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Design Methodology for Sievenpiper
High-Impedance Surfaces: An Artificial
Magnetic Conductor for Positive Gain

Electrically Small Antennas
Sergio Clavijo, Rodolfo E. Díaz, and William E. McKinzie, III

Abstract—The Sievenpiper high-impedance surface is a peri-
odic structure characterized by a substrate filled with an array
of vertical vias, capped by a capacitive frequency selective sur-
face (FSS). It functions as the ideal antenna groundplane for wire-
less applications because it simultaneously enhances the gain of
the antenna as it suppresses the surface waves associated with it
(thus reducing the undesired back-lobe and the reactive coupling
to nearby circuits). These two properties are known to occur ap-
proximately over the frequency bandwidth where the phase of the
reflection coefficient of the surface changes from+90 to 90 .
Since this behavior takes place at frequencies where the unit cell of
the structure is small compared to the wavelength, it can be mod-
eled in terms of a layered homogeneous material where each layer
has an anisotropic magneto-dielectric tensor. These tensors, readily
derived using an effective medium model, can be designed to ob-
tain independent control of the bandwidths of gain increase and
surface wave suppression. Based on a transverse resonance model
of the effective medium material model, it is shown that Sieven-
piper high-impedance surfaces exist that can suppress TE surface
waves alone or TM surface waves alone, or both TE and TM sur-
face waves at the same time. Maximum TM surface wave suppres-
sion bandwidth is obtained when the distance between the vias in
the via array is as close as possible to 2. Maximum TE band-
width is obtained when the conductors of the capacitive FSS offer
maximum blockage to the normal magnetic field of the wave. A re-
duction of the transverse resonance solution to nearly closed form
is used to obtain a simple picture of the design space available when
the desired operating frequency is fixed.

Index Terms—Antennas, artificial magnetic conductors, electro-
magnetic bandgap, metamaterials, surface waves.

I. INTRODUCTION

T HE WIDESPREAD use of wireless devices, together
with the requirement to fit them in ever smaller packages,

places radiating antennas in close proximity to sensitive elec-
tronic and biological systems. As a result the antenna design
faces the competing requirements of maximum radiated gain
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Fig. 1. Sketch of the typical Sievenpiper structure.

with minimized near-field coupling to the environment. The
Sievenpiper high-impedance surface [1] is the ideal solution
to this problem. It is an electrically thin in-phase reflector
with surface wave suppression. Even though it is electrically
thin, its surface presents a high impedance within a given
frequency band such that the image currents due to a low
profile horizontal antenna are in phase with the currents of the
antenna itself, instead of 180out of phase as with conventional
metallic ground planes. Furthermore since over the same band
it suppresses surface waves, no power is lost into the dielectric
as in conventional patch antennas. These two properties result
in a net increase in efficiency.

The high-impedance structure is composed of a bed of nails
(via array) embedded in a dielectric substrate with a capacitive
frequency selective surface (FSS) layer on the top. The FSS can
vary in shape but is essentially a two–dimensional (2-D) sheet of
disconnected metal obstacles. Fig. 1 shows the physical aspect
of the structure with an FSS made of square metal patches. We
will use the same Cartesian coordinates shown in Fig. 1 in the
rest of the paper.

This structure is not an electromagnetic band gap (EBG)
material in the traditional sense because it does not derive its
surface wave suppression properties from Bragg scattering
between the waves and its periodic unit cell. In fact, it typically
operates at frequencies where the period is a small fraction of
the wavelength, typically to where is a free
space wavelength at the high impedance resonance. Therefore
the structure can be viewed instead as an artificial anisotropic
magneto-dielectric material operating below its first periodic
structure (Bragg) resonance. It exhibits a frequency-dependent
negative permitivity as well as permeability smaller than
unity providing in that way a very peculiar medium for the
propagation of electromagnetic waves. So-called left-handed
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Fig. 2. Measured phase of the reflection coefficient of a high impedance surface 30.5-mm thick, with an operational bandwdith from 0.88 to 1.55 GHz.

Fig. 3. Measured surface wave transmission coefficient for the high impedance surface of Fig. 2, showing the surface wave suppression bandgap from 0.98 to
1.35 GHz.

or double negative materials make use of similar principles to
obtain negative permitivitties [2], [3].

The fact that these properties are obtained from a periodic
arrangement of elements should not be construed to mean
that the periodicity is essential to obtaining the desired values

of the constitutive parameters. As is well known in effective
medium theory, given a desired average (homogenized) con-
stitutive property to be obtained from a binary mixture, the
periodic arrangement of inclusions (elements) is simply the
easiest configuration to analyze, whereas the random mixture
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Fig. 4. Side view of the structure and its equivalent two-layer medium.

