
Cloud-Assisted Privacy-Preserving Classification for
IoT Applications

Lei Yang
Amazon LLC, Seattle, WA, USA

Email: ynglei@amazon.com

Fengjun Li
The University of Kansas, Lawrence, KS, USA

Email: fli@eecs.ku.edu

Abstract—The explosive proliferation of Internet of Things
(IoT) devices is generating an incomprehensible amount of data.
Machine learning plays an imperative role in aggregating this data
and extracting valuable information for improving operational
and decision-making processes. In particular, emerging machine
intelligence platforms that host pre-trained machine learning
models are opening up new opportunities for IoT industries. While
those platforms facilitate customers to analyze IoT data and de-
liver faster and accurate insights, end users and machine learning
service providers (MLSPs) have raised concerns regarding secu-
rity and privacy of IoT data as well as the pre-trained machine
learning models for certain applications such as healthcare, smart
energy, etc. In this paper, we propose a cloud-assisted, privacy-
preserving machine learning classification scheme over encrypted
data for IoT devices. Our scheme is based on a three-party model
coupled with a two-stage decryption Paillier-based cryptosystem,
which allows a cloud server to interact with MLSPs on behalf
of the resource-constrained IoT devices in a privacy-preserving
manner, and shift load of computation-intensive classification
operations from them. The detailed security analysis and the
extensive simulations with different key lengths and number of
features and classes demonstrate that our scheme can effectively
reduce the overhead for IoT devices in machine learning classifi-
cation applications.

I. INTRODUCTION

The Internet of things (IoT) industry is considered a most
promising industry in the future. As forecast by Cisco and
Ericsson, more than 20 billion of IoT devices will be connected
to the Internet by 2021 [1]. The IoT platform connects a huge
number of sensors to the data network to collect realtime
data that was previously unavailable or at a scale that was
previously unreachable. More importantly, it integrates the
ubiquitous sensing capability with advanced computing and
data analysis capabilities of backend applications to provide
automated extraction of insights by making sense of plethora
of data generated by these sensors. This has led to a pervasive
deployment of intelligence into our daily life, ranging from
healthcare (e.g., remote patient monitoring, wearable fitness
tracking) and security (e.g., community monitoring) to home
automation, smart communities and smart cities (e.g., smart
traffic control, distributed pollution monitoring).

In the IoT platform, the frontend IoT devices are usu-
ally resource-constrained, which have very limited storage
and computing power to support complicated computations.
Therefore, the intelligence is often provided by machine-
learning applications running on powerful backend servers.

With the large volume of data generated by IoT devices,
these servers map feature vectors to categorical or real-valued
outputs to train predictive models, which output classification
or predication results for future sensing data to the clients. For
example, wearable devices with accelerometer and gyroscope,
depth cameras, etc. are deployed in the home of old adults
for fall detection [2], [3]. With real-time sensor data, the
predictive model running on the server analyzes the vertical
state of objects and notify the caregiver when a fall is detected.
More automatic medical assessment and risk profiling services
can be provided from analyzing the physical measurements
collected by the clients’ wearable fitness tracking devices. The
success of machine learning (ML) on IoT platforms has led
to an explosion of demands. In fact, providing classification
and predication services that are customized to different appli-
cation domains is becoming an emerging business paradigm,
known as “machine-learning-as-a-service” (MLaaS). Major
cloud service providers such as Amazon, Google, Microsoft,
and BigML are offering cloud-based MLaaS, which trains
predictive models and charges future usage of the model at
a pay-per-query or subscription-based cost.

However, IoT applications atop MLaaS also raise several
privacy concerns, which may hinder further adoption of this
emerging business paradigm. Privacy involved in the described
application scenario is two-fold: privacy of the subject (i.e., IoT
data) and privacy of the service provider (i.e., ML model). It is
commonly recognized that in many applications data collected
by IoT devices, such as electrocardiogram or environmental
temperature, are sensitive or proprietary data of its owner.
For privacy protection purposes, the client may not want
to disclose her sensitive data to MLSP during the use of
predictive models. This not only reflects the client’s concern
about probable inappropriate use of their data, but more impor-
tantly if MLSP can protect the data properly considering the
numerous data breaches reported in recent years [4]. On the
other hand, it is worth noting that ML models trained based
on sensitive or proprietary data also need to be protected, as
the predictive models (e.g., type, structure and parameters) are
core intellectual property items of machine learning service
providers (MLSPs). Moreover, revealing models may leak
information about the underlying training data [5], [6]. Without
proper protection, these models are under the risk of model
extraction attacks, which query a prediction API to reverse-

engineer model characteristics and extract an equivalent or
near-equivalent model of the original one [7].

Therefore, in IoT applications that handle sensitive or pro-
prietary data, it is important to keep both the data and the ML
models private. Ideally, we can achieve this goal by requiring
the ML model to process both input (i.e., data from the IoT
device) and output (i.e., predication results) in the encrypted
form, so that in the end of the classification, the client knows
only the classification result but nothing else about the model,
while the MLSP learns nothing about the client’s input nor the
classification result. This is known as the privacy-preserving
classification problem [8], [9], [10].

In this work, we focus on the supervised classification
schemes, which typically consist of two phases. In the training
phase, the classification algorithm learns a model w from the
data, and in the classification phase, the input data, denoted as
a feature vector x, is fed into the trained classifier C to obtain
the classification result as C(x,w). It is often assumed that the
model (i.e., the classifier C) has been trained through privacy-
preserving training approaches (please refer to Section VII for
details). Therefore, existing approaches [8], [9], [10] mostly
focus on the second phase, and naturally adopt a two-party
client-server setting to realize privacy-preserving classification
as shown in Fig. 1.

