EECS730: Introduction to Bioinformatics

Lecture 16: Next-generation sequencing

GATCGTAGCTGATCGATGCATG

http://blog.illumina.com/images/default-source/Blog/next-generation-sequencing.jpg?sfvrsn=0

Some slides were adapted from Dr. Shaojie Zhang (University of Central Florida), Karl Kingsford (Carnegie
Mellon University), and Ben Langmead (John Hopkins University)

Why sequencing

Patient Technologies Data Analysis

point mutation

Smallindels

Genomics

/ WGS, WES

Copy number

]
]
i
i
i
i
I - -
d variation
)

i

Structural
variation

Differential
expression

Transcriptomics .
Gene fusion

I
I
1
1
1
I
I
I
1
1
|
]
I
I
I
I
|

RNA-Seq i
: Alternative
i splicing
I
! RNA editing
I
i
- _ ! Methylation
Epigenomics :
i Bisulfite-Seq . Histone
! ChlIP-Seq 5 modification
] I
E : Transcription
; ; Factor binding

Figure 1 The workflow of integrating omics data in cancer research and clinical application. NGS5 technologies detect the genomic,
transcriptomic and epigenomic alternations including mutations, copy number variations, structural variants, differentially expressed genes, fusion
transcripts, DNA methylation change, etc. Various kinds of bioinformatics tools are used to analyze, integrate, and interpret the data to improve

our understanding of cancer biology and develop personalized treatment strategy.

Integration and interpretation

Functional effect
of mutation

Network and
pathway analysis

Integrative analysis

suoljeol|dde jeajuljo pue Jeoued jo Buipuelsiepun Jayun4

Shyr and Liu, 2013

Sequencing using microarray

- k-mers (k=5)

| Reads

http://homes.cs.washington.edu/~dcjones/assembly-primer/kmers.png

Sequencing advantages

* Unbiased detection of novel transcripts: Unlike arrays, sequencing
technology does not require species- or transcript-specific probes. It can
detect novel transcripts, gene fusions, single nucleotide variants, indels
(small insertions and deletions), and other previously unknown changes
that arrays cannot detect.

* Broader dynamic range: With array hybridization technology, gene
expression measurement is limited by background at the low end and
signal saturation at the high end. Sequencing technology quantifies
discrete, digital sequencing read counts, offering a broader dynamic range.

* Easier detection of rare and low-abundance transcripts: Sequencing
coverage depth can easily be increased to detect rare transcripts, single
transcripts per cell, or weakly expressed genes.

http://www.illumina.com/technology/next-generation-sequencing/mrna-seq.html

Outline of sequencing mechanism

* Take the target DNA molecule as
a template

 Utilize signals that are emitted
when incorporating different
nucleic acids

* Read out and parse the signal to
determine the sequence of the
DNA

~(7..“

Sanger seguencing

* Developed by Frederick Sanger (shared the 1980 Nobel Prize) and
colleagues in 1977, it was the most widely used sequencing method
for approximately 39 years.

* Gold standard for sequencing today
e Accurate (>99.99% accuracy) and produce long reads (>500bp)

* Relatively expensive ($2400 per 1Mbp) and low throughput

Sanger seguencing

* This method begins with the use of special enzymes to synthesize
fragments of DNA that terminate when a selected base appears in the
stretch of DNA being sequenced.

* These fragments are then sorted according to size by placing them in a slab
of polymeric gel and applying an electric field -- a technique called
electrophoresis.

* Because of DNA's negative charge, the fragments move across the gel
toward the positive electrode. The shorter the fragment, the faster it
moves.

* Typically, each of the terminating bases within the collection of fragments
is tagged with a radioactive probe for identification.

An example

Problem Statement: Consider the following DNA
sequence (from firefly luciferase). Draw the
sequencing

gel pattern that forms as a result of sequencing the
following template DNA with ddNTP as the capper.

atgaccatgattacg...