Fig. 5. FSS in the presence of a TM wave reduces to the case of TM incidence onto a parallel strip array.

is usually the easiest configuration to manufacture [4]. That
the two attain the same average values in the limit where the
average distance between inclusions is small compared to the
wavelength has been well established [5]. It is true, however,
that as the wavelength of concern approaches the average
spacing between inclusions, the low frequency homogenization
approximation breaks down. When this breakdown occurs in a
periodic medium we have the onset of periodic or Bragg-like
scattering effects. When it occurs in a disordered medium we
have the onset of multiple-scatterer diffusion (which gives rise
for instance to the opacity of fog).

The organization of this paper is as follows. In Section II,
a two-layer effective medium model is derived for the high-
impedance surface. In Section III, this model is applied with
the transverse resonance procedure to determine the propaga-
tion constant of the surface waves guided by the structure. It is
shown that the surface wave suppression properties are a result
of the unusual axial constitutive properties of the material and
that the location of the band edges of surface-wave suppression
need not be correlated to the and phase shift points
of the reflection coefficient. In Section IV the physical param-
eters affecting a typical design of the high-impedance surface
are briefly discussed, leading to the quasiclosed form design ap-
proach of Section V.

Fig. 2 shows the measured phase of the reflection coefficient
of a typical high-impedance surface approximately 30.4 cm by
40.6 cm in area. The substrate was a low dielectric constant
( ) foam, 30.5-mm thick, while the FSS provided 0.47
pF of capacitance. The periodic unit of the FSS and via array was
10.7 mm. The vias had a radius of 1 mm. The desired operating
band for the reflection coefficient was from 0.79 GHz (
point) to 1.52 GHz ( point). The difference between the
measured reflection phase and the calculated one is probably
due to experimental error given the small size of the AMC tested
(barely one wavelength at the low end.) Fig. 3 shows the surface
wave suppression bandgap of the same structure measured as
the S21 coupling between two radiators communicating with

each other exclusively through the surface waves supported by
the structure. The well-known proximity of the surface wave
suppression bandedges to theand phase points is noted.

II. EFFECTIVE MEDIUM MODEL

Because of symmetry, the structure is modeled as a two-layer
anisotropic uniaxial material in both permittivity and perme-
ability (Fig. 4) with the top layer representing the FSS and the
bottom layer representing the via-array substrate. Then, the op-
tical axis lies in the direction yielding the following form for
the tensor constitutive properties of each layer

(1)

A. FSS Layer

The approach to obtain the effective medium model is best
explained using the FSS capacitive layer. Consider first the TM
case, a wave with its field in the - plane and field in the
direction incident on a “Cohn square” FSS in free space (Fig. 5)
[6].

By considering the electric field on the plane of the square
array it is clear that to first order the electric field nearly van-
ishes in the space between the edges parallel to thedirection,
thus reducing the square array to a strip array. The well known
solution for such an obstacle models it as a shunt admittance
in the transmission line of free-space, giving as its input admit-
tance [7]

(2)

where is the admittance of free space,the periodicity,
the propagation constant of the incident plane wave in the
direction corresponding to a free space propagation constant
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, and the gap between the strips. If however, the
FSS layer were modeled as a material layer of thickness “”
with uniaxial anisotropic properties, the input admittance could
also be obtained using the transmission line equation where the
Load is the free space behind the FSS and the transmission line
is the FSS layer

(3)

where is the directed propagation constant in the FSS
equivalent material layer, given by

(4)

with , and being the relevant constituent parameters of
the material tensor for TM incidence, and is the propagation
constant in the direction of the waves in all the layers. Under
the assumption that is small and that the permittivity of the
FSS layer in the direction and the permeability in thedirec-
tion are 1 (since the ideal FSS is infinitely thin), (3) reduces to

(5a)

and since by (4),

it follows that and
(5a) becomes

(5b)

Comparing (5b) to (2) we conclude that the FSS layer has an ef-
fective directed relative permittivity equivalent to a pure shunt
capacitance that is angle independent given by

(6)

Since the FSS layer is not floating in space but supported by a
dielectric substrate, the result of (6) is increased in practice by
the average relative permittivity, , of the dielectric materials
surrounding the FSS. This average permittivity is weighted by
flux similarly as in quasi-TEM microstrip lines.

The development for TE is identical. The-directed propa-
gation constant in the uniaxial medium for TE is given by

(7)

Therefore, the input impedance for the material layer model is
given by (8), while the TE incidence result from [7] for the FSS
as a shunt obstacle is still given by (2)

(8)

Fig. 6. Strip medium concentrates theE-field lines but it constricts theH-field
lines normal to it.

