of time and frequency – i.e. it acts 

as a “true space-time transmitter”. Since dissimilar signals are present at each 

transmitter (satellite), the solution is a non-separable code in space and time. Such 

signals exploit a greater fraction of the available degrees of freedom and thus result in 

a better radar performance. Here we synopsize some of the major advantages of true 

space-time codes: 

• Better radar performances using the same transmit power and radar resolution. 

• Reduced receiver complexity – if the optimal code results in all target 

responses to be equally energized and uncorrelated, then all linear estimators 

become equivalent and a simple matched filter can be used. 



 22 

• Equal distribution of power across all satellites in space-borne radar. 

• Improving performance in multiple modes – SAR and GMTI, and also 

simultaneous mode operation. 

• Minimizing vulnerability to jammers, as the signal on each target location is 

not related by a simple translation in delay and doppler and hence is not 

predictable. 

But coming up with such true space-time signals is much more difficult, as 

now we need to determine the optimum weights for all the transmitted samples on 

each of the transmit antennas, and not the weights just for the antennas. Ideally we 

would like our code to be the perfect code described earlier, i.e. the one which 

illuminates all targets equally, does not illuminate any clutter, and at the same time 

makes responses from all targets orthogonal. However such a code does not exist 

(except for the simplest of problems), and hence we endeavor to find an optimal code 

for some other optimization criteria. Examples for the different optimization criteria 

can be: 

• Maximize the average energy on all targets 

• Minimize the average energy on all clutter objects 

• Maximize the ratio of total signal (target) to clutter energy - SCR 

• Maximize the SCR for the target receiving the worst SCR 

• Minimize the maximum correlation between any two targets 

The first four rules come under the purview of this thesis and have been covered in 

sufficient detail. The fifth has been dealt extensively in [8] as it comes under the 
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domain of “ambiguity optimization”. The objective of this study is thus, to come up 

with the mathematical and algorithmic knowledge required to construct space-time 

transmit waveforms, for a high altitude multi-aperture SAR, which are optimal with 

respect to specific optimization criteria. 

1.4 Organization of the Document 

In the following chapters of this thesis we describe our work towards the 

optimal waveform construction. Chapter 2 starts with the description of the space-

time radar model used to simulate the radar geometry, propagation physics and target 

distribution. The model is represented in terms of vector matrix relations. We also 

introduce a transmit signal model that defines a search space in which to hunt for our 

best transmit code. Although the search-space can theoretically be infinite 

dimensional, some constraints are placed on the type of transmit signals we can come 

up with depending upon our choice of basis functions. This method allows for 

numeric implementation and application of linear algebraic techniques to our 

problem, which also forms the core of our design algorithms. Later on we merge the 

two models, to define one overall composite model. Derivation of some of the 

numeric model parameters used as default inputs to our model has also been included. 

Chapter 3 starts with the actual space-time illumination optimization concept. 

Some of the basic optimization criteria and associated algorithms are introduced. The 

functioning of these standard algorithms is explained, and results are provided to 

validate their performance. Few of the early issues that we encountered while 
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embarking on this path have also been highlighted. The chapter ends with some of the 

limitations of these basic or standard codes, which call for the design of more 

advanced algorithms.  

Chapter 4 describes the four types of advanced algorithms developed - the 

Maxi-mins, which enable us to overcome one of the major shortcomings of the 

standard codes – “the orphan problem”. We explain how these algorithms are 

different mathematically, and their success is demonstrated through simulation results 

for a number of different scenarios. Based on the numerous results we converge to 

one of these four algorithms, the best or our champion code. 

In Chapter 5 a more detailed analysis is performed to understand the true 

nature of these advanced algorithms, and also confirm their optimality. The focus is 

not on “how well the algorithms work”, but more on “why they work”. Two new 

methods for applying the maxi-min criteria are also derived, their operation studied, 

and performance evaluated. 

Chapter 6 is probably the most interesting chapter in this thesis and 

demonstrates the power of space-time codes for a number of diverse applications. 

This chapter is full of results showing how space-time codes are different, better and 

much more versatile than the other kind of spatial codes. Some new discoveries were 

made along the path, and have also been documented. 

Chapter 7 contains a few other approaches that were tried during this study, 

but do not make up for as big a story as the earlier ones. Nevertheless these 

approaches brought out some interesting points of their own, and have potential 
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utility for specific applications. Relevant results are provided to support this claim. 

The chapter also includes two of the more ambitious ideas that were tried but did not 

work, more specifically trying to de-correlate the target responses by means of 

suitable transmit codes, and coming up with optimal transmit solution for the MTI 

problem. However the chapter does give useful insights into these problems, and 

provides us with possible pointers towards future work.    

Chapter 8 is the last chapter and winds up all the work that has been done in 

this research. We summarize all the ideas, present conclusions and end by giving 

possible recommendations for future work. 
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Chapter 2  

Radar Models 

 

2.1 Need for Radar Models 

We needed a transmission, target and propagation model [30] to represent our 

space-time radar and come up with the optimal transmit codes. This software model 

was implemented in Matlab and in the absence of actual SAR data, allows for the 

testing and evaluations of various transmit code algorithms. The model was kept 

fairly simple and is based on the physical assumptions of flat earth, far-field, single 

polarization and free space. However it is still fairly accurate in its representation of 

the physics behind a space-time radar illuminating an arbitrary target set, which can 

consist of any combination of point, distributed, stationary, moving, airborne and 

surface targets.  

In addition we also required a transmit signal model [31] to represent the radar 

transmit signal as a complex superposition of orthogonal basis functions. This method 

reduces the problem of finding an optimal transmit signal, to that of finding the 

complex weights for each of the basis functions. In other words, now we just have to 

find an optimal transmit vector the complex coefficients of which completely 

describe the optimal transmit waveform. Therefore these models enable the 

representation of the space-time radar scenario with vector matrix notations, and thus 

the application of linear algebraic techniques (eigen analysis) to come up with the 

solutions.        
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2.2 Transmission, Target and Propagation Model 

This section aims at giving a brief insight into the mathematics behind signal 

propagation from the radar to a collection of scatterers and then back to the receiver. 

The readers are referred to [8, 28] for a more detailed description. The radar transmit 

signal is a function of both space and time and can be modeled as a superposition of 

N basis functions. 

 
1

( ) ( )
N

n n
n

s z s zφ
=

=∑  (2.1) 

The basis functions φ  are functions of 3-D space, time and frequency collectively 

spanning the entire timewidth, bandwidth and the spatial extent of the of the radar 

array. The vector z is therefore a 5-D vector, spanning three dimensions of space - x, 

y and z, and one each of slow time t and fast frequency w.  

 Tz x y z t w  =  (2.2) 

One of the simplest ways to represent the transmit signal in terms of basis functions, 

is to think of each basis function as a time-frequency sample present at one of the 

spatial transmitters. The vector s containing the complex weights sn for each of the 

time frequency samples (basis functions) will then represents the transmit signal 

completely.  

 1 2 3� N

Ts s s s  =s  (2.3) 

Note that this is only one of the many possible, and probably the simplest of ways to 

represent our transmit signal. The choice of the basis functions actually plays a very 
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important role in the ability of our algorithms to come up with best transmit code (as 

will be seen in later chapters). The example of using ‘samples’ as our basis functions 

is just provided for illustration purposes - the actual basis functions used were very 

different and form the topic of the next section. The radar transmit signal propagates 

to the targets where it illuminates a set of scatterers. The joint target scattering 

response can also be modeled as a combination of Nt orthonormal basis functions, 

where Nt is the number of targets.    
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y yγ γ ψ
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=∑  (2.4) 

 

The basis functions ψ  are functions of 3-D space and radial velocity. Each of them 

represents a point or distributed target, at different locations and different velocities. 

The weights tγ  are the complex scattering coefficients associated with each target, 

and weigh the corresponding basis functions appropriately. The vector γγγγ of complex 

scattering coefficients tγ  then defines the set of illuminated targets completely. 

 r

Ty x y z v  =  (2.5)                                                             

 1 2 3γγγγ �
tN

Tγ γ γ γ 
 =  (2.6) 

Actually for our case i.e. the problem of space-time illumination optimization, we 

need not go any further while modeling the radar propagation. It is because the 

illumination problem is concerned only with the propagation from the transmitter to 

the illuminated targets. In fact even the knowledge of target scattering coefficients is 

extraneous and is unnecessary for the problem at hand. However for the sake of 
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completeness, the whole model which was developed for propagation from the 

transmitter to the targets and back to the receiver will be presented, and then the 

relevant portion applicable to our case will be pointed out.      

Continuing with our discussion, the energy scattered from the targets 

propagates back to the receiver where the received signal can again be modeled as a 

function of space and time. More accurately it can be represented as a weighted 

superposition of M orthonormal space-time basis functions, where M is the total 

number of received measurements over the entire spatial extent of the array.         

 
1

( ) ( )
M

m m
m

r x r xϕ
=

=∑  (2.7) 

The basis functions ϕ  are again functions of 3-D space, slow time and fast frequency. 

They describe the receive array aperture and the time frequency sampling function of 

the receiver. The complex weights rm can be thought of as the receive A to D samples 

which weigh these basis functions to result in the complete space-time receive signal. 

The vector x  is again a 5-D vector of space and time and the vector r of complex 

weights rm completely defines the received space-time signal. 

 Tx x y z t w  =  (2.8)  

 1 2 3� M

Tr r r r  =r  (2.9) 

The aim of the whole model was to come up with this receive vector r for a 

given space-time transmitter and an arbitrary collection of scatterers, accurately 

modeling the radar physics and propagation effects. From (2.7), the received complex 

weights can be expressed as: 
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 ( ) ( )m mr r x x dxϕ= ∫  (2.10) 

However, the transmitted, target and receive functions are also related by the 

following convolution integral through the dyadic Green’s propagation functions 

[33].  

 ( ) ( ; ). ). ( ; ). ( )(
��

r x H x y y G y z s z dz dyγ= ∫ ∫  (2.11) 

Where the functions ( ; )
�
G y z  and ( ; )

�
H x y  are the dyadic Green’s functions 

describing the propagation from the radar transmitter to the targets and back to the 

receiver respectively. Rest all parameters are as defined earlier. Using (2.11) in (2.10) 

we get: 

 ( ) ( ; ). ). ( ; ). ( )(
��

m mr x H x y y G y z s z dz dy dxϕ γ= ∫ ∫ ∫  (2.12) 

And then inserting the expansions of (2.1) and (2.4) we have: 
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Where the complex value t
mnH  is given by: 

 ( ) ( ; ). ). ( ; ). ( )(
��

t
mn m t nH x H x y y G y z z dz dy dxϕ ψ φ= ∫ ∫ ∫  (2.14) 

The result of (2.13) can be expressed in vector-matrix notation as: 
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where Ht is a M x N matrix for each target, with the elements t
mnH . 
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Vector n is simply the additive noise in the measurement vector, and vector ρρρρt t= sH  

is the normalized response from the t
th
 target (assuming complete reflection). 

 Thus the matrix Ht completely characterizes the propagation from the 

transmitter to the target and back to the receiver for target t. This set of Nt matrices 

are critical parameters for all our simulations and optimization procedures and need to 

accurately represent the propagation effects based on the physical scenario, 

transmitter-receiver geometry, and target distribution. The transmission, target and 

propagation model was therefore developed [30] and coded in Matlab for this 

purpose, which takes into account all the factors like radar location, altitude, velocity, 

look angle, number of transmitters, targets etc. The actual implementation details can 

be found in [8]. 

Before moving on to our transmit signal model it would be a good idea to 

clarify an important point that was mentioned before. For the target illumination 

problem we just need part of the model which reflects the propagation from the 
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space-time transmitter to the illuminated targets. As a result only half of the 

aforementioned model is used for all our optimization algorithms and test cases. More 

specifically, from [30] it can be seen that when the model is coded or implemented in 

software, the individual elements of the Ht matrices are given by: 

 
( )

( , : )
sT sT T t t tT s s
m nt tntj jjt

mn h
H g m n t e e eφ φ θθ− −−= +x K y y K K zy K z

 (2.17) 

In this expression ( , : )
h

g m n t  is a complex weighting function that relates the 

transmit samples to the receive samples for a given target. This function can be split 

into its spatial and temporal components which relate spatial and time-frequency 

samples respectively, on both transmit and receive sides. We can think of the spatial 

function as being made up of additional antenna weighting functions or antenna 

tapers at the transmitter and receiver, and the temporal function as an interpolation 

function that takes into account the contribution of multiple time-pulses in one 

observation window for near and far targets. The two matrices θK and φK  are real 

valued frequency matrices which relate the transmit signal space to the target position 

space and the target position space to the receive signal space respectively. Basically 

these matrices provide information about the rate of change of phase of the received 

radar signal with respect to various radar and target parameters. For the exact 

derivation and interpretation of these matrices the readers are referred to [8, 34]. 

These matrices can be further partitioned into their spatial and temporal components:  

 θ θ θ =  
s tK K K  (2.18) 

 φ φ φ =  
s tK K K  (2.19) 
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The vectors zn, yt and xm are real valued position vectors of the n
th
 transmit sample, t

th
 

target and the m
th
 received sample in the transmit, target and receive signal space 

respectively. Transmit and receive sample position vectors can be further split into 

their spatial and temporal components as: 

 ) ( )T T

n n n
 =  

s tz (z z  (2.20) 

 ) ( )T T

m m m
 =  

s tx (x x  (2.21) 

The matrix Ht is M by N in size where N is the number of transmitted space-time 

samples and is given by: 

 
Number of transmit antennas

Number of transmit time-frequency samples on each antenna

N J K

J

K

= ×

=

=
 (2.22) 

M is the number of received space-time samples and is given by: 

 Number of receive antennas

Number of receive time-frequency samples on each antenna

M I K

I

K

′= ×

=

′=

 (2.23) 

 

Having explained all the individual terms, it can be seen from (2.17) that the 

exponential 
( )T s s T t t

n nt tj j
e eθ θ− −y K z y K z

 essentially describes the propagation from the 

transmitter to the target, while the exponential 
( )sT sT T t t

m nt tj j
e eφ φ− −x K y y K z

accounts for the 

extra path from the targets to the receiver. Since we are just interested in the 

propagation till the targets, the second term can be left out in the construction of Ht 

matrices for our case. Also, we do not have any concept of multiple receive antennas 
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(I receive elements) for the illumination problem. Instead we can think of a single 

receive antenna being present at each of the targets which receives all the temporal 

samples of the transmitted signal. Hence the number of receive samples for this case 

will not be M (total space-time receive samples at I elements), but will be equal to the 

number of temporal samples at each of the targets -K ′ . Thus the Ht matrices for this 

case of illumination optimization problem are constructed as:  

 
( )

( , : )
T s s T t t

n nt tj jt
k n h

H g k n t e eθ θ− −
′ = ′ y K z y K z

 (2.24) 

where t
k n

H ′  are the individual elements and each matrix is K ′  by N in size. For our 

optimization algorithms we need the Ht matrices for all targets, and sometimes also 

the normalized response ρρρρt  for evaluating the various algorithm performances. Thus 

these are the two critical parameters extracted from the transmission, target and 

propagation model.  

2.3 Transmit Signal Model 

2.3.1 Introduction 

To accomplish our goal of finding optimal transmit signals for different 

optimization criteria, we write our space-time transmit signal as a weighted 

superposition of orthonormal basis functions. This warrants a need for a transmit 

signal model which has been described in this section. The way we expand our 

transmit signal in terms of various basis functions is very important, as the choice of 

basis functions has been seen to play a crucial role in extracting good answers from 
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our optimization algorithms. Significant improvement in performance was observed 

when the narrow timewidth, narrow bandwidth basis functions (samples or pulses) 

were replaced by wide timewidth-wide bandwidth functions. Hence this model has 

been covered in substantial detail in this section, and along with the earlier 

transmission and propagation model provides a complete structure for determining 

optimal space-time codes for various criteria. 

As mentioned before, if we expand our arbitrary space-time waveform using a 

set of orthonormal basis functions, then the whole problem of finding an optimal 

transmit signal reduces to one of finding the optimal weight for each basis function. 

Finding an optimal set of complex weights is akin to finding the best vector in a 

multi-dimensional space, and allows for the direct use of linear algebraic techniques 

like eigen value/eigen vector analysis.  

In this section the mathematics describing the construction of a radar signal 

from a set of wide timewidth-wide bandwidth temporal basis functions distributed 

across all elements of the transmit array has been proposed. These space-time basis 

functions can be separated into their spatial and temporal components. Each of the 

temporal basis functions spans the full timewidth and bandwidth of the radar and is a 

good radar signal in itself. A methodology of coming up with new basis functions 

from standard “mother functions”, by shifting them in time and frequency has also 

been presented. Once again, only the salient features of the model have been included 

here. For a more complete description the readers are referred to [31].  
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2.3.2 Inputs to the Transmit Signal Model 

 Let’s start our description by defining some of the model inputs:                            

fc = carrier frequency (Hz) 

B = transmit signal bandwidth (Hz) 

fo = pulse repetition frequency – PRF (Hz) 

U = integer number of pulses transmitted as part of the transmit signal (kept odd to 

simplify the math) 

Q = odd number of ‘fast-time’ basis functions 

P = odd number of ‘slow-time’ basis functions 

gs(t) = a ‘mother function’ used to generate new slow-time basis functions 

Gf(w) = a ‘mother function’ used to generate new fast-time basis functions 

{ τq } = Q time delay values used to generate all the fast-time basis functions 

{ wp } = P frequency shift values used to generate all the slow-time basis functions 

Some other parameters which can be derived from the above set of primary 

parameters are: 

1/fo = To = pulse repetition interval – PRI (sec) 

UTo =  T = transmit signal timewidth (sec) 

wo = 2πfo = angular pulse repetition frequency (radians/sec) 

wc = 2πfc = angular carrier frequency (radians/sec) 

2.3.3 Signal Construction 

We know that any real valued temporal signal can be expressed as: 
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 ( ) Re{ ( ) }cj w t

sv t S t e
−=  (2.25) 

Here S(t) is a complex function describing the magnitude and phase, or the part 

containing all the real information about our transmit signal. This is the function we 

are trying to optimize for a number of different optimization criteria. For this purpose, 

S(t) can be written as a weighted superposition of R = PQ complex basis functions 

( )pq tψ : 

 ( ) ( )pq pq

p q

S t S tψ=∑∑  (2.26) 

Note that we are just dealing with temporal signals here; there is no concept of space-

time yet. The two indices ‘p’ and ‘q’ are used as each of these basis functions is in 

turn written as a product of a slow, and a fast time basis function. 

 ( ) ( ) ( ) c oj w uT

pq p q o

u

t s t f t uT eψ = −∑  (2.27) 

The slow and the fast time basis functions cannot exist independently, and are always 

used in conjunction. From (2.25) – (2.27) it is evident that the set of weights Spq 

completely describe our transmit signal, and thus the goal of all our optimization 

algorithms is to come up with the optimal set of values for these weights. These set of 

PQ weights can be expressed in the form of a vector S
t
 of dimension R by 1, where: 

 R P xQ=  (2.28) 

 [ ]1 2 3�
T

RS S S S=t
S  (2.29) 
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As mentioned before, this approach reduces the problem to searching for the best 

vector in an R dimensional space, and therefore directly calls for the use of linear 

algebraic tools like eigen analysis; more on that later. 

Moving on with our discussion of basis functions, the functions ( )ps t  

describe a set of P slow-time functions having a narrow bandwidth and wide 

timewidth T (i.e. a kind of phase envelope over the entire duration of the transmit 

signal). Similarly the functions ( )qf t  describe a set of fast-time basis functions, each 

with a narrow timewidth and wide bandwidth B (i.e. like a pulse function). Thus the 

function ( ) c oj w uT

q o

u

f t uT e−∑  describes a full train of U pulses, each coming after the 

PRI of To. The exponential 
c oj w uT

e  accounts for the carrier phase at the instant of each 

pulse. For different fast time basis functions - ( )qf t , we have different pulse trains. 

Each of these unique pulse trains weighted by the phase envelope ( )ps t  describes a 

single basis function. It should be obvious then that more are the available choices in 

terms of the types of pulse trains - ( )qf t  and phase envelopes - ( )ps t , more are the 

available degrees of freedom, and more are the chances of coming up with a better 

transmit signal. This point is validated in one of the later chapters where the 

performance of our algorithms is seen to improve tremendously with the increase in 

the number of basis functions.          
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2.3.4 Fast and Slow Time Basis Function Design 

Having expressed the transmit signal in terms of the various fast and slow 

time basis functions, the next step is to come up with a procedure for generating 

different basis functions from some kind of a standard function. The different fast and 

slow time basis functions are derived from a mother function each, by delaying the 

fast and slow time mother functions in time and frequency respectively. The mother 

function has to be carefully selected to satisfy the property of narrow time width, 

wide bandwidth for the fast time and wide timewidth, narrow bandwidth, for the slow 

time basis functions. 

For e.g. the fast time basis functions ( )qf t  are just a delayed version of a 

mother function ( )fg t . 

 ( ) ( ) , wherec qj w

q f q q of t g t e T
ττ τ= − <<  (2.30) 

For satisfying the earlier stated requirements and also simplifying the math, this 

mother function is made to have certain properties like – unit energy, even function, 

narrow timewidth and wide bandwidth.  

Similarly the different slow time basis functions ( )ps t  are expressed in the 

frequency domain as a delayed version of the Fourier transform of a mother 

function ( )sG w . 

 ( ) ( ) , wherep s p p oS w G w w w w= − <<  (2.31) 

 ( ) ( ) j wt

p pS w s t e dt

+∞
−

−∞

= ∫  (2.32) 
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and 0( ) ( )sG w S w=  (2.33) 

is the non-delayed frequency domain mother function corresponding to the 0
th
 slow- 

time basis function. The mother function ( )sG w also has similar properties like it’s 

even, has unit energy but is wide timewidth and narrow bandwidth unlike the fast-

time mother function.  

As an example, the derivation of two fast time basis functions 0 ( )f t  and 

1 ( )f t  has been shown from the same mother function in Figure 2:1 on the next page. 