However, these solutions cannot be directly extended to
the IoT MLaaS applications. Some schemes adopt fully ho-
momorphic encryption [9] for secure multiparty computing,
which is considered several magnitudes slower than partially
homomorphic schemes. Other two-party schemes such as [10]
require the client to participant in the laborious process, which
is computationally costly for resource-constrained IoT devices.
The most promising scheme, as proposed by Bost et al. [8],
also introduces computation and communication overhead that
is impractical for IoT devices. For example, as shown in Fig. 1,
MLSP first sends k encrypted weight vectors to the client,
who computes k inner products between weight vector and
her own input vector in the encrypted form and returns the
greatest inner product without knowing its exact value. To
avoid revealing the relative order and the classification result to
MLSP, the client needs to blind the values and compare each
pair with the assistance from MLSP (as shown in Step 3). This
causes multiple rounds of interactions between the two parties,
involving heavy cryptographic computation that is linear to the
data size (i.e., number of attributes of the data).

To provide practical privacy-preserving classification ser-
vices on the IoT platforms, we need to significantly reduce both
computation and communication overheads at the resource-
constrained IoT device. To tackle this problem, we propose
a novel light-weight cloud-assisted privacy-preserving classi-
fication scheme, which employs an additional cloud server to
outsource a part of computationally expensive operations from
the client (i.e., IoT devices) to this assisting server. Moreover,
we develop a privacy-preserving communication protocol to
exchange intermediate results among the three parties, which
avoids unnecessary communications between the client and the

1.	Send	𝑘 encrypted	weight	vectors
W# = 	 ([[𝑤#]], … , [[𝑤,]]), … , [W.]

3.	Multiple rounds of interaction
involving	heavy	cryptographic	
computation	to determine the
greatest classification score	 𝑣0

2.	Compute	inner	product	
between	W and	Y to	obtain	𝑘
values:	 𝑣# , … , 𝑣.

4.	Client	obtains	𝑖 without	knowing	
the	value	of	any	𝑣0,	while	server	
knows	nothing	

IoT Client

MLSP

Fig. 1: Two-party privacy-preserving classification scheme
(Bost et al. [8]).

other two parties and thus reduces the participation of the client
in the protocol. To the best of our knowledge, this is the first
light-weight privacy-preserving classification scheme for IoT
applications.

The rest of the paper is organized as follows. We present the
system mode, threat model and design goals in Section II and
introduce the preliminaries in Section III. We present our three-
party privacy-preserving classification scheme in Section IV,
followed by security analysis in Section V and performance
evaluation in Section VI. Finally, we discuss the related work
in Section VII and conclude this work in Section VIII.

II. BACKGROUND AND THE PROBLEM

A. Privacy-Preserving Classification

In this work, we focus on a popular classification algorithm,
called hyperplane decision-based classifiers, which is a para-
metric and discriminative classifier widely used in practice
through various instances such as support vector machines
(SVM), logistic regression and least squares.

Consider user input as a d-dimension vector X =
{x1, ..., xd}, where xi ∈ R and i ∈ {1, ..., d}. Generally
speaking, the hyperplane decision-based classifier consists of
k weight vectors, corresponding to k distinct classes: Ŵ =
{W1, . . . ,Wk}, where Wi ∈ Rd is a vector of d dimensions.
To determine which class the input X belongs to, the classifier
evaluates the index k∗ such that:

k∗ = argmax
1≤i≤k

〈Wi,X〉

where 〈·, ·〉 denotes the inner product operation.For example,
in binary classification, i.e., k = 2, an input X is classified in
class c1 if 〈W,X〉 ≥ 0, or otherwise in class c2. To extend
to cases with k > 2 classes, it is common to adopt the “one-
versus-all” approach to train k different binary classifiers, each
discriminating one class from all the others. Therefore, the
index i that leads to the greatest classification score can finally
determine the classification result out of k classes.

Privacy-preserving classification requires evaluating the clas-
sifier while protecting the privacy of user data and the MLSP

classification model. From the above equation, we see that a
hyperplane-based classifier involves two types of operations,
i.e., inner product, comparison and argmax. Therefore, it de-
mands new secure protocols for:

1) privacy-preserving inner product, which computes the
inner product of Wi and X without disclosing the feature
vector nor the weight vector to any party other than its
owner.

2) privacy-preserving integer comparison, which compares
two integers in the encrypted form.

3) privacy-preserving argmax, which determines the index
i(1 ≤ i ≤ [k]) that leads to the greatest inner product
without disclosing the value of i to the ML server and
the assisting server.

B. Threat Model
Similar as previous work on privacy-preserving machine-

learning-as-a-service [8], [9], [10], we adopt the “honest-but-
curious” threat model for all involved parties. In an IoT MLaaS
application, the user (i.e., IoT devices) is assumed to be
curious about the machine learning model, which is regarded
as the core intelligence property held by MLSP. Meanwhile,
MLSP is interested in the private input from the user and
the corresponding classification result. We introduce a new
assisting cloud server in our scheme, which can only access the
intermediate results. However, it is also interested in learning
the input from the user, the output from the model, as well
as the machine learning model. According to the “honest-but-
curious” assumption, each of the three parties will faithfully
follow the protocol, while trying its best to infer the private
information of others. We also assume that MLSP and assisting
cloud server do not collude. This can be easily achieved if the
assisting cloud server is separately selected by the user. Finally,
it is worth noting that either server may output incorrect results
to the user accidentally or maliciously. While this problem can
be solved by employing some existing verifiable computation
techniques, it is out of the scope of this paper.

C. Overview of Our Scheme
In this work, we aim to design a light-weight and mutually

privacy-preserving approach in the paradigm of “machine-
learning-as-a-service” for IoT applications. In terms of security,
our approach should minimize the privacy leak without requir-
ing mutual trust between user and ML servers. In addition, due
to the limited computation and storage capacity of IoT devices,
it is expected that the overhead on the user side should be as
small as possible. Therefore, our design goals are two-fold:

1) Security. After classification, the user should only know
the classification result but nothing else about the ma-
chine learning model. On the other hand, MLSP should
not know anything about the model’s input and output.
Moreover, ACS should know nothing at all.

2) Lightweight operations on IoT device. The computation
and communication overheads incurred by the classifica-
tion operations on the user side should be minimized to
an amount affordable to resource-constrained IoT devices.