In order for (8) to be equivalent to (2), the-dependent terms
must vanish. This can only happen if

(9a)

This relation shows us that the normal permeability of the strip
layer is the inverse of the transverse permittivity because to the
extent that the structure concentrates the in-planefield, to that
same degree it squeezes the normalfield (Fig. 6). That this
result must be true can be visualized by realizing that this struc-
ture (the infinite array of strips) can guide a TEM wave along
the length of the strips as if it were a multiconductor transmis-
sion line. The electric and magnetic field distributions of that
TEM wave are exactly the ones of concern in the derivation of
the above effective constitutive properties. Thefield is con-
centrated at the edges of the strips while thefield is squeezed
in between the strips. If this infinite array of strips is surrounded
by free space on both sides it follows that the TEM wave must
travel at the speed of light. Therefore, if the effective permit-
tivity is raised by the concentration of energy at the strips’ edges,
the effective permeability must be dropped by exactly the same
factor, since the product of the two control the speed of propa-
gation along this structure. The depression of the normal perme-
ability is, therefore, a geometric effect proportional to the ratio
of gap area to blocking metal area. (Note, that if we were not
to consider the normal permeability of the FSS, we would be
forced to model the FSS as an angle-dependent shunt capaci-
tance.) Equation (9a) is the result for the strip array FSS. By
our original argument of Fig. 5, this result is also approximately
correct for the metal square patch array FSS. However, the-di-
rected permeability is not as depressed as (9a) suggests because
the magnetic field is not as “squeezed.” There are twice as many
gaps between conductors per unit cell in a square array as com-
pared to a strip array. Therefore, for an array of Cohn squares

(9b)

Again, the presence of the dielectrics supporting the FSS must
be taken into account. Since they alter in no way the magnetic
field, (9b) is not changed, but the transverse permittivity given
by (9a) is increased by .

B. Via- Array Region

The lower layer, via-array region, can be regarded as Brown’s
rodded medium. The solution for this medium can be found in
[8] and [9] for thin rods. To account for the possibility of thicker
rods, the effective medium model is derived for the unit cell il-
lustrated in Fig. 7 as follows. For fields aligned with the vias,
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Fig. 7. Unit cell of the via array can be modeled as a single current carrying
via capped by PECs and surrounded by PMCs.

the medium can be regarded as highly inductive. This induc-
tance can be calculated from the magnetic energy in the unit

cell of side length given by . In the
low frequency approximation the rod in the unit cell is termi-
nated in PECs of area A (periodicity ) and surrounded
by PMCs of height equal to the thickness,, of the via-array
substrate so that the periodic boundary conditions are fulfilled.
A closed-form expression is obtained for the magnetic field by
using Ampere’s law. Setting this result equal to ,
yields

(10)

where is the ratio of the via’s cross sectional area to the unit
cell area. Here, we define the relative permittivity and perme-
ability of the host dielectric that surrounds the vias asand

. The effective permittivity of the unit cell in thedirection
is then

(11)

This permittivity is characterized by a negative real part up to
a “cutoff” frequency. Above the cutoff frequency it approaches
the value of the surrounding medium, . It should be noted
that the derivation of (11) follows the lines of classic effective
medium theory. The inductance of (10) only depends on the
areal fraction and not on the relative size of the cylinder (or
the unit cell) with respect to the wavelength. It can be readily
verified that in this low frequency limit of (11), the same effec-
tive permittivity can be obtained by a variety of combinations
of the absolute size of the unit cell (given by ) and the areal
fraction. As will be shown below, the fact that the effective per-
mittivity of (11) is negative controls the types of TM surface
waves that can propagate on this structure. It further turns out
that when this negative value is of the order of to ,
there appears a band of frequencies over which those surface
waves cannot propagate. Thus the surface wave cutoff or begin-
ning of the stopband for TM surface waves is controlled by the
average value of the normal permittivity and not by the onset of
Bragg scattering as is common with the traditional EBG struc-
tures. Having said this, we desire the most accurate possible
model of this permittivity and, therefore, we should include the
breakdown of the effective medium model as the wavelength

Fig. 8. Permittivity in thez direction of the effective medium model agrees
with Brown’s solution.

approaches the size of the unit cell. This is accomplished by in-
voking Brown’s solution to the rodded medium.

Brown’s solution is given as the frequency-dependent index
of refraction of the medium, in (12)

(12)
where is the unit cell size, is a correction factor and
is the radius of the rods. Fig. 8 shows the real part of the effec-
tive permittivity as calculated from (11) and (12) for the rodded
medium parameters. Evaluation of (12) near the Bragg scatter
limit shows that the effective permittivity rapidly becomes pos-
itive and greater than 1. Clearly, at that point the medium ceases
to behave as a bed of nails and actually behaves as a grounded
dielectric slab, capable of supporting TM surface waves again.
Therefore, we reach the conclusion that for this medium, the
Bragg-scatter effects actually truncate the bandgap rather than
initiate it.