The mother function ( )fg t  in this case is a sinc waveform which satisfies all the 

above stated requirements. As can be seen the two basis functions are just a time 

shifted version of each other where the time shift is qτ . 
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Figure 2:1 Generation of fast time basis functions from the time domain sinc mother function 

Similarly the different slow time basis functions can be visualized in the frequency 

domain as the frequency shifted version of the same mother function ( )sG w .  Once 

again the frequency domain mother function is considered to be a sinc. The two basis 

functions are separated by a translation pw  in the frequency domain which 

metamorphizes into a phase shift in the time domain. 

To τq To + τq 

 

0 To 
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τq τq 
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Figure 2:2 Generation of slow time basis functions from the frequency domain sinc mother 

function 

 

An important point which comes out from this illustration is the constraint on 

the values of P and Q, or the number of slow and fast time basis functions we can 

have. Although more number of basis functions means more degrees of freedom and 

thus more flexibility in constructing our transmit signal, the number of basis functions 

cannot be increased arbitrarily. Besides the obvious downside of increasing the length 

0 wo/2 

w 

w 

S0(w) 

S1(w) 

 

wp τq 

-wo/2 

0 wo/2 -wo/2 wp 
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of the simulation (more basis functions is equal to a larger dimensional search space) 

the number of basis functions are limited by the PRF of the radar. As can be seen 

from Figures 2:1 and 2:2 the values of P and Q are limited by the following two 

inequalities: 

 0qQ Tτ ≤  (2.34) 

 0pPw w≤  (2.35) 

For higher values of P and Q the fast and slow time basis functions would leak into 

the next time and frequency window, and would essentially wrap around to result in 

the same basis functions as before. Thus increasing the number of basis functions 

beyond a point does not yield any additional advantage. The PRF along with the radar 

time and bandwidth, sets an upper limit on the number of slow and fast time basis 

functions that can be used.   

2.3.5 Sampled Windowed Fourier Transform of S (t) 

Now that we have the definitions of our slow and fast time basis functions, we 

can use them in (2.26)-(2.27) to come up with our complete expression for the radar 

transmit signal. Noting that:  

 
1

( ) ( )
2

j wt

p ps t S w e dw
π

+∞

−∞

= ∫  (2.36) 

And using this with (2.27) in (2.26), we get: 

 ( )
1

( ) ( )
2

c o
j uT

q o

u

j wt

pq p

p q

f t uT eS t S S w e dw
ω

π

+∞

−∞

−= ∑∑∑ ∫  (2.37) 
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After some simplifications and using the earlier expressions from (2.31) – (2.33), it 

can be shown that: 

 ( )( ) ( )p c o
t j uT

q o

u

j

pq s

p q

g f t uT eS t S e t
ωω

−= ∑∑∑  (2.38) 

where ( )sg t is the inverse Fourier transform of the frequency domain slow time 

mother function.   

 
1

( ) ( )
2

j wt

s sg t G w e dw
π

+∞

−∞

= ∫  (2.39) 

We would like to express our transmit signal as a vector of independent time-

frequency samples. For this purpose we take a windowed Fourier transform of the 

time domain signal of (2.38), and then sample the frequency spectrum at each time 

window. The window function is made to have certain properties like – even 

function, timewidth of one PRI i.e. To and unit value at the center (i.e. at t = 0). Thus 

the window function effectively selects one pulse at a time from the train of U time 

pulses, and the Fourier transform of the resulting time domain signal is evaluated. 

Skipping a lot of messy math, it can be shown that the windowed Fourier transform of 

our signal has the following form: 

 
( )

( , ) ( ) ( )p o c qo
ju T jj uT

o s o pq f

p q

s uT g uT e S G e e
ω ω ω τωω ω − −−=∑ ∑  (2.40) 

where ( )fG ω is the Fourier transform of the fast time mother function ( )fg t  

 ( ) ( ) j wt

f fG w g t e dt

+∞
−

−∞

= ∫  (2.41) 
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The next step is to sample the frequency spectrum at each of the pulse locations i.e. 

uT0. Since the time extent of the window is T0 (i.e. from - T0/2 to + T0/2), we just need 

to sample at a rate: 

 
0

2
ow w

T

π
∆ = =  (2.42) 

to satisfy Nyquist criteria. However we choose to oversample with  

 / 2ow w∆ =  (2.43) 

so as to increase the observation period in the time domain from -To to +To. This is 

done to capture the leakage effect of the previous and next pulses for the near and far 

targets respectively, in the observation window of the current pulse (as our 

observation window in time, is specified with respect to the target exactly at the 

centre of the illuminated area). The assumption is that the only extra energy that leaks 

into the window of the current pulse is from the adjacent pulses. Hence we need to 

map the whole time range from -To to +To unambiguously before applying our 

windowing function, which extends from -To/2 to +To/2, and thus the oversampling in 

frequency. At the receiver, or even at the targets to compute the normalized 

responses, we throw out the extra frequency samples (as they do not contain 

additional information); again effectively sampling the spectrum at ow w∆ = . 

Sampling the windowed frequency response and defining a complex value uvs , 

we can simplify (2.40) as (intermediate steps again left out for simplicity):   

 
( )
2( ) ( )

2

o
c q

p o

v
jju T o

uv s o pq f

p q

v
s g uT e S G e

ω
ω τω ω − −

=∑ ∑  (2.44) 
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This complex value uvs  essentially describes the v
th
 frequency sample of the u

th
 time 

pulse. Thus there are a total of U transmit pulses and V frequency samples for each 

pulse. The value of V is given as: 

 0

2
1 2 1

/ 2o

B
V BT

w

π
≈ + = +  (To make V odd) (2.45) 

Multiplying by the number of pulses we get the total number of time frequency 

samples as: 

 02 ( ) 1 2 1 2UV B UT BT BT= + = + ≈  (2.46) 

Thus the number of spectrum samples we have, are twice than what are required i.e. 

BT. And thus at the receiver we can decimate and throw out the extra frequency 

samples to come up with our received vector, or even the normalized responses for 

each target. We define another complex value: 

 
( )
2( ) ( )

2

o
c q

p o

v
jju Tpq o

uv s o f

v
g uT e G e

ω
ω τω ω

ψ
− −

=  (2.47) 

which enables us to write the complex transmit signal samples more compactly as: 

 pq

uv uv pq

p q

s Sψ=∑∑  (2.48) 

Thus each and every time-frequency sample of the transmit signal can be written in 

terms of the basis function weights pqS  and the complex terms pq

uvψ . These terms pq

uvψ  

get established once we select our basis functions, PRF, signal timewidth, bandwidth 

etc, and the only parameters remaining that define our transmit signal are the weights 

of the R (= PQ) basis functions. This vector of the basis function weights is what we 

intend to find. A vector matrix model has been developed for this purpose which is 
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described in the next subsection. It involves extending the present model to space-

time signals, as well as an interfacing it with the previous transmission and 

propagation model.  

2.3.6 A Vector/Matrix Signal Model and Extension to Space-Time 

Transmit Signals 

After a little re-indexing of the data samples, (2.48) can be rewritten as: 

 k kr r

r

s Sψ=∑  (2.49) 

where 






 +
++=

2

1
)(

UV
vuVk  and 







 +
++=

2

1
)(

PQ
qpQr . Hence the vector of all 

ks values [ ]�
Tt

1 2 3 Ks s s ss  =  describes the transmit signal completely in terms of the 

2BT time frequency samples. It can be determined from the vector of all rS values 

[ ]1 2 3�
t T

RS S S S=S  or the basis function weights. As mentioned before R P xQ= , 

andK U xV= . If the KR values krψ  are written in matrix form: 

 

11 12 13 1

21 22 23 2

31 32 33 3

1 2 3

… … …

… … …

… … …

� �

� �

� �

R

R

R

K K K KK

ψ ψ ψ ψ
ψ ψ ψ ψ
ψ ψ ψ ψ

ψ ψ ψ ψ

 
 
 
 
 

=  
 
 
 
  

ψ  (2.50) 

 then our model simply reduces to: 

 t t=s ψS  (2.51) 
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All the equations up till now have been for a single transmit element, i.e. we have 

been dealing with purely temporal signals. If we wish to extend this model to 

represent true space time signals, then we have to consider a similar transmit signal at 

each of the transmit elements. 

Let J be the number of spatial transmit elements, then there will be a total of 

N J K= ×  transmit samples with K time-frequency samples on each of the J elements. 

Similarly there will be a total of W J R= ×  basis function weights. We can arrange 

the time-frequency samples and the basis functions weights in terms of the following 

two vectors:    

 1 2 3[ , , , , ]�
s T

k k k k Jks s s s=s  (2.52) 

 1 2 3[ , , , , ]�
s T

r r r r JrS S S S=S  (2.53) 

where s

ks  essentially contains the k
th
 time-frequency sample, and s

rS  contains the r
th
 

basis function weight for all the transmit elements. Thus two composite vectors can 

be formed, that contain all the time-frequency samples and basis function weights 

from the individual s

ks  and s

rS :          

 1 2 3[(s ) , (s ) , (s ) , , (s ) ]�
s T s T s T s T T

K=s  (2.54) 

 1 2 3[(S ) , (S ) , (S ) , , (S ) ]�
s T s T s T s T

R=S  (2.55) 

It can be shown that these two vectors are related as [31]:   

 s = FS  (2.56) 

where F is an N by W matrix and is given as: 

 ψψψψ J⊗F = I  (2.57) 
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⊗ indicates the kronecker product. The matrix ψψψψ  calculated using (2.50), contains 

only the temporal characteristics of the transmit signal and does not depend on the 

number of transmit elements. The matrix F contains the complete space-time 

attributes of the transmit signal and essentially becomes the output of the transmit 

signal model. 

Once we have the matrix F, the only thing that remains is the application of 

this matrix to the earlier transmission and propagation model. It turns out that this 

interfacing is very simple and is explained below. From the earlier propagation model 

we know that: 

 t t=ρ H s  (2.58) 

 s contains the actual time-frequency samples of our transmit signal. Using (2.56) of 

the transmit signal model we have, 

 t t=ρ H (FS ) , or (2.59) 

 t t
′=ρ H S  (2.60) 

Here t
′H  is an M x W matrix and is defined as: 

 t t
′ =H H F  (2.61) 

Therefore from (2.60) the illumination optimization problem can be concisely stated 

as - for a given collection of t
′H matrices find the optimal vector S, which would 

result in the best set of vectors tρ , for a particular optimization criterion. We call 
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these transmit vectors as transmit codes, and from now on both the terms would be 

used inter-changeably within this document.   

2.3.7 Default Values for the Signal Model 

In section 2.2 we saw that each basis function can be defined by a 5-D 

position vector z , which can be further split into a spatial and temporal vector. 

Hopefully after the discussion on the transmit signal model, it should be evident that 

the temporal position vectors ,

T
t

k k kt w =  z  occupy pre-determined points on the 

time-frequency plane that have been established by our choice of the PRF, signal 

timewidth and bandwidth..  

 , / 2
T

t

k o ouT v w =  z  (2.62) 

The spatial position vectors , ,s

j j j jx y z =  z  describe the location of the various 

antenna elements in 3-dimensionsal space, or the arrangement of the radar transmit 

array. Some other simplifying assumptions were made with respect to our transmit 

signal model. For e.g. unit energy sinc functions were considered for the fast and 

slow time mother functions - ( )fg t  and ( )sG w respectively. These waveforms satisfy 

all the properties of the mother functions stated before. The incremental time shifts 

qτ used to generate new fast-time basis functions were selected to be: 

 q

q

B
τ =  (2.63) 
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And the small frequency shifts for generating the slow time basis functions were kept 

as: 

 2p

p
w

T
π  =  
 

 (2.64) 

It should be clear that these expressions satisfy the earlier constraints of q oTτ <<  

and p ow w<< . In addition the carrier frequency fc was made an integer multiple of the 

bandwidth B, and the bandwidth an integer multiple of the PRF fo (thus fc >> B >> fo). 

Although all these assumptions greatly simplify our computation of the ψψψψ  matrix, it 

should be noted that the model also contains provisions for using any other values for 

the aforementioned parameters. The default values have been selected, only to 

simplify the various expressions without loosing out on any generality. 

2.4 Numeric Parameters for the Radar Models 

 This section describes the radar geometry that was considered for all our 

simulations, and also the basis for selecting the values of various numeric parameters 

that are required for the two radar models [32]. Simplifying constraints have been 

placed on several values, which results in many parameters being dependent on the 

others. Typical values for a low earth orbiting spaceborne radar have been used for 

the remaining independent parameters. The geometry for a standard side-looking case 

was assumed, which has been shown in Figure 2.3 on the next page.   
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Figure 2:3 Side-looking Multi-Aperture Radar Geometry 

 

Following points can be observed from Figure 2.3: 

• The radar is flying in the x̂  direction with velocity v x̂ . 

• The center of the radar (transmit array) is x = 0, y = 0, z = h, i.e. the radar is at 

an altitude h. 

• The center of the illuminated area is at x = 0, y = yo, z = 0, i.e. a standard side-

looking case. 

The following two equalities follow from the figure: 

 coso o iy R θ=  (2.65) 
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 sino ih R θ=  (2.66) 

It turns out that for this geometry we can derive default values for the matrix 

θK which is required in (2.24) for the computation of the tH  matrices. The θK   

matrix [34] turns out to be:   

 

2

3 3

2

3 3

1
0 0 0

0 0

00

0 10 0 0

o o

o o

c
o o c o

o o

c oo o

v

R R

hYh Y

R R R
c

hhY Y

RR R

θ

ω
ω

ω

− −
 
 
 −−
 

=  
 −− −
 
 
 − 

K  (2.67) 

 

Here c is the velocity of propagation or the velocity of light. From (2.5) we know that 

each target is described by a position vector of the form r

t t t t t

Ty x y z v 
 = . 

Targets are assumed to be distributed across a two dimensional grid (size Nx by Ny) 

on the x-y plane. The target spacing in the x direction is denoted by ∆x and that along 

the y direction is denoted by ∆y. The radial velocity r

tv is considered positive if the 

target is moving towards the radar. With these assumptions the target position vector 

can be rewritten as: 

 ,, , r

t x y t t

Tn x n y z v ∆ ∆ =y  (2.68) 

For the sake of simplicity, the target spacings in the x and y directions are set to be 

equal to the radar resolution in the along and cross track directions respectively: Thus 

each resolution cell is one target for our radar. 
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2

o

o c

cR
x

UT vf
∆ =  (2.69) 

 
2

o

o

cR
y

BY
∆ =  (2.70) 

It would be prudent to mention an important here. Recall that the target model 

was developed for the full propagation from transmitter to the targets and back to the 

receiver. Hence the above expressions are taking into the account the phase shift that 

occurs in both the forward and reverse paths. However as mentioned before, for the 

illumination optimization problem we just consider the propagation from the 

transmitter to the targets. Therefore the actual resolution will be double of what is 

given by (2.69) and (2.70), and thus for our case targets immediately adjacent to each 

other will not be resolvable. Only the targets which are two or more cells apart will be 

discernable in our case, for propagation from the transmitter to the targets. This point 

is not of much consequence as far as the various simulations are concerned, but will 

assume significance in Chapter 6 when we describe one of the potential applications 

of true space-time codes – reducing the main lobe width of the radar ambiguity 

function.  

Thus our default case is completely described by that following set of inputs: 

1. To, B, wc, c 

2. v, Ro, yo 

3. U, V, J 

4. Nx, Ny 

5. ty for all targets t 
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6. s

jz for all transmit antennas j 

It turns out that after a few other simplifying assumptions; some of the above 

parameters become dependent on the others. These assumptions, the resulting 

dependence between the various parameters, and standard values for the remaining 

independent parameters has been described next.    

The following parameters are selected to be the fundamental parameters 

describing the radar physics and the side-looking scenario: 

c, h, θi, v, fc 

Their value does not depend on any other factor, and all the other parameters are 

derived from these. Using these values in (2.65) and (2.66) we can get: 

 
cos

o

i

h
R

θ
=  (2.71) 

 tano iy h θ=  (2.72) 

as well as the transformation matrix θK . From (2.69) and (2.70) the two new 

expressions for the radar resolution can be determined as: 

 
2 2

o o

o c c

cR cR
x

UT vf Tvf
∆ = =  (2.73) 

 
2 2 sin

o

o i

cR c
y

BY B θ
∆ = =  (2.74) 

We assume the resolution in the along and cross track dimensions to be equal, which 

gives us our first expressions for the signal bandwidth and timewidth [32]: 

 
x y c

o

N N vf
B

Yβ
=  (2.75) 
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x y o

c

N N Y
T

vfβ
=  (2.76) 

We define a new parameter β - the ratio of the total number of resolution cells to the 

radar time-bandwidth product. For single aperture radar the number of targets should 

be less than the number of independent time frequency samples or the time-

bandwidth product. Thus β should be less than one. However for multi-aperture radar 

we can have additional spatial samples on the receive side due to the multiple receive 

apertures and hence this value can be greater than one. In other words, the total 

number of space-time receive samples can still be greater than the number of targets 

even if β >1.  

 
x yN N

BT
β =  (2.77) 

In section 2.3.5 we saw that the total number of transmit time-frequency samples 

were equal to twice the time-bandwidth product of the radar i.e. 2UV BT≈  (2.46). 

Using this equation with (2.77) we can show that 2
x yN N

UV
β

≈ . Separating further 

into two non-unique product terms, we come up with the following two values:  

 xN
U

β
=  (2.78) 

 
2 yN

V
β

=  (2.79) 

This division is not as irrational as it may seem. It should be noted that Nx along track 

resolution cells can be resolved only with U > Nx independent time samples. Similarly 
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Ny cross track resolution cells can be unambiguously resolved only if V/2 > Ny (as we 

oversample in the frequency domain on the transmit side).  

The value of the PRI is easily determined once the signal timewidth T and the 

number of transmit pulses U is known: 

 o

T
T

U
=  (2.80) 

Finally we have to make sure that the spatial extent of the transmit array is small 

enough so as to not affect the radar resolution. It is because for very large arrays, the 

spatial resolution may become too fine and ultimately set the limit on the range and 

doppler resolutions. All along we have assumed that the along and cross track 

resolution are decided by the temporal values of signal timewidth and bandwidth. A 

very fine spatial resolution will thus be a direct violation of our previous assumptions. 

To ensure this condition, we first determine the spatial resolution of radar with spatial 

extent Lx in any one direction. This value is given by: 

 o
s

c x

c R
X

f L
∆ ≈  (2.81) 

Thereafter, we define another parameter ηwhich is the ratio of the spatial (main beam 

width) to the temporal resolution: 

 sX

x
η

∆
=
∆

 (2.82) 

This parameter can be set to any value greater than 1. From (2.81) and (2.82) we get 

an expression for the spatial extent of the transmit array in each direction (assuming 

equal spatial resolution in both directions): 
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 o
x

c

c R
L

f xη
=

∆
 (2.83) 

Thus in the end, we find that for the following set of independent radar 

parameters, 

, , , , , , , ,i c x yc h v f N Nθ β η  

we can determine the remaining set of dependent values: 

, , , , , ,o xB T T U V L θK  

The following default values were assumed for the independent parameters. These 

values have been selected to be consistent with those of a typical low earth orbiting 

spaceborne radar. 

c = 3 x 10
8 
m/s 

h = 183 km 

v = 7.8 km/s 

fc = 10 GHz 

θi = 45
o
 

and thus, 

yo = 183 km 

Ro = 258.8 km 

Additionally the target grid was kept square with Nx = Ny = 2
i
 – 1 (i is an integer > 1), 

so that the number of resolution cells in both along and cross track directions are 

almost a power of 2 -  {3, 7, 15, 31, 63…}. The other values selected were: 

β = 4.2 
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5η = , and 

σx = Lx/2, for a random (Gaussian) distribution of elements - sparse array 

The last point to be made in this section is that the values provided here are 

just representative default values to simplify our simulations. By no means are they 

the only values that can be used in these models. The software code for all our models 

has been kept modular enough to accommodate any further changes, or set of values 

that may be required in the future. The size of the simulation depends on the integer 

value i, which in-turn decides the size of our target grid and most other dependent 

parameters. This value is selected as per the goal of our simulation, or on what are we 

trying to achieve. Usually it is kept small enough (2 or 3) for debugging cases and 

larger (4 or 5) for getting more representative results. All other values were selected 

depending on the value of i or Nx and Ny. Table 2:1 on the next page demonstrates the 

calculation of various parameter values for different Nx and Ny. 
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Now that we have described both our radar models and laid down a clear 

foundation of the problem at hand, we are ready to dive into the actual process. We 

start exploring the space time illumination optimization problem by first looking at 

some of the basic algorithms.  
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Chapter 3  

Illumination Optimization - Basic Algorithms 

 

 

Now that we are ready to delve into the space time illumination optimization 

problem, the first question to be asked is what optimization criteria should be used, 

and once selected how practical it is to realize that criterion. In other words, can the 

optimal solution actually be found using that criterion, and if yes what are the 

processing costs and other issues involved. From an illumination optimization point 

of view, an ideal transmit signal should put all the energy on the scatterers we are 

interested in, and none on the scatterers we do not wish to illuminate. We call the first 

class of scatterers - ‘target objects’ or ‘targets’ and the second class as ‘clutter 

objects’. In addition to not wasting any energy on the clutter objects, we would also 

like to distribute the transmit energy as fairly or uniformly as possible on the 

remaining targets. This will ensure that the probability of correct estimation for even 

the worst case target is maximized. However such an ideal radar signal is normally 

impossible to construct, except for the most trivial of radar problems. Instead we 

define specific optimization criteria, and try to find a transmit signal that satisfies 

these criteria to the greatest possible extent. In this chapter we start our discussion 

with some of these basic optimization criteria, like maximizing the overall target 

illumination energy, minimizing the overall clutter illumination energy or maximizing 

the ratio between the two i.e. the signal to clutter ratio or the SCR. Thereafter we 

move on to more advanced algorithms like maximizing the minimum SCR received 
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by any of the targets, i.e. the Maxi-min algorithms, which are covered in the 

subsequent chapters. 

