Partial Type Constructors (extended version)

Or, Making ad hoc datatypes less ad hoc

MARK P. JONES, Portland State University, USA
J. GARRETT MORRIS, The University of Kansas, USA
RICHARD A. EISENBERG, Bryn Mawr College, USA
APOORV N. INGLE, The University of Kansas, USA

Functional programming languages assume that type constructors are total. Yet functional programmers know better: counterexamples range from container types that make limiting assumptions about their contents (e.g., requiring computable equality or ordering functions) to type families with defining equations only over certain choices of arguments. We present a language design and formal theory of partial type constructors, capturing the domains of type constructors using qualified types. Our design is both simple and expressive: we support partial datatypes as first-class citizens (including as instances of parametric abstractions, such as the Haskell Functor and Monad classes), and show a simple type elaboration algorithm that avoids placing undue annotation burden on programmers. We show that our type system rejects ill-defined types and can be compiled to a semantic model based on System F. Finally, we have conducted an experimental analysis of a body of Haskell code, using a proof-of-concept implementation of our system; while there are cases where our system requires additional annotations, these cases are rarely encountered in practical Haskell code.

ACM Reference Format:

1 INTRODUCTION

When does a type expression—the text that a programmer might use to describe a type or set of values—actually represent a valid type? In languages with simple type systems (e.g., Java before the introduction of generics [Bracha et al. 1998]), parsing and name resolution are enough. More advanced systems, however, require additional tests. Languages that support parameterized types, for example, must also check the arity of type constructors: it is not valid to use the type list in ML, for instance, without a choice for its parameter. Arity checking is further extended to kind checking in languages like Haskell that allow both types and type constructors to be used as parameters. The set of all types—including Int, Bool, and Char, for example—is represented by the kind ⋆, while parameterized type constructors like List or Map are assigned function kinds (⋆ → ⋆ and ⋆ → ⋆ → ⋆, respectively). Using a simple analog of type checking, these kinds can be used to show that, for example, Map Int (List Char) is valid while List Int (Map Char) is not.
In many languages, any type expression that passes basic checks like these is accepted as denoting a valid type. This works well for type constructors like List: we truly can construct and use lists of type List t for any type t. But there are some situations where it is useful to take a more nuanced approach, limiting the ways in which parameterized types are instantiated. We list a collection of examples in Section 2.1, but focus here on a simple running example: unboxed arrays.

Although many functional programmers do not use them as heavily as linked lists, some applications do require the efficiency of proper packed arrays. Haskell’s array package gives us this capability: An Array Int of size 10 is represented in memory by 10 contiguous cells, each storing an Int. This provides efficient random access, but does not guarantee locality: each array cell holds a pointer to a machine integer, and these may be stored at almost arbitrary locations.

For applications where locality is important, or where an additional level of indirection is otherwise undesirable, the array package also supports unboxed arrays in the type UArray. Like Array, UArray is parameterized by the type of its elements, but this type must be one for which the compiler knows an unboxed representation. At the time of writing, this set includes 17 types, including Int and Double, but not Int → Bool or Integer (unbounded-size integers). A UArray Double of size 10 really stores 10 machine double-precision floating-point numbers in a contiguous space in memory, guaranteeing both efficient access and locality. The current implementation uses a class IArray that allows manipulation of UArrays built from only the 17 allowed types; all functions that manipulate UArrays are class-constrained.

Yet something is dissatisfying here: A UArray Integer makes no sense, as Integer cannot be represented without indirection. However, nothing prevents us from writing functions that take and return UArray Integers. This goes against the grain of a typed language: we want senseless code to be detected right away and to induce errors.

We call UArray a partial type constructor: it is not a total function from ⋆ to ⋆, but a partial one. And it is far from unique: Section 2 provides many examples of others. What is striking is the great variety of ways that partiality can arise and the various ad-hoc techniques programmers have invented to work with partial type constructors.

The main innovation in this paper is a new, practical treatment of datatypes that allows us to specify partiality in type constructors uniformly and thus to eagerly reject chimeras like UArray Integer. This framework is practical in that it is mostly backward-compatible, requiring extra annotations only rarely. (In some cases, annotations written today become redundant.) We also show that our system allows for the easy definition of instances for such types. Currently, we cannot define, say, a Functor instance for UArray, because nothing can prevent the user from using fmap to create a UArray Integer from a UArray Int.

We offer the following contributions:

- A practical design for a type system that uniformly supports partial type constructors (Section 3). Our design forbids types like UArray Integer and allows instances like Functor UArray. We give datatype contexts, a much-maligned feature of Haskell, a fresh semantics that echoes the described intent in the original Haskell 1.0 Report [Hudak and Wadler 1990] (see Section 7).
- A formalization of our type system (Section 4), showing that it rejects terms with disallowed types and supports a simple elaboration algorithm to introduce many of the required constraints.

1 An important exception is for languages that support bounded polymorphism, which is an alternative approach to our work, suitable for languages that support subtyping. See the end of Section 7.

