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1. Introduction 
 

A high-impedance ground plane is an attractive boundary condition for 
electrically-thin antennas since the electric current on wire elements placed next to this 
boundary have co-directed images. This boundary condition is helpful for impedance 
matching bandwidth.  Recently, Sievenpiper, et al, [1,2] have described a periodic 
structure, shown in Figure 1, which exhibits such properties over a finite bandwidth. It is 
characterized by an array of electrically-short, vertical, metal rods of length t and 
diameter d that are terminated on a horizontal PEC surface. Assume the rods form a 
square lattice of period a. On the upper end of each rod is attached a metal plate. The 
array of plates forms a capacitive FSS.  This periodic structure also has an apparent 
surface wave bandgap for TM and TE modes that is believed to lie between the +/- 90o 
reflection phase frequencies for plane waves at normal incidence. 

 
The analysis presented here builds on the published work of King and Park [3] in 

which they analyze TM modes on a Fakir’s grounded bed-of-nails structure.  
Sievenpiper’s reactive surface is essentially a Fakir’s structure with the addition of a 
capacitive FSS loading the ends of the rods.  In this analysis, we show that an infinite 
number of TM modes can exist on this structure, and that the apparent TM mode cutoff, 
experimentally observed, is a manifestation of the two lowest order modes coalescing, 
and then being cut off.  Furthermore, we show that this apparent TM mode cutoff can be 
adjusted independent of the +90o reflection phase frequency by controlling the density 
and diameter of the rods. 

 
2. Transverse Resonance Analysis 
 

According to the transverse resonance procedure the impedance looking to the 
left must be the negative of the impedance looking to the right at any transverse plane of 
the structure.  Defining the x-axis as the direction of propagation parallel to the surface 
and the z-axis as the direction perpendicular to the surface, the observation boundary is 
located on the outside surface of the FSS (a distance t from the ground plane) as 
suggested in Figure 1.  For guided TM surface waves Zleft=ZTM : 
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Since this must equal –Zright,  it follows that, 
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where the quantity k0/η0 was substituted for ε 0 in order to define the normalized reactance 
of the surface according to Zright/η0 =R+jX.  In the upper medium it must be true that 
γ0
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2, therefore, 
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Since the waves above and below z = t must propagate in phase, the x-direction 
propagation constant kx is the same above and below z = t.  Thus equation 3 can be used 
to obtain an equation relating the z-directed propagation constant in the lower medium 
(the bed-of-nails) to the normalized reactance. 
 
 A second such equation can be obtained by recognizing that the impedance 
looking to the right from the plane z = t is the short circuit rolled over a distance t by the 
same z-directed propagation constant in the lower medium, in parallel with the FSS sheet 
capacitance. 
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Here ε x is the relative permittivity in the x-direction inside the slab, t is the thickness, k0 is 
the free space phase constant, and k z1 is the phase constant inside the slab in the z 
direction (to be determined).  The desired guided mode solutions for k z1 are found at the 
intersections of the two equations so derived from 3 and 4. 
 

Given the construction, the bed-of-nails is equivalent to a uniaxial anisotropic 
material with ε x = ε y, and both of the order of 1+δ (where δ is small), and ε z is complex 
and given by the effective medium model of a rodded dielectric.  The z-directed 
component of the propagation constant in a uniaxial anisotropic medium is given by: 
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For a medium containing infinitely long perfectly conducting rods embedded in a 
uniform dielectric (of constitutive properties µd and ε d) it can be shown that,  

ddxy εµ=εµ .        (6) 
In a uniaxial medium a plane wave propagating in the x direction with field components 
Ez and Hy will see a normalized index of refraction given by: 
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and where θ = kda is the electrical spacing between rods, and d is the diameter of the rods.  
For small electrical spacings the index of refraction in equation 7 is purely imaginary, 
corresponding to a negative effective permittivity.  Defining the variable p = -jnzy, and 
using equations 7, 6, and 3, equation 5 becomes: 
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Now, recognizing kd