Encrypted	feature vector
[X] = 	 ([[𝑥(]], … , [[𝑥+]])

ML server

IoT client

Cloud server

Permutation	𝜋 of 𝑘 classes
1 2

4 Class index 𝑖 that leads to the
greatest classification score

5 Get the class by computing 𝜋0((𝑖)

Multiple rounds of interaction
to determine the greatest
classification score

3

Fig. 2: The proposed three-party privacy-preserving classifica-
tion framework.

To tackle this problem, we propose a three-party privacy-
preserving classification framework for IoT applications. As
shown in Fig. 2, the proposed framework consists of three
entities: an IoT device (i.e., the client), a machine learning
service provider (MLSP), and an assisting cloud server (ACS).

The IoT device, e.g., a smart watch or a smart gateway, is
generating sensitive data about the client. As shown in Step
1, a feature vector of d dimensions, X = (x1, · · · , xd) ∈ Rd,
can be extracted from the data generated by the IoT device. J·K
denotes the feature vector is encrypted by the device so that
its value is hidden from the server.

MLSP holds the machine learning model to provide the
classification service to IoT devices. Taking X (in the en-
crypted form) as input, MLSP computes k inner products
against k weight vectors for k classes, and meanwhile, sends a
random permutation π of k classes to the IoT client. Different
from the two-party schemes, we introduce an assisting cloud
server (ACS) to mitigate the overhead in the IoT device while
achieving the desired security goals. We design novel three-
party privacy-preserving classification framework, and extend
the idea of the two-stage Paillier cryptosystem [11] and the
DGK secure comparison algorithm [12] to design new privacy-
preserving protocols for inner product, integer comparison and
argmax operations for the proposed framework. Our scheme
can outsource most of the computation-costly device-end oper-
ations in previous two-party classification from the IoT device
(Step 3 in Fig. 1) to the assisting cloud server (Step 3 in Fig. 2).
This also reduces the interactions between the IoT device and
MLSP for pairwise multiparty secure comparison, and thus
reduces the communication overhead at the IoT devices.

In the end, ACS learns the index i (in the encrypted form)
that leads to the greatest inner product, and returns it to the
IoT device (Step 4), which can recover the classification result
by computing the permutation over i (Step 5).

III. PRELIMINARIES

A. Two-Stage Paillier-based Cryptosystem

Paillier cryptosystem is a probabilistic asymmetric algorithm
proposed by Pascal Paillier [13] for public key cryptography. A
notable feature of the Paillier cryptosystem is the homomorphic
properties along with its non-deterministic encryption. More
specifically, if the encryption function is additively homomor-
phic, to obtain the summation of two plaintexts, we can first
product the corresponding two ciphertexts and decrypt the
result to get m1 +m2 = Dec(Enc(m1) · Enc(m2)).

Ateniese et al. proposed a proxy re-encryption scheme [11],
which involves three parties, a sender, a receiver and a
proxy. The sender encrypts the message with the receiver’s
public key. Once the proxy decrypts the ciphertext partially
in the first stage and sends the intermediate result to the
receiver, the receiver can recover the plaintext from the
transformed ciphertext in a separate, second stage. In par-
ticular, the scheme consists of the following five functions
(KeyGen,Enc,DirectDec,Transform,FinalDec):
• KeyGen: This algorithm generates the public/private keys

for the receiver, where s is the private key, gs is the public
key, s1 and s2 are the private shares of s such that s =
s1 + s2.

• Enc: This algorithm encrypts the plaintext with the input
of the receiver’s public key gs.

• DirectDec: This algorithm decrypts the ciphertext with the
private key s.

• Transform. This algorithm partially decrypts the cipher-
text with the private key share s1.

• FinalDec: This algorithm decrypts the transformed cipher-
text to the plaintext with the private key share s2.

The above scheme can be considered as a variant of the Pail-
lier cryptosystem built from two-trapdoor Paillier [14], [15],
with two promising properties: (1) it inherits the additively
homomorphic property, and (2) the ciphertext decryption can
be done in a two-stage procedure. The second property is
essentially useful to our design, because it allows the private
key owner to delegate the decryption capability to a third
party in a control manner. In this way, the private key owner
can control the decryption procedure so that without tight
cooperation, any third party with one stage decryption key
cannot recover the ciphertext in full.

B. Privacy-preserving integer comparison

The second building block of our model is the private-
preserving integer comparison protocol. It enables two parties
to jointly compare the integers they possess without revealing
value of integers to each other. More specifically, we adopt
the DGK comparison protocol proposed by Damgård, Geisler
and Krøigaard [12]. Suppose that party A holds x and party
B holds y, where x and y are two integers of l bits. The high-
level idea of the protocol is to denote the integer by the binary
representation such that x = x1x2 · · ·xl and y = y1y2 · · · yl,

respectively. In this way, x < y holds if and only if there
exists an index i ∈ [1, l] such that xi < yi and for all j < i,
xj = yj . In another word, if there exists i ∈ [1, l], such that
zi = xi − yi + 1 +

∑
j<i(xj ⊕ yj) = 0, then x < y.

Based on this idea, the protocol runs as follows (informal):
First, A encrypts each bit of x using an additively homo-
morphic encryption scheme with A’s public key and sends
the bitwise encryptions to B. B homomorphically computes
encryptions of z1r1, . . . , zlrl, where {ri, 1 ≤ i ≤ l} are
randomly chosen from Zn. Note that the encryption of zi
can be computed over the ciphertexts sent from A, because
xi ⊕ 0 = xi and xi ⊕ 1 = 1 − xi, and yi is known to B. B
sends the ciphertexts back to A in a random order, so that A
can decrypt all ciphertexts to see whether there exists a single
ciphertext decrypted to 0 and l − 1 ciphertexts decrypted to
non-zero random numbers.

IV. THREE-PARTY PRIVACY-PRESERVING CLASSIFICATION

The proposed three-party privacy-preserving classification
framework is shown in Fig. 2. To outsource the secure compar-
ison operations from the IoT device to the assisting server, we
need new privacy-preserving protocols for the inner product,
integer comparison, and argmax operations over the encrypted
data. In this section, we present our design for the three
operations.