2 http://hackage.haskell.org/package/array

3 The actual implementation of Array also parameterizes Array with an index type, while the IArray class is parameterized over both the array type and the element type. We elide these details.
An internal language of evidence, suitable as a compilation target for our surface language (Section 5). The internal language, based on System F, allows for explicit predicate evidence in types and for predicates in kinds. It has a standard semantics; type constructors are total. We prove that compilation of a program accepted in the surface language produces one accepted in the internal language.

An experimental analysis of a body of Haskell code based on a proof-of-concept implementation of our design (Section 6). We demonstrate that our approach introduces minimal annotation overhead in practical functional programs.

We present our work in the context of Haskell, as Haskell provides several practical examples of partial datatypes and Haskell’s type classes have just the right semantics to describe partiality. However, we view our work as a description of an unexplored, useful point in the design space for typed languages. Section 6.2 explores some of the potential consequences of applying our design in a practical language.

2 MOTIVATING SCENARIOS

Typed programming languages have survived for decades without partial type constructors. This section presents examples of notionally partial type constructors used today and argues that the status quo is lacking.

2.1 Partial Type Constructors in the Wild

UArray might seem like a somewhat special case. But there are many other examples of partial type constructors, both in practical Haskell code and in the research literature surrounding functional programming and its extensions.

Collection types. In many languages, we can define a parameterized datatype BST t that represents binary search trees storing values of type t at each interior node. While it may be possible, in principle, to construct values of this type for any choice of t, it is only useful to do so if t has an associated ordering that can be used in the implementation of standard search tree operations such as insert and lookup. There are numerous other examples of collection types, like BST, that make sense only in cases where the parameters support some additional operations, such as an equality test, a comparison, or a hash function.

Number types. Haskell’s standard libraries include definitions for types Ratio t and Complex t that are used to represent rational and complex numbers. Although they can technically be used with any parameter type t, these types are only intended to be used with types that are instances of the Integral and RealFloat classes, respectively.

Monad transformers. The monad transformer library, mtl4, introduces a standard set of constructions to build monads out of other monads—if m is a monad, then ExceptT e m is a similar monad that also provides exceptions of type e. Such a construction is only meaningful if m is a monad—for example, the type ExceptT e Ratio is well-kindred but does not actually capture anything about exceptions because Ratio is not an instance of the Monad class. As a consequence, the implementation of the monad transformer library is littered with Monad m constraints that convey no new information to the programmer, but are necessary to exclude pathological cases.

Representation considerations. Although functional programming encourages the use of high-level abstractions, there are still some settings that require developers to understand (and perhaps make concessions to) details of low-level data representation.

4http://hackage.haskell.org/package/mtl
• The UArray example falls into this category.
• In distributed computing, we might use typed channels for communication between the components of a system, but we can only use these channels for types whose values can be serialized/marshaled in some appropriate manner.
• In the code that deals with virtual memory management in an operating system we might use a parameterized type to describe the data that is stored in page table entries, with the parameter describing how the bits in an unmapped entry will be used. But this only makes sense for types whose values fit within the limited number of bits that the hardware provides.

Type functions. The type families extension of Haskell [Chakravarty et al. 2005; Schrijvers et al. 2008], as implemented in GHC [GHC Team 2017, Section 10.9], provides a widely used mechanism for type-level programming. In particular, this allows the definition of open type functions using a collection of instance declarations, potentially spread over multiple modules, each of which describes the result of applying the function to a specific pattern of type arguments. A standard application is to define the function Elem that returns the type of elements stored in a given collection type. For example, a programmer might write type instance Elem (List a) = a to identify the element type a of a list type List a. In general, however, the result of a given type function will only be defined for certain combinations of arguments: Not every type makes sense as a collection type, for example, and so the interpretation of types like Elem Bool or Elem (Int, Bool) might be left unspecified. This aspect of partial types is explored in prior work [Morris and Eisenberg 2017], but the current paper sets this in a larger framework.

Numeric constraints. Some languages include support for type-level numbers, which can be used as arguments of parameterized types to specify and validate key details such as the size of a vector or array, the depth of a tree, the width of a cryptographic key, or the alignment of a pointer. In practice, however, these types may only be valid in some cases, requiring, for example, that the numbers fall within a given range or set and/or satisfy certain arithmetic constraints, such as being a power of two or a multiple of some constant.

Informative evidence. In a dependently typed setting, we often must return informative evidence from a comparison operation; this evidence can be examined to assert new facts to the type checker. For example, we might compare keys into a heterogeneous map (where HMap k v relates keys of type k i to values of type v i, but where the index i varies between entries). The comparison operation cannot return a simple Ordering, as the type checker cannot know the difference between GT and EQ as the program proves the implementation preserves indices. Instead, we must use a datatype like this:

```haskell
data GOrdering a b where
  GLT :: a < b ⇒ GOrdering a b
  GEQ :: GOrdering a a
  GGT :: a > b ⇒ GOrdering a b
```

This would not make sense for any a and b though: their kind must support ordering. Using GOrdering at a kind that does not have an ordering constraint would be meaningless, and thus GOrdering is a partial type constructor.

