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Abstract

Finite maps are ubiquitous in many applications, but perhaps nowhere more so than in
compilers and other language processors. In these applications, three operations on finite maps
dominate all others: looking up the value associated with a key, inserting a new binding, and
merging two finite maps. Most implementations of finite maps in functional languages are based
on balanced binary search trees, which perform well on the first two, but poorly on the third.
We describe an implementation of finite maps with integer keys that performs well in practice on
all three operations. This data structure is not new—indeed, it is thirty years old this year—but
it deserves to be more widely known.

1 Introduction

Finite maps are the workhorse data structure in every compiler. Imperative implementations
typically use hash tables, whereas functional implementations typically use balanced binary search
trees. Both are good at lookups and insertions, which—not coincidentally—are the two most
common operations in these applications. However, a third operation on finite maps, that of
merging two maps, is nearly as important, and on this operation, both hash tables and balanced
binary search trees fare rather poorly. We describe an alternative implementation of finite maps
with integer keys that performs extremely well in practice on all three operations. Our design is
based on a thirty-year-old data structure known as a Patricia tree [3], which deserves to be more
widely known.
Our implementation satisfies the following signature:

signature DICT =
sig
type Key
type ’a Dict
val empty : ’a Dict
val lookup : Key * ’a Dict -> ’a option
val insert : (a * ’a -> ’a) -> Key * ’a * ’a Dict -> ’a Dict
val merge : (’a * ’a -> ’a) -> ’a Dict * ’a Dict -> ’a Dict
end

The first argument to insert and merge is a combining function that resolves collisions. It is
applied whenever two bindings have the same key. Most of the time this function is either fst or
snd, but other choices are possible.

“This paper is descended from material originally presented at the 1994 Glasgow Functional Programming Work-
shop under the title “A balancing algorithm that grows on trees”. However, no paper was produced at that time.

*Supported during the summer of 1998 by the Department of Computing Science at the University of Glasgow,
with funds from the Scottish Higher Education Development Council.
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Figure 1: Two 3-bit binary tries for the map {1 — z,4 — y,5 — z}, (a) with empty subtrees
included, and (b) with empty subtrees removed. Note that the bits are processed from least-
significant to most-significant.

We restrict our attention to integer keys, which is reflected in Standard ML by specializing the
signature using a where clause.

signature INTDICT = DICT where type Key = int

The restriction to integer keys is not a problem in practice. Compiler-generated identifiers are
typically integers anyway, and it is usually a small matter to convert all source-level identifiers into
integers during lexing.

We begin by gradually developing Patricia trees from a simpler data structure known as a
binary trie. Then we reflect on the tradeoffs of using a big-endian binary encoding instead of a
little-endian encoding. Finally, we report some preliminary benchmarks and conclude.

2 Binary Tries

A binary trie is a binary tree in which the placement of each key is controlled by its bits—each 0
means “go left at the next node” and each 1 means “go right at the next node”. This is similar to
a Braun tree [2, 4], except that in a Braun tree, data is stored at every node, whereas in a binary
trie, data is stored only at the leaves.

At its simplest, a binary trie is a complete binary tree of depth equal to the number of bits in
the keys, where each leaf is either empty, indicating that the corresponding key is unbound, or full,
in which case it contains the data to which the corresponding key is bound. This style of trie might
be represented in Standard ML as

datatype ’a Dict =
Empty
| Lf of ’a
| Br of ’a Dict * ’a Dict

To lookup a value in a binary trie, we simply read the bits of the key, going left or right as
directed, until we reach a leaf.

fun lookup (k, Empty) = NONE
| lookup (k, Lf x) = SOME x
| lookup (k, Br (t0,tl)) =
if even k then lookup (k div 2, t0)
else lookup (k div 2, t1)

Figure 1(a) illustrates a binary trie holding the numbers 1, 4, and 5. Notice the placeholders
for the missing numbers. The numbering might seem counter-intuitive because we process the bits
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in little-endian order (i.e., from least-significant to most-significant). We will consider big-endian
tries in Section 5.

