EECS 861

Homework #11

1. Under H_0 the observed signal is N and H_1 the observed signal is 4 + N where N is a Gaussian with zero mean and a standard deviation of 0.9.

a. Assuming $P(H_1) = P(H_0) = 0.5$ derive the MAP decision rule.

b. Find the P_D, P_M, and P_{fa} given the MAP decision rule. Verify your results using

Binary Detection with Gaussian Noise

c. Find the P_e.

d. Repeat part b. with under H_0 the observed signal is -2+N and H_1 the observed signal is +2 + N. Hint: Sketch the conditional distributions for this part and part b.

2. For the parameters given in problem 1 parts a-c and the costs are given as $C_{10} = C_{01} = 2$, $C_{00} = 0$, and $C_{11} = 1$. Find the decision rule that minimizes the average cost.

3. In a target detection problem, the target is present for 0.01 μ s. When the target is not present only noise N(t) is received. N(t) is additive zero mean Gaussian WSS random process, N(t) has the following PSD

$$S_N(f) = \begin{cases} \frac{\eta}{2} = 10^{-9} |f| < 2 \text{ GHz} \\ 0 & e \text{ lsewhere} \end{cases}$$

When the target is present the received signal is Y(t)=A+N(t) where A=4. Y(t) is sampled every 0.001 μ s. One sample of Y(t) is used to detect the presence of the target.

a. Assuming P(target is present)= P(target is not present)=0.5 derive the MAP decision rule.

b. Find P_D , P_M , and P_{fa} given the MAP decision rule.

Verify using Binary Detection with Gaussian Noise

c. Design an N-P detector is to obtain a P_{fa} =0.01

d. Find P_D , P_M , and P_{fa} given the N-P detector.

4. Repeat Problem 3 part c and d using a decision variable Z where assume T=0.0025 μ s and that you know the target is present starting at t=0 or not present starting at t=0. Z= $\frac{1}{\tau} \int_{0}^{T} Y(t) dt$

5. A digital signal X(t) has a bit rate of 250 b/s where X(t) is $-A \vee (bit=0)$ or $+A \vee (bit=1)$ and A=1.5 and bits are transmitted with equal probability. T_B is the bit duration. The transmitted signal is corrupted by additive zero mean WSS random process, where N(t) has the following PSD. The received signal is Z(t)=X(t)+N(t). Assume the receiver is in bit synchronization.

$$S_{N}(f) = \begin{cases} \frac{\eta}{2} = \frac{1}{500} & |f| < 5000\\ 0 & elsewhere \end{cases}$$

The decision variable, Y is given by $Y = \frac{1}{T_B} \int_0^{T_B} Z(t) dt$

a. Find the distribution of $Y|\mathbf{0}$ bit is transmitted.

b. Find the distribution of Y|1 bit is transmitted.

c. Derive the MAP decision rule.

d. Find the probability of bit error, P_e .

Verify using **Binary Detection with Gaussian Noise**

6. Trade-offs using system specified in Problem 3 and Problem 5.

a. Using system specified in Problem 3 will the P_D increase or decrease or stay the same as A increases with the N-P detector?

b. Using system specified in Problem 3 will the P_{fa} increase or decrease or stay the same as A increases with the N-P detector?

c. Using system specified in Problem 3 will the P_e increase or decrease as η increases in Problem 3?

d. Using system specified in Problem 5 will the *P_e* increase or decrease or stay the same as the bit rate increases in Problem 5?

7. Under H_1 (target present) the observed signal is A+N and under H_0 (target absent) the observed signal is N where N is a Gaussian with zero mean and a standard deviation of σ .

Define S/N (dB) = 10 Log(A^2/σ^2).

On the same graph plot the ROC for S/N = 0.5dB, 1.0dB, 3.0dB, 6dB. Verify your answer using http://www.ittc.ku.edu/~frost/EECS_861/Mathematica_files/ROC.cdf

8. Under H_1 (target present) the observed signal has a pdf of

$$f_{Y|H_1}(y \mid H_1) = \frac{u(y)}{5} e^{-y/t}$$

Under H_0 (target not present) the observed signal has a pdf of

$$f_{Y \mid H_0}(y \mid H_0) = \frac{u(y)}{2} e^{-y/2}$$

Two S.I. samples of the observed signal are collected. Assume $P(H_0)=0.5$.

a. Derive the MAP decision rule.

b. Find the pdf of the decision variable given H_0 .

c. Find the pdf of the decision variable given H_1 .

d. Find P_M

e. Find P_{fa}

9. The spectral density of a narrowband Gaussian process N(t) is shown in Below. Find the following spectral densities associated with the quadrature representation of N(t) using $f_c = 10$ kHz.

c. If f_c is changed to $f_c=10.05$ kHz, does $S_{N_cN_c}(f)$, and $S_{N_cN_s}(f)$ change, if so why?