Types as sets. It is common to interpret all of the types in a functional language as domains (i.e., pointed CPOs), so as to ensure a well-defined semantics for arbitrary recursive definitions. But it is also possible to interpret types as sets, or to use combinations of domains and sets within the same environment, as in Isabelle/HOLCF [Huffman 2012] or in the extension of Haskell suggested by Launchbury and Paterson [1996] that uses type classes to distinguish between pointed and
unpointed types. When we mix domains and sets like this, it is important to distinguish between
the different function spaces that might be used. Continuous functions, for example, correspond
to parameterized types that we might write as \(\texttt{a} \rightarrow \texttt{b} \), but these only make sense when \(\texttt{b} \) is a
domain type. Similarly, total functions on sets form parameterized types that perhaps are written
as \(\texttt{a} \rightarrow \texttt{b} \). But these may only be valid if both \(\texttt{a} \) and \(\texttt{b} \) are set types.

Functions of a known arity. Downen et al. [2019] introduce a new function form \(\sim \) useful
for denoting the final, runtime arity of a function, without any currying. Knowing how many
arguments a function takes at runtime is critical for efficient function calls. But we must be careful:
a polymorphic higher-order function that takes an argument of type \(\texttt{a} \sim \texttt{b} \) is allowed, but only if
\(\texttt{b} \) is not a function. By treating \(\sim \) as a partial type constructor, we can easily and compositionally
maintain this tricky invariant.

2.2 Impact of Ignoring Partiality

The failure to provide full support for partial type constructors has significant costs that impact the
practice of writing code and complicate the underlying language metatheory, in several ways:

Abstraction. Because they are not properly supported by current languages, partial type con-
ductors do not work well in combination with other important features or abstractions. For
example, the inability to define certain type constructors, such as \(\texttt{UArray} \) or \(\texttt{Set} \), as instances of
standard type classes like \(\texttt{Functor} \) or \(\texttt{Monad} \) has been an almost constant source of frustration
for Haskell programmers. Evidence for this appears in many forms, from informal requests and
queries in online discussions, to several proposals for extensions to Haskell to address this specific
shortcoming [Hughes 1999; Orchard and Schrijvers 2010; Sculthorpe et al. 2013].

Error reporting. Skeptics may argue that types like \(\texttt{UArray Integer} \) are at best a minor anno-
ynce: they pose no immediate threat to type safety. However, developers already rely on types to
identify and prevent common forms of programming error—even kind checking itself is unnecessary
to assure type safety. Supporting partial type constructors would allow us to report errors earlier,
only, say, spotting \(\texttt{UArray Integer} \) instead of reporting an error only when some function tries
to populate that type.

Technical foundations and limitations. A proper accounting of partiality requires great care. What
does it mean, for example, to instantiate a polymorphic type scheme at a type of the form \(\texttt{F t} \) when
the latter only exists for certain choices of \(t \)? We point to work on *injective type families* [Stolarek
et al. 2015] as an example where the designers of a language feature were able to avoid such
complications by treating type families as total, but then, to avoid contradictions, were forced to
impose syntactic restrictions that prevent it from being used in some practical applications [Morris
and Eisenberg 2017, Section 3.3].

3 LANGUAGE DESIGN FOR PARTIAL TYPE CONSTRUCTORS

3.1 Datatype Contexts in Haskell

The syntax for datatype definitions in Haskell includes a feature that, at first glance, seems to have
been designed specifically for the purpose of supporting partial type constructors like \(\texttt{UArray} \). In
particular, Haskell allows definitions of algebraic datatypes to include type class constraints that
specify restrictions on how their parameters can be instantiated. The following example illustrates
the concrete syntax for this, using an \(\texttt{IArray} \) a constraint at the start of the definition to suggest
that any parameter of the \(\texttt{UArray} \) type constructor must be an instance of the \(\texttt{IArray} \) class, and
hence must have an unboxed representation:
data IArray a ⇒ UArray a = MkU ...

However, following the actual definition in the Haskell Report [Marlow 2010, Section 4.2.1], the IArray a constraint shown here is interpreted by associating it with operations on UArray values rather than the UArray type itself, and this fails to give the behavior that we want from a partial type constructor. For example, even with the above definition, the type UArray Integer is still accepted as valid and can be used in other types, such as UArray Integer → UArray Integer, even though Integer is not an instance of the IArray class.

