ITTC Research Overview

Victor S. Frost

Dan F. Servey Distinguished Professor Electrical Engineering and Computer Science Executive Director for Research Information and Telecommunications Technology Center University of Kansas 2291 Irving Hill Dr. Lawrence, Kansas 66045 Phone: (785) 864-4833 FAX:(785) 864-7789 e-mail: frost@eecs.ukans.edu http://www.ittc.ukans.edu/

ITTC Research Mission

- Advance the state-of-the-art in:
 - Intelligent Systems and Information Management
 - Networking and Distributed Systems
 - Lightwave Communications Systems
 - Wireless Communications and Digital Signal Processing (DSP)

ITTC Research Mission (Continued)

- Develop new:
 - System architectures
 - Component subsystems
 - Algorithms for
 - DSP
 - Network control
 - Network based applications
 - Devices
 - System performance evaluation technologies

Global Information Infrastructure

Vision: Digital Video Library, Data Mining, Information Retrieval, Data Discovery on the Internet

ATM Research, Network Traffic Management and Control, Rapidly Deployable Radio Network (RDRN), Large Scale Network for High Speed Distributed Processing and Storage: MAGIC Voice/Data Wireless ATM Network Development

Lightwave Communications, Software Radios, CDMA Capacity Assignment, RF Channel Simulation, Rapidly Deployable Radio Network (RDRN), DSP using FPGAs

University of Kansas

Services

Bitways

Importance of Advances in Lightwave Communications Research

• Enabling technology:

25,000 GHz/fiber @ 2.0 bits/Hz ~ 50,000 Gbps/fiber

Terabit/s 'Hero' Experiments

	AT&T Lucent	NTT	Corning Siemens	Fujitsu		Terabit Experiment Comparison
# of channels	50	10	8	55	300	275
Gb/s per channel	20	100	10	20	250 -	_
Total bit rate (Gb/s)	1000	1000	80	1100		
link length (km)	55	40	360	150	(s/q;	
channel spacing (GHz)	100	400	200	75	0 150 -	-
log(BER)	?	?	-17	-11	_ 001 gg	92
Amp. spacing (km)	NA		90	50] ຕັ 50 -	

Lightwave, pages 6, 8, 11, April 1996

source: "OFC post-deadline talks tout terabit tranmission,"

Information and Telecommunication echnoloay Center

Corning

Siemens

NTT

Fujitsu

University of Kansas

0

ATT

Lucent

Some Problems in Lightwave Communications

- Fiber dispersion
- High speed pulse transmission and clock recovery
- Slow wavelength switching and routing
- Ineffective optical logic elements

Importance of Advances in Wireless Communications and Digital Signal Processing

- Enabling technology: *Digital transmission and Processing*
- Potential for advanced features providing widespread *Mobility* for:
 - Web
 - Graphics/Image
 - Video

Some Problems in Wireless Communications and Digital Signal Processing

- Achieving high data rates over radio channels
- Overcoming power limitations
- Flexibility: accommodating different formats and modulations

Importance of Advances in Networking and Distributed Systems

- Enabling technology: Ubiquitous high bandwidth to customers
- Potential for integrated access to:
 - Distributed processing
 - Web
 - Video
 - Graphics/Image

Some Problems in Networking and Distributed Systems

- Guaranteeing Quality of Service in heterogeneous networks
- Efficient use of transmission facilities with heterogeneous traffic
- Scale:
 - Numbers of users
 - Global network coverage
- Rapidly changing technologies

Importance of Intelligent Systems and Information Management

- Enabling technologies:
 - High bandwidth to customers
 - Availability of low-cost computing and memory
- Potential for:
 - Intelligent agents
 - Personalized information management
 - Highly customized services
 - Context based services

Some Problems in Intelligent Systems and Information Management

- Coping with massive data sets
- Scale:
 - Numbers of users
 - Global network coverage
- Security
- Rapidly changing technologies

Summary

- The University of Kansas Information and Telecommunications Center brings together academic and research expertise as well as the facilities required for the development of the Global Information Infrastructure.
 - Lightwave
 - Wireless and Digital Signal Processing
 - Networking
 - Intelligent Systems and Network Based Applications
- It is our goal to remain at the forefront of the creation of the enabling technologies for the Information Age

