Deterministic Memory Abstraction and
Supporting Multicore System Architecture

Farzad Farshchi®, Prathap Kumar Valsan®, Renato Mancuso®, Heechul Yun?®

>University of Kansas, " Intel, * Boston University

KU in’@




Multicore Processors in CPS

* Provide high computing performance needed for intelligent CPS
* Allow consolidation reducing cost, size, weight, and power.

| Pr6‘cés_sor

. Graphic

Die-shot of a multicore processor Audi zFAS platform

DJI drone 2



Challenge: Shared Memory Hierarchy

* Memory performance varies widely due to interference
e Task WCET can be extremely pessimistic

Task 1 Task 2 Task 3 Task 4
Corel Core2 Core3

| 8D | 8D | E D

¥ ¥ ¥

Shared Cache

Memory Controller (MC)

DRAM




Challenge: Shared Memory Hierarchy

 Many shared resources: cache space, MSHRs, dram banks, MC buffers, ...
* Each optimized for performance with no high-level insight

* Very poor worst-case behavior: >10X, >100X observed in real platforms
e even after cache partitioning is applied.

(o)

14

me

0
£ ' 1 15.6/fN21.3i N1i7.6 £ S 6.4
=12 - solo &4 Fs o solo =
i - 5 +1 co-run. E3 = +1 co-run. EA
subject co-runneri(s) % 10 1 42 co-run. m '%4 | +2 co-run. M
o 8 ~+3corun. =3 o +3 co-run. O
E 5 m 3 rrrrr———, oo dmss L oo {00 o
O
N o4 &2
© ©
| | g 2 ™ El y
O b4
0 o LB o
= =0 by L0 L4 DR S Ao B e
CO’Z'*@* C‘o,{@* CO’Z‘@ Co . /Ve/)a/@ 6/)72( 6/}}72 CGC/) fg‘é/) o 6y, OZ.S/O ,))S@f Sl,,b
A, g *4q s *4q PSS 07 % @60.2 'OQOJ /‘?OJ G/‘/}}
IsolBench EEMBC, SD-VBS on Tegra TK1

- P. Valsan, et al., “Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems.” RTAS, 2016
- P. Valsan, et al., “Addressing Isolation Challenges of Non-blocking Caches for Multicore Real-Time Systems.” Real-time Systems Journal. 2017



The Virtual Memory Abstraction

max
stack

* Program’s logical view of memory l

* No concept of timing

* OS maps any available physical memory blocks !

heap

* Hardware treats all memory requests as same

data

* But some memory may be more important text
* E.g., code and data memory in a time critical control loop i

Silberschatz et al.,
“Operating System Concepts.”

* Prevents OS and hardware from making informed allocation and
scheduling decisions that affect memory timing

New memory abstraction is needed!




Outline

* Motivation
* Our Approach

* Deterministic Memory Abstraction
 DM-Aware Multicore System Design
* Implementation

e Evaluation

 Conclusion



Deterministic Memory (DM) Abstraction

* Cross-layer memory abstraction with bounded worst-case timing
* Focusing on tightly bounded inter-core interference
* Best-effort memory = conventional memory abstraction

legend
= nter-core
Worst-case interference
memory
delay Inherent
timing
Best-effort Deterministic

memory memory



DM-Aware Resource Management Strategies

* Deterministic memory: Optimize for time predictability
* Best effort memory: Optimize for average performance

_ Space allocation Request scheduling WCET bounds

Deterministic Dedicated resources Predictability Tight
memory focused
Best-effort memory  Shared resources Performance Pessimistic
focused

Space allocation: e.g., cache space, DRAM banks
Request scheduling: e.g., DRAM controller, shared buses



System Design: Overview

* Declare all or part of RT task’s address space as deterministic memory

* End-to-end DM-aware resource management: from OS to hardware
* Assumption: partitioned fixed-priority real-time CPU scheduling

7 Corel Core2 Core3 Cored
: [11 D] [11 D] [11 D] [1] [D]
7 N S A =
Deterministic / \\4 """""""" L // =
memory ' /1 W W WL‘ W Y
b 1 2 3 4 S
II ’ / / Caelé Wa’K /’/:::,.': \‘\
;S / J L O TSN
g /,’ ¥ A 4 4 P!
Best-effort [/ B ‘BHB& ‘Bi B ‘B\ BI|B
memory  F---___ N 1([2 3 4115[|6]]|7]]|8
DRAM banks
Deterministic Memory-Aware Memory Hierarchy

Application view (logical) System-level view (physical) ?