With the definition in the Haskell Report, the presence of an IArray a constraint in the type definition does not itself provide a proof of this constraint in functions that work with unboxed arrays. For example, it is not possible to define a working map function of the following type; the type makes the impossible demand for a fully polymorphic implementation that will work with all combinations of a and b:

mapUArray :: (a → b) → UArray a → UArray b

Instead, the programmer is forced to insert explicit IArray constraints as part of the type:

mapUArray :: (IArray a, IArray b) ⇒ (a → b) → UArray a → UArray b

Similar difficulties arise in constructing monadic embeddings of domain-specific languages. These embeddings may rely on limiting the range of possible values, such as by requiring that values be serializable, or meet some other domain-specific criteria. However, while deep embeddings can capture such constraints, using GADTs [Cheney and Hinze 2003; Xi et al. 2003], the resulting types do not fit the standard notion of monad (because they require restrictions on the type of return). Judging from both recurring postings and complaints and from the research effort surrounding this problem [Orchard and Schrijvers 2010; Sculthorpe et al. 2013], many Haskell programmers have been frustrated and confused by the inability of the language to support such examples.

3.2 A Constraint for Well-Formed Applications

The partiality we seek to tame arises when one type is applied to another. We thus wish to use a predicate to specify when one type is applicable to another, and we write this as an infix @. Intuitively, f @ a holds when its right-hand argument is a valid parameter for the constructor in its left-hand argument. When f is a known type constructor (like List or UArray), we replace f @ a with the constraints (if any) in the datatype context of f's declaration. For example, List @ a holds for any type a, because the List type constructor is total (declared without constraints), but the constraint UArray @ Integer does not hold because the argument type on the right of the @ symbol is not an instance of the IArray class. We need to preserve @ constraints in the types of polymorphic functions where the definedness of type expressions depends on the quantified variables. The elem function on lists does not need an @ constraint in its type

elem :: Eq a ⇒ a → List a → Bool

but we must capture the fact that UArray is partial in the types of polymorphic unboxed array operations:

arrayElem :: (UArray @ a, Eq a) ⇒ a → UArray a → Bool

While the UArray @ a constraint is formally necessary, it is also implied by the structure of the type: occurrences of the type UArray a must always be guarded by UArray @ a predicates. We can take advantage of this to automatically elaborate such constraints, rather than requiring programmers to write them explicitly; we give our elaboration function in Section 4.2. Interestingly, this process does not remove the need for all such explicit constraints: see Section 6.2 for further exploration. Using this elaboration, we would be able to write
arrayElem :: Eq a ⇒ a → UArray a → Bool

making it fully parallel with the list elem operation.

We can see further advantages of fully embracing partial type constructors as part of the type system when we consider higher-order abstractions. One of the biggest advantages of accepting partiality in the type language is that it allows us to accommodate partial type constructors in abstractions that were originally designed with only total type constructors in mind. To see why, recall the mapping function for unboxed arrays

mapUArray :: (IArray a, IArray b) ⇒ (a → b) → UArray a → UArray b

With our approach, we could rewrite this type to rely on the partiality of UArray:

mapUArray :: (UArray @ a, UArray @ b) ⇒ (a → b) → UArray a → UArray b

These types (and indeed the type that omits the definedness constraints entirely) are all considered equivalent in our system—we neither require programmers to write out definedness constraints, nor penalize them for doing so. We could not use this function to make UArray an instance of Functor in Haskell today, as the type of fmap:

fmap :: Functor f ⇒ (a → b) → f a → f b

must work on arbitrary a and b.

However, our system provides a uniform approach for code that abstracts over type constructors to reflect the possibility that those type constructors may be partial. The Functor class, for example, would have the following definition:

class Functor f where
 fmap :: (f @ a, f @ b) ⇒ (a → b) → f a → f b

Again, the @ constraints here are required by the structure of the type, and could be omitted by the programmer. With this definition, we can see that mapUArray is a candidate for fmap, and the following instance would be accepted:

instance Functor UArray where
 fmap = mapUArray

The f @ a and f @ b constraints in the type of fmap are sufficient to assure that a and b are unboxed types, and so we can use mapUArray to implement fmap.

A common weakness in several of the previous solutions to this problem is that they require some modification to the original definition of the Functor class, such as adding an extra constraint [Hughes 1999], or an extra class parameter or associated type [Orchard and Schrijvers 2010; Sculthorpe et al. 2013]. The problem here is that it is always very difficult for any programmer to anticipate fully how the code they write might be extended by later development work. If the original developer does not include appropriate ‘hooks’ to enable such extensions, then subsequent developers may be forced to modify the additional definitions, and then have to make patches to other parts of the code that had been working properly until the modifications were made. Our approach can also be seen as relying on a modification of the original Functor class definition to include the extra constraints seen above. A key difference, however, is that these constraints are included automatically as an inherent part of the structure and that they then function as generic hooks for future extensions, without committing to any specific application or use.
3.3 Consequences of Partial Type Constructors

Although we tend to focus on technical details, a change in the interpretation of type expressions also has some more human implications because it requires programmers to make adjustments in the ways that they think about and write code. As with any new language feature, practicing programmers are unlikely to adopt a new type system if it seems unintuitive, or does not appear to offer benefits over its predecessor. With the type system described in this paper, for example, programmers will need to make subtle distinctions between type expressions like `a → List a` and `a → UArray a`; even though they have essentially the same syntactic structure, the first makes sense for any choice of type `a`, while the second is only valid when `a` has an unboxed representation.

