
EECS730: Introduction to Bioinformatics

Lecture 16: Next-generation sequencing

Some slides were adapted from Dr. Shaojie Zhang (University of Central Florida), Karl Kingsford (Carnegie
Mellon University), and Ben Langmead (John Hopkins University)

http://blog.illumina.com/images/default-source/Blog/next-generation-sequencing.jpg?sfvrsn=0

Why sequencing

Shyr and Liu, 2013

Sequencing using microarray

http://homes.cs.washington.edu/~dcjones/assembly-primer/kmers.png

Sequencing advantages

• Unbiased detection of novel transcripts: Unlike arrays, sequencing
technology does not require species- or transcript-specific probes. It can
detect novel transcripts, gene fusions, single nucleotide variants, indels
(small insertions and deletions), and other previously unknown changes
that arrays cannot detect.

• Broader dynamic range: With array hybridization technology, gene
expression measurement is limited by background at the low end and
signal saturation at the high end. Sequencing technology quantifies
discrete, digital sequencing read counts, offering a broader dynamic range.

• Easier detection of rare and low-abundance transcripts: Sequencing
coverage depth can easily be increased to detect rare transcripts, single
transcripts per cell, or weakly expressed genes.

http://www.illumina.com/technology/next-generation-sequencing/mrna-seq.html

Outline of sequencing mechanism

• Take the target DNA molecule as
a template

• Utilize signals that are emitted
when incorporating different
nucleic acids

• Read out and parse the signal to
determine the sequence of the
DNA

Sanger sequencing

• Developed by Frederick Sanger (shared the 1980 Nobel Prize) and
colleagues in 1977, it was the most widely used sequencing method
for approximately 39 years.

• Gold standard for sequencing today

• Accurate (>99.99% accuracy) and produce long reads (>500bp)

• Relatively expensive ($2400 per 1Mbp) and low throughput

Sanger sequencing

• This method begins with the use of special enzymes to synthesize
fragments of DNA that terminate when a selected base appears in the
stretch of DNA being sequenced.

• These fragments are then sorted according to size by placing them in a slab
of polymeric gel and applying an electric field -- a technique called
electrophoresis.

• Because of DNA's negative charge, the fragments move across the gel
toward the positive electrode. The shorter the fragment, the faster it
moves.

• Typically, each of the terminating bases within the collection of fragments
is tagged with a radioactive probe for identification.

An example

Problem Statement: Consider the following DNA

sequence (from firefly luciferase). Draw the

sequencing

gel pattern that forms as a result of sequencing the

following template DNA with ddNTP as the capper.

atgaccatgattacg...

Solution:

Given DNA template: 5'-atgaccatgattacg...-3'

DNA synthesized: 3'-tactggtactaatgc...-5'

An example

Given DNA template: 5'-atgaccatgattacg...-3'

DNA synthesized: 3'-tactggtactaatgc...-5'

Gel pattern: +-------------------------+

lane ddATP | W | | || |

lane ddTTP | W | | | | | |

lane ddCTP | W | | | |

lane ddGTP | W || | |

+-------------------------+

Electric Field +

Decreasing size

where "W" indicates the well position, and "|"

denotes the DNA bands on the sequencing gel.

An example

Capillary electrophoresis

AC

GT

The fragments are

distinguished by size and

“color.”

 A distinct dye or “color” is used for each of the four
ddNTP.

 Since the terminating nucleotides can be
distinguished by color, all four reactions can be
performed in a single tube.

A

T

G

T

Capillary electrophoresis

Capillary

G
T
C
T
G
A

Slab gel

GA

TCG A T C

The DNA ladder is resolved in one gel lane or
in a capillary.

Capillary electrophoresis

Next-generation sequencing

• First generation sequencing (Sanger sequencing)

• Next generation sequencing (current)
• AKA:

• Second generation sequencing

• Massively parallel sequencing

• Ultra high-throughput sequencing

https://en.wikipedia.org/wiki/Whole_genome_sequencing#/media/File:Historic_cost_of_sequencing_a_human_genome.svg

NGS platforms

• Illumina/Solexa

• ABI SOLiD

• Roche 454

• Polonator

• HeliScope

• …

http://ngs-expert.com/wp-content/uploads/2013/06/amplicon_sequencing.png

Comparison between platforms

Reinert et al., 2015, Annual Review Genomics & Human Genetics

Illumina (Solexa) technology

• Also being performed on a glass
slide

• Each spot on the slide
correspond to a cluster of the
same DNA molecule

• Library preparation
• Fragment DNA and tag the

fragments with adaptors

• Use PCR to amplify the tagged
DNA fragments

Illumina flow cell

https://upload.wikimedia.org/wikipedia/commons/thumb/9/96/Polym
erase_chain_reaction.svg/2000px-Polymerase_chain_reaction.svg.png

Illumina (Solexa) technology

Bridge amplification

http://www.illumina.com/pages.ilmn?ID=203

First Round

All 4 labeled nucleotides

Primers

Polymerase

1. Take image of first cycle 2. Remove fluorophore

3. Remove block on 3’ terminus

Phred Quality Score

)(log10 10 pq

• p=error probability for the base

• if p=0.01 (1% chance of error), then q=20

• p = 0.00001, (99.999% accuracy), q = 50

• Phred quality values are rounded to the nearest

integer

Sequence qualities

• In most cases, the quality is poorest toward the ends, with a region
of high quality in the middle

• Uses of sequence qualities
– ‘Trimming’ of reads

• Removal of low quality ends

– Consensus calling in sequence assembly
– Confidence metric for variant discovery

• Quality score can be taken into account while scoring the
alignment; e.g. a mismatch with low quality is more likely seen
than a mismatch with high quality

Mapping of reads

• Need to map the reads back to the original genome to detect
variation compared to the reference or quantify expression level of a
gene.