The transverse permittivity of the rodded medium is simply
the 2-D Clausius-Mossotti expression

(13)

The transverse permeability is obtained from an argument sim-
ilar to that used in explaining (9). Assuming a TEM wave trav-
eling along the vias at the speed of light the effective increase of
the directed ( directed) permittivity above its dielectric back-
ground must be exactly offset by a decrease of thedirected (
directed) permeability. Therefore

(14)

In this way, all the components of the tensors shown in (1) have
been determined from effective medium considerations. Table I
summarizes the results.

III. D ETERMINING THE REFLECTION AND SURFACE

WAVE PROPERTIES

A. Reflection Coefficient

The interaction of an incident free space wave with the
high-impedance surface can be modeled as a transmission line
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TABLE I
SUMMARY OF THE EFFECTIVEMEDIUM ANISOTROPICPROPERTIES OF THE2-LAYER MODEL OF THESIEVENPIPERHIGH-IMPEDANCE SURFACE

problem. The equivalent circuit is that of a shorted section
of transmission line of length with a shunt capacitance in
front of it representing the FSS. With the assumption of a
thin structure, the shorted length of transmission line can be
replaced by its total series inductance, which
is then in series with the FSS capacitor to form a series LC
circuit, resonant at the frequency . Therefore,
the reflection coefficient can be expressed as a function of
frequency as given in (15).

(15)

where is the impedance of free space, is the transverse
permeability of the substrate andthe frequency in rad/s. Tra-
ditionally, the frequency range over which the reflection coef-
ficient phase switches from to is considered the
operating band of the high-impedance surface, since over this
band the image of a horizontal current source always adds gain
to its radiation pattern. Then, calling the frequency at
which the phase of the reflection coefficient crosses , and

the frequency at which it crosses it is easy to show
that for thin high-impedance surfaces, the bandwidth,

, is given by

(16)

Fig. 9 shows the Reflection coefficient phase as a function of
frequency for a high impedance surface 0.062-in thick, with a
4.5 dielectric substrate and an FSS supplying a shunt capaci-
tance of 0.4 pF, tuned to a center frequency of 5.5 GHz and a
bandwidth of 1.2.

B. Surface Wave Properties

Following [9], the via-array is treated as a “Fakir’s bed of
nails” wave-guiding surface. To find the propagation constant
we apply the transverse resonance method (TRM), with its
convenient transmission line analogy. Assuming surface wave

propagation in the direction all layers of the multilayer
medium—air/FSS/via substrate/ground plane—share the same

. In addition to the direction propagation constants given
in (4) (TM) and (7) (TE) we need the corresponding medium
impedances. These are given in (17)

(17)

From this point on subscript 2 refers to the lowest layer, that is
the via-array substrate, and subscript 1 refers to the upper FSS
layer. Applying the TRM at the boundary between air and the
FSS layer we find the properties of TM and TE waves.

C. TM Waves

The impedance looking to the right is the short circuit of the
ground-plane rolled through the two sections of the two-layer
material transmission line

(18)

The impedance looking to the left is that of a surface wave in
free space with decay constant

(19)

Setting the impedance looking to the left equal to the negative
of the impedance looking to the right, yields

(20a)
But since we obtain an equation of the form

(20b)

A graphical solution of (20) is most instructive. For a lossless
structure guiding slow waves, we input real valued ,
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Fig. 9. Typical reflection coefficient phase for a Sievenpiper-like high-impedance surface.

Fig. 10. Graphical solution of the TM guided waves.

into the right hand side of (20b) and where the equation
intersects the line , we have a propagating

guided wave. Fig. 10 shows a typical solution for a structure like
that of Figs. 2 and 3 but with vias spaced much more closely
( , via , ,

). It has the same characteristics as King and Park’s
Fakir structure. As those authors mention, in addition to the first
two solutions there are an infinite number of additional inter-
sections, with an infinite number of tangent-like curves (higher
order modes). However those intersections correspond to modes
of extremely high reactance, which would exist only extremely
close to the surface. Furthermore, they correspond in the ex-
ample to values of that exceed the periodic unit limit ,
therefore, they are not relevant to the physical situation. As the
figure shows, as frequency is increased, the two lowest order
modes approach each other and coalesce, and then exit the lower
order mode curve. At this point, if no higher order mode curves
exist within the periodic unit limit, there are suddenly no al-
lowed TM modes. This is the TM cutoff, or lower surface-wave
suppression band edge of the Sievenpiper structure. It is caused
by the effect the negative of the via-array substrate has on
the directed propagation constant [see (4)]. When this calcula-
tion is carried out for the structure of Figs. 2 and 3, the predicted

TM surface wave cutoff is 952 MHz. This is within 3% of the
measured result of 981 MHz.

