
Slides adapted from Dr. Shaojie Zhang (University of Central Florida)

EECS730: Introduction to Bioinformatics

Lecture 04: Variations of sequence alignments

http://www.pitt.edu/~mcs2/teaching/biocomp/tutorials/global.html

Global alignment vs Local alignment

• Genome rearrangement usually shuffles the genome

• Protein domains have relatively well-annotated functions

• Similar for non-coding RNAs

REARRANGEMENTS
Inversion

Translocation

Duplication

Global alignment vs Local alignment

• Global Alignment

• Local Alignment—better alignment to find

conserved segment

--T—-CC-C-AGT—-TATGT-CAGGGGACACG—A-GCATGCAGA-GAC
| || | || | | | ||| || | | | | |||| |

AATTGCCGCC-GTCGT-T-TTCAG----CA-GTTATG—T-CAGAT--C

tccCAGTTATGTCAGgggacacgagcatgcagagac

||||||||||||

aattgccgccgtcgttttcagCAGTTATGTCAGatc

Global alignment vs Local alignment

• The Global Alignment Problem tries to find the longest path between
vertices (0,0) and (n,m) in the edit graph.

• The Local Alignment Problem tries to find the longest path among
paths between arbitrary vertices (i,j) and (i’, j’) in the edit graph.

• Local alignment usually require less edit operations than Global
alignment

Local alignment example

Global alignment

Local alignment

Compute a “mini”
Global Alignment to
get Local

Local alignment problem formulation (edit distance)

• Goal: Find the best local alignment between two strings

• Input : Strings v, w

• Output : Alignment of substrings of v and w whose number of edit
operations is minimized

Can you see the problem of the formulation???

Local alignment problem formulation

• Empty substrings will always have an edit distance of 0! So they are
optimal but meaningless!!!

• Since we have the “cost”, let’s also define “gain”!

• If we match two identical characters, we gain some information!

Local alignment problem formulation

• Goal: Find the best local alignment between two strings

• Input : Strings v, w, some gain function for matching identical
characters and some cost function for matching different characters
or opening gaps

• Output : Alignment of substrings of v and w with maximized “profit”

Local Alignment

• Naïve running time O(n^6)!!!

• For each combination of <i, j, i’, j’>, perform global alignment!!!

• There are O(n^4) different combinations, each combination requires
O(n^2) global alignment, totaling to O(n^6) running time!!!

• We can reduce that to O(n^4), how???

Local alignment

• Notice that in the DP table, entry (i, j) stores the optimal alignment
computed for substring (0, i) an (0, j).

• It means that for each pair of (i, i’), performing O(n^2) alignment
would give us solutions for O(n^2) substrings as well!!!

• So we only need to try all possible <i, i’> combinations, which drops
the total time complexity to O(n^4)

• But it is still not satisfying…

Smith-Waterman algorithm

The dashed edges represent the free rides from (0,0) to every other node.

Vertex (0,0)

Yeah, a free ride!

The idea is that we only want to look at “good alignments”; of an alignment is
“bad”, we should be able to initialize a new alignment for free

Smith-Waterman alignment

• The recurrence:

0

si,j = max si-1,j-1 + δ (vi, wj)
s i-1,j + δ (vi, -)
s i,j-1 + δ (-, wj)

Power of ZERO: there is only
this change from the original
recurrence of a Global
Alignment - since there is only
one “free ride” edge entering
into every vertex

Smith, Temple F. & Waterman, Michael S. (1981). "Identification of Common Molecular Subsequences". Journal of

Molecular Biology. 147: 195–197. doi:10.1016/0022-2836(81)90087-5. PMID 7265238.

http://dornsife.usc.edu/assets/sites/516/docs/papers/msw_papers/msw-042.pdf
https://en.wikipedia.org/wiki/Journal_of_Molecular_Biology
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1016/0022-2836(81)90087-5
https://en.wikipedia.org/wiki/PubMed_Identifier
https://www.ncbi.nlm.nih.gov/pubmed/7265238

On implementation details

• Matrix initialization: Since there are free rides, we should initialize the
first column and the first row to all 0s

0 0 0 0 0 0 0 0

0
 0

 0
 0

 0
 0

 0

Fill the table with the
new recursive function
with the magic 0

On implementation details

• In additional to the best path, we also need to note the termination
of an alignment segment in the trace-back matrix

• The optimal local alignment score can always be found at the entry
with the highest alignment “profit”

Semi-global and semi-local alignment

• Given two sequences v and w, in many cases we are want to align the entire
sequence of v to a substring of w.