• We can always map the reads using pairwise alignment algorithm,
however the quadratic-time complexity is infeasible for large number
of reads and large reference genome.

• Need faster algorithms

Filter-based algorithms for mapping

• Note the difference between homology detection and mapping

• We assume that variations under the read-mapping setting are much
rarer because

• Mutation rate between individuals from the same species is low
• Sequencing error rate is low

• We can thus assume for a given read (with relatively fixed length for a
given sequencing platform), we only allow a given number of
mismatches or indels.

Filter-based methods

• If we assume that we have a sequence with length n, and we allow up
to k mismatches/indels.

• We can partition the sequence into k+d non-overlapping blocks, each
block with length n/(k+d); we know that at least d block must match
perfectly, because each mismatch/indel can disrupt at most one
block.

• Scan the genome with each of these blocks; only initiate alignment
when at least d block is found to be perfectly matched to the region

Gapped seeds

Kent WJ, Genome Research 2002

Filter-based methods

• An alternative method is to use fixed block size (q-gram or q-mer, or
q-long word)

• We can partition an n-long sequence into n-q+1 overlapping q-grams

• Each mismatch/indel disrupt at most one q-gram; so we should have
at least n-q+1-kq perfect q-gram matches to the reference genome

• Scan each of the n-q+1 q-grams against the reference, find regions
with more than n-q+1-kq perfect hits as references

Fast-scanning of q-grams

• Fixed-length q-gram allows us to pre-construct arrays to facilitate fast
identification of the q-grams

T = ttatctctta All sorted 2-grams: at ct ct ta ta tc tc tt tt

at ct ct ta ta tc tc tt tt

Index-based methods

• Suffix tree

• Suffix array

• Burrows-Wheeler Transformation

• All of them are conceptually equivalent

• Use large physical memory to store the precomputed index

• Sorted suffixes of the text

• Allows for ~O(|P|) search time, where |P| is the length of the query
(independent of the text size)

Suffix tree

• Edges of the suffix tree are labeled with
letters from the alphabet Σ (say
{A,C,G,T}).

• Every path from the root to a solid node
represents a suffix of s.

• Every suffix of s is represented by some
path from the root to a solid node.

Suffix tree

• Using suffix tree constructed on the text
(usually the genome), we can determine
whether a query string (usually a sequencing
read) is a substring or suffix of the text

• By following the edges in the suffix tree

• We can also know the number of occurrences
of the query string by counting the number of
solid nodes in the subtree

• Time complexity is O(|P|), where |P| is the
length of the query string (therefore
independent of the text size)

P = baa

Generalized suffix tree

Generalized suffix tree

• Determine the strings in a database {S1, S2, S3, ..., Sm} that contain
query string P:

• Build generalized suffix tree for {S1, S2, S3, ..., Sm}

• Follow the path for q in the suffix tree.

• Suppose you end at node u: traverse the tree below u, and

• output i if you find a string containing #i.

Space issue of suffix tree

• Naïve representation of suffix tree would require O(n^2) space, where
n is the size of the text. Under the read mapping setting, n is the size
of the reference genome and is ~3G

• Because we need to represent every suffix of the text, so in the worst
case the total number of nodes would be n + (n - 1) + (n - 2) + … + 1,
which leads to O(n^2) space complexity

• Needs a more compact representation for suffix tree

Space issue of suffix tree

• We have at most n
solid nodes, and
each internal node is
at least a binary split

• Therefore the total
number of nodes is
O(n)

• Each node also
requires O(1) space

Suffix array

• While both suffix trees and suffix arrays require O(n) space, suffix
arrays are more space efficient. A recent suffix tree implementation
requires 15-20 Bytes per character. For suffix arrays, as few as 5 bytes
are sufficient (with some tricks).

• A moderate increase in search time from O(|P|) to O(|P| + log n). In
practice this increase is counterbalanced by better cache behavior.

Suffix array

Suffix array

Suffix tree to suffix array

• Depth-first traversal of the suffix tree would return you the
corresponding suffix array

• Linear time construction of suffix tree (Ukkonen’s algorithm)

• Linear time construction of suffix array is also possible. See “Linear
Work Suffix Array Construction” by Karkkainen et al.