More concretely, a language with partial type constructors changes the way programmers must think about substitution. If we see a type `forall a. a → F a` (for some `F`), it is tempting to think that the existence of this type implies that, say, `Integer → F Integer` is also a type. Yet, in the presence of partial type constructors, this is not true. Our elaboration function would change the original type to `forall a. F @ a ⇒ a → F a`, which is telling: now we see that `Integer → F Integer` should be possible only when `F @ Integer` holds. Programmers, of course, work in the language before elaboration, so they must now be aware that substitution is not as simple as they might naively think.\(^5\)

However, we are optimistic that most programmers will adapt to these changes quite easily. One reason is that programmers already rely heavily on documentation and navigation tools to provide quick access to relevant information about the code they are working on; at some level, it is impossible to do useful work involving any type without some means to discover and understand the operations that it supports. Another reason is that several kinds of partial type constructors have found their way into practical use, in the form of language features such as GADTs [Cheney and Hinze 2003; Xi et al. 2003] and type functions [Chakravartty et al. 2005; Schrijvers et al. 2008], so many programmers have already become accustomed to working with them.

4 A THEORY OF PARTIAL TYPE CONSTRUCTORS

Having laid out a high-level, user-facing approach to partial type constructors, we now formalize our work in order to give our design a precise semantics. We begin with Jones's [1994] theory of qualified types to provide an account of predicates in types. We extend his system in two directions. First, we extend the typing of expressions to account for the partiality of type constructors; our key novelty here is qualified kinding, accounting for the role of predicates in types just as qualified typing accounts for the role of predicates on types. Second, we describe the interaction between datatype declarations and well-definedness constraints: when type declarations are themselves well-defined, how definedness axioms are inferred from type declarations, and how they are used in the typing of terms.

4.1 Type System Foundations

The qualified types system from Jones [1994] provides a general framework for describing predicates in types, which limit the instantiation of type variables. While the most common application of qualified types is undoubtedly type classes, qualified types have also been used to capture applications from subtyping [Jones 1994] to various record systems [Gaster and Jones 1996; Morris and McKinna 2019]. These applications, however, have considered the use of predicates only to constrain the polymorphism of terms, not to constrain the construction of types. Our approach will need to make more fundamental extensions to the base system of qualified types.

\(^5\)This subtlety around substitution is only in the surface language before elaboration. Accordingly, it does not imperil any formal results about the language, which are phrased in the elaboration or compilation target languages.
The syntax of types and terms is given at the top of Figure 1; it is standard for qualified type systems. We add applications of \((\to)\) to the set of predicates, which otherwise contains applied predicate symbols \(L\). The set of type constructors \(C\) contains at least the function type constructor \((\to)\). We will assume the Barendregt convention in the construction of terms and types, so that all variables appearing in environments \(\Delta, \Gamma\) are distinct.
The center of Figure 1 gives our qualified kinding relation $P \vdash \sigma : \kappa$. This is the first novelty of our type system: unlike standard kinding relations, which need only track the kinds of type variables Δ, we also track a predicate context P. The predicate context comes into play in two kinding rules.

- Rule \((k-\Rightarrow)\), for qualified types $\pi \Rightarrow \rho$, adds π to the context. We require both that π itself is well-formed, and that with π in context ρ is well-formed. As a consequence, the order of predicates in qualified types matters: the judgment $\epsilon \mid \epsilon \vdash \forall \alpha : \star \rightarrow \star. \alpha @ \text{Int} \Rightarrow \alpha \text{Int} \Rightarrow \alpha : \star$ is derivable, whereas the judgment with interposed predicates $\epsilon \mid \epsilon \vdash \forall \alpha : \star \rightarrow \star. \text{Eq}(\alpha \text{Int}) \Rightarrow \alpha @ \text{Int} \Rightarrow \alpha \text{Int} : \star$ is not. While this is somewhat unusual for qualified types system, it is perfectly consistent both with the existing theory and with several of its applications [Jones 1993].

- Rule \((k\text{app})\), for type applications $\tau_1 \tau_2$, uses the predicate context in showing that type constructor τ_1 is defined at τ_2. To do so we rely on the entailment relation $\cdot \vdash \cdot \vdash \cdot$, which we will describe later in this section.

The other rules are all standard.

Figure 1 includes judgments to check formation of predicates ($P \mid \Delta \vdash \pi \text{ pred}$), and to predicate ($\Delta \vdash P$) and typing ($P \mid \Delta \vdash \Gamma$) environments. As for type constructors, we assume an assignment of predicate constants L to kinds of the form $\kappa \rightarrow \text{pred}$; for example, we would expect that $\text{Ord} : \star \rightarrow \text{pred}$ or $\text{MonadState} : \star \rightarrow (\star \rightarrow \star) \rightarrow \text{pred}$. As predicates are checked via a judgment separate from that of types, we do not incorporate predicates into the partiality mechanism. Doing so would not pose significant technical difficulty. However, as predicates may already be unsatisfiable, adding partiality to predicate construction seems to add little expressiveness.