In the case of Fig. 10, the surface-wave suppression starts near
1 GHz. This frequency may be changed by simply changing the
value of the negative permittivity, that is, by changing the pa-
rameters of the via-array. As a rule the lowest frequency band
edge (and, therefore, the broadest bandgap) is obtained by op-
erating in a regime where the negative axial permittivity is in
the range between and 0. This can be obtained, for ex-
ample, by either increasing the periodic unit or decreasing the
radius of the vias. Changing the periodic unit has a stronger ef-
fect in the value of the inductance than changing the radius of
the vias. Thus the strongest control parameter for the position
of the lower surface-wave suppression band edge is the peri-
odic unit of the via-array. However, there is a limit to how far
we can go with this control parameter because increasing the
via separation moves the operating band closer and closer to the
Bragg-scatter limit and, as has been pointed out above, we run
the risk of losing the negative value of the axial permittivity.
Nevertheless, it is clear that this band edge may or may not fall
near the frequency at which the phase of the reflection coeffi-
cient of the surface crosses .

D. TE Waves

Following the same procedure as in the TM waves, but using
the wave admittance, leads us to the corresponding equations.
The admittance looking to the right is the admittance of the short
circuit rolled through the two layers and the admittance looking
to the left is that of a surface wave in free space with-decay
constant

(21a)

(21b)

Again solving for , and setting yields an
equation of the form

(22)
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Fig. 11. Graphical solution of the TE guided waves. Proper solutions only exist
when the intersection occurs at� > 0.

We will use, again, a graphical solution for this problem. Only
when the intersection occurs for do we have a physi-
cally realizable guided wave. Intersections at are im-
proper(nonphysical) modes that do not exist. The graphical so-
lution is illustrated in Fig. 11. Overlaid over the solution are the
boundaries where changes from positive to negative. At those
boundaries the solid curve representing the right hand side of
(22) is stopped, because after that point the solution is a non-
physical mode. When this procedure is carried out for the High
Impedance Surface of Figs. 2 and 3, the TE band edge is cal-
culated to be at 1.32 GHz, which is within 3% of the measured
band edge.

As the frequency is raised above the frequency at which the
phase of the reflection coefficient of the surface crosses zero de-
grees, the right-hand side of (22) approaches the line.
Onset of TE guided waves occurs at the point of intersection.
This is the TE or upper surface-wave suppression band edge of
the high-impedance surface. It is caused by the effect the de-
pressed of the FSS layer has on the-directed propagation
constant [see (7)]. Therefore, the position of this band edge can
be changed by dropping , for instance by changing the ge-
ometrical shape of the FSS layer. When is dropped by a
factor of two the intersection moves from 1.32 GHz to 1.46 GHz
(Fig. 12).

In summary, the surface-wave suppression bandwidth of the
Sievenpiper high-impedance surface is controlled by the nega-
tive value of the normal permittivity of the via-array substrate
and the depressed normal permeability of the FSS layer. The
position of the band edges relative to theor phase shift
points of the reflection coefficient is in general arbitrary except
for the fact that the TE band edge can only occur above the zero
degree phase frequency (the reflection coefficient resonance).
Because of the zero degree phase reflection coefficient at the
center of its operating band, we refer to these high-impedance
surfaces as artificial magnetic conductors (AMCs). The phys-
ical implementation of these structures is treated in the next
section.

Fig. 12. TE band edge increased after halving� 1.

Fig. 13. Real part of the axial permittivity of the substrate as a function of
frequency for a substrate of" = 4:5 and different via spacings. The+ and
�90 . reflection coefficient bandwidth (� BW) is shown for reference.

IV. PHYSICAL REALIZATION OF THE SIEVENPIPERFAMILY OF

AMCS

A. BW of TM Surface Waves

The via-array is the region of the AMC that governs the be-
havior of TM surface waves. TM cutoff occurs, as mentioned
before, when the value of , is negative. In Fig. 8 we saw that
this permittivity is a strong function of frequency, hence, the
importance of choosing the right value of inductance for the via
array region in regards to the bandwidth. Clearly, if the value
of the normal permittivity of the substrate becomes greater than
one it will be able to support conventional surface waves. Thus
the most general guideline to insure surface wave suppression
is to maintain the normal permittivity less than one within the
bandwidth of interest. Additionally, for a Fakir’s bed of nails
type of cutoff to occur, the normal permittivity must be negative
at the lower band edge.