A. Privacy-Preserving Inner Product

In hyperplane-based classification, the first step is to com-
pute the inner product of the feature vector extracted from
user data and the weight vector of the ML model. Both
vectors are encrypted by user and server respectively for
privacy protection. To compute the inner product of the two
encrypted vectors, additive homomorphic encryption schemes
(e.g., Paillier cryptosystem) are commonly adopted, which can
be computed in two directions, denoted as user-initiated and
MLSP-initiated approaches.

The two-party privacy-preserving classification scheme pro-
posed by Bost et al. took the MLSP-initiated approach, in
which MLSP generates the public/private keys and sends the
encrypted weight vectors of the machine learning model to
the user. In this approach, the user is responsible to conduct
the secure inner product operation over the encrypted data.
Since the aggregation operation for inner product is less costly
than the encryption operation, the MLSP-initiated scheme has
a smaller computation overhead at the user end. However, the
MLSP-initiated approach will consume additional storage of
the encrypted user data at either the IoT device or an additional
storage cloud. Based on this consideration, we follow the
user-initiated approach, in which user generates a pair of
public/private key and sends the encrypted input to MLSP,
which in turn performs the private inner product.

In Fig. 3, we present an instantiation that implements the
user-initiated strategy by using the aforementioned two-stage
Pallier cryptosystem. More specifically, the client performs the
KeyGen and Enc algorithms (Step 1 of Fig. 2):

User Input : X = (x1, · · · , xd) ∈ Zd, secret key
SKA and public key PKA

MLSP Input : W = (w1, · · · , wd) ∈ Zd, public
key PKA

MLSP Output: J〈W,X〉K
1) The user encrypts x1, · · · , xd and sends the

encryptions Jx1K, · · · , JxdK to MLSP.
2) MLSP performs the private inner product by

computing JvK =
∏
iJxiK

wi mod N2.
// v =

∑
wixi

3) MLSP outputs JvK, which is used as the input to the
argmax protocol.

Fig. 3: Privacy-preserving inner product

• KeyGen: Given two large safe primes p and q, such that
p and q are primes of the form p = 2p′ + 1, q = 2q′ + 1,
where p′ a nd q′ are also primes, the algorithm computes
n = pq, selects s ∈ [1, n2/2] uniformly at random and
sets the public key as (n, g, h = gs) where g of order
λ(n) = 2p′q′ (As remarked in [14], such that g can be
easily generated by selecting a random value a ∈ Z∗n2 and
setting g = −a2n.), and the private key as s. In order to
enable the two-stage decryption, the private key s can be
divided into two shares s1 and s2 such that s = s1 + s2.
The client holds the private key s, and distributes one
private key share s1 to MLSP and another share s2 to
ACS securely.

• Enc: To encrypt a message m ∈ Zn, it selects r uniformly
at random from Zn2 and computes the ciphertext C =
(c1, c2) where

c1 = gr mod n2, c2 = hr(1 +mn) mod n2.

For the simplicity of exposition, we denote the ciphertext
of value y as JyK, which actually consists of two parts: c1
and c2. As we can see, MLSP holds its model (i.e., a set of
weight vectors), and performs the inner product computation
together with the user’s input (i.e., an encrypted feature vector),
which is referred to as Step 2 of Fig. 2. Here, we leverage the
homomorphic property of the two-stage Paillier, which states
that: (1) the product of two ciphertexts will decrypt to the sum
of their corresponding plaintexts, and (2) an encrypted plaintext
raised to a constant k will decrypt to the product of the plaintext
and the constant, namely, DirectDec(Enc(m1) ∗ Enc(m2)) =
m1 +m2 and DirectDec(Enc(m)k) = km.

B. Privacy-Preserving Integer Comparison

After MLSP computes the inner products (i.e., encrypted
inner product values) by taking as input its owned model
and the encrypted feature vector from the user, it needs
to figure out which ciphertext corresponds to the maximum
value. Therefore, we propose a private comparison protocol to
preserve the data privacy while allowing MLSP to determine
the maximum value. The protocol leverages the decryption

MLSP Input: Jv1K, Jv2K, partial secret key s1, and
public QR key PKQR

ACS Input : partial secret key s2, and private QR
key SKQR

1) MLSP: JδK← Jv2K·J2lK·Jv1K−1 mod n2

// δ ← v2+2l−v1
2) MLSP chooses a random value r to blind δ
3) MLSP: Jδ′K← JδK · JrK mod N2

// δ′ ← δ + r
4) MLSP runs the algorithm Transform to partially

decrypt Jδ′K to Jδ′K′ with s1, and sends Jδ′K′ to ACS,
where the Transform algorithm is defined as letting
the transformed ciphertext Jδ′K′ = (c′1, c

′
2): c

′
1 = c1

and c′2 = c2/c
s1
1 .

5) ACS runs the algorithm FinalDec to decrypt Jδ′K′
with s2: δ′ = L(c′2/c

′s2
1 mod n2).

6) MLSP: c← r mod 2l

7) ACS: d← δ′ mod 2l.
8) MLSP and ACS privately compute the encrypted bit

[t] such that t = 1 if d < c, and t = 0 otherwise.
9) ACS encrypts zl using QR encryption and sends [zl]

to MLSP.
10) MLSPencrypts rl to [rl].
11) Server computes [t′]← [δ′l+1]·[rl+1]·[t] and sends [t′]

to ACS // t′ ← δ′l+1⊕rl+1⊕t ≡ (t′ = δ÷2l)
12) ACS decrypts to get t′

Fig. 4: Comparison protocol of two encrypted integers

technique discussed in Section III-A to exchange data securely
between MLSP and the assisting cloud ACS.
MLSP needs to compare two encrypted integers Jv1K and

Jv2K of l bits without revealing the real values. In particular,
MLSP holds a private key share s1 and ACS holds the other
private key share s2 (s1 and s2 can be used to recover the
user’s private key s). Based on the secure comparison scheme
proposed by Veugen in [16], we implement a new comparison
scheme, as shown in Fig. 4, which uses two homomorphic
cryptosystems, the Paillier cryptosystem and the Quadratic
Residues (QR) cryptosystem [17].