Although this data structure is straightforward to create and index, it is hopelessly inefficient
since the trees become huge even for keys with only a moderate number of bits. An obvious
optimization is to collapse each empty subtree into a single Empty node. Figure 1(b) shows the
effect of this optimization on the example trie from Figure 1(a). This representation can be enforced
by constructing trees, not with the Br constructor directly, but rather with a helper function called
a smart constructor [1].

fun br (Empty,Empty) = Empty
| br (t0,t1) = Br (t0,t1)

The lookup function given above still works for this new representation.

Next, consider a map containing only a single binding. Such a map is represented as a long
chain of Br nodes ending in a single Lf, where the other child of each of the Br nodes is Empty. A
successful lookup in such a tree tests the bits of the query key one at a time. But, since there is
only one bit pattern that can ultimately be successful, surely it would be more efficient to test the
bits all at once! We accomplish this by collapsing each subtree containing only a single binding into
a single Lf node, and storing the desired key in that node. Then we change the lookup function
to check this key whenever a Lf node is found.

| lookup (k, Lf (j,x)) = if j=k then SOME x else NONE

Note that the key we store in the Lf node is not the actual key, but only those bits that are not
determined by the ancestors of the node. In other words, the key stored in a Lf node at depth d is
the actual key divided by 2¢. This compensates for the way that lookup discards bits on the way
down the tree (by dividing by 2). The smart constructor must add the discarded bits back into the
key whenever it moves a Lf node upwards.

| br (Lf (j,x),Empty)
| br (Empty,Lf (j,x))

Lf (2%j, x)
Lf (2xj+1, x)

A reasonable alternative to the above scheme is for each Lf node to store its actual key, and
for lookup to not discard bits of the key. This design is simplified if we store at each Br node the
bit that is being branched on. We store this information as an integer with a single one bit (i.e., a
power of 2), with the invariant that the power of 2 equals the depth of the node in the tree. The
code then looks like

datatype ’a Dict =
Empty
| Lf of int * ’a
| Br of int * ’a Dict * ’a Dict

fun lookup (k, Empty) = NONE
| lookup (k, Lf (j,x)) = if j=k then SOME x else NONE
| lookup (k, Br (m,t0,tl1)) =
if zeroBit (k,m) then lookup (k, tO)
else lookup (k, t1)

fun br (m,Empty,Empty) = Empty
| br (m,Empty,t as Lf _) =t
| br (m,t as Lf _,Empty) = t
| br (m,t0,t1) = Br (m,t0,tl)

where zeroBit tests whether the desired bit is 0.
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Figure 2: A Patricia tree for the map {1 — z,4 — y,5 — z}. The numbers in the branch nodes
are the branching bits. The root has prefix 0 and the other branch node has prefix 1.

fun zeroBit (k,m) = (andb (k,m) = 0)

Here, andb is the bitwise-and of two integers.

3 Patricia Trees

There is still one embarrassingly inefficient case remaining, which occurs when all the keys in a map
of size two or more share a long common prefix of bits. In that case, the tree will begin with a long
chain of “useless” Br nodes, each of which has an empty child, before finally reaching a “useful” Br
node, which has two non-empty children. Just as before, a successful lookup on such a map will
test the bits of the query key one at a time. But, again, since there is only one prefix that will
successfully reach the useful node, surely it would be more efficient to test the bits of that prefix
all at once! We accomplish this by eliminating all useless Br nodes and storing at each remaining
Br node the longest common prefix of all keys in that subtree. Figure 2 shows the effect of this
optimization on the trie from Figure 1.
We change the representation of Br nodes to

| Br of int * int * ’a Dict * ’a Dict

where the first integer is the prefix and the second integer is the branching bit. Note that only
the bits of the prefix below (i.e., less significant than) the branching bit are valid. We assume the
invalid bits have been zeroed out.