Given a choice of substrate dielectric constant, the normal
permittivity is controlled over the band by controlling the zero-
crossing frequency, that is when . Fig. 13 illustrates the
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effect of the via spacing on this crossing for a substrate whose
relative dielectric constant is 4.5. The vertical lines define the
extent of the reflection phase bandwidth. In this Figure
the case when the vias are 1/9.5 of a free space wavelength
apart (at the reflection phase resonance) gives the most negative
normal permittivity because its zero-crossing frequency is far
above the high-impedance frequency band of operation. How-
ever it also gives the most rapidly varying value of over the
band, and this turns out to limit the surface wave suppression
bandwidth. To maximize the bandwidth we want the slowest
possible varying normal permittivity that nevertheless does not
cross 1 inside the band of operation. Therefore, for this case a
via spacing of the order of 1/8 of a wavelength would be the best
choice. Clearly, in Fig. 13 the dielectric constant of the substrate
plays an important role in the determination of the bandwidth
because it controls the asymptotic high frequency limit of,
and, therefore, the slope of the curve over the bandwidth of op-
eration. If the permittivity of the substrate is too high, then the
zero crossing value will appear lower in frequency, diminishing
– in this way — the possible available surface wave suppression
bandwidth. This tradeoff exercise will become clear in the fol-
lowing section when we find closed form versions of the trans-
verse resonance solution. As a rule of thumb it is advisable to
put the zero crossing as close as possible to the upper end of the
band.

B. BW of TE Surface Waves

As seen, TE surface waves do not occur until a certain onset
frequency, or cutoff frequency. This means that the TE case has
an intrinsic surface wave suppression band that starts at zero
frequency. In this respect the AMC is similar to a grounded di-
electric slab that in general exhibits this onset point near the
frequency at which the reflection phase crosses zero degrees.
The effect of the depressed of the FSS is to push this onset
frequency above that point. The lower the normal permeability,
the higher this onset of TE waves is pushed. In other words,
the effectiveness of the FSS in blocking the normal magnetic
field determines the TE mode cutoff frequency, and hence the
TE bandwidth.

When a normal magnetic field cuts into a metal obstacle,
eddy currents are formed, which oppose the incident field and
force it to flow through gaps in the structure. The blockage is,
therefore, mainly a function of the geometric shape of the FSS.
In our example of a square shaped FSS patch, the blockage is
approximately half that of a strip array floating in free space.
This means that the value of the normal permeability is ap-
proximately . Full-wave modeling of the unit cell readily
proves this. Since the metal squares are supported by a dielectric
substrate, their capacitance and, therefore, their transverse per-
mittivity is increased without adding blockage. Therefore, the
normal permeability’s value for a dielectric-supported array of
metal squares is

(23)

Where is the average permittivity of the medium that
surrounds the metal squares (as explained earlier in the paper).

In summary, if we want to suppress TE surface waves we
have to allow for the normal field to be blocked as much
as needed in order to meet the TE band requirement. FSS con-
sisting of metal squares are maximally blocking while FSS con-
sisting of crossed dipoles would be minimally blocking. Finally,
the blocking performance of the FSS is indirectly affected by the
thickness and composition of the via-array substrate because to
obtain zero degree phase in the reflection coefficient at the de-
sired center frequency the total phase shift supplied by the FSS
and the substrate must be equivalent to one quarter wavelength.
Therefore, if the substrate is made too thick, or has too high a
dielectric constant, the FSS capacitance will be too small, and
hence the FSS patches will be too small or the gaps will be too
large to adequately block the normal magnetic field.

Different kinds of antennas may or may not need both sur-
face-wave suppression bands. For example, horizontal antennas
radiate mainly TE waves. The Sievenpiper family of AMCs can
be designed to have a reflection coefficient phase op-
erating band coincident with either TE only, TM only, or both
surface wave band gaps. The two extremes are as follows.

• TM-only suppression band—In this case, the suppression
of TM surface waves is of interest and the suppression of
TE surface waves is assumed to be irrelevant. The FSS
layer needs to provide the additional phase difference
using its capacitance but is not required to obstruct the
normal magnetic field, thus allowing the TE surface
waves to propagate in the medium. A Jerusalem-cross
shaped element is, therefore, assumed for the FSS.

• TE-only suppression band—In this case, TM surface
waves are not a concern, therefore, we can position the
zero crossing value of of the via array well inside
the band. In fact we do not even need the via-array to
suppress only TE surface waves.

But to answer the general question of how to get a certain band-
width for the reflection coefficient, and TE and TM suppression
independently or arbitrarily, we need a design methodology, i.e.,
a closed form solution.