The typing relation is given at the bottom of Figure 1. There are two significant differences from existing systems. In \((\forall E)\), as usual, we confirm that the instantiating type is well-kinded; given our extension of kinding, however, this also ensures that type applications in the instantiating type are well-defined. In \((\rightarrow I)\), we confirm that the resulting function type is well-kinded, and so also that type applications in the domain and codomain are defined. The remaining rules are standard for qualified types.

The key formal guarantee provided by our type system is that the typing of terms respects partial type constructors. As the latter is built into the qualified kinding relation, we have the following:

Theorem 1 (Regularity). If $\Delta \vdash P$, $P \mid \Delta \vdash \Gamma$, and $P \mid \Delta ; \Gamma \vdash E : \sigma$, then $P \mid \Delta ; \Gamma \vdash E : \star$.

The proof is by induction on the derivation of $P \mid \Delta ; \Gamma \vdash E : \sigma$; details are given in the appendix, along with proofs of other theorems we present in the text.

4.2 Elaborating Types

Our type system may seem to require that polymorphic functions be annotated with an unwieldy and unintuitive set of constraints. For example, for fmap’s type to be well-kinded it must mention several definedness predicates:

$$\forall f : \star \rightarrow \star. \forall a : \star. \forall b : \star. (\text{Functor } f, f @ a, f @ b) \Rightarrow (a \rightarrow b) \rightarrow f a \rightarrow f b$$

These definedness predicates may seem obvious: as the type application $f a$ appears in the type, is it also necessary to mention the predicate $f @ a$? We suggested in the previous section that such predicates might be inferred in an implementation of partial type constructors. We will now characterize formally how such inference could be done.
We begin by defining a version of the kinding relation, written \(\models_k \), which is unaware of definedness constraints. We do so by eliminating the use of the definedness constraint in \((\text{KAPP})\), and, as they no longer play any role, eliminating the predicate contexts \(P \). The resulting kinding rules are shown at the top of Figure 2. This new relation reflects the expectation of current functional languages: all type constructors are assumed to be total, and so the kinding relation need only check the kinds of type constructors. We can relate derivations in the unaware and full kinding relations.

We now define an elaboration relation \(\sigma \rightsquigarrow \sigma' \) on type schemes, shown at the bottom of Figure 2. The elaboration relation on base types and qualified types \(\rho \rightsquigarrow P \) collects the definedness predicates implied by the type structure of \(\rho \), which are then added to the existing qualifiers for type schemes. (We write \(P_1, P_2 \) to denote the concatenation of predicate sequences \(P_1 \) and \(P_2 \).)

We can use elaboration to connect the unaware and full kinding relations. Intuitively, if the kinds in a type match, then we can invent the definedness constraints necessary to make the type well-kinded.

Theorem 2. If \(\models_k \sigma : \kappa \) and \(\sigma \rightsquigarrow \sigma' \) then \(\epsilon \vdash \sigma' : \kappa \).

This theorem does not guarantee that the constraints in the elaborated type will be satisfiable. For example, our intuition is that the type \(\text{UArray Integer} \) is undefined. The elaboration of this type, \(\text{UArray} @ \text{Integer} \Rightarrow \text{UArray Integer} \), does not make this type any better defined; it simply makes explicit the unsatisfiable constraint implied by the original type expression. Nor does the elaboration relation mean that programmers will never need to write definedness constraints explicitly. Terms may include type instantiations that are not reflected directly in their types, but whose definedness must still be ensured. However, it does suggest that, in the majority of cases, the requisite definedness conditions can be computed automatically. We evaluate the effectiveness of this approach empirically in Section 6.
4.3 User-Defined Datatypes

We have described how definedness constraints are propagated through the types of expressions, and how they can be elaborated from type expressions. Next, we turn to the initial source of definedness constraints: user-defined datatypes.

Our first problem is validating datatype declarations themselves: a datatype cannot be more defined than the data it stores. We give the syntax of partial datatype declarations in Figure 3: a datatype declaration combines a predicate context P with the usual type arguments and constructor types. We characterize valid datatype declarations with the judgment $\vdash D$. This requires that the context P be well-formed; that the P be sufficient to justify that each constructor argument has kind \star; and that any type application in constructor arguments is well-defined.