The Br case of the lookup function then becomes

| lookup (k, Br (p,m,t0,t1)) =
if not (matchPrefix (k,p,m)) then NONE
else if zeroBit (k,m) then lookup (k, tO)
else lookup (k, t1)

where

fun mask (k,m) = andb (k,m-1)
fun matchPrefix (k,p,m) = (mask (k,m) = p)

If most queries are expected to be successful, then it is slightly more efficient to eliminate the
matchPrefix test.

| lookup (k, Br (p,m,t0,t1)) =
if zeroBit (k,m) then lookup (k, tO)
else lookup (k, t1)

! Actually, the Standard ML Basis Library defines andb over words, not integers, but converting between the two
is easy.
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Figure 3: An unbalanced Patricia tree representing {1 — a,2 — b,4 — ¢,8 — d,16 — e}. The
numbers in the branch nodes are the branching bits. All the branch nodes have prefix 0.

Bad keys will be detected when the search finally reaches a Lf node.
The br smart constructor now guarantees that no Empty node is ever a child of a Br node.

fun br (p,m,Empty,t) =t
| br (p,m,t,Empty) = t
| br (p,m,t0,t1) = Br (p,m,t0,tl)

This final design is called a Patricia tree [3]. It uses n Lf nodes and n — 1 Br nodes to represent
a finite map of size n > 0. The worst-case running time of lookup is O(min(n, W)), where W is
the word size of the int type. It is possible for these trees to get very unbalanced—for example,
Figure 3 shows a tree with keys 1,2,4,8,16—but this worst case is both much less likely and much
less devastating in practice than the worst case for, say, unbalanced binary search trees, which
reach a depth of O(n) (which can be much worse than O(W)!) for the extremely common case
of ordered insertions. In the common case that keys are chosen contiguously, Patricia trees are
perfectly balanced, regardless of the order of insertions.?

4 Insertions and Merges

So far we have described only one of the three major operations on finite maps. Now that we have
the representation finalized, we turn our attention to the other two: insertions and merges.

First, we explore the case that gives these operations their speed. Suppose we have two non-
empty trees tp and ¢1, with longest common prefixes pg and p;, respectively. Further, suppose that
po and p; disagree, that is, neither prefix is contained in the other. Then, no matter how large ¢y
and ¢; are, we can merge them simply by creating a new Br node that has ¢y and #; as children!
This is accomplished by the auxiliary function join.

fun join (p0,t0,pl,tl) =
let val m = branchingBit (pO,pl)
in if zeroBit (pO,m) then Br (mask (pO,m), m, tO0, t1)
else Br (mask (pO,m), m, t1, tO)
end

where branchingBit finds the first bit at which py and p; disagree. Note that the first bit at which
po and p; disagree is the lowest one bit in their bitwise exclusive-or, i.e.,

2In fact, these trees are always insensitive to the order of insertions.
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fun insert c (k,x,t) =
let fun ins Empty = Lf (k,x)
| ins (t as Lf (j,y)) =
if j=k then Lf (k,c (x,y))
else join (k,Lf (k,x),j,t)
| ins (t as Br (p,m,t0,tl1)) =
if matchPrefix (k,p,m) then
if zeroBit (k,m) then Br (p,m,ins tO,t1)
else Br (p,m,t0,ins t1)
else join (k,Lf (k,x),p,t)
in ins t end

Figure 4: The insert function.

fun branchingBit (pO,pl) = lowestBit (xorb (p0,p1l))
Now, lowestBit could be calculated with a loop, as in
fun lowestBit x = if odd x then 1 else 2 * lowestBit (x div 2)

but a faster solution takes advantage of a curious property of the twos-complement representation
of integers.

fun lowestBit x = andb (x, “x)

Recall that in twos-complement representations, “x equals notb x + 1. Now, suppose the (little-
endian) binary representation of x is

000001bbbbb
Then, the bitwise negation of x is

111110bbbbb
Adding one yields

000001bbbbb

Finally, taking the bitwise-and with x yields
00000100000

which is the desired answer.

With these functions in hand, we can now write insert and merge, which are shown in Figure 4
and Figure 5. There are many cases to consider, but each is straightforward. Note that in the
case

| mrg (t, Lf (k,x)) = insert (c o swap) (k,x,t)
the combining function ¢ is modified to take its arguments in the opposite order, where
fun swap (x,y) = (y,x)

In the worst case, insert runs in O(min(n,W)) time and merge runs in O(ng + ny) time, but
in practice both are quite fast. (See Section 6.)