OS and Architecture Extensions for DM

* OS updates the DM bit in each page table entry (PTE)
* MMU/TLB and bus carries the DM bit.

e Shared memory hierarchy (cache, memory ctrl.) uses the DM bit.

Vaddr MMU/TLB Paddr, DM

LLC

Paddr, DM

Paddr, DM

MC

DRAM cmd/addr.

hardware

Page table entry
DM bit=1|0

OS

software



DM-Aware Shared Cache

* Based on cache way partitioning

* Improve space utilization via DM-aware cache replacement algorithm
* Deterministic memory: allocated on its own dedicated partition
* Best-effort memory: allocated on any non-DM lines in any partition.
* Cleanup: DM lines are recycled as best-effort lines at each OS context switch

Set O

Set 1
Set 2

Set 3

Core O
partition
Way 0 Way 1

Core 1
partition

Way 2

shared
partition

DM Tag Line data

I deterministic line (Core0, DM=1)
I deterministic line (Corel, DM=1)
best-effort line (any core, DM=0)

11



DM-Aware Memory (DRAM) Controller

* OS allocates DM pages on reserved banks, others on shared banks

* Memory-controller implements two-level scheduling (*)

Deterministic memory Best-effort memory
_ Reserved_ _ Reserved _ Shared banks -
" for Corel _ for Core2 for all cores
Bank 1 Bank 2 Bank 3 Bank 4
) e ) e
e e ) O N | Y
W N W W
Cmd. Gen. Cmd. Gen. Cmd. Gen. Cmd. Gen.

R 72

72

N N

N

Channel scheduler /

R\

DRAM

(a) Memory controller (MC) architecture

yes

Deterministic
memory request

no

Determinism
focused scheduling
(Round-Robin)

Throughput focused
scheduling
(FR-FCFS)

(b) Scheduling algorithm

(*) P. Valsan, et al., “MEDUSA: A Predictable and High-Performance DRAM Controller for Multicore based Embedded Systems.” CPSNA, 2015



Implementation

* Fully functional end-to-end implementation in Linux and Gemb5.

* Linux kernel extensions
* Use an unused bit combination in ARMv7 PTE to indicate a DM page.
* Modified the ELF loader and system calls to declare DM memory regions

 DM-aware page allocator, replacing the buddy allocator, based on PALLOC (*)
* Dedicated DRAM banks for DM are configured through Linux’s CGROUP interface.

31 | | | | 121110 9 a' 10
Small page J)
| \/J (A

ARMvV7 page table entry (PTE)

(*) H. Yun et. al, “PALLOC: DRAM Bank-Aware Memory Allocator for Performance Isolation on Multicore Platforms.” RTAS 14



Implementation

 Gemb5 (a cycle-accurate full-system simulator) extensions
MMU/TLB: Add DM bit support

Bus: Add the DM bit in each bus transaction

Cache: implement way-partitioning and DM-aware replacement algorithm
DRAM controller: implement DM-aware two-level scheduling algorithm.

* Hardware implementability
« MMU/TLB, Bus: adding 1 bit is not difficult. (e.g., Use AXI bus QoS bits)

* Cache and DRAM controllers: logic change and additional storage are
minimal.



Outline

* Motivation
e Our Approach

* Deterministic Memory Abstraction
 DM-Aware Multicore System Design
* Implementation

e Evaluation
* Conclusion



Simulation Setup

* Baseline Gemb5 full-system simulator
e 4 out-of-order cores, 2 GHz
e 2 MB Shared L2 (16 ways)
 LPDDR2@533MHz, 1 rank, 8 banks
 Linux 3.14 (+DM support)

e Workload
e EEMBC, SD-VBS, SPEC2006, IsolBench



Real-Time Benchmark Characteristics

B CriticaldCritical(T98)UCritical(T90) g x10°

~100%! | < g
E 98% of misses
] o/. | 4 < . >
o /5% o |~ 90% of misses
> A
ﬂ“_j D gL
— 50%] s
< o
5 o bbbl =

O,/S/O 078 S/}? Sl//b f@*{ a/f}?f a//);? 07@[ ‘9 o )

Iy ‘
[j’ \ J’/) 0 1 5 10 15 20 25 30 35 39
{7y Page Rank Number

Critical pages: pages accessed in the main loop
* Critical (T98/T90): pages accounting 98/90% L1 misses of all L1 misses of the critical pages.