3.1 Setting up the Target Illumination Problem  

Like stated before all scatterers can be classified into two sets: 

Set a: Scatterers we wish to illuminate or estimate - ‘Targets’.   

Set b: Scatterers we do not wish to illuminate - ‘Clutter Objects’. 

This segregation of targets and clutter essentially describes the radar mode of 

operation. For e.g. in a GMTI, all moving scatterers will be classified as targets and 

all stationary ones as clutter. Also note that this demarcation does not require 

knowledge about the actual scatterers or their scattering coefficient values tγ .All it 

requires is a demarcation of the two measurement spaces where given targets and 

clutter objects may exist. In other words just another reiteration of the earlier point - 

for the illumination optimization problem we only need to concern ourselves with the 

propagation from the transmitter to the scatterers, and not beyond. Anyway 

continuing with our classification process, we can define another set of scatterers as: 

Set c: Scatterers we do not care about - ‘Don’t Cares’.  

What this means is that we are not concerned about illuminating, or not illuminating 

the scatterers in this set. From a practical point of view these ‘don’t cares’ don’t make 

much sense, as we would always like to either illuminate or not illuminate each 

scatterer depending upon our estimation goals. Any illumination energy not falling on 

the target objects is just a waste of available energy and needs to be minimized.  
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But this classification proves quite interesting just from an academic point of 

view, and also results in ‘more realizable’ target-clutter geometries. The ‘don’t cares’ 

allow for a physical separation between the objects of sets a and b i.e. the targets and 

clutter, and hence make it easier to realize the desired illumination solutions. For real 

world cases, the set c objects can be thought of as regions with very low back-

scattering coefficients (like. water bodies), such that the reflected energy from these 

objects does not interfere with returns from the scatterers which we wish to estimate – 

the targets. 

Let us define a W x W hermetian, non-negative definite matrix A representing 

all target objects as: 

 i i

i a∈

′′ ′∑A = H H  , or (3.1) 

 i

i a∈
∑A= A  

where i′H  is the same matrix as described in (2.61), and i′′H denotes the conjugate 

transpose of the matrix. As can be noted  

 i i i′′ ′A = H H  (3.2) 

is the matrix for each individual target.  

Similarly we can define another W by W hermetian, non-negative definite matrix B 

representing all clutter objects as: 

 j j

i b∈

′′ ′∑B = H H , or (3.3) 

 j

j b∈
∑B= B  
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Again, 

 j j j′′ ′B = H H  (3.4) 

is the matrix representing each individual clutter object.  

From (2.60) the total illuminated energy on all targets is given as: 

 ρ ρρ ρρ ρρ ρa i i

i a

E
∈

′=∑  (3.5) 

       i i

i a∈

 
′ 
 

′′ ′∑= S SH H  

              i

i a∈

 
′ 
 
∑= S A S  

 

     ′= S AS  

Where it is obvious that the individual energy on any of the targets is:  

 i

a iE ′= S A S  (3.6) 

Similarly the total illuminated energy on all clutter objects is given as: 

 ρ ρρ ρρ ρρ ρb j j

j b

E
∈

′=∑  (3.7)   

                   j j

j b∈

 
′ 
 

′′ ′∑= S SH H  

            j

j b∈

 
′ 
 
∑= S B S  

 ′= S BS  

Once again it is apparent that the illuminated energy for any one clutter object is: 

 j

b jE ′= S SB  (3.8) 
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Once the different matrices have been formed, and their physical significance and the 

relation between various entities understood, we are ready to define our basic 

illumination optimization algorithms. 

3.2 Maximum Target Energy 

It turns out that each of these basic codes is very easy to find. For the 

maximum target energy solution, we first write matrix A in terms of its eigen vectors 

ˆa
ne  and eigen values a

nλ : 

 ˆ ˆa a a

n n n noise

n

e eλ ′ +∑A = K  (3.9) 

Here noiseK  is a diagonal matrix which represents the effect of noise in the 

measurements. Since all eigen vectors are unit vectors, signal energy ≈ 1, and the 

value of diagonal terms in this matrix was kept of the order of 0.0001 (40 dB below 

the signal level). Although addition of noise may seem unnecessary at this stage, this 

step assumes significance when we go to the Maxi-min algorithms in the later 

chapters (more about it then). Since matrix A is non-negative definite, all its eigen 

values a

nλ  are real and positive. Therefore it follows from (3.5) that the transmit code 

which maximizes the total or average illumination energy on the targets of set a, is 

nothing but the eigen vector associated with the largest eigen value max( )anλ . 

                                    ∴∴∴∴ S = ˆane  associated with max( )anλ                               (3.10) 
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3.3 Minimum Clutter Energy 

This time we write the B matrix in terms of its eigen vectors and eigen values: 

 ˆ ˆb b b

n n n

n

e eλ ′∑B =  (3.11) 

Note that the noise matrix is not added in this case, the reason for which will become 

clear in the subsequent chapters. Once again since matrix B is non-negative definite, 

it follows from (3.7) that the transmit code which minimizes the total or average 

illumination energy on the clutter objects of set b, is simply the eigen vector 

associated with the smallest eigen value min( )bnλ . 

   ∴∴∴∴ S = ˆbne  associated with min( )bnλ                               (3.12) 

3.4 Maximum SCR 

Although the earlier two codes are interesting in their own standing, from a 

practical point of view the criterion that makes more sense is maximizing the ratio of 

the illuminated target and clutter energies. We call this quantity the signal to clutter 

ratio or the SCR, and this term will be used henceforth to reference this value. The 

code which maximizes the overall target energy might not be one which minimizes 

the clutter energy as well, and hence we seek to find a code which maximizes the 

ratio of these two quantities, the SCR:    

 a

b

E

E

′
=
′

S AS

S BS
 (3.13) 
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Note that we have two non-negative definite matrices in the above expression. To get 

an expression in terms of a single matrix, we rewrite (3.13) as:    

 

) )

)

) ( ) ) ( )

) ( )

) )� �

� �

a

b

E

E

′
=
′

′ ′
=

′

′ ′ ′
=

′ ′

′ ′
=

′

-1/2 1/2 -1/2 1/2

1/2 1/2

1/2 -1/2 -1/2 1/2

1/2 1/2

-1/2 -1/2

S AS

S BS

S (B B A(B B S

S (B B S

S (B B A(B B S

S (B B S

S (B A(B S

S S

 (3.14) 

The following equalities have been used to simplify the above expression: 

 , and

) as is hermetian′

-1/2 1/2

1/2 1/2

1/2 1/2

I = B B

B=B B

B  =  (B B

 (3.15) 

Also we have defined another vector as, 

 � 1/2S=B S  (3.16) 

Now if we define another matrix C: 

 ) )′-1/2 -1/2C=(B A(B  (3.17) 

then (3.14) reduces to, 

 
� �

� �
a

b

E

E

′
=

′
S CS

S S
 (3.18) 
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This matrix can also be written in terms of its eigen vectors and values:  

 ˆ ˆc c c

n n n

n

e eλ ′∑C =  (3.19) 

And then the vector �S  which maximizes the SCR of (3.18) is simply the eigen vector 

associated with the largest eigen value of C, i.e. max( )cnλ  

    ∴∴∴∴ �S  = ˆcne  associated with max( )cnλ                               (3.20) 

The corresponding transmit vector S can then be found from: 

 

,  as�

�

1/2

-1/2

S=B S

S=B S

 (3.21) 

Note that although vector �S  is an eigen vector and has unit magnitude, the vector S 

obtained from the transformation of (3.21) will most probably not be a unit vector. In 

such cases it needs to be normalized, so that we stay consistent with our assumption 

of unit transmit energy. 

Another important to be made here is regarding the calculation of matrix -1/2B . 

Many a times when the number of clutter objects is less, matrix B will have zero 

eigen values. In such cases taking a direct inverse of the matrix would result in 

numerical errors, and thus grossly atrocious results. Therefore the inverse of this 

matrix has to be determined very carefully using only the non-zero eigen values b

nλ : 

 1/ 2 ˆ ˆ( )b b b

n n n

n

e eλ − ′∑-1/2B  =  (3.22) 
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Here b

nλ  represent only the non-zero eigen values of B. Typically each eigen value is 

compared with the maximum value max( )bnλ , and the values smaller by a factor of 10
-5 

or less are left out in the computation (i.e. if b

nλ / max( )bnλ  <= 10
-5
 , the value is 

considered to be zero). Also the number of non-zero eigen values in the eigen-

spectrum of B, is equal to the number of clutter objects times the number of basis 

functions. Thus if there are nb clutter objects, then the total number of non-zero eigen 

values is nb ×  R, where R = P ×  Q is the number of basis functions. This point can be 

better understood with the following explanation.  

Suppose there is just one clutter object, then the number of orthogonal ways in 

which energy can be placed on this object is equal to the number of basis functions (R 

= P ×  Q). It is because all the basis functions are orthogonal to each other and any 

one of them can be used to put some energy on the clutter object, or a target object for 

that matter. The amount of energy received by the object would obviously depend on 

the choice of the basis function, as each function potentially results in a different 

illumination pattern on the object. Hence for this case, the matrix B or Bj as there is 

only one object would have a rank R, or there will be R non-zero eigen values in the 

eigen spectrum of B. The eigen values give the value of energy received by the object 

if the corresponding eigen vector is selected as the transmit code.    

This behavior can be directly extended to a multiple object case. For multiple 

clutter objects the composite B matrix consists of all the individual nb Bj matrices, 

and hence the total number of non-zero eigen values will simply be nb ×  R (till a 
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maximum of W as that is the total number of values in the spectrum). This point is 

more clearly demonstrated by Figure 3:1 on the next page. 

 

Figure 3:1 Non-zero eigen values in the spectrum of matrix A for different no. of target objects 

 

This figure shows the eigen spectrum of matrix A for different number of target 

objects. The number of transmit antennas J = 7, and total number of basis functions R 

= 9 (P = 3 and Q = 3). Therefore the dimension of the transmit signal space W = J×R 

1 Objects 2 Objects 

5 Objects 224 Objects 
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= 63. As the number of objects increase from 1 to 2 to 5, the number of non-zero 

eigen values correspondingly increase from 9 to 18 to 45. For more than 7 objects all 

eigen values in the spectrum are non zero as shown by the last figure for 224 objects. 

3.5 Results and Observations 

Let us now look at some of the results for each of these algorithms. Figures 

3:2–3.4 show the illumination patterns resulting from all the three basic codes, for the 

same target-clutter distribution. Note that the location of target objects is shown by 

triangles , and that of clutter objects by circles . The received energy at each 

resolution cell is the integrated energy over time i.e. the entire duration of the transmit 

signal. 

 

Figure 3:2 Illumination energy across a surface area for the Maximum Target Energy Code 

Average SCR = 6.92 dB 

Maximum Target Energy 
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 Figure 3:3 Illumination energy across a surface area for the Minimum Clutter Energy Code 

 

 

 
 

Figure 3:4 Illumination energy across a surface area for the Maximum SCR Code 

Average SCR = 14.99 dB 

Maximum SCR 

 

Average SCR = 13.18 dB 

Minimum Clutter Energy 
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As can be seen each code tries to optimize its own criteria. The above case is 

for a 15×15 grid size or Nx = Ny = 15. The number of time-frequency basis functions 

were kept as 9 (P = Q = 3) and there were J = 14 transmit elements. This combination 

gives a transmit vector dimension of W = 126 (J×P×Q), and therefore we need to 

search for our best vector in a 126 dimensional search space. Later, results for more 

number of basis functions or a larger dimensional search space have also been 

presented. The 14 element transmit array used for most of our simulations is a sparse 

distributed array, the spatial extent for which was determined using (2.83). The 

individual element locations were then picked from a gaussian distribution using      

σx = Lx/2. This sparse array is shown in Figure 3.5.      

 
Figure 3:5 Fourteen element sparse distributed transmit array used for the simulations 

Another example of the standard code performance has been shown in Figure 

3:6 on the next page. 
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Figure 3:6 Another example of the standard code performance 

Average SCR = 2.85 dB 

Maximum Target Energy 

 

Average SCR = 14.47 dB 

Maximum SCR 
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On first impression it may seem as if Maximum SCR can provide us with really good 

radar solutions; and this might in fact be true for some of the more simple cases. The 

average SCR value for the Maximum SCR is typically much higher as compared to 

the other standard codes, and it could have indeed made a very good radar solution, 

but for a small issue -  the ‘orphan problem’. 

3.6 The Orphan Problem and the need for Alternate Criteria 

From a radar point of view all targets are equally important. Hence even 

though the ‘selective optimization’ approach of standard codes may come up with 

good numerical answers, from a practical point of view they do not be considered 

good radar solutions. As seen in the earlier plots, the Maximum SCR maximizes the 

total or average SCR received by all targets by sacrificing some of the ‘hard’ targets. 

We call them hard targets, as probably they are the most difficult to place energy on. 

Thus these targets get left out (are orphaned) in the process, and the effect is 

compensated by putting more energy on the relatively ‘easier’ targets.  

However this approach is not acceptable for remote sensing radars. There is 

no way of knowing beforehand, which targets are more important and it may very 

well turn out that the orphaned targets were the ones most critical to our objective. 

We need to keep all targets equally happy and in the words of Dr. James Stiles, “A 

socialist approach has to be adopted rather than a capitalist one”. The orphan 

problem for our earlier examples along with some more cases has been illustrated in 

Figure 3.7. All examples shown are for the Maximum SCR.  
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Figure 3:7 The Orphan Problem for Maximum SCR algorithm 

 

Maximum SCR 
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It should be obvious from these plots, that a good numeric value of average SCR does 

not necessarily imply a good answer.  

 Note that the last two plots on the previous page have identical target-clutter 

geometries but different illumination patterns for the same transmit code, i.e. the 

Maximum SCR. It is because these plots are for two different transmit arrays. While 

the one on the left is for the standard 14 element sparse array shown earlier, the one 

on the right is for a 16 element regularly spaced 4×4 array. The sparse arrays, like the 

one described earlier for the spaceborne constellation have a number of advantages. 

In essence a sparse array provides us with a lot more flexibility – large spatial extent 

for fine resolution, minimum separation between any two elements decide the 

position of grating lobes, and the size of each antenna element controls the total 

illuminated area. Therefore even though almost all the results presented in this 

document are for the 14 element sparse array case, towards the end we also decided to 

test our algorithms for a more standard regular antenna array. The 16 element regular 

4×4 array has been shown in Figure 3.8. It can be seen that the equivalent 4 by 4 

array occupies a much smaller volume than the random sparse array.  
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Figure 3:8 Sixteen element regularly distributed 4×4 transmit array 

 

Having looked at the standard optimization criteria and the problems 

associated with them, it should be now clear that these criteria are often inadequate 

for many radar problems. Thus there is a need for new optimization algorithms which 

can tackle the orphan problem more effectively. This leads us into our next chapter on 

the “Maxi-min” algorithms, but before that one last point needs to be made about the 

standard codes.   

Recall that the whole idea behind opting for a space-time transmitter was to 

come up with true space-time codes, i.e. independent time-frequency signals on each 

of the transmit elements. The amount of correlation between the temporal signals of 

different transmit antennas, gives a good indication of how close we reach towards 

our goal of realizing true space-time codes. The correlation coefficient values 
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between the signals on different antennas can be shown by a 2-D matrix or a 2-D 

colored plot as shown in Figure 3:9. This plot is for the Maximum SCR code of the 

last case in Figure 3.7, i.e. the illumination plot for the regular 4×4 array. 

 
 

Figure 3:9 Correlation coefficients between temporal signals of different elements, and 

distribution of energy on different antennas for a standard code – Maximum SCR   

 

 

Note that henceforth we will be calling these plots as the correlation matrix 

plots. Actually it turns out that the correlation matrix plot shown above is 

representative of almost all the standard code solutions we ever come up with. In this 

case we have 25 time-frequency basis functions, or enough degrees of freedom to 

come up with different temporal signals on each of the transmit antennas. But as can 

be seen from the figure, the transmit signals on the different antennas are perfectly 

correlated or have a correlation coefficient value of 1. It means is that the same time-

frequency signal is propagated on each of the antennas, with just an additional 
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weighting on top. This additional weighting can be partly be seen in the lower part of 

the figure, where the curve shows the energy of the temporal signals on the different 

transmit elements (indicative of just the magnitude, and not the phase part). 

Summarizing, the whole point of this discussion is to demonstrate that even 

though a valid structure exists, most of the time standard codes do not provide us with 

true or non-separable space-time solutions. Thus the real potential of space-time 

codes is not realized, and the solutions essentially become beamforming solutions - 

the form of the time-frequency signal obviously being inconsequential in such cases. 

With this assertion we move onto the next chapter on the Maxi-min codes, which are 

more advanced in character and thus attempt to exploit the full potency of the space-

time transmitter.   
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Chapter 4  

Illumination Optimization: Advanced Algorithms  

 

4.1 The Maxi-min Criteria 

This chapter is all about the ‘new and improved’ criteria – the Maxi-min or 

the Mini-max, which would make more applicable radar signals. We can actually 

have a number of different definitions for the maxi-min or the mini-max:  

• The code which maximizes the smallest energy received by any target 

• The code which minimizes the largest energy received by any clutter object  

• The code which maximizes the SCR for the target with the worst SCR 

Extending the same reasoning as for the standard codes, the last criterion makes most 

sense and was thus adopted as our primary maxi-min criterion. However finding 

solutions for these more appropriate criteria is not as direct as the standard codes, and 

requires a considerably greater computational effort.  

From (3.13), the SCR received by each individual target can be 

mathematically defined as:              

 
� �

� �

i

a i i
i

b

E
SCR

E

′ ′
= = =

′ ′
S A S S C S

S BS S S
 (4.1) 

where, 

 i i= -1/2 -1/2
C B A B  (4.2) 
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The aim of our algorithms is to find a transmit vector S which would maximize the 

smallest of these values i.e. the worst SCR or SCRmin: 

 { }min 1 2 3min , , ,�
t

min min min min

NSCR λ λ λ λ=  (4.3) 

Nt = Nx×Ny is the total number of targets, and thus the total number of individual C 

matrices. Note there is no way to determine this value of SCRmin, or know our weakest 

target beforehand. If it could be done, then we could have just focused our efforts on 

making that weakest target as strong as possible, but this weakest target and the value 

of SCRmin are very dependent on the transmit signal itself. Putting it another way, 

there is no way of directly finding a transmit vector S that would maximize the SCR 

on our worst target, as the worst target and the SCR it receives are themselves 

dependent on the transmit vector S - kind of like a chicken and egg problem. One line 

of action is to use numerical search methods like genetic algorithms. However such 

methods do not have much mathematical basis, and are essentially just a means for 

‘guessing intelligently’. As a result the processing costs associated are huge, and the 

answers not always satisfactory. In this chapter we propose methods that are more 

algebraic in nature, are computationally less expensive, and perform reasonably well 

under most circumstances. 

4.2 Implementation – Different types of Maxi-mins 

4.2.1 True Maxi-min 

As mentioned before finding the optimal maxi-min solution is not easy, 

however finding the worst maxi-min solution is much simpler. Since all matrices Ci 
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are non-negative definite, the smallest eigen value min

iλ  provides the value of the 

worst SCR that the i
th
 target can receive, and the corresponding eigen vector ˆmine�  is 

the worst SCR solution for that particular target. The overall worst solution for all the 

targets is then simply the eigen vector associated with the smallest of all minimum 

eigen values, i.e. the eigen vector ˆ
mine� associated with:  

 { }1 2 3 minmin , , ,�
t

min min min min min

N SCRλ λ λ λ λ= ≤  (4.4) 

This eigen value thus provides a lower bound on SCRmin, or the worst SCR our 

weakest target can receive. No transmit vector except ˆmine�  can result in a SCRmin 

value as small as minλ . It logically follows that if we project out this worst dimension 

(i.e. the one associated with ˆmine� ) from our search space, we would raise the lower 

bound for SCRmin. For this purpose a projection matrix ( )l⊥P  is formed as: 

 ˆ ˆ( ) min minl e e⊥
′=P I - � � , (4.5) 

and this projection matrix is then used to update all the Ci matrices for individual 

targets: 

 ( 1) ( ) ( ) ( )i il l l l⊥ ⊥
′+ =C P C P  (4.6) 

The solution space for our transmit vector S is now restricted to a subspace 

orthogonal to the worst vector ˆ ( )mine l� , where l represents the iteration index. We can 

again find the worst solution in this new subspace and then project orthogonal to this 

new worst solution ˆminl+1e� . Since all the projections are orthogonal to the previous ones, 

our lower bound monotonically increases with each iteration. We continue with this 
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process until we are left with a solution space of just one dimension – a vector, which 

then becomes our optimal maxi-min solution S. Note that this method just claims to 

maximize the lower bound on SCRmin, it does not say that it will provide us with the 

best maxi-min solution possible. There might be better solutions present, but due to 

the inherent complex nature of the problem there is no way of knowing where they lie 

in our multi-dimensional search space. The assumption is that the lower bound 

solution still provides us with a pretty good if not the best answer, and the nice thing 

is that we now have a structure or mathematical procedure for arriving at that answer.            

We call the algorithm described above - the “True Maxi-min”, because of the 

way it’s organized. It has a clear mathematical foundation, and every projection is 

mathematically guaranteed to raise the lower bound. The solution after every iteration 

is as good if not better than the last one, and there is no ambiguity involved. We have 

another class of algorithms called the “Heuristic Maxi-mins” which although not as 

sound mathematically, are quite effective in their own way. Before we move on to 

this new algorithm, we first need to point out two variations of the True Maxi-min.  

4.2.2 Maxi-min SCR and Maxi-min Energy Convergence 

Note that the projection step of (4.5–4.6) can be performed in either of the two 

ways. 