Let [·] denote the ciphertext of the QR cryptosystem, and
zl+1 denote the (l+1)-th bit of integer z. The basic idea of the
comparison protocol is to use the significant bit of the value
δ = v1+2l−v2, determining whether v1 > v2. Note that if the
significant bit δl+1 is 1, then v1 ≥ v2, and v1 < v2 otherwise.
Given that δ is a (l+1)-bit number (at most), its significant bit
can be obtained through δ÷2l where ÷ is the integer division,
and δ = 2l(δ÷ 2l)+ (δ mod 2l) where 0 ≤ (δ mod 2l) < 2l.
Moreover, in order to hide the difference between v1 and v2,
let δ′ = δ + r where r is a l+ 1-bit random value. Therefore,

δ′ = 2l(δ′ ÷ 2l) + (δ′ mod 2l)

= 2l(δ ÷ 2l + r ÷ 2l) + (δ mod 2l + r mod 2l).

and δ′ ÷ 2l = δ ÷ 2l + r ÷ 2l + t where t = 0 if (δ mod

2l) + (r mod 2l) < 2l, and t = 1 otherwise.
On the other hand, t = 0 means that (δ′ mod 2l) is equal to

(δ mod 2l)+ (r mod 2l). Therefore, if (δ′ mod 2l) ≥ (r mod
2l), then t = 0. Hence, the significant bit δl can be determined
as follows:

δ ÷ 2l = (δ′ ÷ 2l)− (r ÷ 2l)− t mod 2 = zl+1 ⊕ rl+1 ⊕ t.

Based on the above idea (together with the two-stage decryp-
tion cryptosystem), we present the detailed comparison proto-
col as shown in Fig. 4. This comparison protocol corresponds
to one interaction between MLSP and ACS in Step 4 of Fig. 2.
Note that in Step 8 of Fig. 4, MLSP and ACS need to privately
compare two integers. This is known as millionaires problem
[18], which can be achieved by any garbled circuit scheme.
Nevertheless, we implement it by applying a cryptography-
based scheme, known as DGK [12], for the sake of compat-
ibility to our cryptography-based framework. Unlike existing
work [12], [8], [10], in which the comparison protocol was
implemented with the assistance of the client holding the secret
key through multiple-round interaction, our protocol does not
require the user to be involved in the comparison interactions
and thus reduces the heavy computational overhead. This also
provides an opportunity to outsource computationally costly
operations to the assisting cloud ACS and leverage the two-
stage decryption cryptosystem.

C. Privacy-preserving argmax

Given the comparison protocol for two encrypted integers
as above, we extend it to a complete protocol implementing
argmax. An intuitive way is that ACS sends the comparison
result back to MLSP so that the comparison process can
be repeated until finding the greatest one, incurring linear
complexity (i.e., O(k)). This approach, however, violates the
security goals as mentioned in Section II-C, because each
comparison reveals the greater one to MLSP, which therefore
eventually leaks the classification result. Another alternative is
to let MLSP and ACS compute all two-element combinations
of the k values JvK. In this way, MLSP learns nothing but ACS
will learn which one is the greatest. Since ACS is semi-honest,
it should not be allowed to see the final classification result.
Moreover, this approach incur O(k2) complexity.

To overcome the drawbacks of the above two approaches,
we propose a three-party protocol that applies a random
permutation to hide the classification result from MLSP and
ACS, as depicted in Fig. 5. It incurs only a linear complexity
O(n).

Here we explain the basic idea ot the protocol (referred to
Step 3, 5, 6 of Fig 2): MLSP applies a random permutation
π over k values JvK such that the i-th value becomes the
π(i)-th value, and then sends the permutation map to the
client; then MLSP and ACS iteratively perform the comparison
protocol (Fig. 4) until the index n that leads to the greatest
JvK after k − 1 iterations. More specifically, at each iteration,
MLSP compares the current maximal value JmaxK to the next
value with the help from ACS. Once the maximum of the two
compared values is determined, to prevent MLSP from linking

MLSP Input: k encrypted integers Jv1K, · · · , JvkK,
partial secret key s1, and public QR
key PKQR

ACS Input : partial secret key s2, and private QR
key SKQR

User Output: classification result i
1) MLSP: chooses a random permutation π over
{1, · · · , k}, re-indexes the k values, and sends the
permutation map to the user.

2) MLSP and ACS perform the following iteration to
get index n that leads to the greatest JvK:
MLSP: Let JmaxK = Jvπ(1)K
ACS: Let JmaxK = Jvπ(1)K and n = 1

for i = 2 to k do
Server↔ACS: interact to compare JmaxK and
Jvπ(i)K using the comparison protocol in
Figure 4

if JmaxK < Jvπ(i)K then
JmaxK = Jvπ(i)K
n = i

end
ACS: randomizes JmaxK as
JmaxK = JmaxK·J0K and sends JmaxK back to
MLSP //max = max +
0

end
3) ACS: sends n to client
4) User: gets the classification result π−1(n)

Fig. 5: argmax protocol

the maximum to the value compared, ACS randomizes it by
adding an encrypted J0K to JmaxK. Since Paillier encryption
allows adding randomness to the ciphertext, the same JmaxK
blinded with different encryptions of 0 looks like different
random numbers to MLSP. Hence, MLSP does not know which
value is greater in the comparison. When comparisons finish,
ACS sends the index n that leads to the greatest value to the
user, who in turn gets the classification result by reversely
mapping s to the class.

Eventually, MLSP learns nothing about the order of the
k values. Although ACS learns that the n-th value is the
greatest, it cannot correlate this value to a specific class due to
permutation. Therefore, the classification result is hidden from
both MLSP and ACS as we expect. Note that in the argmax
protocol, the user only receives a mapping (generated by the
permutation π) and performs a lightweight lookup, which
incurs very small communication and computation overheads
to the user.