Many other finite map and set operations on these trees are equally fast and easy to implement,
such as delete, intersection, and difference. (These are the functions that would typically
use the br smart constructor to eliminate empty nodes.)
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fun merge c (s,t) =
let fun mrg (Empty, t) =t
| mrg (t, Empty) = t
| mrg (Lf (k,x), t) = imsert c (k,x,t)
| mrg (t, Lf (k,x)) = insert (c o swap) (k,x,t)
| mrg (s as Br (p,m,s0,s1), t as Br (q,n,t0,t1)) =
if m=n andalso p=q then
(x The trees have the same prefiz. Merge the subtrees. *)
Br (p,m,mrg (s0,t0),mrg (s1,tl))
else if m<n andalso matchPrefix (q,p,m) then
(x g contains p. Merge t with a subtree of s. *)
if zeroBit (q,m) then Br (p,m,mrg (s0,t),sl)
else Br (p,m,sO,mrg (s1,t))
else if m>n andalso matchPrefix (p,q,n) then
(x p contains q. Merge s with a subtree of t. *)
if zeroBit (p,n) then Br (q,n,mrg (s,t0),tl)
else Br (q,n,t0,mrg (s,t1))
else (* The prefizes disagree. *)
join (p,s,q,t)
in mrg (s,t) end

Figure 5: The merge function.

5 Big-endian Patricia Trees

Until now, we have been processing the bits of each key in little-endian order (i.e., from least-
significant to most-significant). We could also process the bits in big-endian order (i.e., from
most-significant to least-significant). The only changes required are to the mask and branchingBit
functions.

The mask function now sets the indicated bit to zero and all the lesser bits to one.

fun mask (k,m) = andb (orb (k,m-1), notb m)

This is because the valid bits are now those above the indicated bit, rather than below it. We could
simply set all the invalid bits to zero, but this more complicated version of mask has an interesting
advantage. Provided we either exclude negative keys or use unsigned arithmetic, every key in the
left subtree of a Br node is now less than or equal to the prefix in that node, and every key in the
right subtree is greater. In other words, our trees can now masquerade as binary search trees! If
desired, we could replace most of the zeroBit tests with comparisons, e.g., rewriting the Br case
of lookup as

| lookup (k, Br (p,m,t0,t1)) =
if k <= p then lookup (k, t0)
else lookup (k, t1)

Unfortunately, the changes to the branchingBit function are more substantial. The problem
is that there does not appear to be a clever “bit-twiddling” solution to calculate the highest one
bit in a number, as there was for the lowest one bit. Instead, we find the highest one bit using a
loop that searches upward from some initial guess. We can write this loop either as

fun highestBit (x,m) =
let val x’ = andb (x,notb (m-1)) (* zero all bits below m %)
fun highb (x,m) =
if x=m then m else highb (andb (x,notb m), 2*m)
in highb (x’,m) end
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or as

fun highestBit (x,m) =
let val x’ = andb (x,notb (m-1)) (* zero all bits below m *)
fun highb x =
let val m = lowestBit x
in if x=m then m else highb (x-m) end
in highb x’ end

The first version checks every bit between the initial guess and the answer, whereas the second
version checks only the one bits between the initial guess and the answer.

The initial guess can be calculated from the lengths of the two prefixes. Recall that we only
call branchingBit when two prefixes disagree. The bit at which the two prefixes disagree must be
somewhere within the shorter prefix, so we can begin searching at the least-significant valid bit in
the shorter prefix. If the most-significant invalid bits of py and p; are mgy and mq, respectively,
where m; is the branching bit in the Br node for p; (or 0 if p; is actually a key from a Lf node),
then the initial guess should be

max (1,2 - max (mg, my))

Thus, branchingBit can be implemented as

fun branchingBit (pO,m0,pl,ml) =
highestBit (xorb (pO,pl), max (1, 2 * max (mO,m1)))

The join function and the calls to join must also be modified to pass along mg and m;.
Although the branchingBit computation is considerably less efficient, big-endian Patricia trees
offer several significant advantages over little-endian Patricia trees.

e Potentially cheaper branch tests. As already noted, many zeroBit tests can be replaced by
simple comparisons. For some compilers and machine architectures, the comparison will be a
few instructions cheaper than the zeroBit test (although often the two will generate exactly
the same instruction count).