 

where,

ˆ ˆ

� �

� ��

i

min mine e

⊥ ⊥

⊥

′

′=

P C P

P I - 

 (4.7) 

or, 
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1/ 2 1/ 2) ( ) ( ) )where,

ˆ ˆ ˆ ˆ, and �

i

min min min mine e e e

− −
⊥ ⊥ ⊥ ⊥ ⊥ ⊥

⊥

′ ′ ′

′= = -1/2

(P BP P A P P BP

P I - B

 (4.8)  

In the first case we stay in the squiggle domain throughout (i.e. directly deal with the 

eigen vectors of C matrix), and convert back to the non-squiggle domain right at the 

end - using (3.21). We thus call this approach as the ‘True Maxi-min Squiggle’. While 

in the second case we convert back and forth between the squiggle and non-squiggle 

domains after every iteration. More specifically, we find our worst projection vector 

in the squiggle domain (which is one of the eigen vectors of one of the C matrices), 

convert it back to the non-squiggle domain using (3.21), and form our projection 

matrix ⊥P in the non-squiggle domain. We then use ⊥P  to update the B and all 

individual Ai matrices and again form our new Ci matrices. As the projection 

operation is performed in the non-squiggle world, this approach is understandably 

called the ‘True Maxi-min Non-Squiggle’. Both the above approaches are valid but 

inherently different, and hence yield different results. 

The reason behind this difference lies in the fact that two orthogonal vectors 

in one domain (squiggle) may no longer stay orthogonal in another domain (non-

squiggle) after a projection. The projection essentially implies a change of the 

coordinate space. This point clearly illustrated by the following equations: 

 If       1 2 0� �′ =S S , 

then             1 2 1 2 0 � �′ ′ ′= =-1/2 -1/2
S S S B B S ,  only if 
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           ′ =-1/2 -1/2B B I ,  

which is not true (generally) and especially if B is not full ranked. 

It turns out that due to this reason, both the algorithms take completely 

different paths to the final solution and converge to two independent answers. In fact 

for the trivial case of a single target, the squiggle algorithm ( �⊥P ) converges to the 

Maximum SCR solution as would be normally expected but the non-squiggle 

algorithm ( ⊥P ) converges to the Maximum Energy solution instead. The convergence 

for the “true” algorithms is illustrated in Figure 4.1 on the next page. 
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Figure 4:1 Convergence of the True Squiggle and Non-Squiggle Maxi-mins 

This behavior is explained as follows. For the single target case there is just one 

matrix C, and in the squiggle domain we are trying to maximize the quantity � �′S  C S . 

Therefore we find the codes which would put the least SCR on our target, i.e. the 

vectors corresponding to the smallest eigen values of C and form our projection 

Maximum Energy 

 
Maxi-min Non-Squiggle ⊥P  

 

True Maxi-min Energy Convergence 

 

Maximum SCR 

 
Maxi-min Squiggle �⊥P  

 

True Maxi-min SCR Convergence 
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matrix �⊥P  in the squiggle domain. Thus we always stay orthogonal to the largest 

eigen vector of C, and in the end converge to this code or the Maximum SCR 

solution.       

For the non-squiggle domain algorithm we again try to stay orthogonal to the 

vector corresponding to the largest eigen value of C in the squiggle domain, but as 

mentioned before, once we transform out of the squiggle to the non-squiggle world 

that orthogonality is lost. Instead the problem now becomes of maximizing the 

ratio
′
′

S  A S

S  B S
, and the worst vector which minimizes the SCR on our target (say by 

putting zero or very little energy on the target in the non-squiggle domain) need not 

be orthogonal to the Maximum SCR vector (in the squiggle domain). It can just be 

orthogonal to the vector corresponding to the largest eigen value of A (Maximum 

energy code) and still satisfy the math in the non-squiggle domain. However our 

Maximum SCR code typically has some component which is not in the same 

direction as the Maximum Energy code, and with each projection we knock down 

part of this component. Thus we are just guaranteed to stay in the direction of the 

Maximum Energy and not the Maximum SCR, and this is the reason why the non-

squiggle algorithm converges to the Maximum Energy vector in the end.        

This would be a good time to mention one other point about the squiggle 

domain or SCR convergence maxi-min algorithm. Note that henceforth the squiggle 

domain maxi-min will be known as the SCR convergence maxi-min and the non-

squiggle domain maxi-min will be known as the energy convergence maxi-min in this 
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document. And although not exactly precise, the eigen vector corresponding to the 

largest eigen value will be referred to as the largest eigen vector and the one 

corresponding to the smallest eigen value - the smallest eigen vector. In reality all 

eigen vectors have the same unit magnitude but this terminology greatly simplifies 

the language, making it easier to explain the main concepts instead of unduly 

worrying about the semantics. Continuing with the important point on the SCR 

convergence maxi-min - the main reason it works, or the fact that we can stay in the 

squiggle domain and convert back right at the end, is because we have a matrix B 

which is constant for all targets. If it were not so, then this method could not have 

been employed and we would have been short of one algorithm. This point is better 

explained with the following equations: 

For the sake of simplicity let’s assume that there are only two projections or 

we are searching for the best vector in a 3-dimensional space. Then in the end we 

would be looking for a vector �S  that would maximize the quantity: 

2 1 1 2( )� �� � � �

� �
⊥ ⊥ ⊥ ⊥′ ′ ′

′
S P P C P P S

S S
  

in the squiggle domain. The equivalent expression in the non-squiggle domain would 

be:  

2 1 1 2( )� �� � � �

� �
⊥ ⊥ ⊥ ⊥

′′ ′ ′
=

′

-1/2 -1/2
S P P B A B P P S

S S
, or 

1 2 1 2( (� �� � � �

� �
⊥ ⊥ ⊥ ⊥′

=
′

-1/2 -1/2
P P S) B A B P P S)

S S
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Comparing with (3.14), and then using (3.21) we find that the corresponding non-

squiggle domain vector should be: 

 1 2( �� �
⊥ ⊥

-1/2
S=B P P S)  

Since all projections are orthogonal to each other, our final squiggle domain vector �S  

would pass through unscathed i.e. 

1 2 and� �� �
⊥ ⊥P P S = S,  

�∴ -1/2 S =B S  

just like the normal case, and therefore we can find our non-squiggle domain vector 

right at the end. Note that this method would not have worked had the matrix B been 

different for each target, as is the case in some conditions (for e.g. finding a code to 

minimize correlation between 2 objects [8]). Fortunately for our problem that is not 

the case, and we get an extra algorithm that is not only computationally faster (the 

extra projections from squiggle to non-squiggle domain at every step are done away 

with), but also more effective than the non-squiggle algorithm in most cases.        

To wrap up this section let’s present a formal, mathematical step by step 

description of the two True Maxi-min algorithms: 

True Maxi-min SCR convergence    

1. Find the minimum eigen value min

iλ  for each individual iC  matrix. 

2. Determine the absolute minimum of the lot, or our lower bound on SCRmin 

: { }smallest 1 2 3min , , ,
t

min min min min min

Nλ λ λ λ λ= �  
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3. Use the corresponding eigen vector �̂mine to form the projection matrix: 

ˆ ˆ( ) � �� min min

l ll e e⊥
′=P I -  

4. Update all individual iC  matrices in the squiggle domain: 

( 1) ( ) ( ) ( )� �
i il l l l⊥ ⊥

′+ =C P C P  

5. Again find the minimum eigen value of the set and repeat the process till the 

time only one non zero value remains in the eigen spectrum of each iC  

matrix, i.e. repeat for W-1 iterations where W is the transmit signal dimension. 

6. Use the last surviving vector in the squiggle domain to find our optimal 

transmit code as �-1/2S=B S  

True Maxi-min Energy convergence    

1. Find the minimum eigen value min

iλ  for each individual iC  matrix. 

2. Determine the absolute minimum of the lot, or our lower bound on SCRmin 

: { }smallest 1 2 3min , , ,
t

min min min min min

Nλ λ λ λ λ= �  

3. Use the corresponding eigen vector �̂mine to determine the projection vector in 

the non-squiggle domain: ˆ �̂min mine e= -1/2B  

4. Form the projection matrix: ˆ ˆ( ) min min

l ll e e⊥
′=P I - . 

5. Update the individual iA  matrices and the B  matrix in the non-squiggle 

domain: ( 1) ( ) ( ) ( )i il l l l⊥ ⊥
′+ =A P A P , and ( 1) ( ) ( ) ( )l l l l⊥ ⊥

′+ =B P B P . 

6. Find the new iC  matrices: ( 1) ( +1) ( +1) ( +1)i il l l l+ = -1/2 -1/2
C B A B  
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7. Again find the minimum eigen value of the set and repeat the process till the 

time only one non zero value remains in the eigen spectrum of each iC  

matrix, i.e. repeat for W-1 iterations where W is the transmit signal dimension. 

8. Use the last surviving vector in the squiggle domain to find our optimal 

transmit code as �-1/2S=B S . 

In this section we saw the two “True” algorithms, which try to come up with 

an optimal answer by maximizing the lower bound on SCRmin. It turns out that there 

can be one more approach to the maxi-min problem, i.e. by trying to preserve the 

upper bound and keeping it as high as possible. We call this algorithm the “Heuristic” 

algorithm, and it is the topic of our next section. 

4.2.3 Heuristic Maxi-min 

The first thing to be pointed out about this algorithm is the name “heuristic”. 

This name is kind of misleading as the algorithm is not completely heuristic. It has 

quite a bit of mathematical teeth to it, and only a small portion of it can really be 

treated as abstract. This algorithm is quite similar in structure to the “true” algorithm, 

but at the same time has one major difference associated with itself.  

In case of the ‘true’ algorithms we focused our attention on the smallest of all 

minimum eigen values: { }1 2 3min , , ,�
t

min min min min min

Nλ λ λ λ λ= , or the lower bound on 

our SCRmin. Likewise we can also focus our attention on the smallest of all maximum 

eigen values, which gives us the upper bound on SCRmin i.e.  



 94 

 { }smallest 1 2 3 minmin , , ,�
t

max max max max max

N SCRλ λ λ λ λ= ≥  (4.9) 

The eigen vector associated with each of these values is the best solution for that 

particular target respectively. No solution vector S can result in a SCRmin better 

than smallest

maxλ . It will be seen later in Chapter 5, that this upper bound is a critical 

parameter for all our optimization procedures and kind of sets the limit on how much 

the lower bound can be increased. It is because with every projection as the lower 

bound increases, we also throw out some component for our individual best vectors 

and thus the upper bound also falls. Even at its maximum value during the last 

iteration, the lower bound is still smaller than the upper bound value of any and every 

previous iteration. Therefore the upper bound, in a way sets the limit on how close 

our lower bound can converge to the maximum SCRmin solution. 

The “true” algorithms seen before, however just work to provide the 

maximum increase in the value of lower bound after each step. They do not care 

about preserving the upper bound at all. It’s quite possible that the lower bound 

increases slightly, but the upper bound falls substantially during the same iteration. 

Just as an example Figure 4.2 shows the convergence of the lower and upper bounds 

(monotonic rise and fall respectively), for one of the “true” algorithms. This example 

is again for 14 transmit antennas and 9 time-frequency basis functions, and hence a 

total transmit signal dimension of W = 126.    
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Figure 4:2 Convergence of upper and lower bounds with iteration number 

Here also it seems that it is the lower-bound which tries to rise and meet the upper 

bound. This once again emphasizes the importance of preserving the upper bound, 

and as mentioned before the upper bound can be thought of putting an indirect limit 

on how close the lower bound can reach the maximum SCRmin solution. This also 

signals a need for an algorithm which can raise the lower bound “floor” while at the 

same time preserve the upper bound “ceiling”, and here’s where our “Heuristic Maxi-

min” finds application. 

For this algorithm, we first find the target ‘t’ with the minimum largest eigen 

value, smallest

maxλ  of (4.9). This is the target which sets the upper bound on our SCRmin i.e. 

the potentially best SCR it can receive is the least amongst all targets. We thus call it 

our weakest target and try to take special care of it. The next step is therefore to 

True Maxi-min SCR Convergence 
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determine the eigen spectrum of the corresponding matrix Ct, and select the worst 

solution for this target ˆminte
� as our projection vector, i.e. the vector associated 

with min

tλ . The selection of this vector ensures that the upper bound on SCRmin does 

not fall any further. Since all eigen vectors are orthogonal to each other, the 

projection vector ˆminte
�  turns out to be orthogonal to the best solution vector for our 

weakest target - ˆmaxte
� . Thus there is no reduction in the maximum eigen value max

tλ   

for this target, as the best solution vector for the weakest target is still part of the new 

projected subspace. The projection obviously reduces the maximum eigen values for 

other targets, but since these values were anyway larger than max

tλ to begin with, the 

overall reduction in the upper bound is minimized. 

But here’s where the name “heuristic” comes from. Although we are trying to 

keep the upper bound up, there is no assurance that a projection will not cause the 

maximum eigen value of some other target to drop drastically, and hence result in 

complete decimation of our upper bound. For the numerous simulation cases tried 

such a behavior was never encountered, but even then there is nothing in the math 

which says that this “cannot” happen. This algorithm is clearly not as defensible 

(mathematically) as the earlier “true” algorithm, but is still seen to outperform it in 

most cases. Hopefully it should also be clear to the readers that although this 

algorithm is called “heuristic”, it is not exactly so; it is completely unlike a random or 

numerical search method where we just try to make intelligent guesses. There is a 

definite mathematical rationale behind it wherein we try and uphold the upper bound, 
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but at the same time we also have the possibility of running into pitfalls by going 

down the wrong search paths. 

Anyhow, the remaining steps are exactly identical to the “true” algorithms. We form 

our projection matrix in the squiggle or non-squiggle domain depending on the 

algorithm version (SCR or energy convergence) and proceed in exactly the same 

fashion. We stop after W-1 projections when we are left with a single dimension – our 

optimal Maxi-min solution S. For a single target case, the “heuristic” algorithms also 

converge to the Maximum energy and SCR solutions as shown in Figure 4.3. 

 

Figure 4:3 Convergence of the Heuristic Squiggle and Non-Squiggle Maxi-min 

Maximum Energy 

 
Maxi-min Non-Squiggle ⊥P  

Heuristic Maxi-min Energy Convergence 

Maximum SCR 

 
Maxi-min Squiggle �⊥P  

Heuristic Maxi-min SCR Convergence 
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The two variants of this algorithm have been described in a mathematical step 

by step form below. 

Heuristic Maxi-min SCR convergence    

1. Find the maximum eigen value max

iλ  for each individual iC  matrix. 

2. Determine the absolute minimum of the lot (upper bound on SCRmin) as 

{ }smallest 1 2 3min , , ,�
t

max max max max max

Nλ λ λ λ λ= , and thus the weakest target ‘t’ so that 

max

tλ  = smallest

maxλ . 

3. Find the minimum eigen value  for the weakest target ‘t’ - min

tλ  

4. Use the corresponding eigen vector �̂mine to form the projection matrix: 

ˆ ˆ( ) � �� min min

l ll e e⊥
′=P I -  

5. Update all individual iC  matrices in the squiggle domain: 

( 1) ( ) ( ) ( )� �
i il l l l⊥ ⊥

′+ =C P C P  

6. Again find the minimum eigen value of the set and repeat the process till the 

time only one non zero value remains in the spectrum of each matrix, i.e. 

repeat for W-1 iterations where W is the transmit signal dimension. 

7. Use the last surviving vector in the squiggle domain to find our optimal 

transmit code �-1/2S=B S . 

Heuristic Maxi-min Energy convergence    

1. Find the maximum eigen value max

iλ  for each individual iC  matrix. 
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2. Determine the absolute minimum of the lot (upper bound on SCRmin) as 

{ }smallest 1 2 3min , , ,�
t

max max max max max

Nλ λ λ λ λ= , and thus the weakest target ‘t’ so that 

max

tλ  = smallest

maxλ . 

3. Find the minimum eigen value  for the weakest target ‘t’ - min

tλ  

4. Use the corresponding eigen vector �̂mine to determine the projection vector in 

the non-squiggle domain: ˆ �̂min mine e= -1/2B  

5. Form the projection matrix: ˆ ˆ( ) min min

l ll e e⊥
′=P I - . 

6. Update the individual iA  matrices and the B  matrix in the non-squiggle 

domain: ( 1) ( ) ( ) ( )i il l l l⊥ ⊥
′+ =A P A P , and ( 1) ( ) ( ) ( )l l l l⊥ ⊥

′+ =B P B P . 

7. Find the new iC  matrices: ( 1) ( +1) ( +1) ( +1)i il l l l+ = -1/2 -1/2
C B A B  

8. Again find the minimum eigen value of the set and repeat the process till the 

time only one non zero value remains in the spectrum of each matrix, i.e. 

repeat for W-1 iterations where W is the transmit signal dimension. 

9. Use the last surviving vector in the squiggle domain to find the optimal 

transmit code as �-1/2S=B S . 

That completes our discussion on the types of Maxi-mins. So in all we have four 

different maxi-min algorithms – the ‘true’ and ‘heuristic’ SCR convergence and the 

‘true’ and ‘heuristic’ energy convergence. All four are designed for the same 

objective, but perform differently as will be seen in the next section.  
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Before we go on to see the actual maxi-min performance results, one look at 

the processing costs involved. For a typical simulation case we use a 31×31 grid, 14 

antenna elements and 25 time-frequency basis functions, i.e.: 

Nx = Ny = 31  

J = 14, and 

P = Q = 5 

The transmit signal dimension comes out to be 350 (W), and for the default parameter 

inputs the dimensions of ′′H matrices are 255×350 (K W′× ). Similarly each 

individual iA  and iC  matrix is 350×350 in size (W W× ).  

Thus we are dealing with almost 1000 complex matrices of the above 

dimensions, and all operations – projections, multiplications, eigen value / vector 

decomposition have to be performed on these matrices. Moreover all the processes 

have to be repeated 349 times for the W-1 iterations. If we look at all these factors 

together, the processing times involved do not stay trivial. As an example for the 

above case, just one of the maxi-min algorithms (Heuristic SCR convergence) takes 

about 36 hours to come up with an answer. This is using a Pentium 4 - 2.8 GHz 

machine with 3 GB RAM, and 7200 rpm Hard Disk. The algorithm run requires a lot 

of data (mainly the ′′H and /or the iA  matrices) to be initially dumped on the Hard 

Disk, and then used as and when required. The processing time obviously goes up due 

to the high frequency of disk access, but is unavoidable as the large volume of 

generated data is too big to fit in the finite main memory. 
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The point to be made after describing the non-trivial computational costs 

associated with these advanced algorithms, is that these large processing times limit 

our options; the options of exploring new theories and/or trying new ideas. For 

example, we started out with an idea of retaining more than one projection vector 

after each iteration. Hence, instead of using only the worst or most promising vector 

for our projection matrix, we tried using two, three and even more number of most 

promising vectors to form different projection matrices. The same numbers of most 

promising “worst” vectors were retained after each iteration. The conjecture was that 

if instead of following a single path towards the optimal solution, the algorithm is 

given more flexibility in terms of the number of paths it can explore, then it will come 

up with much better solutions. And the hypothesis did seem to work for the smaller 

cases that were tried, but the idea had to be eventually abandoned due to the large 

amounts of processing cost involved. Similarly, more number of basis functions 

directly translate to more power to the algorithms and the possibility of coming up 

with better answers. However once again due to the constraints on the computation 

time, we could not try our algorithms for very large number of time-frequency basis 

functions. This point is covered later in greater detail. 

  It’s time now to move on and look at some of the actual results for our Maxi-

min algorithms. The results have been presented for several different scenarios, and 

the algorithm performance (and dependence) was studied for a number of criteria. 
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4.3 Maxi-min Results and Observations 

4.3.1 Orphan Problem Solution 

Before comparing the performance of all our algorithms, let’s take a quick 

first glance on the efficacy the maxi-mins in resolving the orphan problem. Figures 

4.4- 4.5 on the next two pages show the maxi-min performance for the orphan cases 

of Figure 3.7. All maxi-min plots shown are for the “Heuristic SCR convergence”, 

which generally turns out to be our best algorithm (as will be seen later).   

 

Figure 4:4 Maxi-min solution to the orphan problem – Heuristic SCR convergence 

Maximum SCR Heuristic SCR Convergence 

 

SCRmin = -2.73 dB SCRmin = 11.38 dB 

SCRmin = -2.21 dB SCRmin = 8.84 dB 
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Figure 4:5 Maxi-min solution to the orphan problem – Heuristic SCR convergence 

Maximum SCR Heuristic SCR Convergence 

 

SCRmin = -13.82 dB SCRmin = 6.96 dB 

SCRmin = -10.68 dB SCRmin = 2.50 dB 

SCRmin = -4.54 dB SCRmin = 1.35 dB 
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As can be seen, significant improvement in the worst SCR or SCRmin for our 

weakest target is achieved. For the cases shown this improvement is anywhere 

between 6 to 20 dB, or to 4 to 100 times. The gain in SCR min is usually achieved at 

the cost of some loss in the average target energy or average SCR; but then the slight 

reduction in accuracy while detecting some targets is still far better than completely 

loosing out the others.  

4.3.2 Comparison of the 4 Maxi-mins 

The performance of all algorithms for a few cases, which also serve as good 

examples for the purpose of comparison, is shown next in Figures 4.6 - 4.7. 
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Figure 4:6  Performances of all 4 Maxi-min algorithms – Example I 

The above case is for 9 time frequency basis functions. Note that although majority of 

the algorithms perform well here (three out of four), the “Heuristic Energy 

convergence” results in a terrible SCR min value of -11.44 dB, i.e. it performs poorly 

than even the standard “Maximum SCR” for which SCR min was -2.73 dB. This shows 

that there are no definite rules to predict when a particular algorithm will perform 

well, and when it will not. All algorithms search for the best answer in a huge multi-

dimensional vector space, which is also full of lots and lots of bad solutions. 

Heuristic SCR Convergence 

SCRmin = 11.38 dB 

Heuristic Energy Convergence 

True SCR Convergence True Energy Convergence 

SCRmin = 8.90 dB 

SCRmin = -11.44 dB 

SCRmin = 4.29 dB 
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Therefore once in a while the possibility of ending up with one of these bad solutions 

is always there, but to predict when exactly this occurs is a very difficult proposition, 

probably near to impossible. 