2=ε dk0
2, solving for X, and multiplying both sides by k0t yields 
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This is the first of the desired equations.  Equation 4 can be likewise rearranged to give 
the second desired equation: 
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where it has been recognized that k0=ω/c, and c is the free space speed of light.  For the 
sake of simplicity, the capacitance of the FSS layer is treated as if it were independent of 
the angle of incidence (given by cosφ=k z1/kd).  It can be shown that for the TM modes in 
question including the dependence on the angle of incidence leaves the results virtually 
unchanged.  Now, if k0Xt is used as the dependent variable and u=k z1t as the independent 
variable, equation 10 is independent of frequency, whereas equation 9 gives a family of 
curves labeled by the frequency through the dependence on k0.  The surface wave modes 
exist at the intersections of the curves 9 and 10.   
 
3.   Numerical Results  

 
Equations 9 and 10 are plotted in Figure 2, for a structure with the following 

parameters: a=2.4mm, d=0.36mm, t=1.6mm, ε d=2.2.   Two of the infinite number of 
“resonances” of equation 10 are shown (solid curve), the first around k z1t=π/4 and the 
second around 3.3. In their neighborhood the Reactance can take on very large values.  
The dashed curves correspond to equation 9 for frequencies 5.5, 8.5, 9.5, and 10.5 GHz.  
The Figure shows that at any given frequency (dashed curves) there are an infinite 
number of modes (intersections with the solid curve) able to propagate.  The first two 
modes occur near the first resonance and have relatively low reactance.  Then comes a 
third intersection in the neighborhood of the second resonance, and so forth.  King et al 
point out that an antenna suspended at a certain height above the surface z = t, will tend 
to excite the lowest modes most efficiently because, having lowest reactances, the modal 
fields decay weakly in z, and extend the farthest above the plane.  

 
Note in the detail of Figure 2b that as frequency is increased, the reactance of the 

lower intersection increases whereas that of the second one decreases.  In the 
neighborhood of 10.2 GHz the two modes coalesce.  Then above 10.2 GHz the dashed 
curve of equation 9 cannot intersect the solid curve of equation 10 near the quarter wave 
resonance any more.  The First TM mode abruptly moves off this curve and onto the 
second resonance region, at a much higher reactance.  It thus becomes very difficult to 
excite.  Thus a wire antenna held at a fixed height above the surface and scanned in 
frequency would suddenly appear to meet a “band edge” around 10.2 GHz, when the two 
lowest order surface waves it was exciting no longer can be excited.  This is the lower 
TM band edge reported in [1] and [2].  This “band edge” can be moved by altering the 
complex index of refraction of the bed-of-nails, either by changing the diameter of the 
rods (Figure 2c for d=0.33mm, 0.24mm, 0.15mm, 0.06mm) or their lattice period (Figure 
2d for a= 2.52mm, 2.88mm, 3.24mm, 3.6mm.) 
 
3. Conclusions  
 

We have extended the TM mode transverse resonance analysis of Fakir’s bed-of-
nails structure to model the Sievenpiper high impedance surface. Although an infinite 
number of TM modes are predicted to exist at any given frequency, an apparent TM 
mode cutoff is explained by the eigenvalues of the two lowest reactance modes 
converging and then disappearing.  The remaining higher reactance modes are tightly 
bound to the surface and much more difficult to excite. Our predictions of the apparent 
TM mode band edge are consistent with full-wave predictions from Sievenpiper and 
Zhang [1,2].  
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Figure 1.  The Sievenpiper high impedance ground plane (a) is an electrically-thin periodic structure 
whose TM mode equivalent circuit is shown in (b). 
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Figure 2.  Normalized reactance versus electrical thickness shows allowed TM surface wave modes at the 

points of intersection as a function of frequency (a) and (b) (detail), rod diameter (c), and period (d). 
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