V. QUASI-CLOSEDFORMSOLUTIONS

The graphical solutions give us great insight on the behavior
of the structure however a closed form solution with frequency
as its independent variable would allow us much more flexi-
bility for the design of these types of AMCs. In this section we
will derive quasiclosed form solutions for this purpose, based
on certain reasonable approximations.

A. TM Case

For the TM modeling we can assume that the structure is a
grounded slab with a shunt capacitancein parallel to it as
shown by the discussion leading to (6). Applying the TRM to
this transmission line analogy and taking advantage of the fact
that the slab is by definition electrically thin—therefore, the tan-
gent functions approximate to their arguments; we arrive at the
following expression that is a simplified version of (20)

(24)
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Where is the -directed propagation constant inside the
anisotropic via-array substrate.

By noting in Fig. 10 the resemblance between the curves from
the right hand side of (20b) to secant functions we realize that
there are only two parameters to be determined: (1) the value of

when the function goes to infinity and (2) the value of the
function when is equal to zero.

We will first find the value of the function for

(25)

Now to identify where the infinity point is we just have to find
the value of so that the denominator of (24) is equal to zero.
Then, the infinity point is

(26)

where at the resonant frequency. Now, we will just
use the following secant function to represent the lowest order
mode curve of the TM case.

(27)

In the previous section, it was shown (Fig. 10) that the curves
move from right to left when the frequency is increased. So the
band edge will happen when the lowest order mode curve of
Fig. 10 leaves the 45 line. In this way we identify the TM
band edge. To find this point using (24) we first find the point
at which the derivative of (27) is one (the slope of the curve

). After working out the derivative of (27) we encounter
as an intermediate step a quadratic equation in sine functions.
The solution of that quadratic equation is

(28a)

The point of interest turns out to be the arcsine function of (28a)
multiplied by a constant ,

(28b)

Substituting from (28b) for the of (27) we find the
ordinate of this point. When this ordinate equals itself
we have the desired intersection with the line. Thus, if
we plot

(28c)
as a function of , the cutoff frequency occurs at the when

. Fig. 14 shows this exercise for the case of an AMC
with center frequency at 5.5 GHz for various via spacings.
The frequency of the TM band edge is clearly identified. From
Fig. 14 we see that the maximum bandwidth is attained with
vias spaced as far apart as possible.

Fig. 14. Plot of the closed form solution for the TM surface wave suppression
band edge, (28c).

B. TE Case

Using similar approximations with respect to the thickness
of the via array layer, and also noticing that the FSS layer has a
fictitious thickness, we can approximate (22) by

(29)

where: is simply a
proportionality constant. Equation (29) is a second order poly-
nomial in squared. Therefore it yields four closed form
values for . Only real values correspond to guided waves;
and only those real values occurring with are physically
possible. Setting in the transverse resonance equations
yields.

(30)

Therefore, only the real roots of (29) with less than the value
of (30) are physically realizable guided surface waves.

Equation (29) for the quasiclosed form solutions of the TE
case is plotted in Fig. 15 only as an aid to visualize the concept.
The analytically derived intersections with the line (real
roots) are the highlighted points in the figure. In the figure we
plotted (29) and the boundary at whichcrosses zero for the
resonance frequency () and for a 1.11 times that frequency
( ). Clearly the TE surface waves are suppressed at the reso-
nance frequency since the boundary at which occurs at

and no real solutions exist for (29). On the other hand,
as the frequency increases, the region increases and the
complex solutions of (29) begin to coalesce to the real axis of
the complex plane. The real solution shown in Fig. 15 for fre-
quency happens in two points, one outside the region
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Fig. 15. Plot of (29),kxTE(kx), and the equationy = kx to show the
intersection points derived in closed form from (29) and (30). Two frequencies
are shown,f = 5:5GHz (resonance or band center of�) andf = 6:1GHz.
The boundary where� crosses zero is superimposed for each frequency to
illustrate how (30) selects the correct solution. In this case TE onset occurs at
6.1 GHz.

(nonphysical solution) and the other exactly inside the region.
Hence, a TE surface wave is excited for frequency 1.11 times
the resonance frequency and this is the TE bandedge.

Solutions from the quasiclosed form equations just derived
can be compared to an AMC modeled using a finite-element
calculation [10]. The AMC modeled was a 1.6-mm thick with
substrate dielectric constant of 2.2, periodicity of 2.4 mm, rod
radius of 0.36 mm, and a square FSS capacitance of 0.07 pF
(equivalent to 12 GHz center frequency). Fig. 10 in [10] shows a
surface wave bandgap from 10 to almost 15 GHz. Using our qua-
siclosed form model the bandgap spans from 9.8 to 14.7 GHz.