Solution:

Given DNA template: 5'-atgaccatgattacg...-3'
DNA synthesized: 3'-tactggtactaatgc...-5'

An example

Given DNA template: 5'-atgaccatgattacg...-3'
DNA synthesized: 3'-tactggtactaatgc...-5'

Gel pattern: oo +
lane ddATP W | |
lane ddTTP W[| | ||
lane ddCTP W | | |
lane ddGTP W | |
e +

Electric Field +
Decreasing size

where "W" indicates the well position, and "|"
denotes the DNA bands on the sequencing gel.

An example

ATGC

N E D

Capillary electrophoresis

A distinct dye or “color” is used for each of the four
ddNTP.

Since the terminating nucleotides can be

distinguished by color, all four reactions can be
performed in a single tube.

() The fragments are
— distinguished by size and
G “color.”

000 C=0

Capillary electrophoresis

The DNA ladder is resolved in one gel lane or

in a capillary.
GA

€] A T C TC @
G E

T

C

T

G

A
v

Slab gel Capillary

Capillary electrophoresis

g é Ble Edit Gl Sample Manager Window Help 1342 1

e e C 1 O n - - — “‘".02.2\1‘) Gel rile BE

W12 2 M 183 TP L 2 EUN X XA R

Sheath Flnw — & PLO00P090000 000900000 00

G2

ILY.

Taser Capillar

Sheath Flow Dilvette

Fnenzing lens ‘/

LI 5 B]
[s
T

£
i
¥

- -
- s
- -
-~ -
] £

e @

-

Fram blnck

I".Smminﬂ 1rtiR -
FMT

Filter

urrent Lob 192 (51 i pratz): Square loetn

Next-generation sequencing

* First generation sequencing (Sanger sequencing)

* Next generation sequencing (current)

* AKA:

* Second generation sequencing
* Massively parallel sequencing
e Ultra high-throughput sequencing

Cost to sequence a human genome (USD)

$100M — | IIII‘IIIIIII|III|III‘|IIIIII‘IIII|I||I|IIIII||IIII|I‘IIII|I—I:

$10M

$IM

$100k

$10k

$1k =

$100 :|—I|IIII||IIIIII|I|I|III||IIIII|||III|I||IIIIIII||IIII|I‘III||I—li
2001 2003 2005 2007 2009 2011 2013 2015 2017

https://en.wikipedia.org/wiki/Whole_genome_sequencing#/media/File:Historic_cost_of sequencing_a_human_genome.svg

NGS platforms

* lllumina/Solexa
e ABI SOLiD
* Roche 454
* Polonator
* HeliScope

http://ngs-expert.com/wp-content/uploads/2013/06/amplicon_sequencing.png

Comparison between platforms

Table 1 Approximate run times, yields, read lengths, and sequencing error rates of different high-throughput sequencing

technologies as of mid-2014 (22)

Technology Instrument Run time Yield (Mb/run) Read length (bp) Error rate (%)
Sanger 3730x] (capillary) 2h 0.08 ~1,000 0.1-1
[Mlumina HiSeq 2500 6 days 1,000,000 2 x 125 >0.1
SOLiD SOLiD 4 12 days 50,000 35-50 =>0.06

454 FLX Titanium 10 h 500 400 |
SMRT PacBio RS 0.5-2 h 500 ~10,000 16

[on Torrent [on Proton 318 7h 2,000 400 |

Reinert et al., 2015, Annual Review Genomics & Human Genetics

llumina (Solexa) technology

* Also being performed on a glass
slide

* Each spot on the slide
correspond to a cluster of the
same DNA molecule

* Library preparation

* Fragment DNA and tag the
fragments with adaptors

* Use PCR to amplify the tagged
DNA fragments

IHlumina flow cell

Polymerase chain reaction - PCR

original DNA
to be replicated 5 3’ 5° 3’

WA

TIRREIMT
IR Y @
TIRRaIL o o‘
LERRRET b
4 O\ woer O

| DNA primer 3’ 5’ 3 5

nucleotide

3
1
/N\/

o Denaturation at 94-96°C
o Annealing at ~68°C
e Elongation at ca. 72 °C

https://upload.wikimedia.org/wikipedia/commons/thumb/9/96/Polym
erase_chain_reaction.svg/2000px-Polymerase_chain_reaction.svg.png

llumina (Solexa) technology

b

ol
g,

|]II]I] | i
n||ln'|” n||lu'|”

Bridge amplification

Sequencing-By-Synthesis Demo

LI T N A O

T L
" e T 1 . . .