• For example, if v is a gene and w is a genome and we want to find the homolog of
v in w. Note that using local alignment would detect many domains; and we want
to make sure the entire sequence of v is aligned.

• Or If v is a gene and w is a sequencing fragment (read), and we want to know
whether w is sampled from v. In this case we want to compare the entire
sequence of w.

• How to we modify the current algorithm to perform semi-global/semi-local
alignments?

Semi-global and semi-local alignment

• Modifying the initialization and trace back of the global
alignment algorithm

• Free rides to entries in the first column/first row

• identifying the highest “profit” in the last column/last row

Banding

• Quadratic time solution is still too slow

• The average gene length of human is ~15K bp long; aligning two genes
would need to fill up ~225M DP entries.

• Intuition: we are interested in “good” alignments rather than “bad”
alignments; and “good” alignments usually contain fewer gaps because
gaps trigger “cost” instead of “gain”

• In the alignment table, less gap means that the path is located at the
diagonal of the table

Banding cont.

Initialization:

F(i,0), F(0,j) undefined for i, j > k

Iteration:

For i = 1…N

For j = max(1, i – k)…min(N, i+k)

F(i – 1, j – 1)+ s(xi, yj)

F(i, j) = max F(i, j – 1) – d, if i - j > k(N)

F(i – 1, j) – d, if j – i > k(N)

Termination: same

x1 ………………………… xM

y 1
…

…
…

…
…

…
…

…
…

…

y N

k(N)

Time complexity reduced to linear because the band size is considered as a constant!!!

Caveats on the use of banding

• Banding is not a correct algorithm!
• Because an optimal path can pass through regions outside the banded region

• Not with local alignments! Because “good” local paths do not necessarily
locate on the diagonal

• For “asymmetric” global alignment (one sequence is much longer/shorter
than the other) the banding should also be set asymmetrically

• One dimension of size b

• The other dimension of size abs(|w| - |v|)

• The total number of entries to be filled is abs(|w| - |v|) * k(N)

Linear space global alignment

• Imagine that we are globally aligning two bacterial genomes that are ~3M long
each; and we want to find the optimal answer so we do not want to use banding.

• Roughly speaking, 3M * 3M = 9000G

• It takes approximately 9000 secs to find the answer (provided that the CPU has a
frequency of several GHz); 9000 secs is approximately 3hrs, which is OK.

• The real problem is to find a machine with 9000G/9T memory……

• Myers, G. and Miller, W., Optimal alignments in Linear Space, Comput Appl Biosci
(1988) 4 (1): 11-17. doi: 10.1093/bioinformatics/4.1.11

Linear space solution

• The need for quadratic space is to facilitate trace back; without track back (such that we
only know the “profit”), a simple change is capable of reducing the space to linear.

memory for column 1
is used to calculate
column 3

memory for column
2 is used to calculate
column 4

Linear space solution

m/2 m

n

Prefix(i)

Suffix(i)

Observation: alignment between (i, j) and (i’, j’)
is equivalent to the alignment of their reversed
strings , i.e. between (j, i) and (j’, i’)

We want to calculate the longest path from
(0,0) to (n,m) that passes through (i,m/2)
where i ranges from 0 to n and represents the i-
th row

Define

length(i)

as the length of the longest path from (0,0) to
(n,m) that passes through vertex (i, m/2)

Linear space solution

• We know that the path has to pass column m/2

• Optimal alignment computed between (n, k) and (m, m/2) is equivalent to the
optimal alignment computed between (k, n) and (m/2, m)

• The optimal alignment computed between (0, 0) and (n, m) thus corresponds to
the maximal sum of profits between (0, k), (0, m/2) and (n, k), (m, m/2) for all 0
<= k <= n

• Finding k is trivial and takes linear time

Computing prefix

• prefix(i) is the length of the longest path from (0,0) to (i,m/2)

• Compute prefix(i) by dynamic programming in the left half of

the matrix

0 m/2 m

store prefix(i) column

Computing the suffix
• suffix(i) is the length of the longest path from (i,m/2) to (n,m)

• suffix(i) is the length of the longest path from (n,m) to (i,m/2) with all edges
reversed

• Compute suffix(i) by dynamic programming in the right half of the “reversed”
matrix