V. SECURITY ANALYSIS

In this section, we analyze the security of the proposed
scheme in terms of input data privacy, machine learning model
privacy and classification result privacy. Note that in our model,

the three parties (i.e., the user, ACS and MLSP) cannot collude
with each other.
Input data privacy. When computing the inner product pro-
tocol as shown in Fig. 3, the feature vector is encrypted by
the user’s public key. Note that either MLSP or ACS only
possesses a share of the secret key, they cannot decrypt the
encrypted data as we assume that both MLSP and ACS cannot
collude together. In addition, in the comparison protocol as
shown in Fig. 4, ACS blinds the inner product with a random
value (i.e., r in Step 3), so that MLSP cannot know the inner
product without knowing that random value. Furthermore, with
the privacy-preserving integer comparison protocol (i.e., DGK
protocol in our proposed scheme), ACS only knows which
inner product value is the greatest but not knowing its exact
value (only learning the index of the classification result). That
is, either ACS or MLSP cannot learn either the input data or
the inner product values.
Machine learning model privacy. Note that in the inner
product and comparison protocols, because the comparison
protocol (Fig. 4) is implemented in a privacy-preserving way,
either the user or ACS cannot know the inner product values
with the given feature vectors. That is, the user and ACS has
no chance to learn the machine learning model.
Classification result privacy. MLSP permutes the indexes of
the classes so that the permutation mapping is only shared
between the user and MLSP. Moreover, ACS only knows
the permuted index for the classification result (from the
comparison protocol), but MLSP has no knowledge about the
classification result. Only the user can get the classification
result by using the permuted index and the permuted mapping.
Therefore, only the user can know the classification result while
the other two parties are blind to that.

VI. PERFORMANCE EVALUATION

We have implemented the proposed cloud-assisted machine
learning service scheme in real-world clouds, i.e., Amazon
EC2, and compared the performance of our scheme with
existing works [8], [9] in terms of asymptotic complexity and
the experimental performance. More specifically, we compare
our work to Bost et al.’s scheme [8], which adopts lightweight
cryptographic primitives to protect the user’s input data and
MLSP’s model mutually in a two-party setting. Note that we
did not compare our proposed scheme with that in [9], which
uses fully homomorphic encryption (FHE) to allow the server
to compute some medical predication functions over patient’s
encrypted input. The reason is two-fold: FHE introduces signif-
icant computation overhead and is still considered impractical.
On the other hand, [9] assumes that MLSP’s model is known to
the public and only protects users’ input, therefore it provides
a weaker privacy guarantee when compared to our protocol.

When conducting the performance comparison, we focus on
the computational overhead at the user side, due to the fact that
our goal is to minimize the cost on the recourse-constrained
IoT devices and it is commonly assumed that MLSP and ACS
have unlimited computational capability.

Scheme Inner Product Argmax
Ours d×Enc Dec

Bost’s k × d×(Exp + Add) k×(5Add + Exp + 2Enc + DGK)

TABLE I: Comparison of asymptotic complexity at the user
side between our proposed scheme and Bost’s [8].

Scheme Number of messages
Ours (d+ 1)× ciphertext + Permutation-Map

Bost’s (d+ k × (3 + 2l))× ciphertext

TABLE II: Comparison of communication overhead on the
client of two schemes in terms of the number of messages.

A. Asymptotic Complexity Analysis

Table I shows the asymptotic complexity comparison of the
two schemes at the user side, where k denotes the number
of classification classes, d denotes the dimension of the fea-
ture vector, Exp denotes the exponentiation operation, DGK
denotes the overhead on the user side when executing the
DGK protocol used in argmax protocol, Enc, Dec, Add
denote encryption, decryption and adding two ciphertexts,
respectively. We can see that when comparing with that of
[8], our proposed scheme greatly offloads the computational
overhead on the user side.

In addition, we compare the communication overhead for
the user. In our scheme, the communication overhead only
comprises d ciphertexts as the user’s input, a permutation
map and a ciphertext containing the classification result. All
communication involved in the argmax protocol has been
offloaded to ACS, therefore, the communication cost is greatly
reduced for the user. In contrast, user in [8] have to be engaged
in both inner product protocol and argmax protocol, which
results in a significant communication overhead.

A detailed communication overhead comparison on the user
side is shown in Table II, in terms of the number of messages.
We choose this metrics because in our scheme, the size of
permutation map (which is sent to the user) is much less signif-
icant than that of ciphertexts to be transferred, which dominates
the communication overhead complexity. From Table II, we
can see that the communication overhead on the user side in
our scheme is much less than that of the Bost’s scheme.

B. Implementation and Performance Evaluation

We have implemented the Bost’s scheme and our proposed
scheme with Java where three cryptographic primitives are
used, i.e., the original Paillier, the revised Paillier and the
Goldwasser-Micali (QR) cryptosystems.

In our implementation, we set the bit length of the large
prime numbers p and q used throughout three cryptosystems
to a strong security level, i.e., 512, so n is 1024-bit length.
The experiments are conducted on the Raspberry Pi 2, with
700MHz ARM A6 microprocessor and 512MB RAM, to
simulate the resource constrained IoT devices such as smart
phone acting as the gateway for wearable devices and smart
meters. In Bost’s scheme MLSP is running on an Amazon EC2
C3.2xlarge instance, while in our scheme MLSP is running on

the same EC2 instance and ACS is running on a Microsoft
Azure F2 instance.

Fig. 6 compares the computation time spent on the client
finishing a classification service with different parameter set-
tings. Since the performance goal of this work is to mitigate
the overhead on resource-constrained IoT device, we measure
the time spent on all computational operations which are per-
formed by the client. Theses computational operations include
encryption of feature vector, multiple-round comparison of
encrypted integers and decryption of classification result, if any
of above operation is applicable in the compared schemes. Note
that the time is not the entire time from initiating the service
request to receiving the classification result, which excludes
the time of network communication and processing time on
MLSP and ACS.