Recursive datatypes pose a small challenge. Consider the classic datatype fixed point declaration:
\[
\text{data} \ \text{Fix} \ f = \text{In} \ (f \ (\text{Fix} \ f))
\]
Under what constraints should we consider $\text{Fix} \ f$ to be well-defined? The application $f \ (\text{Fix} \ f)$ must be defined, but this seems to presuppose that $\text{Fix} \ f$ is already well-defined. Our approach is to assume that new datatypes are well-defined in their own definitions.\(^6\) In checking $\vdash D$, we extend the declared predicates P with an additional set of constraints, abbreviated $\text{wft}(\tau)$ for "well-formed type", asserting that $C \overline{\alpha}$ is well-defined. The abbreviation $\text{wft}(\tau)$ is defined by ordered pattern-matching on these equations:
\[
\text{wft}(\tau \tau') = \text{wft}(\tau), \ \text{wft}(\tau'), \ \tau @ \tau' \quad \text{wft}(\tau) = \varepsilon
\]
With this definition, the only predicate needed for the definition of $\text{Fix} \ f$ to be well defined is $f @ \text{Fix} \ f$.

We can elaborate datatype declarations to include routine definedness constraints. Datatype declaration elaboration $D \mapsto P$ proceeds by elaborating the declared context P and the types appearing in the constructors. The final elaborated predicate excludes any predicates arising from recursive instances of the datatype being defined. As in elaborating types, the elaborated constraints are sufficient to ensure that datatype declarations are well-formed.

\(^6\)That is, we use a greatest fixed point model of the definedness relation ($@$). This choice affects only our type language and is independent of Haskell’s choice to have lazy runtime semantics.
Theorem 3. If $\pi \in P \quad P \parallel Q \quad P_1 \parallel P_2 \quad P_3 \parallel P_3$

\[
P \Rightarrow C \alpha_1 \ldots \alpha_n \beta_1 \ldots \beta_m \in D \quad P' = \{ \pi \in P \mid \text{fv}(\pi) \subseteq \alpha_i\}
\]

$D \vdash C \tau_1 \ldots \tau_{n-1} @ \tau_n \quad \vdash [\tau_i/\alpha_i]P'$

Fig. 4. Entailment

Theorem 3. If $\pi \downarrow \text{data} P \Rightarrow C \alpha \times K = K \tau$ and $\text{data} P \Rightarrow C \alpha \times K = K \tau \iff P'$, then $\vdash \text{data} P', P \Rightarrow C \alpha \times K = K \tau$.

The proof follows from Theorem 2. However, the consequences of this theorem are stronger. As there is no source of definedness constraints in datatype declarations other than those discovered by elaboration, the user must only ever add constraints if they are not implied by the components of the datatype being defined.

4.4 Entailment

The entailment relation captures relationships between predicates, and plays a central role in any qualified type system. In our system, we have seen that entailment plays a central role in both kinding ($\kappa\Pi$) and typing ($\Rightarrow E$). We now describe the entailment rules for definedness constraints. As with other applications of qualified types, we do not assume that this is the only entailment rule; others could be included to support type classes, extensible records, and so on.

Our entailment relation for definedness constraints is given in Figure 4. Entailment is defined in the context of a set of datatype declarations D; however, as this context is constant in the course of any derivation, we generally write $P \vdash Q$ for $D \vdash P \vdash Q$. Intuitively, given the following three definitions:

- $\text{data } \text{Either } a \ b = \text{Left } a \mid \text{Right } b$
- $\text{data } \text{Ord } a \Rightarrow \text{BST } a = \text{Empty } \mid \text{Fork } a (\text{BST } a) (\text{BST } a)$
- $\text{data } (\text{Ord } a, \text{Ord } b) \Rightarrow \text{OrdPair } a \ b = \ldots$

we would generate the following collection of entailment rules:

\[
P \parallel \text{Either } @ a
\]
\[
P \parallel \text{Either } a @ b
\]
\[
P \parallel \text{Ord } a \iff P \parallel \text{BST } @ a
\]
\[
P \parallel \text{Ord } a \iff P \parallel \text{OrdPair } @ a
\]
\[
P \parallel \text{Ord } a \land P \parallel \text{Ord } b \iff P \parallel \text{OrdPair } a @ b
\]

for any choices of types a and b. This is captured by the final rule in Figure 4. Suppose that we have a predicate $C \tau_1 \tau_2 \ldots \tau_{n-1} @ \tau_n$, and that the corresponding datatype declaration is of the form

\[
\text{data } P \Rightarrow C \alpha_1 \ldots \alpha_n \beta_1 \ldots \beta_m = K \tau
\]

Let P' be those predicates in P that restrict only the α_i. The predicate holds (that is, the type application $C \tau_1 \ldots \tau_n$ is defined) exactly when (the substitution instances of) P' hold. This includes the treatment of total parameterized datatypes as a special case with $P = \emptyset$: hypotheses are vacuous, and so the definedness predicate always holds.

The theory of qualified type places several requirements on the entailment relation [Jones 1994].

Lemma 4 (Properties of Entailment).

1) Monotonicity: If $P \parallel \pi$ then $P, P' \parallel \pi$
We have presented the details of a surface language supporting partial type constructors, including the proofs of these properties for our entailment relation are unsurprising.