0 m/2 m

store suffix(i) column

Length = prefix + suffix

• Add prefix(i) and suffix(i) to compute length(i):
• length(i)=prefix(i) + suffix(i)

• You now have a middle vertex of the maximum path (i,m/2) as
maximum of length(i)

middle point found

0 m/2 m

0

i

Finding the mid-point

0 m/4 m/2 3m/4 m

Recursively identify all the mid-points

0 m/4 m/2 3m/4 m

Recursively identify all the mid-points

0 m/8 m/4 3m/8 m/2 5m/8 3m/4 7m/8 m

Time = Area filled

• On first pass, the algorithm covers the entire

area

Area = nm

Computing
prefix(i)

Computing
suffix(i)

Time = Area filled

• On second pass, the algorithm covers only

1/2 of the area

Area/2

Time = Area filled

• On third pass, only 1/4th is covered.

Area/4

Time = Area filled

1 + ½ + ¼ + ... + (½)k ≤ 2

• Runtime: O(Area) = O(nm)

first pass: 1

2nd pass: 1/2

3rd pass: 1/4

5th pass: 1/16

4th pass: 1/8

More realistic measure of “profit”

• Now we use “score” to represent the “profit”

• We want to maximize the score of the alignment

• Matching identical characters gives positive scores, matching different
characters (usually) gives negative scores, introducing gaps gives
negative scores

Generalized scoring function

To generalize scoring, consider a (4+1) x(4+1) scoring matrix
δ.

In the case of an amino acid sequence alignment, the
scoring matrix would be a (20+1)x(20+1) size. The
addition of 1 is to include the score for comparison of a
gap character “-”.

This will simplify the algorithm as follows:

si-1,j-1 + δ (vi, wj)

si,j = max s i-1,j + δ (vi, -)

s i,j-1 + δ (-, wj)

Scoring matrix

A R N K

A 5 -2 -1 -1

R - 7 -1 3

N - - 7 0

K - - - 6

• Notice that although R
and K are different amino
acids, they have a positive
score.

• Why? They are both
positively charged amino
acids will not greatly

change function of protein.

Scoring matrix cont.

• PAM (Point Accepted Mutation)

• BLOSUM (Block Substitution Matrix)

• Derived based on known alignments

• Matching characters that tend to present in the same column would
have higher score

Scoring matrix example (BLOSUM 50)

Incorporating such a scoring
matrix into our alignment
program is trivial !!!

Now the gaps

A fixed penalty σ is given to every indel:

-σ for 1 indel,
-2σ for 2 consecutive indels
-3σ for 3 consecutive indels, etc.

-C-C-C

| | |

GCGCGC

---CCC

|*|

GCGCGC

This is more likely
but scored lower.

This is less likely
but scored higher.

A more realistic mode

• How do you cut out a substring in the middle of a sequence
• Cut once
• Cut twice
• Take out the middle substring
• Glue the remaining prefix and suffix

• This is also what the nature does!!!

• The major cost of the operation is (somehow) independent of the
length of the substring being cut out!!!

Affine gap penalty

• Gaps- contiguous sequence of spaces in one of
the rows

• Score for a gap of length x is:

-(ρ + σx)

where ρ >0 is the penalty for introducing a gap:

gap opening penalty

ρ will be large relative to σ:

gap extension penalty

ρ

σ

Gap cost

Adding affine gap penalty to our algorithm

There are many such edges!

Adding them to the graph
increases the running time of
the alignment algorithm by a
factor of n (where n is the
number of vertices)

So the complexity increases
from O(n2) to O(n3)

Manhattan in 3 layers

Manhattan in 3 layers

ρ

ρ

σ

σ

δ

δ

δ

δ

δ

Switching between 3 layers

• Levels:
• The main level is for diagonal edges
• The lower level is for horizontal edges
• The upper level is for vertical edges

• A jumping penalty is assigned to moving from the main
level to either the upper level or the lower level (-r- s)

• There is a gap extension penalty for each continuation on
a level other than the main level (-s)

Recursion with affine gap penalty

si,j = s i-1,j - σ

max s i-1,j –(ρ+σ)

si,j = s i,j-1 - σ

max s i,j-1 –(ρ+σ)

si,j = si-1,j-1 + δ (vi, wj)

max s i,j
s i,j

Continue Gap in w (deletion)

Start Gap in w (deletion): from middle

Continue Gap in v (insertion)

Start Gap in v (insertion):from middle

Match or Mismatch

End deletion: from top

End insertion: from bottom