Suffix array search

• Naïve approach: binary search with string comparison

• log(n) comparisons, each comparison would take O(|P|) time. So the
complexity would be O(|P|*log(n))

• The time complexity is much higher than the one with suffix tree,
which is O(|P|), we need to be smarter

Suffix array search

Suffix array search using Longest Common Prefix (LCP)

Suffix array search

• When LCP(P, SA[l]) = LCP(P, SA[r]) we
can always determine how to bisect by
comparing P and SA[c] by skipping the
first LCP(P, SA[l]) characters

• We are more interested in cases where
LCP(P, SA[l]) != LCP(P, SA[r])

• Without loss of generality we assume
that LCP(P, SA[l]) > LCP(P, SA[r])

Suffix array search

Suffix array search

For the ith position (where LCP(P,SA[l]) < i <=
LCP(SA[l], SA[c])):
• P > SA[l]: assuming correctness of binary search
• SA[l] = SA[c]: LCP(SA[l], SA[c]) > LCP(P, SA[l])
So:
• P > SA[c]: we need to go to the lower half

No character comparison is required;
LCP(P, SA[l]) and LCP(P, SA[r]) remain unchanged;
LCP(P, SA[l]) and LCP(P, SA[r]) are non-decreasing

Suffix array search

For the ith position (where LCP(P,SA[l]) < i <=
LCP(SA[l], SA[c])):
• P = SA[l]: LCP(SA[l], SA[c]) > LCP(P, SA[l])
• SA[l] < SA[c]: lexicographical sorting of suffixes
So:
• P < SA[c]: we need to go to the upper half

No character comparison is required;
LCP(P,SA[l]) remains the same
LCP(P,SA[r]) is set to LCP(SA[l], SA[c]);
LCP(SA[l], SA[c]) >= LCP(P,SA[r]);
LCP(P, SA[l]) and LCP(P, SA[r]) are non-decreasing

Suffix array search Needs character comparison;
Either LCP[P, SA[l]] or LCP[P,SA[r]] is increased or
remains the same; the other one remains the same;
LCP(P, SA[l]) and LCP(P, SA[r]) are non-decreasing

Suffix array search

Comparisons performed

• Let max(LCP(P, SA[l]), LCP(P, SA[r])) be M
• If we have LCP(P, SA[l]) = LCP(P, SA[r]), then we do

direct comparison to decide where to bisect, k
comparisons will increase M by k – 1

• Note that without loss of generality we assume LCP(P,
SA[l]) > LCP(P, SA[r]), so M= LCP(P, SA[l])

• In the first case, when we decide to bisect left, LCP(P,
SA[c]) is at least M, which means that the new LCP(P,
SA[r]) is also at least M, and k comparisons will
increase M by k – 1

• In the second case, when we decide to bisect right,
LCP(P, SA[c]) us going to be used as the new LCP(P,
SA[l]) and is also at least M; and k comparisons will
increase M by k - 1

• In summary, M is non-decreasing as neither LCP(P,
SA[l]) nor LCP(P, SA[r]) is deceasing; k comparisons will
increase M by k – 1, and the search terminates when M
reaches |P|

Suffix array search complexity

• The total number of character comparison is |P| + x, where x is the
number of times that comparison is taken (either LCP(P, SA[l]) = LCP(P,
SA[r]) or the 3rd case we discussed before)

• For the 1st and 2nd cases only constant number of operation is
required, so they are also bounded by x

• Since it is a binary search, the number of steps taken, x, is bounded by
log(n). Thus the time complexity is O(|P| + log(n))

Storing the LCP information

• O(n) leaf nodes, so O(n) nodes.
• We can pre-calculate and store the LCP information efficiently.

Storing the LCP information

Burrows-Wheeler Transformation

BWT and suffix array

BWT LF mapping property

BWT LF mapping property

BWT LF mapping property

BWT search

We need the ranking of the letter
in the last column to determine the
interval in the first column.

FM index

• In the previous example, we need to know the order of b in order to
calculate its positions at the first column.

• We can always walk through the entire list to figure out, but it would be
too slow.

• Use FM index: build a |Σ|*n matrix, for each letter at position i, it stores
how many such letter has occurred in the BWT.

• We can reduce the space of the FM index by an arbitrary factor k, but it
would increase the search time by a factor of k

BWT search

BWT Search

• It would take O(kl) time

• k in practice is a constant depending on available memory resource,
and usually take on a value around 128

Suffix tree, suffix array, and BWT

• Suffix Array = suffix numbers obtained by traversing the leaf nodes of the
(ordered) Suffix Tree from left to right

• BWT can be constructed from Suffix Array by taking the previous character of the
sorted suffixes

• Space efficiency: BWT > Suffix array > Suffix tree

• Search efficiency: Suffix tree > Suffix array > BWT

• Recall that modern memory architecture allows prefetching, so using less
memory will in practice reduce the running time

• BWT remains the choice for most current mapping implementations

Accounting for mismatch and indels

• Set an upper limit for the number of mismatches and indels allowed
for the alignment.

• Use backtracking when the search reaches a dead end.

• The search time would be exponential in terms of the number of
mismatches or indels allowed.

• It is usually doable given that current technologies have very low
error rate (~0.1-1%)