Only 38% of pages are critical pages
Some pages contribute more to L1 misses (hence shared L2 accesses)
Not all memory is equally important



Effects of DM-Aware Cache

* Questions
* Does it provide strong cache isolation for real-time tasks using DM?
* Does it improve cache space utilization for best-effort tasks?

¢ SEtUp RT co-runner(s)
* RT: EEMBC, SD-VBS, co-runners: 3x Bandwidth

* Comparisons

* NoP: free-for-all sharing. No partitioning
WP: cache way partitioning (4 ways/core)
DM(A): all critical pages of a benchmark are marked as DM
DM(T98): critical pages accounting 98% L1 misses are marked as DM
DM(T90): critical pages accounting 98% L1 misses are marked as DM




Effects of DM-Aware Cache

* Does it provide strong cache isolation for real-time tasks using DM?
* Yes. DM(A) and WP (way-partitioning) offer equivalent isolation.

* Does it improve cache space utilization for best-effort tasks?
* Yes. DM(A) uses only 50% cache partition of WP.

ENoPEWPEDM(A)ODM(T98)IDM(T90) BDM(A)ODM(T98)LIDM(T90)
100%:

100%
75%:

S 1| T

Sjr S p
Oﬁ% ’;7& % Sy, S, 6/;5? //,;? 0, e,/?*o

75%

50%;

Hit Rate
Partition Utilization

25%:

0%

19



Effects of DM-Aware DRAM Controller

* Questions
* Does it provide strong isolation for real-time tasks using DM?
* Does it reduce reserved DRAM bank space?

* Setup
e RT: SD-VBS (input: CIF), co-runners: 3x Bandwidth

* Comparisons
* BA & FR-FCFS: Linux’s default buddy allocator + FR-FCFS scheduling in MC
« DM(A): DM on private DRAM banks + two-level scheduling in MC
 DM(T98): same as DM(A), except pages accounting 98% L1 misses are DM
 DM(T90): same as DM(A), except pages accounting 90% L1 misses are DM



Effects of DM-Aware DRAM Controller

* Does it provide strong isolation for real-time tasks using DM?
* Yes. BA&FR-FCFS suffers 5.7X slowdown.

* Does it reduce reserved DRAM bank space?
* Yes. Only 51% of pages are marked deterministic in DM(T90)

HMBA & FR-FCFSEDM(A)ODM(T98)LIDM(T90) BDM(A)ODM(T98)LIDM(T90)
61 100%1
S
41 g O B B N
o o)
'g L 50%;
w = o/ |
....................................... e = 25%
Jii i Il 3
01 . ! ' . ' ' 0%! ! ! ! ! ! '
% n Sy Sy, 8 A, % m SV Sy, s L,
S0, 7 (j/ S@ﬁ ¢ N Rty (J/.@ 9 S/Oe 7 S@/- 4 n * ¢, e 9



Conclusion

* Challenge
* Balancing performance and predictability in multicore real-time systems
* Memory timing is important to WCET
* The current memory abstraction is limiting: no concept of timing.

* Deterministic Memory Abstraction
* Memory with tightly bounded worst-case timing.
* Enable predictable and high-performance multicore systems

 DM-aware multicore system designs
* OS, MMU/TLB, bus support
 DM-aware cache and DRAM controller designs
* Implemented and evaluated in Linux kernel and gem5

* Availability
* https://github.com/CSL-KU/detmem



https://github.com/CSL-KU/detmem

Ongoing/Future Work

* SoC implementation in FPGA
* Based on open-source RISC-V quad-core SoC
* Basic DM support in bus protocol and Linux
* Implementing DM-aware cache and DRAM controllers

* Tool support and other applications
* Finding “optimal” deterministic memory blocks
e Better timing analysis integration (initial work in the paper)
* Closing micro-architectural side-channels.

23



Thank You

Disclaimer:
Our research has been supported by the National Science
Foundation (NSF) under the grant number CNS 1718880

@

24



