EECS 861

Homework #1

1. Plot

- a. $x_1(t) = 5\cos(2\pi 2000t)$,
- b. $x_2(t) = 5 \cos(2 \pi 2000(t-62.5 \mu s))$
- c. $x_3(t) = 5\cos(2\pi 2000t \frac{\pi}{4})$

d. Compare these three signals and explain their similarities and differences.

e. What is the energy and power in $x_1(t)$.

2. Plot

- a. $x(t) = rect(\frac{t-4}{4}) + rect(\frac{t+4}{4})$
- b. What is the energy and power in x(t).

3. For

 $x_1(t) = \operatorname{sinc}(1000t),$ $x_2(t) = \operatorname{sinc}(2000 t)$ $x_3(t) = \operatorname{sinc}(3000 t)$ (here sinc(x)= $\frac{\sin(\pi x)}{\pi x}$)

a. Plot $x_1(t)$, $x_2(t)$, and $x_3(t)$

b. What is the pulse width of each signal, defining pulse width as the time between the first zero crossings.

b. Rank order the signals from lowest bandwidth to highest bandwidth.

```
4. A bit is transmitted as
```

```
x(t) = Acos(2 \pi f_c t) if bit = "1" for T_b
```

or

 $x(t) = -A\cos(2\pi f_c t) = -A\cos(2\pi f_c t - \pi)$ if bit = "0" for T_b

In another form x(t) = $\pm A\cos(2\pi f_c t) \operatorname{rect}\left(\frac{t-\frac{T_b}{2}}{T_b}\right)$

For A=0.02 and T_b =10ms, f_c =100kHz

a. Find the energy in x(t), that is the energy/bit = E_b .

b. What is the bit rate in b/s?

5. For *f*₁=4000 and *f*₂=4150

a. Find $\int_{0}^{1/50} \cos(2\pi f_1 t) \cos(2\pi f_2 t) dt$

b. What property describes the relationship between $\cos(2\pi f_1 t)$ and $\cos(2\pi f_2 t)$.

6. For x(t) = 2+6cos(100πt) +4sin(300πt)

a. What is the fundamental frequency in Hz?

b. Find the complex Fourier series for x(t).

[Hint: no integration is required for this problem, convert to complex exponential form and note $sin(\alpha)=cos(\alpha-\pi/2)$ and $-cos(\alpha)=cos(\alpha-\pi)$]

c. Plot the double-sided phase and amplitude spectrum for x(t).

d. What is the bandwidth of x(t)?

7. A linear time-invariant system with input signal x(t) produces an output signal y(t) = 2x(t-1ms), find the system transfer function and impulse response.

8. The transfer function for the voltage across the capacitor in an RC filter is

$$H(f) = \frac{1}{1+j2\pi RCf}$$

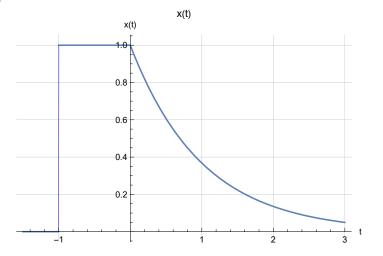
Set R=100 Ω and C= 10pf

a. Plot 20 Log₁₀ | $H(f_1)$ |²) = 20 Log₁₀(|H(f)|)

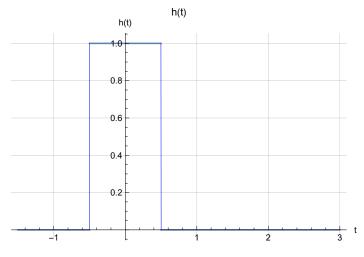
b. Plot Phase of H(f) (or Angle H(f))

c. Given an input signal $x(t) = \cos(2\pi f_1 t) + 2\cos(2\pi 2f_1 t)$ with $f_1=160$ MHz, find the system output y(t).

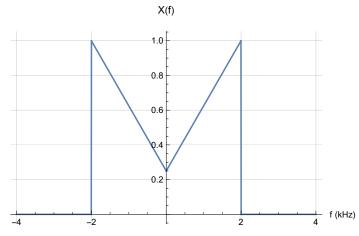
9. A filter has an impulse response of h(t) = 1000sinc(1000t); here sinc(x)= $\frac{\sin(\pi x)}{\pi x}$.


a. Is this an ILPF? Yes or NO

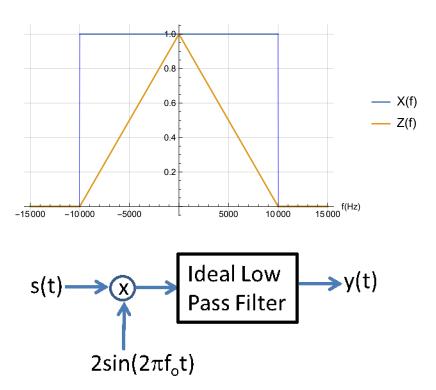
b. What the filter bandwidth?


c. With an input signal $x(t)=2\delta(t-\tau) + \delta(t-2\tau)$ where $\tau=1$ ms input to this filter, plot the output signal y(t) in the time domain.

10. Consider a linear time invariant system with a impulse response of h(t), and input signal x(t) given below. The input signal x(t) given below produces and output of y(t). Here $x(t) = rect(t+.5)+u(t)e^{-t}$ and h(t)=rect(t).


O u t [•] =

- a. What is the range of time such that y(t) =0 b. What is y(-0.5).
- 11. A signal x(t) has a Fourier Transform given as


a. The signal x(t) is sampled at a rate of f_s =5000 samples/sec to create $x_s(t)$. Sketch the spectrum of the sampled signal $x_s(t)$.

b. The signal x(t) is sampled at a rate of 5000 samples/sec. Describe, e.g., draw a block diagram, a system to recover x(t) from $x_s(t)$.

c. What is the minium value of f_s where x(t) can be recovered from $x_s(t)$?

12. Let $s(t) = x(t) \cos(2\pi f_0 t) + z(t) \sin(2\pi f_0 t)$ with $f_0 = 100$ khz and $X(f) = \operatorname{rect}\left(\frac{f}{20000}\right)$ and $Z(f) = \Lambda\left(\frac{f}{10000}\right)$ as shown below.

Find the output y(t) in terms of x(t) and z(t) of the system above. The bandwidth of the ILPF is 11 kHz. [Hint: use the trigonometry identities for $\sin^2(\theta)$ and $\cos^2(\theta)$]