Certain observations can still be made about our algorithms. Under some 

circumstances all of them perform well, for other cases few of them do well and in 

rare cases none of them work at all. However, the “Heuristic SCR convergence” 

seems to perform reasonably under most conditions. Not only that, for the cases when 

most or all algorithms perform well, usually it’s still the pick of the lot. This point is 

further illustrated in Figure 4.7 where all maxi-mins are again compared for a 

different target-clutter pattern, and for more number of basis functions. 
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Figure 4:7 Performances of all 4 Maxi-min algorithms – Example II 

SCRmin = 1.29 dB 

Heuristic Energy Convergence 

 

True Energy Convergence 

 

Heuristic SCR Convergence 

 

SCRmin = -0.19 dB 

SCRmin = 2.51 dB 

True SCR Convergence 

 

SCRmin = -1.47 dB 

Maximum SCR 

 

SCRmin = -3.5 dB 
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The plots shown in Figure 4.7 are for 25 time-frequency basis functions (the effect of 

basis functions on algorithm performance is covered later). Once again the “Heuristic 

SCR convergence” is seen to give the best results. Also note the greatly improved 

performance of “Heuristic energy convergence” in this example. In fact both the 

heuristic algorithms are better than the “true algorithms” for this case. This is 

consistent with our earlier statement about the unpredictable nature of these 

algorithms. We never know which ones will perform better than the others, although 

most often the competition is limited to only three out of the four algorithms – the 

“Heuristic SCR convergence” being our unrivalled champion in most cases. Note that 

this conclusion was made after running a lot of different simulations and not just the 

above two examples. It’s not possible to present all of those results here, but for 

majority of those cases “Heuristic SCR convergence” emerged as the undisputed 

victor over other maxi-mins. One way to probably explain this is by going back to our 

earlier discussion on the upper and lower bounds; we saw how the upper bound kind 

of sets the limit on lower bound improvement. Since the “Heuristic SCR” focuses on 

this upper bound preservation (which turns out to be the more important of the two 

bounds), and also resembles the “Maximum SCR” in its inherent nature (recall the 

trivial case of one target), intuitively it makes sense that it should turn out to be our 

best code. 

Although the plots of Figure 4.7 may once again indicate that “Heuristic SCR 

convergence” is most likely our champion code, making other definite conclusions 

about the maxi-mins is still a risky proposition. Their performance though 
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understandable in many cases is not always explainable. Let’s look at some more 

cases for the “Heuristic SCR convergence” performance, and try to understand its 

dependence on some of the key parameters. 

4.3.3 Dependence on orphan occurrence 

We saw cases where the Maxi-mins improved the SCR for the orphan targets. 

That is nice as that is what the maxi-mins are intended for, but what about the cases 

when there are no orphans at all? In other words, the illumination optimization 

problem is so simple that the standard codes themselves provide good solutions. We 

find that in such cases the maxi-mins are unable to improve the performance any 

further and often end up giving worse solutions. This point is demonstrated in    

Figure 4.8. 

 

Figure 4:8 Maxi-min performance – Dependence on orphan occurrence I 

The reason can again be attributed to the capricious behavior of the maxi-

mins, and the way they search for good answers in the big search subspace. They may 

Maximum SCR Heuristic SCR Convergence 

 

SCRmin = 1.4 dB SCRmin = 0.7 dB 
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try to come up with the best solution from their side, but it is always possible that 

they are not able to converge to the exact same standard code solution, which was so 

easy to find in the first place. However the solution they come up with is typically not 

much worse than the one for standard codes. Now let us compare the illumination 

pattern and SCR min values of Figure 4.8 above, with the ones of Figure 4.9 where we 

do have some orphans in the solution for “Maximum SCR”. 

     

Figure 4:9 Maxi-min performance – Dependence on orphan occurrence II 

Actually this is one of the earlier cases shown before. A good strategy that exhorts 

itself from these observations is to use the standard solutions like “Maximum SCR” 

for simple problems, and the exotic “Heuristic SCR” for the more difficult ones. 

4.3.4 Dependence on target scenario 

We just saw that the maxi-mins may not work (as expected) if the target-

clutter scenario is too simple. The same thing happens if the target scenario is too 

complex. In fact if there are lots of target and clutter objects too close to each other, 

Maximum SCR Heuristic SCR Convergence 

 

SCRmin = -4.54 dB SCRmin = 1.35 dB 
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then no code including the standard algorithms would result in a good solution. This 

point is illustrated in Figure 4.10. 

       

Figure 4:10 Maxi-min performance – Dependence on target scenario I  

On the other hand if the target and clutter objects are sparse and disjoint, the solutions 

can be exceptional. Figure 4.11 shows one such example. 

 

Figure 4:11 Maxi-min performance – Dependence on target scenario II  

Maximum SCR Heuristic SCR Convergence 

 

SCRmin = -20 dB SCRmin = -8.4 dB 

Maximum SCR Heuristic SCR Convergence 

 

SCRmin = -23.64 dB SCRmin = 7.19 dB 
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4.3.5 Dependence on the number of Basis Functions  

This probably is the most important dependence to consider and really tells us 

a lot about the personality of our maxi-min algorithms. As seen in Chapter 3, the 

standard codes essentially provide us with spatial beamforming or separable space-

time solutions. They do not make use of the available temporal degrees of freedom, 

and thus their performance is fairly insensitive to the number of basis functions. The 

maxi-mins on the other hand result in true non-separable space-time solutions, and 

are therefore very dependent on the number of time-frequency basis functions. The 

dependence of all maxi-mins on the number of basis functions can be seen from 

Figures 4.12 – 4.15, where results for single and multiple basis functions have been 

provided. It should be noted that the single basis function case essentially implies a 

spatial code, or the fact that the same temporal signal propagates on each of the 

transmit elements. 

 
Figure 4:12 Dependence on the number of basis functions – Heuristic SCR Convergence 

1 Basis Function 25 Basis Functions 

 

SCRmin = -13.1 dB SCRmin = 2.5 dB 

Heuristic SCR Convergence 
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Figure 4:13 Dependence on the number of basis functions – Heuristic Energy Convergence 

 

 

 

 
Figure 4:14 Dependence on the number of basis functions – True SCR Convergence 

1 Basis Function 49 Basis Functions 

 

SCRmin = -5.4 dB SCRmin = -0.5 dB 

True SCR Convergence 

 

1 Basis Function 25 Basis Functions 

 

SCRmin = -13.3 dB SCRmin = 1.3 dB 

Heuristic Energy Convergence 
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Figure 4:15 Dependence on the number of basis functions – True Energy Convergence 

As can be seen all codes give better results for more number of basis functions. The 

effect is particularly prominent for “Heuristic” algorithms where we get an 

improvement of around 15 dB for both versions. Also note that even with 25 basis 

functions, the “heuristic” codes outperform the “true” algorithms with 49 basis 

functions; thus they seem to be more responsive to the increase in basis functions. 

The reason we show results up till 25 and 49 basis functions only, is because 

of the processing overhead described earlier. Considerable amount of time and effort 

was devoted to make our programs both time and memory efficient. Several resource 

saving techniques were employed in the software, but describing them here will take 

the focus away from the main issues (and will just end up filling extra pages). In any 

case, these methods would probably be of more interest to a programming person or a 

software engineer, and have therefore been left out of the scope of this thesis. 

1 Basis Function 49 Basis Functions 

 

SCRmin = -6.3 dB SCRmin = 0.2 dB 

True Energy Convergence 
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 One important point that needs to be mentioned though is about the 

application of the time-saving techniques. It turns out that because of the way the 

algorithms are structured, one of our very effective time-saving methods can only be 

applied to the “true”, and not the “heuristic” algorithms. This enables us to run larger 

simulations only for the “true” procedures, and that is why we were able to show 

results for 49 basis functions for the true algorithms and only 25 basis functions for 

the “heuristic” ones. Note that even with all the time-saving techniques this was the 

highest we could go in terms of our basis functions. And even though we can make 

the “true” algorithms run much faster, this does not turn out to be of great application 

as for most cases the champion code is still the “Heuristic SCR”, and thus that is the 

one we are most interested in finding. 

Let us now look at the performance of the various algorithms with respect to 

specific parameters, for increasing number of basis functions. The individual 

parameters considered are average target energy, average clutter energy, average 

SCR, and worst SCR. The idea is to see how the performance of different algorithms 

changes with more number of basis functions. All the plots are for the same target-

clutter geometry as shown before in Figures 4.12-4.15. 
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Figure 4:16 Average target energy for different codes for increasing number of basis functions 

 

 

 
 

Figure 4:17 Average clutter energy for different codes for increasing number of basis functions  

Average Target Energy 

 

Average Clutter Energy 
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Figure 4:18 Average SCR for different codes for increasing number of basis functions 

 

 
 

Figure 4:19 SCR min for different codes for increasing number of basis functions 

 

Average SCR 

 

SCRmin 
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For the first three figures i.e. Figures 4.16 to 4.19, each of the standard codes 

designed to optimize a particular criterion can be seen to perform best with respect to 

that criterion. For e.g. in Figure 4.16 the “Maximum Energy” code (Max Egy) or the 

blue trace stays higher than all other codes. Similarly in Figure 4.17 the “Minimum 

Clutter” code (Min Clt) or the red trace stays the lowest (minimizes the average 

clutter energy), and in Figure 4.17 the “Maximum SCR” or the green curve again 

stays the highest. Also note that for each of these criteria, the other curves (especially 

the maxi-mins) bounce around randomly with increase in number of basis functions. 

The pattern should not surprise us as the other codes have nothing to do with the 

particular criteria of those plots; these codes are not optimized for them and are thus 

free to result in any value of that optimization parameter, irrespective of the number 

of basis functions. Only the codes optimized for a particular criterion are expected to 

show consistency in performance with the increase in the number of basis functions 

The best performance of the standard codes for their respective criterion is 

kind of expected, and reinforces our contention that for the simple criteria standard 

codes are the best codes. But also note that the three best curves in Figures 4.16 to 

4.19 stay very flat throughout. This clearly indicates that their performance is 

typically unaffected by the number of basis functions and thus spatial beamforming 

would yield almost comparable solutions for these criteria. Most interesting results 

are however observed for the maxi-mins in Figure 4.19. Note that the traces for the 

maxi-mins – “H SCR”, “H Egy”, “T SCR” and “T Egy” rise monotonically with 

increase in the number of basis functions. However this rise is more substantial for 
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the “heuristic” codes as indicated by the black and magenta traces. These curves start 

at much lower starting points (indicating poorer spatial solutions) as compared to the 

“true” algorithms, but rapidly catch up and then even overshoot the “true” code 

curves for higher number of basis functions; i.e. the curves rise quite sharply as we go 

from 1 to 9 and 9 to 25 basis functions. In fact as indicated before, even with 25 basis 

functions they reach a higher point than what the “true” curves achieve for 49 basis 

functions - thus indicating their higher responsiveness to the increase in the number 

of basis functions. On the contrary, the “true” curves rise moderately as we go from 1 

to 9 basis functions and then kind of flatten out, indicating that any space-time 

solution after that is equally good and more number of basis functions do not create a 

real difference.  

On the whole, these plots indicate the true space-time nature of maxi-min 

codes and directly convey that spatial beamforming is not an equally effective 

solution for this criterion. They also reiterate a point made very early in this thesis – 

more number of basis functions directly translates to a greater flexibility in 

construction of our transmit signal and hence better final solutions. This rule however 

seems to apply to only the maxi-min solutions though; probably because the standard 

criteria turn out to be so trivial, that it becomes possible to find the best solutions 

using just spatial degrees of freedom. Also note that in each of the figures the plots 

for the “heuristic” codes are limited till 25 basis functions only (for reasons explained 

before). 
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4.4 Form of the Maxi-min transmit signal 

We are pretty much at the end of this chapter, but before moving on lets take a 

quick look at the form of the maxi-min signals just as we did for the standard codes in 

Chapter 3. Actually this topic comes more under the purview of Chapter 6 where we 

discuss some of the other potentials of space-time codes, but a small mention here 

would make up good reading just for the sake of comprehensiveness.   

Recall that for the standard codes the final solutions turn out to be purely 

spatial solutions (generally), as indicated by the 2-D correlation matrix of Figure 3.9. 

This correlation matrix plot corresponds to the “Maximum SCR” solution for the last 

case of Figure 3.7. The “Heuristic SCR convergence” solution for the same target-

clutter geometry is shown as the last plot of Figure 4.5. For the sake of lucidity both 

these plots have been again reproduced here: 

  
 

Figure 4:20 Target-clutter geometry and the two solutions – “Maximum SCR” and “Heuristic 

SCR Convergence”, for which the temporal signal correlation matrices have been shown   

 

SCRmin = -13.82 dB SCRmin = 6.96 dB 

Maximum SCR Heuristic SCR Convergence 
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The corresponding 2-D correlation matrices for both the codes – “Maximum SCR” 

and the “Heuristic SCR Convergence” solution have also been shown below.   

 
 

Figure 4:21 Correlation coefficients between temporal signals of different elements, and 

distribution of energy on different antennas for both codes –  

Maximum SCR and Heuristic SCR convergence   

 

We have already seen the correlation matrix for the standard “Maximum SCR” 

solution (one on the left) in Chapter 3. However the one on the right for the maxi-min 

solution turns out to be more interesting. As is evident from the multi-colored 

checkerboard plot, the temporal signals on different transmit elements are reasonably 

uncorrelated with each other; thus indicating that fairly dissimilar temporal signals 

propagate on each antenna, unlike the standard code solutions of Chapter 3.  

Contrast this plot with the one for “Maximum SCR” solution. For the 

“Maximum SCR” each square in the checkerboard is completely ‘red’, indicating a 

correlation coefficient value of 1 or perfect similarity between all individual signals. 

These plots are for 25 basis functions, and thus reflect how the maxi-min truly utilizes 

Maximum SCR Heuristic SCR Convergence 
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the full potential of the additional temporal dimensions. Also note that the energy 

distribution for the temporal signals on the different transmitter elements, is much 

more uniform for the maxi-min solution case as compared to the “Maximum SCR” 

solution. 

To summarize, the maxi-mins not only provide us with good solutions but 

also true and non-separable space time solutions. We have already seen how these 

solutions are useful from an “illumination optimization” point of view; in Chapter 6 

we study some of the other features and ramifications of propagating true space-time 

codes. But one more question that comes to mind is – how do these algorithms 

actually arrive at their solutions, i.e. we know the broad mathematical steps, but what 

does the exact path to the final solution look like? In other words a question more 

about how they work, rather than just knowing whether they work or not. To learn 

more about such issues and also the intrinsic nature of our algorithms, several more 

tests were performed. These tests along with some other interesting finds have been 

reported in our next chapter – Maxi-min Analysis. 
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Chapter 5  

Maxi-min Analysis 

 

5.1 The Objective 

In the last chapter we saw the performance of the different maxi-min 

algorithms. Although for most cases the results are promising, we also observe that 

qualitatively the solutions vary over a great range – many times they are great, most 

times good and sometimes even average or bad. Moreover we do not have any 

concrete or justifiable reason to explain such a behavior, except for the obvious fact 

that the whole process has an element of uncertainty or unpredictability attached to it. 

This condition kind of implies that we know something about the functioning of our 

algorithms, but not their exact functioning. To ameliorate this situation, it was 

decided to carry out a more rigorous investigation so as to understand the true nature, 

or the true personalities of our algorithms. Although these extra investigations do not 

provide us with all the answers, they do present us with some useful insights on how 

things work, and also help us draw some important conclusions about the maxi-min 

behavior. 

5.2 The Process – 2 tests and 2 new algorithms 

The focus of this extra analysis was mainly on the “Heuristic SCR 

convergence”, as it had already emerged as the unanimous champion amongst all our 

maxi-mins. We have already seen that it is the upper bound on our worst SCR or 
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SCRmin, that sets the limit on how good our final solution can be (how much our 

lower bound can rise). And since this upper bound from (4.9) is given as the smallest 

of all individual maximum eigen values, we thought it would be a good idea to 

monitor this maximum eigen value for each individual target. The idea was to see 

how this bound shifts from one target to another, and thus make any predictions if 

possible, about the iteration pattern. This procedure comprised our Test 1.  

However this whole line of thought leads us to another interesting 

examination. Recall from our earlier discussion that each individual iA or iC  matrix 

has P times Q (or R) non-zero eigen values. We call these values as the significant 

eigen values, as the corresponding eigen vectors are the only vectors containing 

significant information about the matrix. The largest of the significant values, or the 

maximum significant eigen value is also the maximum value for the whole matrix 

( max

iλ ), and it is the one we consider while selecting our weakest target for the 

“Heuristic” algorithms. However the smallest of these significant values, or the 

minimum significant eigen value can likewise be utilized to decide our weakest target. 

It is because by definition, the largest eigen value ( max

iλ ) needs to be greater than this 

value, and thus keeping the minimum significant eigen value high will automatically 

ensure that the largest eigen value or the upper bound on our SCRmin also remains 

high. This leads us to a new class of “Heuristic” algorithms which we call the 

“Heuristic SCR convergence MIN” and “Heuristic energy convergence MIN”, as 

they are based on the idea of preserving the minimum significant eigen values (and 

also because we were running out of names).  
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Also note that the minimum significant eigen value is different from the 

minimum eigen value for the whole matrix ( min

iλ ). All the concepts of maximum 

eigen value, maximum significant eigen value, minimum significant eigen value and 

the minimum eigen value for a target matrix are clearly depicted in Figure 5.1. 

 

 

Figure 5:1 Eigen spectrum of individual matrix Ci, illustrating concepts of maximum and 

minimum significant eigen values 

 

Since we had already caught on this new algorithm based on the minimum 

significant eigen values, we decided to monitor the minimum significant value with 

each iteration for all individual targets as well. This comprised our Test 2, where we 

were hoping to gain similar kind of insights as in case of Test 1. An obvious point of 

interest was also to compare the performances of the two kinds of “Heuristic” 

Maximum Significant or 

Maximum Eigen Value 

Minimum Significant 

 Eigen Value 

Minimum  

 Eigen Value 
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algorithms – the normal ones based on the maximum significant eigen values, and the 

new ones based on the minimum significant eigen values. Note that the only single 

difference between the new algorithms and the old ones is that the new algorithms:  

“Heuristic SCR convergence MIN” and “Heuristic energy convergence MIN” select 

the weakest target based on the minimum significant eigen value, and not the 

maximum significant value. The results of our tests and also for the actual algorithms 

have been described next.     

5.3 Test and Algorithm Results 

A sample target-clutter pattern was selected and the maximum and minimum 

significant eigen value for all targets after every iteration was plotted for different 

algorithms. The idea was to look for trends in the iteration pattern that could help us 

make any definite conclusions about the functioning of our algorithms. Initially this 

was done for 9 basis functions for all four “heuristic” algorithms, but later with higher 

number of basis functions the focus was shifted on only the SCR convergence 

algorithms. It is because the SCR convergence algorithms - “Heuristic SCR 

convergence” and “Heuristic SCR convergence MIN” once again turn out to be more 

promising than the energy convergence algorithms. Also, since similar results were 

obtained for almost all cases, only the most relevant ones have been included here. 

The sample target-clutter geometry used for these tests and the new heuristic 

algorithms has been shown in Figure 5.2.   
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Figure 5:2 Sample target-clutter geometry used for all the Maxi-min Tests 

 

Note that since there are just 7 targets, it was easy to show the maximum or minimum 

significant eigen values for all of them in just one plot. The above illumination 

pattern is for 14 antennas and 9 time-frequency basis functions. 

The maximum and minimum significant eigen value plots for the “Heuristic 

SCR convergence” algorithm has been shown next. Note that for 14 transmitters and 

9 basis functions the transmit signal dimension comes out to be 126, and therefore the 

number of iterations is just one less than this value. 

Heuristic SCR Convergence 
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Figure 5:3 Maximum and minimum significant eigen value drop with iteration number for the 

Heuristic SCR Convergence and 9 basis functions 

 

The same plots with a log scale for the Y axis have been shown in Figure 5.4. The log 

scale helps us see the drop in the minimum significant eigen value more clearly. 

 

Figure 5:4 Maximum and minimum significant eigen value drop with iteration number for the 

Heuristic SCR Convergence and 9 basis functions - Log scale for Y axis 
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Two important points can be noted from the above plots. First the iteration 

pattern for the maxi-min algorithm is totally unpredictable. It is not that the algorithm 

works on only the worst n targets or goes from one target to another in a foreseeable 

manner. During the process the maximum value for any target can drop the lowest, 

and then it becomes our weakest target or the target of special attention. As can be 

seen from the “maximum significant eigen value” plot of Figure 5.3, at some point 

during the iterative process the algorithm has worked on targets 1 (blue curve) and 3 

(red curve) which are the initial 3
rd
 and 5

th
 worst targets respectively. But it didn’t 

work on targets 2 (green) and 5 (pink) which are initially 2
nd
 and 4

th
 worst (these 

curves at any point are never the lowest). Thus we cannot make a conclusion that the 

maxi-min always works on the worst n, or some small percentage of the targets. In 

fact for some of the other cases tried, the algorithm even worked on the target which 

were initially the best (targets 6 & 7 here – yellow and black curves). Hence the only 

thing that can be concluded is that the iteration pattern is very unpredictable, so much 

so that during the course even the initial best targets can have major components 

thrown out from their best dimensions and end up as our worst targets. Note when we 

use of the term “work” in the above description, it means that the algorithm is 

throwing out worst solutions for that target or projecting out the worst vectors from 

the corresponding spectrum.  

The second important point to be noticed is regarding the minimum 

significant eigen value. Note that this value drops monotonically for each target till 

about the 117
th
 iteration, and then again rises to meet its corresponding maximum 
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eigen value at the last iteration (finally only one non-zero value has to remain in the 

spectrum). On first impression the subsequent rise after the initial drop appears to be 

confusing; how can the value get better when we are projecting more dimensions out 

of a finite dimensional search space? But it turns out that the behavior is explainable.  