Clusters

Completion of amplification

On completion, several milion dense clusters
of double stranded DMNA are generated in each
channel of the flow cell,

http://mww.illumina.com/pages.iimn?ID=203

Sequencing-By-Synthesis Demo

First Round
All 4 labeled nucleotides
Primers
Polymerase

Sequencing-By-Synthesis Demo

v

1. Take image of first cycle

2. Remove fluorophore
3. Remove block on 3’ terminus

Sequencing-By-Synthesis Demo

il ol o OB u
Yo Ypgu Yoo Y909 99y

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cyele 5
l |
GCTGAllll E‘:':l uence FEE:IEJ over |-'|-'||_||'|'||':I|E!

chemistry cycles

Repeat cycles of sequencing to determine
the sequence of bases in a given fragment
a single base al a time

Phred Quality Score

q=-10log,,(p)

* p=error probability for the base

* If p=0.01 (1% chance of error), then g=20

 p=0.00001, (99.999% accuracy), g = 50

« Phred quality values are rounded to the nearest
integer

Sequence qualities

e |n most cases, the quality is poorest toward the ends, with a region
of high quality in the middle

e Uses of sequence qualities

— ‘Trimming’ of reads
e Removal of low quality ends
— Consensus calling in sequence assembly

— Confidence metric for variant discovery

e Quality score can be taken into account while scoring the
alignment; e.g. a mismatch with low quality is more likely seen
than a mismatch with high quality

Mapping of reads

* Need to map the reads back to the original genome to detect
variation compared to the reference or quantify expression level of a
gene.

* We can always map the reads using pairwise alignment algorithm,
however the quadratic-time complexity is infeasible for large number
of reads and large reference genome.

* Need faster algorithms

Filter-based algorithms for mapping

* Note the difference between homology detection and mapping

* We assume that variations under the read-mapping setting are much
rarer because
* Mutation rate between individuals from the same species is low
* Sequencing error rate is low

* We can thus assume for a given read (with relatively fixed length for a
given sequencing platform), we only allow a given number of
mismatches or indels.

Filter-based methods

* If we assume that we have a sequence with length n, and we allow up
to k mismatches/indels.

* We can partition the sequence into k+d non-overlapping blocks, each
block with length n/(k+d); we know that at least d block must match

perfectly, because each mismatch/indel can disrupt at most one
block.

* Scan the genome with each of these blocks; only initiate alignment
when at least d block is found to be perfectly matched to the region

Gapped seeds

Table 7. Senshtivity and Specificity of Multiple {2 and 3) Perfect Nucleotlde K-mer Matches as a Search Criterlon

2.8 2,9 2,10 2,11 212 3.8 3.9 3,10 3,11 3,12
A. 81% 0.681 0.508 0.348 0.220 0.129 0.389 0.221 0.112 0.051 0.021
83% 0.790 0.638 0.475 0.326 0.208 0.529 0.339 0.193 0.099 0.045
85% 0.879 0.762 0.615 0.460 0.318 0.676 0.487 0.313 0.180 0.093
87% 0.942 0.866 0.752 0.611 0.461 0.809 0.649 0.470 0.305 0.177
89% 0.978 0.940 0.868 0.761 0.625 0.910 0.801 0.648 0.476 0.314
91% 0.994 0.980 0.947 0.884 0.787 0.969 0.914 0.815 0.673 0.505
93% 0.999 0.994 0.984 0.962 0.912 0.993 0.974 0.933 0.851 0.722
95% 1.000 1.000 0.998 0.993 0.979 0.999 0.997 0.987 0.961 0.902
97% 1.000 1.000 1.000 1.000 0.999 1.000 1.000 0.999 0.997 0.987
B. NK 2.8 29 2,10 211 212 3.8 3.9 3,10 3,11 3,12
F 524 27 1.4 0.1 0.0 0.1 0.0 0.0 0.0 0.0

