## EECS 861

## Homework #4

1. X is a Gaussian RV with zero mean and variance of  $\sigma^2$ ; find the pdf of Y where

- a. Y=2X+1
- b. Y = |X|
- c. Y=*X*<sup>2</sup>
- d. Y = 0 for X<0 and Y=X for X>0

2. Let  $X_1$  and  $X_2$  be statistically independent random variables with a pdf of  $f_X(x) = \frac{1}{2}e^{-x/2}u(x)$ . Find the pdf of Y=X<sub>1</sub> + X<sub>2</sub>. Plot the pdf.

3. Let  $X_1$  and  $X_2$  be uncorrelated random variables with zero means and a common variance of  $\sigma^2$  and define the RVY as  $Y = aX_1 + \sqrt{1 - a^2} X_2$ 

a. Find E[Y]

b. Find  $E[Y^2]$ 

c. Find the correlation coefficient between Y and  $X_1$ .

d. Discuss how you could use the results of this problem to generate correlated pseudo-random variables with a specified correlation coefficient.

4. Let  $X_1$ , •••,  $X_n$  be n independent zero mean Gaussian random variables

with equal variances, 
$$\sigma^2$$
.  $Y = \frac{1}{N} \sum_{i=1}^{N} X_i$ 

a. Find E[Y].

b. Find Var[Y]

c. Y is the mean of a sample of n observations of X. Comment on the relationship between the original variance, i.e,  $Var[X_i]$  and the variance of the sample mean, Var[Y].

5. A RV  $X_i$  is uniformly distributed between 100 and 200 and the  $X_1 \dots X_{10}$  are 10 i.i.d random variables. Let  $Y = \frac{1}{N} \sum_{i=1}^{n} X_i$ .

a. Find E[Y]

b. Find Var[Y]

c. Find P(Y>210) with no approximation.

d. Approximate P(Y>175)

6. X is a multivariate Gaussian random vector with

$$\mu_X = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 and  $\Sigma_X = \begin{pmatrix} 1 & 0.4 \\ 0.4 & 1 \end{pmatrix}$ 

a. Find  $Var[X_1]$ 

b. Find  $\rho_{X_1 X_2}$ 

- c. Find  $P(X_1 > 1)$
- d. First find  $E[X_1 | X_2 = 1]$  and  $Var[X_1 | X_2 = 1]$  then find  $P(X_1 > 1 | X_2 = 1)$

7. X is a multivariate Gaussian random vector with

$$\mu_X = \begin{pmatrix} 1 \\ 2 \\ 1 \end{pmatrix} \quad \Sigma_X = \begin{pmatrix} 4 & 2 & 1 \\ 2 & 4 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

- a. Find  $Var[x_1]$  and  $Var[x_2]$ .
- b. Find covariance  $x_1$  and  $x_2$
- c. Find correlation coefficient for  $x_1$  and  $x_2$
- d. Given a transformation between X and Y as

 $Y_{1} = X_{1} + 2X_{2} + 3X_{3}$   $Y_{2} = X_{1} + X_{3}$   $Y_{3} = 2X_{2} + 3X_{3}$ Find  $\mu_{Y}$  and  $\Sigma_{Y}$ e. Given  $\Sigma_{Y}$  find  $\mu_{Y3}$  and  $Var[Y_{3}]$  and the pdf of  $Y_{3}$ .
f. Let Z=AX with  $A = \begin{pmatrix} -0.27 & -0.27 & -0.1 \\ 0.5 & -0.5 & 0 \\ -0.23 & -0.23 & 1.2 \end{pmatrix}$ Find Find  $\mu_{Z}$  and  $\Sigma_{Z}$ 

g. Find  $P(Z_1 > 1 | Z_3 = 1)$ 

8. For the bivariate Gaussian random vector X with  $\mu_X = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$  and  $\Sigma_X = \begin{pmatrix} 1 & 0.6 \\ 0.6 & 1 \end{pmatrix}$ 

Find a transformation T, Z=TX, such that  $Z_1$  and  $Z_2$  are identically distributed and statistically independent (i.i.d.) with unit variance.

9. a. Create a scatter plot for the data in Sheet labeled Data 1, Data 2, and Data 3 in:

http://www.ittc.ku.edu/~frost/EECS\_861/EECS\_861\_HW\_Fall\_2024/HW\_4\_prob\_9.xls

b. What can you say about from visual examination of the scatter plot of the data in Data in Sheet labeled Data 1, Data 2, and Data 3?

c. Apply the estimators defined below to each data set and report the estimated means, variances and correlation coefficient for each data set.

For estimators use:

$$\mu_X = E[X] \& \mu_y = E[Y]$$

Their estimates are:

$$\overline{\mathbf{X}} = \frac{1}{N} \sum_{i=1}^{n} x_i \& \overline{\mathbf{Y}} = \frac{1}{N} \sum_{i=1}^{n} y_i$$

 $\sigma_X^2 = E[(X - \mu_X)^2] = E[X^2] - (E[X])^2 \& \sigma_Y^2 = E[(X - \mu_Y)^2] = E[Y^2] - (E[Y])^2$ Their estimates are

$$s_{X}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \bar{X})^{2} \& s_{Y}^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (y_{i} - \bar{Y})^{2}$$

 $\sigma_{\mathtt{XY}} = E[(\mathtt{X} - \mu_{\mathtt{X}})(\mathtt{Y} - \mu_{\mathtt{Y}})] = E[\mathtt{XY}] - \mu_{\mathtt{X}}\mu_{\mathtt{y}} = Co \text{ var} iance$ 

$$\rho_{XY} = \frac{\sigma_{XY}}{\sigma_x \sigma_y}$$

Estimate of the correlation coefficient is:

$$\overline{\rho}_{XY} = \frac{\frac{1}{N} \sum_{i=1}^{N} x_i y_i - \overline{X}\overline{Y}}{s_x s_y}$$

10. For  $f_x(x) = \frac{\lambda}{2} e^{-\lambda |x|}$  approximate  $P(|X| > \frac{2a}{\lambda^2})$  for  $\lambda = 1$  and a = 1, 2, and 6. Use Tchebycbeff (Chebyshev ) Inequality . Compare the result from the Chebyshev Inequality to the exact probability.