For example, in the setting where there are 5 classes and 10
features, and the key length is 1024, we can see in Fig 6, the
overhead on user in Bost’s two-party scheme [8] is almost 90
times than our three-party scheme. Our asymptotic complexity
analysis is confirmed by the real implementation, that is, the
overhead on the client is much more lightweight than Bost’s
scheme, since our scheme outsources the costly operations to
the cloud. It is worth noting that the overhead on the client in
Bost’s scheme is proportional to the number of classes, while
the client’s overhead in our scheme is independent from the
number of classes but proportional to the number of features
due to the encryption of features.

We also compare the time spent on MLSP and ACS. For
the setting where there are 5 classes and 10 features, and
the key length is 1024, the average time spent on MLSP
is 2.5 seconds in Bost’s scheme while in our scheme the
time on MLSP is 4.8 seconds and the time on ACS is 2.9
seconds. We also measure the communication time between
EC2 instance and Azure instance. The round-trip-time between
them is around 60 milliseconds. We can see that our scheme
cannot necessarily reduce the total processing time, but it
offloads the computation cost from the IoT device to MLSP
and ACS. Such an overhead reduction on IoT devices makes
machine learning classification over encrypted data feasible for
resource-constrained IoT devices.

VII. RELATED WORK

Related work to this paper can be classified into three
categories.

Privacy-preserving training. Training the model is the first
phase of a complete machine learning process. Most existing
work falls into this category, which either use cryptographic
techniques [19], [20] or privacy-preserving data mining tech-
niques such as value distortion [21], randomized response [22]
and partitioned data [23], [24]. These work span over variety of
training algorithms including logistic regression [25], decision
trees [23], [24], [22], clustering [20], Naive Bayes [26], etc.

Privacy-preserving classification. Little work has been done
in the category of privacy-preserving classification, namely,
apply the trained model to client input. Our paper falls in

512-10	
features-
5	classes

1024-10	
features-
5	classes

238
43796

1780

Our	three-party	scheme

42695
482

312231

3515 472

97629

3517

634577

Ti
m
e	
in
	m

illi
se
co
nd Bost’s two-party	scheme

309818

512-5	
features-
5	classes

1024-5	
features-
5	classes

512-10	
features-
10	classes

1024-10	
features-
10	classes

Fig. 6: Comparison of overhead on client between our scheme
and Bost’s [8] with varying key length, number of features and
number of classes.

this category. Erkin et al. proposed a privacy-preserving face
recognition scheme to hide biometrics from the server con-
ducting the matching operation [27]. Bos et al. proposed a
fully homomorphic encryption (FHE) based scheme to allow
third party to perform predication over the encrypted medical
record of a patient [9]. However, the performance problem of
FHE makes their scheme less practical in reality. Besides, in
their work, the server’s model is assumed to be known by the
public, so they provide no protection to the predictive model,
and thus weaker security guarantee than our scheme.

Wu et al. proposed a protocol to privately evaluate decision
trees [10] using DGK comparison protocol [12], oblivious
transfer and tree permutation techniques. In their scheme, the
client’s input and the server’s tree model are mutually hidden
from the opposite party. In contrast to the previous schemes that
focus on a specific learning algorithm, Bost et al. proposed a
set of building blocks to construct more complex classifiers,
and meanwhile they also protect the information of client
and server simultaneously [8]. However, to make their scheme
support more classification algorithms such as decision trees
besides hyper-plane based classifiers focused in our paper,
they view the decision tree as a polynomial and adopt FHE
to compute the polynomial, which inevitably results in worse
performance. More importantly, all the above schemes work
in a two-party client-server model and did not pay special
attention to the fact that the client may have very limited
capacity of computation and communication, such as the IoT
devices on which we focus.
Cloud-assisted IoT security. A broader topic related to our
work is cloud-assisted IoT security. Since IoT sensors such
as wearable devices, smart meters, in-home monitoring cam-
eras usually collect and report sensitive data, and plenty of
application use the data in various ways, to keep the data
secure, cryptographic techniques are often an alternative op-
tion. However, resource-constrained IoT devices usually cannot
afford costly cryptographic techniques and large data storage.
Many schemes try to solve this problem by leveraging cloud
which provides unlimited computation and storage capacity
[28], [29], [30], [31]. Zhou et al. proposed a privacy-preserving

key management scheme for cloud-assisted wireless body area
networks where the computationally-intensive key material
updating is outsourced to the cloud in a privacy-preserving way
[28]. [29], [31] both focus on cloud-assisted healthcare IoT,
which mainly use the storage resources of the cloud. In [29],
they proposed a scheme to add watermark into the collected
data of a patient to avoid the privacy leakage on the cloud,
while Yang et al. proposed a scheme that allows health service
providers such as doctors to access and verify the encrypted
medical records stored on the cloud by using a searchable
encryption with forward privacy support [31]. In contrast, [30]
utilizes the computation resources of the cloud to implement a
data publishing scheme adopting attribute-based encryption.

VIII. CONCLUSION

In this paper, we proposed a cloud-assisted, privacy-
preserving machine learning classification scheme for resource-
constrained IoT devices. By introducing an additional cloud
server and employing a two-stage decryption Paillier-based
cryptosystem, our scheme allows an IoT device to offload
expensive classification computations to the cloud server in
privacy-preserving manner, thereby ensuring data privacy for
both IoT client and machine learning service provider. The
extensive complexity analysis and performance evaluation
demonstrate that the proposed scheme provides an efficient
solution for conducting machine learning on IoT devices,
where compared to the existing solutions in the literature.

ACKNOWLEDGMENT

This work was partially supported by the National Science
Foundation Grant DGE-1565570.

REFERENCES

[1] P. Cerwall, “Ericsson mobility report,” 2015. [On-
line]. Available: http://www.ericsson.com/res/docs/2015/mobility-report/
ericsson-mobility-report-nov-2015.pdf

[2] E. E. Stone and M. Skubic, “Fall detection in homes of older adults using
the microsoft kinect,” IEEE journal of biomedical and health informatics,
vol. 19, no. 1, pp. 290–301, 2015.

[3] T. N. Gia, I. Tcarenko, V. K. Sarker, A. M. Rahmani, T. Westerlund,
P. Liljeberg, and H. Tenhunen, “Iot-based fall detection system with en-
ergy efficient sensor nodes,” in Nordic Circuits and Systems Conference
(NORCAS), 2016 IEEE. IEEE, 2016, pp. 1–6.