(A) Columns are for N sizes of 2 and 3 and K sizes of 8-12. Rows represent various percentage identities between the homologous sequences.
The table entries show the fraction of homologies detected as calculated by equation 10. (B) N and K represent the number and size of the
near-perfect matches, respectively. F shows how many perfect custered matches expected to ocour by chance according to equation 14 in a
translated genome of 3 billion bases using a query of 167 amino acids. Kent WJ, Genome Research 2002

Filter-based methods

* An alternative method is to use fixed block size (g-gram or g-mer, or
g-long word)

* We can partition an n-long sequence into n-g+1 overlapping g-grams

e Each mismatch/indel disrupt at most one g-gram; so we should have
at least n-g+1-kq perfect g-gram matches to the reference genome

e Scan each of the n-g+1 g-grams against the reference, find regions
with more than n-g+1-kq perfect hits as references

Fast-scanning of g-grams

* Fixed-length g-gram allows us to pre-construct arrays to facilitate fast
identification of the g-grams

T = ttatctctta All sorted 2-grams: at ct ct ta ta tc tc tt tt

0 T 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
aa ac ag at ca cc cg ct ga gc gg gt ta tc tg tt

dir=oooo11113333‘3‘5779

Index-based methods

e Suffix tree
 Suffix array
e Burrows-Wheeler Transformation

 All of them are conceptually equivalent
e Use large physical memory to store the precomputed index
* Sorted suffixes of the text

* Allows for ~O(|P|) search time, where |P| is the length of the query
(independent of the text size)

s = abaaba$ /Q\ $

Suffix tree 5?
e
* Edges of the suffix tree are labeled with (%5 C& ® dﬁ
letters from the alphabet 2 (say
{A,C.GT}). 5
50 el
* Every path from the root to a solid node ;{ ° QL) (?
represents a suffix of s. b S g
§> ®
$
* Every suffix of s is represented by some 5 ®

path from the root to a solid node.
$

°

Suffix tree

* Using suffix tree constructed on the text
(usually the genome), we can determine
whether a query string (usually a sequencing
read) is a substring or suffix of the text

* By following the edges in the suffix tree

* We can also know the number of occurrences
of the query string by counting the number of
solid nodes in the subtree

* Time complexity is O(|P|), where |P| is the
length of the query string (therefore
independent of the text size)

s = abaaba$

t%@mﬂ_g_&

Generalized suffix tree

Goal. Represent a set of strings P = {sI, s2, 53, ..., Sm}-

Example. att, tag, gat

Simple solution:
(1) build suffix tree for string aat# tagi#igat#; (2) For every leaf node, remove
any text after the first # symbol.

#4 tag#ant#S

O/ g #QQat#S

.
O #itag#ygatéy g#,gatéy (Y

7 lag#ogatig

o4t
Ao

taghogatty 7O

®)

Generalized suffix tree

* Determine the strings in a database {S§1, 52, S3, ..., Sm} that contain
qguery string P:
* Build generalized suffix tree for {S1, S2, S3, ..., Sm}
* Follow the path for g in the suffix tree.
* Suppose you end at node u: traverse the tree below u, and
e output jif you find a string containing #i.

Space issue of suffix tree

* Naive representation of suffix tree would require O(n”"2) space, where
n is the size of the text. Under the read mapping setting, n is the size
of the reference genome and is ~3G

* Because we need to represent every suffix of the text, so in the worst
case the total number of nodes wouldben+(n-1)+(n-2)+..+1,
which leads to O(n”"2) space complexity

* Needs a more compact representation for suffix tree

Space issue of suffix tree

s = abaaba$
1234567

e Compress paths where
there are no choices.

s = abaaba$

1234567 /ﬁk
6:6 77

* Represent sequence

along the path using a
range [i,j] that refers to
the input string s.

