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Multicore Processors in CPS

• Provide high computing performance needed for intelligent CPS

• Allow consolidation reducing cost, size, weight, and power. 
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Challenge: Shared Memory Hierarchy
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• Memory performance varies widely due to interference

• Task WCET can be extremely pessimistic
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Challenge: Shared Memory Hierarchy

• Many shared resources: cache space, MSHRs, dram banks, MC buffers, …

• Each optimized for performance with no high-level insight

• Very poor worst-case behavior: >10X, >100X observed in real platforms
• even after cache partitioning is applied.
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- P. Valsan, et al., “Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time Systems.” RTAS, 2016
- P. Valsan, et al., “Addressing Isolation Challenges of Non-blocking Caches for Multicore Real-Time Systems.” Real-time Systems Journal. 2017



The Virtual Memory Abstraction

• Program’s logical view of memory

• No concept of timing

• OS maps any available physical memory blocks  

• Hardware treats all memory requests as same

• But some memory may be more important 
• E.g., code and data memory in a time critical control loop

• Prevents OS and hardware from making informed allocation and 
scheduling decisions that affect memory timing 
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New memory abstraction is needed!

Silberschatz et al., 
“Operating System Concepts.”
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Deterministic Memory (DM) Abstraction

• Cross-layer memory abstraction with bounded worst-case timing

• Focusing on tightly bounded inter-core interference

• Best-effort memory = conventional memory abstraction
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DM-Aware Resource Management Strategies

• Deterministic memory: Optimize for time predictability

• Best effort memory: Optimize for average performance
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System Design: Overview

• Declare all or part of RT task’s address space as deterministic memory

• End-to-end DM-aware resource management: from OS to hardware 
• Assumption: partitioned fixed-priority real-time CPU scheduling
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OS and Architecture Extensions for DM

• OS updates the DM bit in each page table entry (PTE)

• MMU/TLB and bus carries the DM bit.

• Shared memory hierarchy (cache, memory ctrl.) uses the DM bit. 
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DM-Aware Shared Cache

• Based on cache way partitioning 

• Improve space utilization via DM-aware cache replacement algorithm 
• Deterministic memory: allocated on its own dedicated partition

• Best-effort memory: allocated on any non-DM lines in any partition.

• Cleanup: DM lines are recycled as best-effort lines at each OS context switch  
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DM-Aware Memory (DRAM) Controller

• OS allocates DM pages on reserved banks, others on shared banks

• Memory-controller implements two-level scheduling (*)
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(*) P. Valsan, et al., “MEDUSA: A Predictable and High-Performance DRAM Controller for Multicore based Embedded Systems.” CPSNA, 2015



Implementation

• Fully functional end-to-end implementation in Linux and Gem5. 

• Linux kernel extensions
• Use an unused bit combination in ARMv7 PTE to indicate a DM page. 

• Modified the ELF loader and system calls to declare DM memory regions

• DM-aware page allocator, replacing the buddy allocator, based on PALLOC (*)
• Dedicated DRAM banks for DM are configured through Linux’s CGROUP interface. 

ARMv7 page table entry (PTE)
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(*) H. Yun et. al, “PALLOC: DRAM Bank-Aware Memory Allocator for Performance Isolation on Multicore Platforms.” RTAS’14



Implementation

• Gem5 (a cycle-accurate full-system simulator) extensions 
• MMU/TLB: Add DM bit support

• Bus: Add the DM bit in each bus transaction

• Cache: implement way-partitioning and DM-aware replacement algorithm

• DRAM controller: implement DM-aware two-level scheduling algorithm. 

• Hardware implementability
• MMU/TLB, Bus: adding 1 bit is not difficult. (e.g., Use AXI bus QoS bits)

• Cache and DRAM controllers: logic change and additional storage are 
minimal.
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Simulation Setup

• Baseline Gem5 full-system simulator
• 4 out-of-order cores, 2 GHz

• 2 MB Shared L2 (16 ways)

• LPDDR2@533MHz, 1 rank, 8 banks

• Linux 3.14 (+DM support)

• Workload
• EEMBC, SD-VBS, SPEC2006, IsolBench
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Real-Time Benchmark Characteristics

• Critical pages: pages accessed in the main loop
• Critical (T98/T90): pages accounting 98/90% L1 misses of all L1 misses of the critical pages.  

• Only 38% of pages are critical pages

• Some pages contribute more to L1 misses (hence shared L2 accesses)

• Not all memory is equally important

svm L1 miss distribution
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Effects of DM-Aware Cache

• Questions
• Does it provide strong cache isolation for real-time tasks using DM?
• Does it improve cache space utilization for best-effort tasks?

• Setup
• RT: EEMBC, SD-VBS, co-runners: 3x Bandwidth 

• Comparisons
• NoP: free-for-all sharing. No partitioning 
• WP: cache way partitioning (4 ways/core)
• DM(A): all critical pages of a benchmark are marked as DM
• DM(T98): critical pages accounting 98% L1 misses are marked as DM
• DM(T90): critical pages accounting 98% L1 misses are marked as DM 
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Effects of DM-Aware Cache

• Does it provide strong cache isolation for real-time tasks using DM?
• Yes. DM(A) and WP (way-partitioning) offer equivalent isolation.

• Does it improve cache space utilization for best-effort tasks?
• Yes. DM(A) uses only 50% cache partition of WP. 
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Effects of DM-Aware DRAM Controller

• Questions
• Does it provide strong isolation for real-time tasks using DM?

• Does it reduce reserved DRAM bank space? 

• Setup
• RT: SD-VBS (input: CIF), co-runners: 3x Bandwidth

• Comparisons
• BA & FR-FCFS: Linux’s default buddy allocator + FR-FCFS scheduling in MC

• DM(A): DM on private DRAM banks + two-level scheduling in MC

• DM(T98): same as DM(A), except pages accounting 98% L1 misses are DM

• DM(T90): same as DM(A), except pages accounting 90% L1 misses are DM
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Effects of DM-Aware DRAM Controller

• Does it provide strong isolation for real-time tasks using DM?
• Yes. BA&FR-FCFS suffers 5.7X slowdown. 

• Does it reduce reserved DRAM bank space? 
• Yes. Only 51% of pages are marked deterministic in DM(T90)
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Conclusion

• Challenge
• Balancing performance and predictability in multicore real-time systems
• Memory timing is important to WCET 
• The current memory abstraction is limiting: no concept of timing.  

• Deterministic Memory Abstraction
• Memory with tightly bounded worst-case timing. 
• Enable predictable and high-performance multicore systems 

• DM-aware multicore system designs
• OS, MMU/TLB, bus support
• DM-aware cache and DRAM controller designs
• Implemented and evaluated in Linux kernel and gem5 

• Availability
• https://github.com/CSL-KU/detmem
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https://github.com/CSL-KU/detmem


Ongoing/Future Work

• SoC implementation in FPGA
• Based on open-source RISC-V quad-core SoC

• Basic DM support in bus protocol and Linux

• Implementing DM-aware cache and DRAM controllers

• Tool support and other applications
• Finding “optimal” deterministic memory blocks

• Better timing analysis integration (initial work in the paper)

• Closing micro-architectural side-channels.
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