Using these quasiclosed form equations we can appreciate
the full range of options available to the designer. In Fig. 16,
the TE quasiclosed form solution is used to determine the effect
that dropping the normal permeability of the FSS layer has on
the bandwidth. We plot as ordinate the relative propagation con-
stant of the guided waves ( ), so that whenever this ratio is
greater than 1.0 we have guided slow waves. First the solution of
an AMC without magnetic field blockage is found. In this case
slow TE surface waves would be excited very close to the reso-
nance frequency, within the band of interest (5 to 6 GHz). This
is illustrated with the blue line in Fig. 16. However, assuming an
FSS with metal squares to block the normalfield, our band of
surface wave suppression is expanded even beyond the desired
band edge (the point of the reflection coefficient).

A method for the design of this type of AMCs may take
the following form. The center frequency will be the first data
needed for the design. Then, either bandwidth or structure’s
thickness can be assumed as the input parameters. One would
lead to the other one by simply enforcing the behavior of the
structure’s reflection coefficient response within the desired
bandwidth according to (16). Once the pertinent permittivities
of the substrates are input and using our closed-form solutions,
the adequate periodicity and rod radius can be found so that
surface waves do not propagate within our band of interest.

Fig. 16. Plot of the relative propagation constant of the guided TE surface
waves versus frequency showing the onset of guided waves for the case of�z =
1 (no H-field blockage by FSS) and the case of an FSS using metal square
patches (maximum blockage).

Finally, assuming square elements in the FSS layer, the TE
surface waves can be suppressed within the band of interest
using the closed-form models.

Thus it has been shown that we can independently design the
upper and lower surface wave suppression bandedges by simply
changing certain parameters of the AMC. In the following sec-
tion the design space is narrowed to two parameters, thickness
and dielectric constant of the substrate, for a maximum band-
width design.

C. Maximum Bandwidth Design

Naturally, having a broad bandwidth of operation is one of
the most important requirements. After all this discussion it is
clear that the thickness and the permittivity of the substrate di-
rectly or indirectly affect both TE and TM surface wave suppres-
sion bandwidths. Therefore we make these parameters variables
and calculate the available TM, TE, and total bandwidth based
on the quasiclosed form expressions. A design with resonant
frequency at 5.5 GHz is assumed. The results are the contour
plots of Fig. 17 showing the maximum fractional bandwidths
( ) possible as a function of substrate thick-
ness and permittivity. In the axis we have different values for
the AMCs thickness ranging from to and in the axis
the values of the substrate permittivity ranging from 1.2 to 10.

For the TM case, as the substrate thickness and dielectric con-
stant are changed, the via spacing is automatically adjusted to
keep the frequency at which of the substrate crosses zero at
the resonant frequency of the AMC. Then the fractional band-
width for TM is defined as . For the TE case
the fractional bandwitdh is defined as . We can
appreciate the tradeoff between thickness and dielectric con-
stant. The upper right corner of the plots is a forbidden re-
gion where the combination of dielectric constant and thick-
ness would make the structure’s electrical thickness greater than

. We note that the TM bandwidth is strongly limited by the
dielectric constant of the substrate. The TE bandwidth, on the
other hand, is much more forgiving. Fig. 18 shows the total sur-
face wave suppression bandwidth (given by )
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Fig. 17. (a) Contours of available TM fractional bandwidth as a function
of substrate thickness and permittivity for a design resonant at 5.5 GHz.
(b) Contours of available TE fractional bandwidth as a function of substrate
thickness and permittivity for a design resonant at 5.5 GHz.

available to the designer. Note, that if a total bandwidth of op-
eration is all that is desired it can be achieved through various
mixes of TE and TM bandwidths.

VI. CONCLUSION

A two-layer anisotropic uniaxial effective medium model for
the Sievenpiper-like high-impedance surface has been devel-
oped and used to study the surface-wave suppression properties
of this artificial magnetic conductor. The parameters governing
the surface wave suppression have been shown to be the normal
components of the permittivity and permeability tensor. After
simplifying the equations it is possible to obtain contour plots
in the design space of substrate thickness versus dielectric con-
stant that portray the maximum possible bandwidth attainable
with a given AMC. Once the desired bandwidth is found, the
effective medium model parameters readily identify the phys-
ical parameters that will yield that bandwidth. This material can

Fig. 18. Contours of total surface wave suppression fractional bandwidth
available as a function of substrate thickness and permittivity for a design
resonant at 5.5 GHz.

be designed with great flexibility and its applications may vary
since it has also been shown that the surface wave suppression
band is independent of the phase band of the reflec-
tion coefficient.
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