We have at most n
solid nodes, and
each internal node is
at least a binary split

Therefore the total
number of nodes is
O(n)

Each node also
requires O(1) space

Suffix array

* While both suffix trees and suffix arrays require O(n) space, suffix
arrays are more space efficient. A recent suffix tree implementation
requires 15-20 Bytes per character. For suffix arrays, as few as 5 bytes
are sufficient (with some tricks).

e A moderate increase in search time from O(|P|) to O(|P| + log n). In
practice this increase is counterbalanced by better cache behavior.

Suffix array

e |dea: lexicographically sort
all the suffixes.

S = attcatg$ e Store the starting indices of
the suffixes in an array.
| lattcatg$ 8|9
2|ttcatg$ 5|atg$
sort the suffixes
3 tcatg$ alphabetically I attcatg$
4/catg$ > 4|catg$
5 atg$ the indices just 7 g$
6/tg$ come along for 3|tcatg$
7\g% 6/tg$
8% 2|ttcatg$

Suffix array

s = attcatg$

ONONULT A WN —

attcatg$
ttcatg$d
tcatg$d
catg$
atg$

tg$

gd

$

sort the suffixes
alphabetically

>

the indices just
“come along for
the ride”

|dea: lexicographically sort
all the suffixes.

Store the starting indices of
the suffixes in an array.

NOWNPAh—U10

Suffix tree to suffix array

* Depth-first traversal of the suffix tree would return you the
corresponding suffix array

* Linear time construction of suffix tree (Ukkonen’s algorithm)

* Linear time construction of suffix array is also possible. See “Linear
Work Suffix Array Construction” by Karkkainen et al.

Suffix array search

* Naive approach: binary search with string comparison

* log(n) comparisons, each comparison would take O(|P|) time. So the
complexity would be O(|P|*log(n))

* The time complexity is much higher than the one with suffix tree,
which is O(|P|), we need to be smarter

Suffix array search

Consider further: binary search for suffixes with P as a prefix
Assume there’s no $ in P. So P can't be equal to a suffix.

Initialize I = 0, ¢ = floor(m/2) and r = m (just past last elt of SA)

[

“left” “center”

Notation: We'll use use SA[I] to refer to the suffix corresponding to
suffix-array element /. We could write T[SA[/]:], but that’s too verbose.

Throughout the search, invariant is maintained:

SA[l] <P <

Suffix array search using Longest Common Prefix (LCP)

Say we're comparing P to SA[c] and we've already compared P to
SA[l] and In previous iterations.

] | LCP(P,SA[I])=3
T— “Length of the LCP”

More generally:

LCP(P, SA[c]) =
SA(T) | ¢ | LCP(P,SA[c]) =3 min(LCP(P, SA[/]), LCP(P,)

We can skip character comparisons

LCP(P,)

Il
w1

Suffix array search

Take an iteration of binary search:

SA(T) | ¢

Say we know
LCP(P, SA[I]), and
LCP(SA[c], SA[I])

When LCP(P, SA[/]) = LCP(P, SA[r]) we
can always determine how to bisect by
comparing P and SA[c] by skipping the
first LCP(P, SA[/]) characters

We are more interested in cases where
LCP(P, SA[/]) != LCP(P, SA[r])

Without loss of generality we assume
that LCP(P, SA[/]) > LCP(P, SA[r])

Suffix array search

Three cases:

LCP(SA[c], SA[]]) > LCP(SAJc], SA[]]) < LCP(SA[c], SA[l]) =
LCP(P, SA[I]) LCP(P, SA[)) LCP(P, SA[])

Suffix a rray Searc h No character comparison is required;
LCP(P, SA[/]) and LCP(P, SA[r]) remain unchanged;
LCP(P, SA[/]) and LCP(P, SA[r]) are non-decreasing

Case 1:

Next char of P after the LCP(P, SA[/]) must
be greater than corresponding char of SA|c]

P>SA|c]

For the ith position (where LCP(P,SA[/]) <i <=

Look here next LCP(SA[/], SA[c])):