[4] S. Kuranda, “The 10 biggest data breaches of 2015 (so far),”
2015. [Online]. Available: http://www.crn.com/slide-shows/security/
300077563/the-10-biggest-data-breaches-of-2015-so-far.htm

[5] G. Ateniese, L. V. Mancini, A. Spognardi, A. Villani, D. Vitali, and
G. Felici, “Hacking smart machines with smarter ones: How to extract
meaningful data from machine learning classifiers,” International Journal
of Security and Networks, vol. 10, no. 3, pp. 137–150, 2015.

[6] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks
that exploit confidence information and basic countermeasures,” in
Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2015, pp. 1322–1333.

[7] F. Tramèr, F. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Stealing
machine learning models via prediction apis,” in USENIX Security, 2016.

[8] R. Bost, R. A. Popa, S. Tu, and S. Goldwasser, “Machine learning
classification over encrypted data.” in NDSS, vol. 4324, 2015, p. 4325.

[9] J. W. Bos, K. Lauter, and M. Naehrig, “Private predictive analysis on
encrypted medical data,” Journal of biomedical informatics, vol. 50, pp.
234–243, 2014.

[10] D. J. Wu, T. Feng, M. Naehrig, and K. Lauter, “Privately evaluating
decision trees and random forests,” Proceedings on Privacy Enhancing
Technologies, vol. 4, pp. 1–21, 2016.

[11] G. Ateniese, K. Fu, M. Green, and S. Hohenberger, “Improved proxy re-
encryption schemes with applications to secure distributed storage,” ACM
Transactions on Information and System Security (TISSEC), vol. 9, no. 1,
pp. 1–30, 2006.

[12] I. Damgård, M. Geisler, and M. Krøigaard, “Efficient and secure com-
parison for on-line auctions,” in Australasian Conference on Information
Security and Privacy. Springer, 2007, pp. 416–430.

[13] P. Paillier, “Public-key cryptosystems based on composite degree resid-
uosity classes,” in International Conference on the Theory and Applica-
tions of Cryptographic Techniques. Springer, 1999, pp. 223–238.

[14] R. Cramer and V. Shoup, “Universal hash proofs and a paradigm for
adaptive chosen ciphertext secure public-key encryption,” in Interna-
tional Conference on the Theory and Applications of Cryptographic
Techniques. Springer, 2002, pp. 45–64.

[15] E. Bresson, D. Catalano, and D. Pointcheval, “A simple public-key
cryptosystem with a double trapdoor decryption mechanism and its
applications,” in International Conference on the Theory and Application
of Cryptology and Information Security. Springer, 2003, pp. 37–54.

[16] T. Veugen, “Comparing encrypted data,” Multimedia Signal Processing
Group, Delft University of Technology, The Netherlands, and TNO
Information and Communication Technology, Delft, The Netherlands,
Tech. Rep, 2011.

[17] S. Goldwasser and S. Micali, “Probabilistic encryption,” Journal of
computer and system sciences, vol. 28, no. 2, pp. 270–299, 1984.

[18] A. C. Yao, “Protocols for secure computations,” in Foundations of
Computer Science, 1982. SFCS’08. 23rd Annual Symposium on. IEEE,
1982, pp. 160–164.

[19] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in Annual
International Cryptology Conference. Springer, 2000, pp. 36–54.

[20] J. Vaidya and C. Clifton, “Privacy-preserving k-means clustering over
vertically partitioned data,” in Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2003, pp. 206–215.

[21] R. Agrawal and R. Srikant, “Privacy-preserving data mining,” in ACM
Sigmod Record, vol. 29, no. 2. ACM, 2000, pp. 439–450.

[22] W. Du and Z. Zhan, “Using randomized response techniques for privacy-
preserving data mining,” in Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining.
ACM, 2003, pp. 505–510.

[23] J. Vaidya and C. Clifton, “Privacy-preserving decision trees over ver-
tically partitioned data,” in IFIP Annual Conference on Data and
Applications Security and Privacy. Springer, 2005, pp. 139–152.

[24] F. Emekçi, O. D. Sahin, D. Agrawal, and A. El Abbadi, “Privacy pre-
serving decision tree learning over multiple parties,” Data & Knowledge
Engineering, vol. 63, no. 2, pp. 348–361, 2007.

[25] K. Chaudhuri and C. Monteleoni, “Privacy-preserving logistic regres-
sion,” in Advances in Neural Information Processing Systems, 2009, pp.
289–296.

[26] R. Wright and Z. Yang, “Privacy-preserving bayesian network structure
computation on distributed heterogeneous data,” in Proceedings of the
tenth ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2004, pp. 713–718.

[27] Z. Erkin, M. Franz, J. Guajardo, S. Katzenbeisser, I. Lagendijk, and
T. Toft, “Privacy-preserving face recognition,” in International Sympo-
sium on Privacy Enhancing Technologies Symposium. Springer, 2009,
pp. 235–253.

[28] J. Zhou, Z. Cao, X. Dong, N. Xiong, and A. V. Vasilakos, “4s: A
secure and privacy-preserving key management scheme for cloud-assisted
wireless body area network in m-healthcare social networks,” Information
Sciences, vol. 314, pp. 255–276, 2015.

[29] M. S. Hossain and G. Muhammad, “Cloud-assisted industrial internet
of things (iiot)–enabled framework for health monitoring,” Computer
Networks, vol. 101, pp. 192–202, 2016.

[30] L. Yang, A. Humayed, and F. Li, “A multi-cloud based privacy-preserving
data publishing scheme for the internet of things,” in Proceedings of the
32nd Annual Conference on Computer Security Applications. ACM,
2016, pp. 30–39.

[31] L. Yang, Q. Zheng, and X. Fan, “RSPP: A Reliable, Searchable and
Privacy-Preserving e-Healthcare System for Cloud-Assisted Body Area
Networks,” in INFOCOM, 2017 Proceedings IEEE. IEEE, 2010.

