Day 2

1. Defining a Language

We have: a programming language is a

- well-defined
- representation of (originally: abstraction for)
- computation (originally: instructions to a thing that computes)

So, let’s build one!

Two aspects of language definition:

- **Syntax**
 - from the Greek “suntaxis” coordination
 - most technical questions about syntax—parsing and printing—well-studied
 - see compilers for mechanisms, theory of computation for theoretical aspects
 - not particularly the focus of this course: parsers and printers will generally be provided

- **Semantics**
 - from the Greek “sēmantikos” significant
 - many open questions—much of PL theory revolves around questions of *defining* and *approximating* program semantics
 - variety of techniques—from the very mathematical (interpreting programs as mathematical functions) to the very empirical (programs mean what the compiler/hardware do)
 - this class—theory of language semantics; compilers—practice of language semantics
 - can we ever really get away from translation?

- Most semantic concerns independent of syntactic concerns in *programming languages*

2. Arithmetic Expressions (Part 1)

Model of computation: grade school arithmetic.

Have to define syntax, even if it’s not the point of the course. Levels of syntax:

- input stream/characters \(((1 \ 8 \ + \ 5) \times 2) \)
- lexemes/words \(((18 \ + \ 5) \times 2) \)
- terms/sentences \(((18 \ + \ 5) \times 2) \)

Underlining convention: language being defined is *underlined*, meta-notation written normally.

(Broken regularly from now on.)

Our approach: define the *terms* of a language; leave remaining syntactic concerns implicit.

Terms, intuitively: sums, products, constants. How to make formal?
2. Arithmetic Expressions (Part 1)

- Mathematical description: Let the set \mathcal{T} be the \textit{smallest} set such that
 1. For all integers $z \in \mathbb{Z}$, $z \in \mathcal{T}$;
 2. If $t_1, t_2 \in \mathcal{T}$, then $t_1 + t_2 \in \mathcal{T}$; and,
 3. If $t_1, t_2 \in \mathcal{T}$, then $t_1 \times t_2 \in \mathcal{T}$

- System of \textit{inference rules}:
 \[
 \frac{z \in \mathbb{Z}}{z \in \mathcal{T}} \quad \quad \frac{t_1 \in \mathcal{T} \quad t_2 \in \mathcal{T}}{t_1 + t_2 \in \mathcal{T}} \quad \quad \frac{t_1 \in \mathcal{T} \quad t_2 \in \mathcal{T}}{t_1 \times t_2 \in \mathcal{T}}
 \]

- \textit{BNF} (Backus-Naur form) rules:
 \[
 \mathcal{T} \ni t ::= z \mid t_1 + t_2 \mid t_1 \times t_2
 \]

Key ideas:
- Each defines the same notion
- Each is \textit{compositional}: bigger terms are built out of smaller terms
 - Operations on terms will be defined the same way: recursive functions are the natural consequence of compositional definition
- Still have to disambiguate our \textit{representation} of terms, but parentheses \&c. are in our \textit{meta-} notation, not in terms themselves

Happy surprise: (almost) direct correspondence between mathematical formalism and executable Haskell

```haskell
data Term = Const Int | Plus Term Term | Times Term Term
```

Some functions:

```haskell
eval :: Term -> Int
eval (Const z) = z
eval (Plus t1 t2) = eval t1 + eval t2
eval (Times t1 t2) = eval t1 * eval t2
```

```haskell
pp :: Term -> String
pp (Const z) = show z
pp (Plus t1 t2) = "(" ++ pp t1 ++ " + " ++ pp t2 ++ ")"
pp (Times t1 t2) = "(" ++ pp t1 ++ " \times " ++ pp t2 ++ ")"
```

Key ideas:
- Pattern matching: always your friend
- Recursion: always your other friend
- Summary: structure of computation parallels structure of data