* P> SA[/]: assuming correctness of binary search
e SA[/] = SA[c]: LCP(SA[/], SA[c]) > LCP(P, SA[/])

So:

 P>SA[c]: we need to go to the lower half

LCP(SA[c], SA[I]) >
LCP(P, SA[I])

Suffix a rray Searc h No character comparison is required;

LCP(P,SA[/]) remains the same

LCP(P,SA[r]) is set to LCP(SA[/], SA[c]);

LCP(SA[/], SA[c]) >= LCP(P,SA[r]);

LCP(P, SA[/]) and LCP(P, SA[r]) are non-decreasing

Case 2:

Next char of SA[c] after LCP(SA[c], SA[]])
must be greater than corresponding char of P

Look here next

P < SA[c]

For the ith position (where LCP(P,SA[/]) <i <=
LCP(SA[/], SA[c])):

P =SA[/l]: LCP(SA[/], SA[c]) > LCP(P, SA[/])

* SA[/] < SA[c]: lexicographical sorting of suffixes
So:

P <SA[c]: we need to go to the upper half

LCP(SA[c], SA[I]) <
LCP(P, SA[I])

Suffix array search

Case 3:

SA[l]

SA[c]

Needs character comparison;

Either LCP[P, SA[/]] or LCP[P,SA[r]] is increased or
remains the same; the other one remains the same;
LCP(P, SA[/]) and LCP(P, SA[r]) are non-decreasing

Must do further character comparisons
between P and SA|[c]

Each such comparison either:

(@) mismatches, leading to a bisection

(b) matches, in which case LCP(P, SA[c]) grows

Suffix array search

LCP(SA[c], SA[I]) > LCP(SA[c], SA[I]) < LCP(SA[c], SA[I]) =
LCP(P, SA|[/]) LCP(P, SA[1]) LCP(P, SA[I])
Bisect right! Bisect left! Compare some

characters, then bisect!

Comparisons performed

e Let max(LCP(P, SA[/]), LCP(P, SA[r])) be M

Case 3: * If we have LCP(P, SA[/]) = LCP(P, SA[r]), then we do
direct comparison to decide where to bisect, k
comparisons will increase M by k—1

* Note that without loss of generality we assume LCP(P,
SA[/]) > LCP(P, SA[r]), so M= LCP(P, SA[/])

* Inthe first case, when we decide to bisect left, LCP(P,
SA[c]) is at least M, which means that the new LCP(P,
SA[r]) is also at least M, and k comparisons will
increase M by k-1

* Inthe second case, when we decide to bisect right,
LCP(P, SA[c]) us going to be used as the new LCP(P,
SA[/]) and is also at least M; and k comparisons will
increase Mby k-1

* Insummary, M is non-decreasing as neither LCP(P,
SA[l]) nor LCP(P, SA[r]) is deceasing; k comparisons will
increase M by k—1, and the search terminates when M
reaches |P|

SA[l]

SA[c]
P S

Suffix array search complexity

* The total number of character comparison is |P| + x, where x is the
number of times that comparison is taken (either LCP(P, SA[l]) = LCP(P,
SA[r]) or the 3" case we discussed before)

* For the 15t and 2"9 cases only constant number of operation is
required, so they are also bounded by x

 Since it is a binary search, the number of steps taken, x, is bounded by
log(n). Thus the time complexity is O(|P| + log(n))

Storing the LCP information

(0,8,16)

(8,12, 16)

SA(T):

0 5 10 15

* O(n) leaf nodes, so O(n) nodes.
 We can pre-calculate and store the LCP information efficiently.