Recall once more what we discussed about the number of non-zero or 

significant eigen values for an individual target matrix. It is equal to the number of 

time-frequency basis functions, which are 9 in this case. Thus after 117 iterations or 

after 117 worst dimensions have been projected out, the only dimensions that survive 

correspond to these significant eigen values. The next projection now, does not 

correspond to a zero valued eigen value, but to one of these non-zero eigen values. 

Hence the projection causes one of these significant eigen values to go to zero, and 

only 8 non-zero eigen values remain in the spectrum after that. And therefore, there’s 

a possibility that the minimum significant eigen value in this iteration (8
th
 worst) is 

better than the minimum significant eigen value of the last iteration (9
th
 worst). That’s 

exactly what happens, and this value increases monotonically after that till it meets 

the maximum significant eigen value in the last iteration. 

This behavior is thus justifiable, but the more important point here is about the 

actual significance of the maximum and minimum significant eigen values. As was 

the case with the lower bound on SCRmin trying to rise and meet the upper bound, the 

same is observed here for the minimum significant eigen value. The plots on the right 

in Figures 5.3-5.4 show that this value can drop to abysmally low levels during the 

iterative process, but it’s the maximum significant eigen value that pulls it up in the 
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end. Hence for scenarios like these, it does not make much sense to try and preserve 

our minimum significant eigen values; a fact reinforced by the illumination results for 

the two kinds of codes shown below. 

 

Figure 5:5 Comparison of the two Heuristic SCR algorithms 

 Although “Heuristic SCR convergence MIN” performs pretty decently itself, 

it can be seen that the performance of “Heuristic SCR convergence” is still better by 

around 3 dB. Thus it happily stays as our champion code. Similar behavior was 

observed for several other target-clutter geometries and more number of basis 

functions. In fact all analysis presented here was done for all four heuristic 

algorithms, for a number of target-clutter patterns and different number of basis 

functions. However comparable results were observed in each case: maximum 

significant eigen value algorithms perform better than the minimum significant eigen 

value and SCR convergence better than energy convergence (just like before), and 

thus all those results have not been included here. Only the ones that are most 
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representative and convey the most conclusive points have been shown in subsequent 

pages. The bottom line however remains that same – no algorithm is as potent as the 

“Heuristic SCR convergence”, and its operation remains highly unpredictable.  

Let us also look at the maximum and minimum significant eigen value plots 

for the “Heuristic SCR convergence MIN” algorithm, which have been shown below. 

 

Figure 5:6 Maximum and minimum significant eigen value drop with iteration number for 

Heuristic SCR Convergence MIN and 9 basis functions 

 

The maximum significant eigen value plot looks very similar to the one for “Heuristic 

SCR convergence” but for the minimum significant eigen value, the traces are much 

flatter. That seems natural as the algorithm is working on trying to preserve this 

value, and therefore it’s expected that the minimum significant eigen values will fall 

much more slowly. However these values eventually do fall to very low levels like in 

the case of last algorithm, and get pulled up only in the last 9 iterations. This aspect is 
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better seen in the logarithmic scale plots. The complex nature of the iterative pattern 

can also be seen once again. 

 

Figure 5:7 Maximum and minimum significant eigen value drop with iteration number for 

Heuristic SCR Convergence MIN and 9 basis functions - Log scale for Y axis 

 

Note that the fall for the minimum significant eigen values is not as steep as in the 

earlier case. But just like the last algorithm, the targets which were very good to begin 

with – e.g. target 6 (yellow), can end up as our worse target somewhere down the 

iteration process. 

5.4 A New Suboptimal Approach based on the Analysis  

Based on the above plots for the maximum and minimum significant eigen 

values, a new approach proposed itself. From the linear plots we see that just near the 

117
th
 – 118

th
 iteration mark (or in general after W–P×Q iterations) there is a sharp 

drop in the maximum significant value of most targets - or it seems that proceeding 
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further down just hurts rather than helps. A possible explanation is that by this stage 

we generally throw out most of the bad dimensions, and thus going further down just 

results in the expulsion of the surviving good ones. Therefore assuming that the 

remaining subspace is rich in good solutions (we have already projected out a lot of 

bad ones), why not stop here and make a guess in this smaller subspace? Hopefully 

we will end up with a solution that is pretty good, and maybe even better than the 

final one.  

The resulting algorithm is thus called the “Heuristic SCR convergence 

GUESS”, because of its unusual idea of stopping and guessing (once again excuse our 

creativity, or the lack of it for not coming up with a better name). This idea is 

demonstrated in Figure 5.8 below. 

 
 

Figure 5:8 The suboptimal “guessing” approach idea 
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With this idea we were banking on the fact that since by this stage the upper bound 

(on SCRmin) has not fallen enough, there are more possibilities for good answers. But 

it turns out that likewise the lower bound has also not risen enough, and hence there 

are high possibilities of bad answers as well (as seen in Figure 4.2 - the lower bound 

generally rises the most towards the last few iterations). We therefore cannot look at 

any one bound independently. Both of them have to converge simultaneously to give 

the best solution. Hence even though this approach gave us some good solutions, due 

to its inherent indirect limitation of focusing on only one bound, it wasn’t able to 

better our best code – still the “Heuristic SCR convergence”. Results for this new 

guessing algorithm have been shown below. 

 

Figure 5:9 Illumination pattern for the new suboptimal guessing approach – Heuristic SCR 

 One noteworthy observation that came out of this whole exercise was 

regarding the optimality of our maxi-mins. The guessing approach was tried for all 

four maxi-mins: the “true” and “heuristic” “SCR convergence” and also the “energy 
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convergence”. And although results have not been presented for all cases, it turns out 

that some of the algorithms actually get better with guessing. This somewhat 

confirms the inferiority of these algorithms as even by employing a suboptimal 

mechanism we are able to outperform our main algorithms. However, since for the 

“Heuristic SCR convergence” any form of sub-optimality results in a poorer solution, 

it reaffirms its position as our best code. Results for the guessing algorithm with 

respect to the “Heuristic Energy convergence” has been shown below: 

 

Figure 5:10 Illumination pattern for the new suboptimal guessing approach –  

Heuristic Energy Convergence 

But even after all these tests we were not convinced completely. The plots for 

the maximum significant eigen value are so flat towards the start (before they drop), 

that an inkling of doubt remained. To be absolutely sure that we are not missing out 

on any good solutions while the upper bound is still high, we decided to carry out one 

last test. The resulting SCR on all targets, due to the best solution (after every 

iteration) for each individual target was plotted. This way, if at any stage we found 
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that any of the individual best codes gave an acceptable SCR on all targets (or a 

SCRmin value better than the final value), we could have stopped and used that code as 

our final solution. This test was performed on the “Heuristic SCR convergence”, as 

right now we were just looking at methods to better our already best code. The results 

for this test, or the resulting SCR on all other targets by the best code for individual 

targets after every iteration have been shown below. However none of the best codes 

give a better SCRmin value at any point during the iterative process as compared to 

final value.  

 
 

Figure 5:11 Resulting SCR values on all targets, by the best codes for individual targets I 
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Figure 5:12 Resulting SCR values on all targets, by the best codes for individual targets I 

As can be seen, all the 7 best codes converge to the same set of SCR values at 

the end. Actually they have to as towards the end only one vector remains in the eigen 

spectrum of all individual iC  matrices, and that vector solution results in this set of 

SCR values. Also at no point during the iterative process does any code give a better 

SCRmin value than the final solution (indicated by the orange arrow in the last plot). 

Thus we can conclude that the best code or the “Heuristic SCR convergence” can 

provide us with the best solution, only by iterating till the end. No form of suboptimal 
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approach or shortcut can result in an answer that is better than the final optimal 

solution.   

5.5 A point about Basis Functions 

In this chapter, we came across a lot of interesting finds through various tests 

and some new algorithms. But before winding up this piece on the maxi-min analysis, 

one vital point needs to be mentioned about the basis functions. We observe that for 

our sample geometry of Figure 5.2, we don’t get a huge difference in the final 

solutions for 9 and 49 basis functions. This point is illustrated in Figure 5.13. 

 

Figure 5:13 Heuristic SCR convergence performance for 9 and 49 basis functions 

This pattern is kind of surprising. For the second case we have 40 more temporal 

dimensions or in all a total of 40×14 = 560 more space-time dimensions, but we still 

manage a meager improvement of only 1.09 dB in the SCRmin. With so many more 

time-frequency dimensions, don’t we have a much greater flexibility and thus a 

9 Basis Functions 
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higher possibility of coming up with a better transmit solutions? The answer is yes; 

the number of good solutions do increase as we increase the dimension of our 

transmit signal, but then so do the number of bad solutions. And thus the likelihood of 

coming up with better or worse solutions both increase. Most of the time our 

algorithms exploit the optimistic side of this proposition and come up with better 

solutions, but the possibility of coming up with marginally better or even worse 

solutions is also present. This is a very important point and can be better inferred 

from Figure 5.14, where we show the fall of the maximum significant eigen value for 

different number of basis functions for the “Heuristic SCR convergence”. 

 
Figure 5:14 Fall of the maximum significant eigen value for different number of basis functions 
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These plots clearly show that as the number of dimensions increases, our 

starting point or upper bound gets higher (more good solutions in the bigger 

subspace). But at the same time the number of iterations or number of projections 

required to get rid of the larger number of bad solutions also increases, and hence we 

end up almost at the same final spot in all four cases. Thus more number of basis 

functions does not necessarily guarantee a better final answer. 

One other significant point is about the type of basis functions. It’s not that 

our algorithms will converge to the same good solutions irrespective of what basis 

functions are provided to them; i.e. the solutions are not independent of the form of 

the basis functions. As mentioned before, the choice of the basis functions plays an 

important role in eliciting good answers from our algorithms. We switched from the 

initial narrow timewidth / narrow bandwidth basis functions (pulses) to our present 

wide timewidth / wide bandwidth basis functions for the same reason; but further 

scope for improvement is always there. There might be better basis functions out 

there which may improve the performance of our algorithms even further. 

Determination of such functions and evaluation of their performance has been left as 

one of the future ideas in this study. 

Now we are really at the end of this chapter. After having seen the different 

algorithms, evaluating their performance and even analyzing them thoroughly, what 

next? It turns out that the most vital attribute of these algorithms is their ability to 

come up with true space-time solutions. A small reference to this regard was made in 

Chapter 4, but in actuality, true space-time codes open up whole new vistas of 
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possibilities. Some of these properties of space-time codes, along with their potential 

applications for radars have been described in our next chapter.         



 143 

Chapter 6  

True Space-Time Codes – Attributes and Abilities 

 

6.1 Form of Space-Time Signals 

We start this chapter by revisiting the form of space-time signal results. In 

Chapter 4 we got little flavor of this topic, when we saw that for a true space-time 

code different temporal signals propagate on different transmit elements. But there’s a 

lot more to this observation. Firstly, we notice that space-time signals typically result 

in better illumination solutions than purely spatial signals; a fact confirmed by the 

numerous maxi-min results of Chapter 4. Secondly, we suspect that for most cases it 

happens because any other means to synthesize an identical illumination pattern 

(except by transmitting dissimilar transmit signals on different antennas) is physically 

impossible. One important point however, is that even though space-time solutions 

turn out to be better in most cases, there’s nothing in the algorithm which says that it 

has to converge to such non-separable solutions. The basis function structure that 

exists can be used for synthesizing both spatial and space-time solutions. All 

algorithms just try to find the most optimal solution for their respective criterion, and 

in the process can converge to either spatial or a space-time solutions. As it turns out, 

that the standard codes typically result in pure spatial, while the maxi-mins in true 

space-time solutions. It’s probably because the standard criteria are simple enough to 

be realized by conventional beamforming, whereas the maxi-mins are more intricate 

and thus require both the spatial and the temporal dimensions (also indicating that the 
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optimality of space-time solutions for these criteria). Supporting results for the above 

discussion are provided in Figures 6.1 - 6.6.  

Note that in the first case there’s only one target, and hence the best way to 

maximize the minimum SCR is to focus the main beam on the center of the 

illumination area. To achieve this, the same temporal signal needs to propagate on 

each spatial element (the array acts as one big aperture), and that’s exactly what our 

maxi-min comes up with as its final solution. Equal energy, perfectly correlated time-

frequency signals result on each antenna as can be seen by the correlation matrix plot 

on the right. 

                 

Figure 6:1 Transmit Signal Form: One Target (Heuristic SCR Convergence) - Predictable 

For the single target case we know what the answer should be, and the 

algorithm does converge to the exact same predictable best solution. No information 

is provided to the algorithm hinting that the best solution is a beam-focusing one 

(purely spatial) for this case, yet it comes up with the right solution on its own. This 
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behavior also acts as a good sanity check for our procedure, and credibly confirms 

that things are working right for this algorithm. 

Next we decided to try another case for which we knew what the answer 

should be. Instead of a single target, we now have an all target case of Figure 6.3. In 

such situations, the best approach to maximize the illumination area is to have 

perfectly orthogonal signals on each of the transmit element; the illuminated area then 

gets decided by the spatial extent of a single transmit aperture. We constructed one 

such vector for 9 transmit elements and 9 basis functions, by turning on only one 

(dissimilar) basis function on each of the 9 elements. Thus the temporal codes on the 

9 different elements looked something like: 
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0 1/ 3 0 0 0 0
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Figure 6:2 Orthogonal temporal codes on 9 spatial transmit elements 

The scaling of 1/3 is to normalize the space-time vector (so that it has unit 

magnitude). As is evident, the individual transmit signals on all antennas are perfectly 

orthogonal, and thus the illumination area was maximized. The illumination pattern 

and the correlation matrix for this case are shown in Figure 6.3. 
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Figure 6:3 Transmit Signal Form: All Targets  

(Perfectly orthogonal signal on each transmit element)  

The next step was obviously to check what solution does our maxi-min comes up 

with for the same scenario. Results for the maxi-min are shown below in Figure 6.6. 

 

Figure 6:4 Transmit Signal Form: All Targets (Heuristic SCR Convergence) - Predictable 

As can be seen, the pattern matches closely with that of Figure 6.3. The algorithm 

tries to illuminate all targets equally by coming up with highly uncorrelated, equal 

Heuristic Maxi-min based on only the Target Energy 
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energy signals on each transmit element. Contrast this with Figure 6.5 where the 

illumination pattern and correlation matrix for “Maximum Energy” code have been 

shown for the same case. 

 

Figure 6:5 Transmit Signal Form: All Targets (Maximum Energy) 

Note the high degree of correlation between temporal signals of different 

transmit elements. Also note the grossly unequal distribution of energy on spatial 

elements; effectively just 2 out of the 9 elements – 'Antenna 3’ and ‘Antenna 9’ are 

energized for this case. This solution tries to maximize the total illumination energy 

on all targets, but sacrifices a few corner targets in the bargain – the familiar orphan 

problem of Chapter 3.  

Also note that here we are comparing the “Maximum Energy” instead of the 

usual “Maximum SCR” with our maxi-min. The reason should be obvious, since 

there are no clutter objects in the scenario, there is no notion of SCR here. Even the 

maxi-min algorithm had to be altered slightly for this case. The algorithm of Figure 

Maximum Energy 
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6.4 just aims at maximizing the minimum energy received by any target; hence it 

works on the iA  instead of iC  matrices. Also there is no concept of SCR and energy 

convergences (as there are no projections into and out of the squiggle domain), and 

thus we have only one type of “heuristic” and “true” algorithm each. The results 

shown in Figure 6.4 are for the heuristic algorithm, which is understandably called 

the “Heuristic Maxi-min based on only the target energy”. 

Thus we see that for both the simple and predictable scenarios our maxi-min 

comes up with fairly accurate answers, but what about the cases where the scenarios 

are not so easy to predict? One such case is shown in Figure 6.6 below.  

 

Figure 6:6 Transmit Signal Form: Typical (Heuristic SCR Convergence) – Non-predictable 

We see that for such in-between cases, the transmit signal form is difficult to predict. 

Typically the individual temporal signals are partially correlated and have unequal 

energies, as can be seen from the figure above. It is hard to come up with any sort of 

rule or pattern regarding such signals, but the good news is then these transmit signals 

also become unique to our algorithms. There is no other way (except by using our 
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algorithms) by which we could have arrived at these solutions. And as already seen, 

these solutions are indeed good solutions not achievable by simple beamforming 

techniques. Thus to summarize, for most cases each array element truly needs to 

transmit a dissimilar time-frequency signal to result in a desirable illumination 

pattern; but the form of this absolute space-time signal is not trivial to predict and can 

only be determined through an intelligent and logical mathematical process, like our 

Maxi-min algorithms. 

6.2 The target time-frequency response 

Perhaps even more interesting than the form of these space-time signals at the 

transmitter, is the form of the resulting incident signal on each target. The transmit 

signal has energy spread across some bandwidth B and timewidth T, which gives us 

the necessary range and doppler resolution. But the spectrum of this signal as a 

function of time and frequency, is very different at the targets for the spatial and 

space-time signals.  

For a multi-aperture radar, the resulting signal at any target is due to the 

coherent summation of all the individual temporal signals of different transmitter 

elements. The way these different temporal signals combine depends on the location 

of that particular target. Since for a spatial or separable space-time signal, the 

temporal signals on all antennas are identical, their coherent addition is also constant 

with position except for a phase change due to the delay and doppler shifts. It is this 

phase change over the timewidth and bandwidth of the radar, which results in the 
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required doppler and range resolution. The time-frequency magnitude and phase 

spectrums, resulting from a spatial “Maximum Energy” solution on two different 

targets separated by just one resolution cell have been shown in Figures 6.8 – 6.9. 

Note that by “time-frequency” spectrum or “time-frequency” response, we mean the 

magnitude and phase of each of the individual time-frequency samples at the target. 

But first let’s take a look at the relative locations of these targets and the target-clutter 

geometry assumed, which have been shown in Figure 6.7. 

 
 

Figure 6:7 Location of two targets separated by just one resolution cell in range  

 

As can be seen the targets are separated by just one resolution cell in range. 

The resulting magnitude and phase spectrums (over the radar time and bandwidth), on 

these targets by the “Maximum Energy” transmit solution are shown next. 

Targets  

1 & 2 
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Figure 6:8 Magnitude and Phase response on Target 1 due to the “Maximum Energy” solution 

 
Figure 6:9 Magnitude and Phase response on Target 2 due to the “Maximum Energy” solution 

It is evident that the magnitude spectrum is exactly the same for both cases. However 

the phase slope is different along the frequency axis, and thus the response from one 

target is just a phase shifted version of the other. We need this phase shift to last over 

a large time and/or bandwidth in order to be able to sufficiently decorrelate our target 

Target 2 

 

Magnitude Response 

 
Phase Response 

 

Target 1 

 

Magnitude Response 

 
Phase Response 

 



 152 

responses, and thus resolve our targets. The difference in the two phase slopes can be 

better seen in the next plot, where it has been plotted as a function of time and 

frequency. 

 

Figure 6:10 Difference in phase slopes – Targets 1 and 2 

Note the phase difference does not change with time, as both targets belong to the 

same doppler bin. However this difference can be seen to change by a factor of about 

π radians over the bandwidth of the signal. Actually for absolute resolution, this 

change should be near to 2π radians. The reason we get half the phase change is 

because the propagation model was designed for the complete case of both transmit 

and receive; over which the change would indeed be 2π radians. But for the 

illumination optimization problem, we just consider the propagation from transmitter 

to the targets, and hence the phase change is half of what it normally would be. Thus 

in reality targets 1 and 2 would be non-resolvable, and the two corresponding 

responses highly correlated. But that doesn’t affect the point we are trying to make 
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here even slightly; namely the magnitude responses at any two targets, for a pure 

spatial code, are identical and all the achievable resolution is solely due to the phase. 

This behavior is however completely different for true space-time codes. 

Since the resulting time-frequency response at the targets is now due to the coherent 

summation of dissimilar temporal signals of different antenna elements, this time-

frequency spectrum can be completely different at different target locations. Figure 

6.11 shows the time-frequency magnitude response at the same two targets of Figure 

6.7, now due to a true space-time solution (“Heuristic SCR convergence”). 

 

Figure 6:11 Magnitude Response at the two targets due to a true space-time solution  

As can be seen, both the magnitude spectrums are quite different. The result 

has significant consequences for radar applications, as it implies that targets can also 

be resolved based on magnitude now in addition to the phase. Notice that the energy 

on the two targets is distributed differently as a function of time and frequency; 

essentially giving the impression that the two targets get illuminated by two different 
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transmitters. On the receive side it translates to having a different time-frequency 

transmitter present at each target location (which propagates its own signal back to 

the radar). Compared to the case where phase shifted versions of the same time-

frequency signal are received from each target, this scenario definitely offers much 

greater potential for target resolution. Therefore if space-time signals can be 

constructed which result in dissimilar magnitude spectrums at the different target 

locations, then the cross-correlation between the various responses can be greatly 

reduced, and better radar resolution achieved.  

Note however that the usage of space-time codes for improving radar 

resolution is also a kind of double edged sword. It’s because due to the inherent 

structure of these non-separable codes (coherent addition of dissimilar temporal 

signals etc), we typically loose out on a part of the radar time and/or bandwidth. This 

can also be seen in Figure 6.11 where the relatively lighter resolution cells indicate 

the phenomenon (zero magnitude at those times and frequencies). This loss of time 

and bandwidth would ordinarily hurt our ability to resolve in doppler and range 

respectively, but as now we can resolve based on magnitude also, the lack of energy 

on some time-frequency cells can actually work to our advantage and helps us resolve 

better. But there is also an important clause to this aspect - the magnitude responses 

on different targets due to a true space-time transmit code, can improve radar 

resolution only if they are significantly different. In other words, only if the two 

magnitude responses are energized at different time-frequency locations (cells), will 

the cross-correlation between the responses reduce. Otherwise it would remain nearly 
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the same or may even reduce as we just end up loosing out on our timewidth and 

bandwidth (eventually resulting in poorer resolution).  