e Better locality. Keys that are close together are likely to be placed close together in big-
endian trees, whereas they are likely to be placed far apart in little-endian trees. This results
in substantially better cache behavior for big-endian trees when keys are accessed sequentially.

e Fasy to process keys in order. Because big-endian trees double as binary search trees, it is
easy to iterate over the keys in order. This is quite difficult to do in little-endian trees.

e Fuaster merges in common cases. It is common in practice for a map to contain contiguous or
nearly contiguous blocks of keys. Big-endian trees will tend to have large common prefixes for
such blocks, whereas little-endian trees will tend to have small common prefixes. Large pre-
fixes are good because they offer more opportunities for prefixes to disagree, which lets us use
the fast join function during insertions and merges. For example, merging trees containing
the keys 1...5 and 6...9 takes 8 steps using little-endian trees, but only 3 steps using big-
endian trees. (Of course, it is easy to come up with examples where the reverse is true—just
consider merging trees with the keys 2,4,8,10,12 and 1,6,9,14—but these examples seem
less likely to arise in practice.)

In practice, these advantages tend to outweigh the extra cost of the branchingBit computation,
especially since branchingBit is called at most once per insertion. (It may be called more frequently
during merges, however.)
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time (sec) Little | Big | Adams | RedBlack | Splay
lookup seq 1.85 1.26 0.72 0.70 2.44
rand | 1.90 1.89 1.13 1.04 4.04

insert  seq 5.00 2.83 5.92 3.61 0.25
rand | 4.91 6.23 5.41 3.31 3.21

merge  seq 8.72 1.58 6.14 14.97 5.54
rand | 6.90 | 5.73 15.82 15.06 6.42

Table 1: Preliminary benchmark results. Experiments were run on a 266MHz Pentium II using
SML/NJ v110.8 under Linux.

6 Preliminary Measurements

Table 1 summarizes the performance of several implementations of finite maps on benchmarks
designed to stress lookups, inserts, and merges under both sequential and random access patterns.
Besides little- and big-endian Patricia trees, we tested splay trees [5], red-black trees [6], and
balanced binary search trees derived from Adams’ implementation [1]. All the implementations
were tuned to approximately the same degree.

The results are mixed. Splay trees are lightning fast on insertions (especially sequential in-
sertions), and also perform quite well on merges. Unfortunately, splay trees are very slow on
lookups—at least in SML/NJ—because SML/NJ severely penalizes assignments, which splay trees
use for a kind of memoization. Another drawback to splay trees is that they are guaranteed to be
efficient only when used in a single-threaded manner.

Red-black trees support the fastest lookups and very good insertions, but are terrible at merges.?
Adams’ balanced binary search trees also support fast lookups, but are rather slow on merges.
Surprisingly, they are also rather slow on insertions.

Little-endian Patricia trees fare much worse than big-endian Patricia trees on all the sequential
benchmarks, but hold their own on the random benchmarks. This is not surprising since sequential
accesses are close to the worst case for little-endian trees but close to the best case for big-endian
trees. A different set of benchmarks would paint the opposite picture, but sequential accesses seem
much more likely in practice than the best cases for little-endian trees.

Big-endian trees perform extremely well on merges and on sequential insertions. They also pro-
vide reasonably fast lookups and random merges, but they fare rather poorly on random insertions,
where the relatively expensive highestBit calculation is at its slowest.

Overall, the best choices for most applications are probably

e red-black trees for applications that use Lookup and insert heavily, but merge only rarely (if
at all), or

o big-endian Patricia trees for applications that also use merge heavily.

Splay trees would also be an excellent choice for single-threaded applications that do not lookup
individual elements much, but rather process trees with bulk operations such as maps and folds.

3With a minor change in representation, it is possible to speed up the merges, but at the cost of slowing down the
insertions.
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7

Conclusions

We have presented an implementation of integer finite maps that supports fast merges. We expect
this data structure to be widely useful in compilers and similar applications written in functional
languages. In fact, the Glasgow Haskell compiler has used a similar implementation for several
years.
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