Storing the LCP information

(0,8, 16)

sam:[15[14] 7 ToT10[312]5]8 [1114 [13]6] 9
icPim:[ol1[8[1]5(113]ol7]ol4]0|2]0]6
cp e [olol8lols1(3]ol7]0l4]0l2]0]6
e R Tl [1lol1lololololololololo]o

0 5 10 15

Burrows-Wheeler Transformation

Reversible permutation of the characters of a string, used originally for compression

abbaSaa

T BWT(T)

4;7’#0
(5 v
OOS‘

Last column

S
a
a
abaaba$ a
a
b
b

Sort Burrows-Wheeler
Matrix

BWT and suffix array

Sabaaba
aSabaab
aabaSab
abaSaba
abaabas$
baSabaa
baaba$a

BWM(T)

=IO IWIN]IUL|OY

BWM bears a resemblance to the suffix array

S
as
aaba$
abas
abaaba$
bas$
baabas$

SA(T)

Sort order is the same whether rows are rotations or suffixes

BWT LF mapping property

Give each character in T arank, equal to # times the character occurred
previously in T. Call this the T-ranking.

ao boaiaxbiaz $

Now let’s re-write the BWM including ranks...

BWT LF mapping property

F L

BWM with T-ranking: a3
as
ai

a2 ai
ao

az

ao

Look at first and last columns, called Fand L

And look at just the Qs

as occur in the same order in Fand L. As we look down columns, in both

cases we see: d3,d1,4A?, do

BWT LF mapping property

Why does the LF Mapping hold?

~ $ abaabJa:
Why are these azs Sabaa b1\Whyare these
as in this order aijabas$ abo as in this order
relative to a-basa b|a1 relative to

each other?

aobaaba $ each other?
bia$abala /

bo aaba $
They're sorted by They're sorted by
right-context right-context

Occurrences of ¢ in F are sorted by right-context. Same for L!

Whatever ranking we give to characters in T, rank orders in F and L will match

BWT search

| We need the ranking of the letter
in the last column to determine the

ao interval in the first column.

bo

b1 «<—— Which BWM row begins with b1?

a1 Skip row starting with S (1 row)

$ Skip rows starting with a (4 rows)

Skip row starting with bo (1 row)

a2
Answer: row 6

as

FM index

* |In the previous example, we need to know the order of b in order to
calculate its positions at the first column.

* We can always walk through the entire list to figure out, but it would be
too slow.

* Use FM index: build a |Z|*n matrix, for each letter at position j, it stores
how many such letter has occurred in the BWT.

* We can reduce the space of the FM index by an arbitrary factor k, but it
would increase the search time by a factor of k

BWT search

BWTSearch(aba) Start from the end of the pattern

LF Mapping

Step I|: Find the range of 5
“a”s in the first column BWT(unabashable) Sabehl
e Lok it $unabashable 0O 000OO O

ep 2: Look at the same — —

range in the last column. abashable$un 0 0 0] 100
o able$unabash 000100
e ety ylubleSnb_ 00 0110
the LF mapping entry for b _}baShab|e$una 0 01l 10
in the first row of the ble$unabasha 011110
range. e$unabashabl 021110
Set E = the LF mapping hable$unabas 021111
entry for b in the last + | le$unabashab 021111
row of the range. nabashable$u 022111
Step 4: Find the range for “b” shable$unaba 022111
in the first row, and use B and unabashable$ 0 32111
E to find the right subrange 132111

within the “b” range.

F PR R RFRFRFRRFRRRRRFROOD
F P PR OOO0OO0OO0OOOOIM
e NoNoNoNoNolloellollolls

BWT Search

* It would take O(k/) time

* k in practice is a constant depending on available memory resource,
and usually take on a value around 128

Suffix tree, suffix array, and BWT

 Suffix Array = suffix numbers obtained by traversing the leaf nodes of the
(ordered) Suffix Tree from left to right

* BWT can be constructed from Suffix Array by taking the previous character of the
sorted suffixes

e Space efficiency: BWT > Suffix array > Suffix tree
* Search efficiency: Suffix tree > Suffix array > BWT

e Recall that modern memory architecture allows prefetching, so using less
memory will in practice reduce the running time

* BWT remains the choice for most current mapping implementations

Accounting for mismatch and indels

e Set an upper limit for the number of mismatches and indels allowed
for the alignment.

e Use backtracking when the search reaches a dead end.

* The search time would be exponential in terms of the number of
mismatches or indels allowed.

* It is usually doable given that current technologies have very low
error rate (~0.1-1%)