Thus the potential for better resolution exists, but it can only be exploited if 

we come up with the right kind of space-time solutions. Determining optimal 

solutions for this criterion is a whole new area of study – “Space-Time Ambiguity 

Optimization”, which has partly been dealt with in [8]. To wind up this section, we 

show the time-frequency magnitude responses on some of the other targets as well. 

Notice that each is different from the other. 
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Figure 6:12 Magnitude Responses at different target locations due to a true space-time code 

6.3 Space-time codes – one more prospect 

In the long list of space-time code abilities, there’s one more aspect which we 

discovered during our work on the target magnitude and phase responses (last 

section). Recall that the two targets 1 & 2 are separated by just one range bin, and are 

not resolvable ordinarily for the propagation from transmitter to ground. In other 

Magnitude Response on 4 different Targets 

 

Target 1 

 
Target 2 

 

Target 3 

 
Target 4 

 



 157 

words, both of them are so close to each other that they would lie within the main 

lobe of the range time-frequency ambiguity function. Note that the main lobe width of 

this temporal ambiguity function also turns out to be the width for the overall space-

time ambiguity function, as for our case, the spatial resolution is not as fine as the 

temporal resolution (2.82). Until now the presumption has been that the width of this 

main lobe for the range and doppler ambiguity functions, is purely decided by the 

bandwidth and timewidth of the radar respectively, and once these parameters have 

been fixed there’s no way it can be altered. Once again this turns out to be indeed true 

for single aperture radars and even phased arrays, but the possibility of obtaining 

reduced main lobe widths has never been examined for true space-time codes. 

Obviously all targets lying within this ambiguity function main lobe imply highly 

correlated target responses, and thus non-resolvability. The location of two such 

targets – 1 & 2 is once again shown in Figure 6.13; along with the correlation value 

between these responses for a purely spatial transmit code (obtained using 

“Maximum energy” algorithm). 
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Figure 6:13 Correlation between responses of 2 targets within the main lobe of the 

 space-time ambiguity function: Spatial code 

The plot on the right actually shows the correlation between the response at 

target 1 and those at all other targets, and as can be seen the correlation coefficient 

value between the responses of targets 1 and 2 comes out to be very high – around 

0.9. This was expected as the physical separation between the two targets is not large 

enough; and thus the difference between the two phase slopes cannot change by 2π 

radians over the available signal bandwidth. Furthermore, since the radar bandwidth 

is already specified, there seems to be no plausible way by which the two targets can 

be resolved or at least the cross-correlation between the responses is brought down.  

Like mentioned before, the above statement is true only for conventional 

single aperture radars or spatial transmit signals. For space-time signals some very 

different and also interesting results are observed. Since for such signals we do not 

rely only on the phase change with respect to the timewidth or bandwidth for 

resolution, there is a possibility of improving resolution for even those targets which 
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would normally come under the main lobe of the ambiguity function. More simply, 

the main lobe width for the ambiguity function can now be narrowed; which can 

potentially be a very important result for radar applications. This point is also a kind 

of restatement of the earlier idea, that now we can better discriminate between two 

targets which are very close to each other by virtue of their dissimilar magnitude 

responses. The concept is illustrated in Figure 6.14, where we show the correlation 

between the target responses of the same two targets, this time for a true space-time 

code (generated using the “Heuristic SCR convergence” algorithm).      

   

Figure 6:14 Correlation between responses of 2 targets within the main lobe of the 

 space-time ambiguity function: True space-time code 

The correlation-coefficient value between the same two targets is seen to drop 

to around 0.38, which though not great, is still a substantial improvement over the 

previous case (spatial code). This indicates that if appropriate space-signals are 

constructed which result in uncorrelated incident signals on the different targets, then 

the radar ambiguity function main lobe width can be reduced and there exists a 
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potential for reducing the cross-correlation between two very close targets. To 

illustrate this concept better, the actual range ambiguity function was plotted at ‘target 

1’ for both a spatial and a space-time code. For better appearance of this plot, the 

target spacing has been reduced by half i.e. one additional target has been inserted 

between every two existing targets. The plots have been shown in Figure 6.15 and 

clearly show the narrowing of the main lobe width. Like stated previously, this is 

quite a significant discovery and can have profound ramifications on the radar system 

performance. 

 

Figure 6:15 Potential for ambiguity function main lobe width reduction - space-time codes 

25 Basis Function – space-time 

code 
 

Range ambiguity 

function plotted along 

this dimension 

 

1 Basis Function – spatial code 

Narrower  

Main lobe  



 161 

6.4 True space-time nature – an alternate perspective 

This is going to be the last section in this chapter where we again look at the 

space-time nature of our signals; but from a different viewpoint. We have already 

seen that the space-time signals perform considerably better than pure spatial signals 

with regard to the maxi-min criteria. And the reasons for this superior performance, 

we concluded, were the additional time-frequency dimensions available to the space-

time codes. But what exactly do these additional temporal dimensions translate to? 

One simple way to think about it, is that the transmit signal now has multiple time 

pulses and frequency samples to take care of its targets. If a specific target cannot be 

energized by a particular pulse or frequency, then another pulse or frequency can be 

used to place energy on that target. In other words, the illumination pattern can vary 

from pulse to pulse or frequency to frequency. 

This versatility is not available with pure spatial codes. Since all the antennas 

propagate the same temporal signal, their coherent summation on ground results in a 

constant illumination pattern with respect to time and frequency. At most, the pattern 

can vary in intensity due to the different energies of different pulses, but the energy 

distribution outline on the targets and clutter cannot change. However in case of true-

space time codes, the different temporal signals of different antennas can interact 

coherently to result in a changing illumination pattern with time and/or frequency. 

And as mentioned before, this attribute enables the space-time codes to come up with 

better final integrated energy patterns on targets and clutter. The property also acts as 

a distinctive characteristic of space-time codes and can be used in addition to the form 
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of space-time signal results, to distinguish them from spatial codes. As an example 

the resulting illumination pattern by each of the pulses of a true space time code 

(generated using “Heuristic Energy Convergence”), for a particular target-clutter 

geometry has been shown in Figures 6.16 – 6.17. 

 

Figure 6:16 Pulse to pulse illumination pattern for a true space-time code 

(Pulses 1 to 4) – “Heuristic SCR Convergence”  
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Figure 6:17 Pulse to pulse illumination pattern for a true space-time code –  

(Pulses 5 to 9)  “Heuristic SCR Convergence”  
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The above case is for 7 pulses sent by the transmitter (U  = 7), and thus due to 

the interpolation reason of Chapter 2 we have 9 pulses or 9 time windows at the 

targets (U ′  = 9). The first and the last pulse at the targets ( 1 and 9u u′ ′= = ) just 

capture the leakage of the first and last transmitted pulses ( 1and 7u u= = ), out of their 

respective observation windows, and hence for these pulses (Pulses 1 and 9) we see 

only part of the target area receiving energy. This is expected, as this is only the 

leakage out of a normal time window and hence does not constitute a full transmit 

pulse.  

As can be seen from Figures 6.15 - 6.16, though the illumination pattern does 

not change greatly, it does vary a fair bit after every pulse. Each pulse is strong in 

some and weak for another portion of the illuminated region, but the cumulative 

effect of all pulses usually results in pretty effective illumination patterns integrated 

over the whole time. This property of non-separable space-time codes is indeed very 

efficacious, and is responsible for most of the impressive integrated energy patterns 

of earlier chapters. The total integrated energy pattern and the correlation matrix for 

this solution are shown in Figure 6.18. 
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Figure 6:18 Integrated illumination pattern and correlation matrix for a space-time solution – 

“Heuristic SCR Convergence” 

 

We have not included the pulse to pulse energy patterns for the standard 

spatial codes (which were pretty static), but for comparison purposes the integrated 

illumination pattern and the correlation matrix for each of the standard codes, along 

with that of “Heuristic SCR convergence” have  been shown in Figures 6.19 and 

6.20. Note that the color scale in Figure 6.18 has been changed to enable better 

observation of the finer variations in the pattern. Once again the superiority of 

“Heuristic SCR convergence” over the standard codes can be appreciated from these 

figures.         
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Figure 6:19 Integrated illumination pattern for all types of codes – standard and maxi-min 

Note the similarity between “Minimum Clutter” and “Maximum SCR” 

solutions for this particular scenario. This type of resemblance is not surprising. For 

some of the target-clutter arrangements, the best way to maximize the average SCR 

on all targets is indeed by putting zero or minimum energy on the clutter objects. The 

affinity between the two solutions or vectors can also be seen in the correlation matrix 

plots below. 
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Figure 6:20 Correlation matrix for all types of codes – standard and maxi-min  

 

Once again the spatial nature of the standard codes and the true space-time 

nature of the maxi-min can be inferred from these plots. This also brings us to the end 

of this chapter in which we saw few other features, and capabilities of true space-time 

codes. In fact with this topic, we also complete majority of the more significant stuff 

in this thesis. The next chapter which is last but one, describes some of the other tests/ 

algorithms which were tried keeping specific applications in mind. And therefore 
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these experiments although interesting in their own light, are somewhat limited in 

their scope and do not make for as big a news as the stuff seen up till now. 
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Chapter 7  

A Few Last Experiments 

 

 

As mentioned towards the end of the last chapter, by now we have already 

covered the most significant portions for this thesis. But that does not mean that those 

were the only ideas that were ever tried. In all, we worked on a lot of concepts; not all 

of which were successful. Many did well and have thus been recorded in the last six 

chapters, but some others also resulted in just partial successes, or even total failures. 

Nevertheless, few of them make up for some really readable material, and hence it 

was decided to include them at one place in this document. Please note that although 

some of these ideas themselves manifest in the form of algorithms, the others are just 

propositions to aid the existing algorithms under special circumstances.     

7.1 Operations in subspace orthogonal to clutter 

Recall the “Maximum SCR” algorithm of Chapter 3. On the whole it’s an 

effective algorithm, and performs pretty well (typically) with respect to the goal it has 

been designed for - namely maximizing the average SCR on the targets. But there is 

one condition for which this algorithm will not work normally; the case when the 

number of clutter objects are less than the number of transmit antennas (a pretty rare 

scenario actually). From our discussion of Chapter 3, we know that for such a case 

the eigen spectrum of B  will have some truly zero eigen values (number of non-zero 

eigen values = nb×R < J×R = the total number of eigen values in the spectrum) One 
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way to think about it is that since the number of clutter objects are so few, there are 

dimensions available to put zero or minimal energy on these objects. An example 

spectrum for the B matrix is shown in Figure 7.1. Note that for this case we have 4 

clutter objects, 9 time-frequency basis functions and 14 transmit elements. 

       

Figure 7:1 Concept of subspace orthogonal to clutter 

Hence we have a total of 126 eigen values, out of which only 4×9 = 36 associated 

with the four clutter objects are non-zero. These are the only 36 dimensions which 

can result in any form of illuminated energy on our clutter objects. The eigen vectors 

corresponding to the remaining 90 values define a vector space orthogonal to the 

clutter; and any and every vector in this subspace results in zero total energy on the 

clutter objects.   
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This concept of orthogonal clutter subspace turns out to be very important for 

the case of very few clutter objects, as now the vector solution maximizing the total 

SCR, always lies within this orthogonal subspace. Each vector here results in zero or 

very little energy on the clutter objects, and hence potentially infinite SCR for our 

targets. But when the -1/2B  matrix is formed using (3.22), i.e. using only the non-zero 

values of B, we essentially project out this subspace and thus eliminate all our 

possibilities of coming up with the right answer. An alternate method is therefore 

required for this special case. But before that, let’s take another look at the above 

discussion which has been graphically depicted in Figure 7.2. Note that for this case 

we have 2 target objects, and hence the number of non-zero eigen values in the 

spectrum of A are 2×9 = 18.  
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Figure 7:2 Limitation of the Maximum SCR algorithm 
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As can be seen, the algorithm will return the vector corresponding to the 

largest eigen value of C as our “Maximum SCR” solution. However the actual best 

solution was part of the initial subspace orthogonal to clutter, and was thus left out of 

the C matrix computation. Therefore in such cases we will arrive at the wrong answer 

using our algorithm. Moreover this issue is of concern not only to the “Maximum 

SCR”, but to all our maxi-mins as well. It’s because all the maxi-min criteria also 

involve the best or worst SCR for individual targets, and hence need the correct eigen 

values for the iC  matrices. The subspace which appears to be the zero subspace 

(worst) in the eigen spectrum of C, is actually a very high value subspace (best), and 

thus cannot be ignored for any of the maxi-min algorithms. 

 As a remedy a newer version of the “Maximum SCR” was developed, which 

we call the “Maximum Target Energy - in subspace orthogonal to clutter”. In this 

method we project out the dimensions which put even a little energy on our clutter 

objects right at the start, and then search for the best solution in the remaining 

subspace. Since there are multiple solutions which can minimize or result in zero 

energy on the clutter, we find our best solution as the vector which also maximizes 

the total energy on the targets (hence the name for this algorithm). The whole idea is 

depicted graphically in Figure 7.3. 
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Figure 7:3 Idea behind the new version of the “Maximum SCR” 

A mathematical step by step description for the same procedure is also presented 

below. 

Maximum Target Energy in subspace orthogonal to clutter 
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Where îe
⊥  are the eigen vectors of B corresponding to the zero eigen values. 

Therefore ⊥B  is our projection matrix orthogonal to the clutter subspace.  

2. Next, define a new matrix D as: 

⊥ ⊥
′D=B AB  
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Thus we project out the entire clutter subspace in one go. Note that for the 

maxi-mins each individual Di matrix can be computed as i i⊥ ⊥
′D =B A B  

3. The problem now reduces to that of maximizing ′S  D S . Writing D in terms of 

its eigen values and vectors: 

ˆ ˆd d d

n n n

n

e eλ ′∑D =  

We see that the vector S which maximizes the total energy on the targets, and 

at the same time results in zero energy on the clutter, is the eigen vector 

associated with the largest eigen value of D.  

4.  ∴∴∴∴ the optimal solution is given by:  

S = ˆdne  associated with max( )dnλ  

This algorithm was seen to perform comparably to the original “Maximum 

SCR”, for the applicable cases of lesser number of clutter objects. The concept of 

projecting orthogonal to the clutter subspace and then searching for our best solution 

was also extended to the maxi-mins, by using the individual Di instead of the iC  

matrices. Another important point to be noted is that there is no concept of squiggle 

and non-squiggle domain here, just as it was for the maxi-min based on only the 

target energy (essentially this case reduces to the same idea). Hence for very few 

clutter objects, we just have two versions of the maxi-min – the “true” and the 

“heuristic”, and the heuristic is once again seen to perform better than the true.  

Even though this variation for the “Maximum SCR” has been described in 

sufficient detail here, for most cases we never had to resort to this algorithm. It’s 
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because for almost all our tests we just have 14 transmit elements, and thus rarely are 

there fewer clutter objects in the target-clutter pattern. Even for most practical 

scenarios such an eventuality (of having lesser clutter regions than the number of 

antennas) seems highly unlikely, and thus this algorithm has not been given as much 

standing, as to the ones before. The idea was just to draw attention to this special case 

for which the existing algorithms may give erroneous results, and to suggest a 

possible remedy for the same.  

7.2 Maxi-min Operations on reduced number of Targets 

In the chapters before we have pointed out the huge processing costs 

associated with the maxi-mins. This sometimes turns out to be a big overhead and 

constraints our ability to run/ debug larger cases. Therefore we were always looking 

for methods which enabled us to cut down on this computational time. The next 

experiment that was tried deals with this precise problem, and aims at making our 

algorithms faster by giving them ‘fewer but more pertinent’ targets to work on. The 

idea is - if we can predict the weakest targets, or the ones most worthy of our 

attention from the standard “Maximum SCR” code results, then we can make the 

maxi-mins work on only these targets and come up with our solutions quicker. It’s 

because fewer targets for the maxi-mins directly translate to fewer projections, 

evaluations, eigen decompositions and thus much faster executions. 

The exact scheme adopted was to consider only those targets for our maxi-

mins, which had an SCR value less by a specified margin (say 10 dB) compared to 
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the maximum value for any target. And all the weak targets were selected based on 

the “Maximum SCR” results (which are much faster to attain). The hypothesis was 

that the targets with the best SCR values for this solution were anyway the easy 

targets, and thus did not warrant any special attention. Any solution that we come up 

with (for improving the SCR on the remaining weak targets) would automatically 

result in a good enough SCR for these targets. This theory did seem to work for the 

cases that were tried, and some interesting, even unexpected results were obtained. 

Few of these results have been shown in Figures 7.4 – 7.5. Note that for these 

cases the weaker targets (to be given as input to our maxi-min algorithm) were short 

listed based on the same 10 dB criteria as mentioned before – i.e. if a target received 

an SCR less by 10 dB or more than the best SCR for any target (for the “Maximum 

SCR” solution), then it was marked as a weakling and given as input to the maxi-min 

algorithm to work upon. 
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Figure 7:4 Effect of the reduced target algorithm – “Heuristic SCR Convergence” 

Note that these results are for 25 time-frequency basis functions and 14 transmit 

antennas. Thus the transmit signal dimension is 350 in this case. As can be seen both 

the original “Heuristic SCR convergence” and the new “Heuristic SCR convergence 

- Reduced” result in exactly the same illumination pattern, and thus arrive at the same 

answer. However the “Heuristic SCR convergence - Reduced” arrived at its solution 

by operating on only 45 targets as compared to 108 for the “Heuristic SCR 

convergence”. The fewer targets were selected using the 10 dB criteria, and enabled 
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our algorithm to come up with its solution in less than half the time as the original 

version. To get a better idea, the original “Heuristic SCR convergence” took 36 hours 

for this simulation; where as the new reduced target algorithm arrived at its solution 

in just 17.5 hours. These results initially look promising and indicate a potential for 

arriving at our solution much faster, but there is more to this observation than what 

meets the eye. To understand this point, let’s look at the same results for one of the 

other maxi-mins - the “Heuristic Energy convergence”. 

 

Figure 7:5 Effect of the reduced target algorithm – “Heuristic Energy Convergence” 
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Although hard to notice at first glance, the two illumination patterns are very 

slightly different for this case. The reduced target algorithm not only comes up with a 

different, but also finds a marginally better answer than the original algorithm. This 

phenomenon is rather surprising as even though the algorithm works on fewer targets 

or has lesser information to begin with, it still ends up with a better answer (note that 

this better solution part did not apply to the “Heuristic SCR convergence”; once 

again reaffirming its position as the most optimal, or the champion code). The 

discovery although startling, is not implausible. Note that due to the seeking nature of 

our algorithms, it’s quite possible to go down completely different search paths and 

arrive at entirely dissimilar solutions, if the start points given to the algorithms are not 

same. 

Thus even though satisfactory results are obtained for both the above cases, 

this small observation hints that the approach is not optimal and we always have the 

possibility of going down the wrong path or coming up with worse solutions (which 

did happen for some of the other cases attempted) . The behavior should not surprise 

us, as in a way it is the same conclusion that was reached in Chapter 5 - predicting the 

algorithm iteration pattern, the targets which it operates on, or even the number of 

such targets is not viable. The suboptimal nature of these algorithms acted as a 

dampener to the immediate plans of pursuing them further, and it was decided to put 

them on hold for some time. The idea was to revert to them only if a real constraint 

on time arrived at a later stage. However subsequently the focus shifted to other 

problems, and we never got a chance to visit these algorithms again. Nevertheless, 
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during the course of our work we discovered another kind of fast procedure, which is 

much speedier and also seems to have greater application. We call it the “fast 

algorithm”, and it has been described in the next section. 

7.3 The Fast Algorithm 

This is one of those other techniques which aims to find equally effective 

solutions, just a lot quicker. The idea behind is simple - try to find the best solution in 

a smaller dimensional subspace, which is rich in good solutions for all targets. And 

we come up with this smaller search space, by using the individual best solution for 

each target had it been present alone with the clutter. In other words form a projection 

matrix P using the largest eigen vector for each of the iC  matrices, and then use this 

matrix to make the first projection. The theory was that since the resulting subspace 

consists of the individual best solutions for each target, hopefully it would also 

contain a lot of combined good solutions for the targets together.  

The only delicate part in the process was to form the initial projection matrix 

P, from the selected best vectors. Usually this is a pretty straightforward step if the 

vectors are orthogonal to each other, and our standard expression can be used -

best best

i i

i

v v ′=∑P , where best

iv are the individual best vectors for each target. However 

for this case, the individual best vectors for the targets may or may not be orthogonal 

to each other (in fact typically they are not). Therefore the correct procedure for 

forming our projection matrix P, from a set of non-orthogonal vectors was found 

from [35] and is given on the next page.  
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Like mentioned before best

iv  is the best vector for target i, assuming it’s the 

only one present with the clutter. This matrix P is then used to make the initial 

projection into this smaller subspace, before the maxi-mins start looking for their best 

solution. The dimension of the new projected space is equal to the number of targets 

na which is typically less than the original dimension W. Hence there are fewer 

iterations, and the maxi-mins converge to their solutions quicker. The exact gain in 

terms of the computation time obviously depends on the number of temporal basis 

functions, as that is what ultimately decides the transmit signal dimension for a given 

number of spatial elements.  

This approach is obviously suboptimal as it does not consider all the available 

transmit dimensions; but it still gives us pretty good results and also substantial 

savings in terms of processing time. The concept is also different from the earlier 

reduced target algorithms, as here we assign equal importance to all our targets not 

ignoring some of them completely. Few results for the heuristic and the true fast 

algorithms, along with the results for the corresponding slower maxi-mins are shown 

in Figures 7.6 and 7.7 respectively. 
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Figure 7:6 The Heuristic “Fast” Algorithms 
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come up with a much superior end result. The results for the true algorithms have 

been shown next. 

 

Figure 7:7 The True “Fast” Algorithms 
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best dimensions associated with each target. Thus the improvements in speed are also 

phenomenal; the fast algorithms being quicker by a factor of almost 15 in this case. 

For larger number of basis functions the savings are even more substantial. 

Also note that at times the fast algorithm seems to be a completely different 

algorithm, taking entirely different paths to converge to equally good but dissimilar 

answers. This is evident by the correlation between some of the final solution vectors 

(obtained from the original slower maxi-mins), and their component in the initial rich 

subspace defined by matrix P. For each of the above algorithms this value was 

computed as ( )  ′× ×P S S , where S is the solution vector obtained from the slower 

maxi-min. This value comes out to be in the range of 0.02 to 0.6, indicating that many 

a times only a small component of our final solution lies in the initial subspace. In 

other words, the final vector obtained from the original maxi-mins can be lying 

completely out of this space, and it’s not that the main algorithms just steer us into 

this solution rich subspace.  

Let’s now look at the performance of the three fast algorithms (which were 

perceived to be the best) for one of the more difficult scenarios. The target and clutter 

are more closely interspersed and all algorithms have a tough time in coming up with 

reasonably good answers. These results are shown in Figure 7.8 on the next page.  
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Figure 7:8 The “Fast” Algorithms – another example 
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Once again the fast codes can be seen to perform comparably if not better than 

the original slower algorithms. But one point which strikes out from this result and 

also from Figures 7.6 - 7.7 is that most of the fast algorithms can come up with better 

answers compared to their original slower counterparts, with the exception of only 

one algorithm - “Heuristic SCR convergence Fast”. For all cases tried it could at 

most come up with nearly as good solutions as the “Heuristic SCR convergence”, but 

never better. The other fast algorithms were also not able to (even once) outperform 

this champion code, again confirming the truly optimal nature of our champion. Over 

the course we have seen that any form of suboptimality – stopping with the iteration 

procedure and guessing in a potentially good space, working on the fewer weaker 

targets, or even searching in a smaller but qualitatively richer subspace - just seems to 

make the solution worse for this code. However the same techniques on occasions 

result in better solutions for the other maxi-mins. This behavior yet again confirms 

what we have already concluded, and makes us reiterate once more what we have 

stated many times before – The “Heuristic SCR convergence” is our most optimal 

code and the unrivalled champion amongst maxi-mins, period! 

The correlation matrix plots for the above fast codes have been shown in 

Figure 7.9. As was expected, it turns out that all these codes are true space-time codes 

with fairly uncorrelated temporal signals on the different transmit elements. This once 

again entails that achieving desirable patterns for the maxi-min criteria, calls for the 

utilization of additional degrees of freedom available only with the non-separable 

space-time codes. 
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Figure 7:9 Correlation Matrix Plots – “Fast” Codes 
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The true non-separable nature of these codes, and their ability to produce 

effective results motivated us to delve a little more. Some questions that popped to 

mind were regarding the actual “richness” of the initial rich subspace. Is this subspace 

so abundant that any and every vector here would make a good solution? Do we even 

need our algorithms? What happens if we just select a vector at random in this initial 

space, does it make an acceptable solution? To find an answer to these questions, we 

did exactly the same thing, i.e. selected two vectors at random in this subspace and 

plotted the resulting illumination patterns. These patterns have been shown in    

Figure 7.10. 

 

Figure 7:10 2 Random Codes in the initial projected subspace 

As can be seen none of the codes give us an extraordinary result. Numerically 

the answers may not look that bad, but it’s clear that no attempt has been made to 
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the makeup of this algorithm. The projection into the initial subspace necessitates 

putting energy on all the targets and therefore we don’t get any real orphans. 
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However most of the clutter objects also collect energy in the bargain, and the 

solution is a lot worse from just an average or total SCR point of view. Anyway, this 

small test allays our fears and proves that the algorithms are very much necessary to 

come up with the best solutions. Projecting into an initial rich subspace may narrow 

down the field for us, but we still need the maxi-mins to dig out the best answer. 

This almost brings us to the end of this discussion on the fast algorithms, 

though one last point still needs to be mentioned regarding their potential 

applications. Although not optimal or guaranteed to give the best solution, these 

algorithms do give us pretty satisfactory answers and that too very quickly; therefore 

they visibly find relevance in huge time intensive scenarios. But another possible use 

is in applications which do not require the full radar timewidth and/or bandwidth - 

like the MTI.  

Recall our F matrix from the chapter on radar models (2.61). This matrix is 

placed in front of the actual target matrix tH  and results in a new propagation matrix 

t′H  (for each target). As described before the matrix F actually contains the full 

space-time attributes of our transmit signal, and essentially projects us into a wide 

timewidth-wide bandwidth subspace. This wide timewidth and bandwidth enables us 

to have good resolution, which is critical for many radar applications like the wide 

area SAR. But there are also applications like the MTI which do not necessitate this 

constraint on the time and bandwidth of the radar, i.e. the moving targets are 

presumed to be sufficiently separated and hence do not need as fine a resolution to be 

discriminated. Thus observing over the full time and bandwidth may just mean an 
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additional computational load for these problems. In addition, restricting ourselves to 

this wide timewidth-wide bandwidth subspace (which is not required), may also 

diminish our chances of coming up the best possible code for such applications. 

One interesting proposition that comes out of this effort on fast codes, is to 

replace our initial wide timewidth-wide bandwidth projection with the fast projection 

– i.e. pull out the F matrix from the target matrix computation, use the original tH ’s 

instead of the t′H ’s, and then employ the fast algorithms on this set of data. Basically 

with this concept we are saying that out of all the possible solutions, we prefer the 

ones which do the job better (like put energy only on the moving targets while nulling 

out the clutter), and not the ones which necessarily have a larger time and bandwidth 

(or give us better resolution). This appears to be an interesting idea, but could not be 

followed up due to the lack of time. However it can be included as one of the future 

goals and may result in exciting finds at a later stage. 

 With this, we finally arrive at the end of this section. Some other work was 

actually attempted for the MTI although it wasn’t very successful. The MTI effort and 

another ambitious idea of generating a space-time “target decorrelating code” have 

been described next. 

7.4 More ambitious ideas – Decorrelating Code and the MTI 

This section describes two of the relatively grander ideas which were 

attempted, but were not entirely successful. The intent is just to make the reader 

aware of their presence and also provide some possible pointers towards future work. 
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7.4.1 The Decorrelating Code 

Since the maxi-min had been seen to have a potential for improving target 

resolution (by virtue of its true space-time nature), an attempt was made to exploit 

this aspect a little further. We decided to try out a “target decorrelating” algorithm 

which was aimed at minimizing the correlation between any two target responses, in 

addition to performing the standard maxi-min operation i.e. maximize the minimum 

SCR for all targets. The idea used was to regard even the other targets as clutter when 

considering the best solutions for a particular target individually, i.e. while computing 

the iC  matrix for one target the Bmatrix was formed using the iH  matrices of all the 

clutter objects, as well as the remaining targets. The maxi-min algorithm like the 

“Heuristic SCR convergence” was then executed normally on these matrices. Thus 

with this idea we hoped to get an overall best code, - a solution which would give us a 

reasonably good SCRmin (illumination optimization), along with a fairly less 

correlation value between the various target responses (ambiguity optimization). 

 The approach did seem to work for the initial cases that were tried (at least in 

terms of reducing the correlation), but it also sacrificed the illuminated energy on our 

targets and thus the solutions were not satisfactory from an illumination optimization 

point of view. Some of these energy and correlation results have been shown in 

Figures 7.11. Note that this is the same case where the maxi-min code - “Heuristic 

SCR convergence” gave us a reduction in the ambiguity function main lobe width. 

The “target decorrelating code” does not give us as much of a reduction, but it 
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significantly reduces the correlation between the primary response (of ‘target 1’) and 

the other target responses.  

 

 

Figure 7:11 Correlation and energy results for the new “Target Decorrelating Code” 
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Note that the only other target - ‘target 8’ besides ‘target 2’ with a high 

correlation value in Figure 7.11, is just separated by one resolution cell in along track 

form  ‘target 1’ and is hence non-resolvable for our case (one way propagation from 

the transmitter to targets). Apart from that, the new decorrelating code performs quite 

well in terms of reducing the correlation between the target responses. However this 

solution can still not be called a good solution as it totally ignores the other important 

characteristic of a good transmit signal – improving the worst and average SCR for 

the targets. Notice that in this case the targets get almost the same energy as the 

clutter objects, and therefore we get a poor result in terms of both the worst as well as 

the average SCR. The reason for this behavior can perhaps be found in the design of 

the code. Since each target gets considered as clutter in turn by each other target, 

most likely the overall effect is to attribute these targets as clutter (for the sake of 

putting energy) and thus diminishing the resulting energy on all of them. Moreover 

for some of other cases, this code performed just as well as the original max-min even 

in terms of the correlation (and still worse in energy) making it an unimpressive 

candidate for our choice of transmit signal. The results for these cases are shown in 

Figures 7.12 – 7.13.  
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Figure 7:12 Illumination pattern for the new “Target Decorrelating Code” – another example 
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width (even for the new code as compared to the spatial code), but no significant 

advantage can be seen in terms of reducing the correlation with the other targets vis-

à-vis the original maxi-min.   

 

Figure 7:13 Correlation results for the new “Target Decorrelating Code” – another example 
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Thus most of the times the “target decorrelating code” just gives us similar 

correlation results along with worse energy distributions; and thus in its current form 

does not seem to be of any great utility. But the results shown here and also in 

Chapter 6, indicate that space-time codes if constructed intelligently do have the 

potential to reduce the cross-correlation between dissimilar target responses. Some 

work has been done independently on this problem of ambiguity optimization [8], but 

a real challenge is to combine both the criteria of “illumination” and “ambiguity” 

optimizations and come up with the most ideal codes for SAR applications. 

7.4.2 The MTI problem 

As a matter of fact, there’s not much to report about this problem. This was 

the last trial that was conducted and completely implausible results were obtained. 

Once again we could not investigate into the problem further due to shortage of time, 

but it would still be a good idea to share the underlying concepts with the readers. 

 After the reasonable success of our maxi-mins, we wanted to find out whether 

the same theory can be extended to the moving target case - i.e. equal energy is 

distributed on the mobile targets while the stationary clutter is nulled out 

simultaneously. Thus instead of discriminating the targets in space, we now wished to 

resolve them in the dimension of their radial velocity. In the absolute sense, the idea 

can even be extended to resolving moving targets and stationery clutter objects that 

are co-located in physical space. It’s because even though the objects may occupy the 

same point in the 3-D physical space, in the 4-D target space also involving the radial 

velocity they will be at different locations.  
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Our aim is to illuminate the different regions of this 4-D space depending 

upon our definitions of target and clutter (e.g. for MTI the moving objects become 

targets and hence we would like to throw energy on the non-zero velocity portion of 

this total space). What it actually means is that the radar has to track the moving 

target as it moves from one stationary resolution cell to another, and change the 

energy distribution pattern accordingly.  However based on our results it appears as if 

that the present radar model is not capable for handling such cases yet; and necessary 

modifications will need to be made before this case can actually be experimented. 

Some of the incredible outcomes that resulted on attempting the MTI problem have 

been shown in Figures 7.14 – 7.15. Note that for each of these cases the illumination 

pattern has been shown as a function of one dimension of space (along track) and 

other of radial velocity. 
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Figure 7:14 MTI problem for range bin one resolution cell away from the center 
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conclusions here, let’s look at another case where all the stationary and moving 
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targets are from the range bin exactly at the center of the illumination area. These 

results have been shown in Figure 7.15.   

 

Figure 7:15 MTI problem for range bin exactly at the center 
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bin to 4∆vres (∆vres being the minimum resolvable velocity of the radar based on the 

signal timewidth) but the nulls and peaks in the illumination pattern change only in 

intensity, and not in location. More simply, the illumination pattern is rather constant 

in the dimension of the radial velocity (and doesn’t seem to depend on the location of 

targets or clutter objects at all). This result does not make much sense either. 

Moreover this behavior was observed only for the range bin at the center of the 

illuminated area; for all other bins the conflicting illumination pattern of Figure 7.14 

was obtained. Both these unusual results point to a definite shortcoming in the radar 

model with respect to the non-stationary target case; and the model needs to be 

rectified first before it can handle the MTI. Thus at this stage, drawing any 

conclusions regarding the applicability of our algorithms to the MTI problem would 

just be presumptuous. The field is still wide open and will potentially make an 

exciting study for future endeavors. 

 This brings us to the end of this penultimate chapter on the final trials and 

experiments. In here, we got to see a few more variations of our algorithms and were 

also able to appreciate some of the other potential applications of space-time codes. 

Besides these, several other algorithms were tried, like the maxi-min for the minimum 

target energy and even a mini-max for the maximum clutter energy. But these 

methods do not present anything strikingly noteworthy, and have thus been left out of 

this discussion. Thus we finally finish with all the work that was done on space-time 

codes for radars. A brief summary of the vital points, along with possible 

opportunities for future research have been presented in the last chapter. 
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Chapter 8  

Conclusions and Future Work 

 

8.1 Summary 

In this research, a structure for determining optimal space-time transmit codes 

for a high altitude multi-aperture SAR has been presented. The codes are optimized 

with respect to the various illumination optimization criteria, and their performance 

has been evaluated for a number of different scenarios. Special attributes of these 

codes which make them different and more effectual than conventional radar 

solutions, along with some of their unique abilities have also been highlighted. 

Toward this goal of developing optimal space-time codes, a space-time radar 

model was developed that accurately represent a multi-aperture radar system. The 

propagation from the radar to the targets is modeled fairly accurately, and provisions 

are also made to incorporate any complex target geometry - consisting of a 

combination of stationary, moving, airborne, point or distributed targets. A transmit 

signal model is then introduced which enables writing an arbitrary space-time 

transmit signal as a combination of wide timewidth, wide bandwidth orthonormal 

basis functions, that span the full spatial extent of the transmit array. Since the 

weights of these basis functions completely specify the transmit signal, the problem 

of determining the optimal signal is now simply reduced to finding the optimal set of 

weights for these basis functions – i.e. a vector. The two models are also represented 
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in terms of vector-matrix notations, and hence the complete arrangement allows for 

the use of linear algebraic techniques to solve the problem. 

As the perfect radar transmit signal cannot exist (for most problems), a set of 

optimization criteria are defined with respect to “illumination optimization” principle, 

and solutions are found which satisfy these criteria to the greatest possible extent. 

However it’s found that the criteria which are most easy to satisfy – like maximizing 

the overall illumination energy on the targets, minimizing the overall illumination 

energy on clutter, or even maximizing the ratio of the two (signal to clutter or SCR), 

do not make for very good radar solutions. In trying to optimize their overall 

respective criterion, these solutions neglect some of the individual targets completely. 

Since all targets are equally important for a radar, the total loss of some targets in 

return of increased accuracy for the others does not present an acceptable proposition. 

These solutions are inadequate for most radar scenarios, and therefore there’s a need 

to come up with more appropriate optimization criteria.   

The alternate mini-max or maxi-min algorithm is thus developed, which aims 

at maximizing the minimum or the worst SCR – (SCRmin) for any of the targets. 

However solutions to these more advanced criteria are not as straightforward, and 

there’s no way by which the solution resulting in the best possible SCRmin can be 

directly determined. Contrarily, since finding the worst solutions are easy, an iterative 

procedure is developed which increases the lower bound on the SCRmin by throwing 

out the worst solutions from a finite dimensional transmit signal search space. With 

each projection this lower bound is raised, and results are presented which show that 
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we converge to pretty decent solutions at the end. The heart of all our algorithms is 

eigen analysis, which can be directly be used in conjunction with our vector-matrix 

models defined earlier. Based on the way we form our matrices and define our vector 

spaces, four versions of the maxi-min algorithm are developed. Although all four are 

intended for the same purpose, we find that each performs differently and one 

particular algorithm of the four is most often the best of the lot. 

Therefore, based on the many test cases tried we converge to our champion 

code or champion algorithm, which we call the “Heuristic SCR convergence” owing 

to it’s inherent design. The algorithm is seen to give significantly better solutions 

compared to the basic or standard criteria mentioned earlier; several results to support 

the claim have been included. Some extra analysis is also performed to understand the 

true behavior and/or the functioning of the maxi-mins, which once again confirms the 

supremacy and optimality of our champion algorithm out of the four possible 

methods. However the one limitation of our algorithm is the amount of processing 

time it takes. Several remedial measures are tried for this problem, and have also been 

included in the later chapters. 

Towards the end, the form of the transmit signal and also the signals incident 

on the targets is investigated. This is probably the most interesting discovery in the 

whole study as we find that for producing the desirable max-min illumination 

solutions, the transmit signal has to take a non-separable form at the transmitter – i.e. 

dissimilar and uncorrelated temporal signals on each of the individual transmit 

elements. This attribute is completely different for the standard code solutions which 
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resemble the conventional phased array systems, i.e. the same temporal signal 

propagates on each antenna with an additional complex weighting on top – the idea of 

spatial beamforming or separable space-time transmit signals. Such space-time 

signals also result in dissimilar time-frequency spectrums on the different targets, 

which can have significant implications of its own - in terms of the target response 

correlation and the main lobe width of the radar ambiguity function. Since the 

incident responses at different targets are not related by a simple translation in phase 

shift anymore, the targets give the impression of receiving energy from independent 

time-frequency transmitters, and hence the potential for decorrelating these targets is 

improved considerably. 

Finally few techniques like operations in subspaces orthogonal to clutter and 

the fast codes are described, which aid/can aid the regular algorithms under special 

circumstances. A small introduction to some of the really big ideas - like the use of 

true space-time codes for augmenting MTI performance, and reducing the cross-

correlation between target responses for improving detection/estimation abilities has 

also been provided. 

8.2 Future Work 

The first and foremost point that needs to be accorded top priority, is 

improving the computational efficiency of our algorithms. Although interesting 

results have been observed, and the workability of our algorithms has been 

established beyond doubt, 31×31 grid sizes (or ≈1000 targets) do not make for very 



 206 

impressive real life scenarios. To appreciate the actual might of these algorithms (for 

practical situations), we need to run bigger simulations with larger grid sizes – 

63×63, 127×127 or even 255×255. Also, since it has been observed that the 

effectiveness of the maxi-mins greatly improves with more space-time dimensions, 

we would like to run some cases for even larger number of basis functions - assess the 

resulting effects on the algorithm performance, and thus extend the plots of Figures 

4.16-4.19 beyond 25 and 49 basis functions. For this purpose we again need to 

improve the algorithmic efficiency, which calls for some restructuring and even 

modification of the software.  

One application which naturally follows from whatever work has been done 

up till now, is extending the process to the adaptive case. In this idea of adaptive 

space-time illumination optimization, the radar continuously adapts to the target 

scenario below - i.e. it keeps modifying the transmit signal to best suit the 

requirements based on the information collected. The idea is more akin to optimal 

code selection (out of a finite set of codes) rather than optimal code generation in real 

time, but the increased numbers of available transmit signal options, still paint a 

better picture then transmitting the same radar signal over and over again. The work 

on this idea of information theoretic selection criteria has already been started by my 

colleague, Mr. Ambika Nanda under the direction of Dr. James Stiles, and it would be 

interesting to see how productive the idea actually turns out to be. 

Multi-mode operation is one other possibility of multi-aperture radar systems 

which can be more fruitfully realized using true space-time codes. The multi-aperture 
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sensor collects independent information across time, frequency and space (due to the 

spatial extent of array), and is thus better suited for a range of radar applications like 

wide area SAR (needs large time-width and band-width for fine resolution) or GMTI 

and AMTI (require wide array extent for high angular resolution). Thus a state can be 

visualized in which parts of the time and bandwidth is allocated to regions where we 

wish to detect moving targets (MTI/ AMTI), and most of the remaining resources are 

allocated to other areas for which we are doing a fine resolution SAR (generating 

SAR maps) –in other words, a hybrid or true multi-mode operation with different 

radar modes across different spatial locations. Along with suitable definitions for 

targets and clutter, the application of our algorithms to such applications can result in 

some potentially exciting work     

As already pointed out, applications like GMTI with stationary objects as 

clutter and moving ones as targets can also be endeavored. It’s known that moving 

targets can be separated from ground clutter in terms of correlation (owing to the 

doppler associated with such targets); whether the same can be done in energy using 

space-time codes, would be something interesting to find out. Moreover since our 

model includes provisions for specifying targets in all the three dimensions of space, 

besides one of radial velocity, the algorithms can even be extended to the AMTI. The 

definitions obviously have to be suitably modified – now regard airborne moving 

objects as targets, and surface objects as clutter.  

The potential of space-time codes with regard to reducing the correlation 

between target responses has also been touched upon in this research. Although it has 
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not been entirely validated, results are shown that indicate the existence of a 

possibility. A real challenge however remains to combine this aspect of space-time 

codes (ambiguity optimization), with the initiative undertaken in this thesis 

(illumination optimization) and come up with the most ideal radar transmit signals. 

Finally the algorithm performance can be also be evaluated for other kinds of 

basis functions (which may have the potential for further improving the results), and 

also different spatial array arrangements. Almost all our simulations were conducted 

for a single 14 element sparse array, and it would be interesting to note the algorithm 

performance dependence on the actual spatial array design. 

8.3 Conclusions 

It is found that for exploiting the true potential of a multi-aperture system, a 

dissimilar temporal signal needs to propagate on the different spatial elements - else 

the answers essentially turn out to be spatial beamforming solutions, and the form of 

the time-frequency signal on each spatial element becomes immaterial. Such true 

space-time signals were successfully constructed for the illumination optimization 

criteria using a union of two vector-matrix radar models and linear algebraic 

techniques, and have been seen to considerably improve the multi-aperture radar 

system performance. Although the concept of multi-aperture arrays was originally 

incepted keeping space-borne platforms in mind, their use as such is not limited to 

only these high-altitude systems.  
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In addition to the evident advantage of producing more appropriate 

illumination patterns, space-time signals have shown tremendous promise with 

respect to the other radar applications as well. Since the incident time-frequency 

spectrum at each target is now a coherent summation of the dissimilar temporal 

signals of each individual transmit element, it is found to be different for different 

target locations, and can therefore open up a whole new array of possibilities for 

many radar applications. In the future, space-time codes which distribute energy 

suitably across time and frequency at different target locations can possibly be 

constructed, so as to satisfy the various criteria regarding the illumination and 

resolution requirements of radar, and also its multi-mode operation. 
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