5 MAKING PARTIALITY EXPPLICIT

We have presented the details of a surface language supporting partial type constructors, including an elaboration process for inserting routine definedness constraints. But we must still be cautious: this system is a departure from our usual understanding of type constructors, a fundamental concept in typed functional programming languages. We wish to be sure it has reasonable runtime behavior and is compilable using standard techniques. This section presents an internal language, inspired by System F, into which our surface language compiles. We prove that this internal language is type-safe (by the usual progress and preservation theorems [Wright and Felleisen 1994]) and that compilation from our surface language preserves typability.\(^7\)

\(^7\)Elaboration is distinct from compilation. Elaboration adds necessary definedness constraints in the source language; the process takes a source program and returns another source program. Compilation, on the other hand, translates from a source language with partiality and definedness constraints into an internal language with neither.

5.1 Internal Language Syntax and Semantics

This internal language is laid out in Figure 5. The key difference between the surface language and this internal language is that the internal language uses explicit evidence to prove predicates. This follows from the long-standing dictionary translation of qualified types [Jones 1994]. Evidence terms v prove both standard predicates L_{τ_1} and also definedness constraints $\tau_1 \Rightarrow \tau_2$. Evidence can be abstracted over; δ is the metavariable for evidence variables. The trivial evidence ♦ proves the trivial predicate \top_{κ} of kind κ, and we allow for the possibility of further evidence forms, echoing the possibility of expanding the entailment relation of Section 4.4.

This internal language also merges the grammars of types and predicates and includes two sorts $s: \star$ and o. As we will see, the internal language needs to abstract over predicates, and thus we promote o to be a kind, alongside \star. Kinds also include dependent functions over both types and predicates. Types are System F types, extended with quantification over predicates and evidence application. Terms are standard for an evidence-bearing translation of a qualified type system. The typing rules for this language are unsurprising; note, in particular, that the type application rule is entirely standard—type applications are total in our internal language. Term typing rules and runtime operational semantics are also standard; they appear in our appendix.

The key to understanding the connection between our surface language and this internal language is that we represent surface language partiality by constraints in kinds in the internal language. For example, recall $\text{UArray} :: \star \rightarrow \star$, but with the partiality condition $\text{UArray} \Rightarrow a$ defined as $\text{IArray} \ a$. In the internal language, we get $\text{UArray} : (a:\star) \rightarrow \text{IArray} a \Rightarrow \star$. That is, $\text{UArray} \tau$ has kind \star only when we can supply evidence that $\text{IArray} \tau$ holds. This encoding of partiality via constraints in kinds is why we need dependent functions in our language.

Our internal language is type safe:

Definition 5 (Values). The three abstraction forms of expressions E are considered values. Other expression forms are not values.

Theorem 6 (Preservation). If $\Delta; \Gamma \vdash_i E : \tau$ and $E \rightarrow E'$, then $\Delta; \Gamma \vdash_i E' : \tau$.

Theorem 7 (Progress). If $\Delta; e \vdash_i E : \tau$, then either E is a value or there exists E' such that $E \rightarrow E'$.

This internal language is not a final compilation target. It is meant as an intermediate language, where a complete compiler might perform optimizations with the extra security of being able to check that these optimizations respect types. In this way, our language plays a very similar role to System FC [Sulzmann et al. 2007], used as an intermediate language within GHC. In particular, our design here has no bearing on type erasure: further compilation steps may indeed erase types and trivial evidence.

5.2 Examples

We can compile surface-language expressions and types into our internal language, converting partiality constraints as appropriate. This compilation function, presented in full in our appendix, is intricate. It is best explained by example.

The simplest example is

$$\text{length} :: \text{UArray} \ a \rightarrow \text{Int}$$

Elaboration of elided definedness constraints converts this to

$$\text{length} :: \text{UArray} \Rightarrow a \Rightarrow \text{UArray} \ a \rightarrow \text{Int}$$

equivalent to

8Following Church [1940] we use the symbol o to classify predicates.
length :: IArray a ⇒ UArray a → Int

In the internal language, this becomes⁹

length : forall (a : ⋆). (d : IArray a) ⇒ UArray a d → Int

Note that we explicitly apply UArray a to the definedness evidence d.

The interesting aspects of compilation arise when we consider abstracting over type variables of a higher kind. So, we proceed to examine fmap:

fmap :: Functor f ⇒ (a → b) → f a → f b

Elaborating and making quantification explicit, this becomes

fmap :: forall (f :: Type → Type) (a :: Type) (b :: Type). Functor f ⇒ f @a ⇒ f @b ⇒ (a → b) → f a d1 → f b d2

Compiling yields

fmap : forall (c : ⋆ → o) (f : (a:⋆) → c a ⇒ ⋆) (a : ⋆) (b : ⋆). MonadTrans c f ⇒ Monad c ⇒ Monad m ⇒ m a ⇒ t m a

from the monad transformers [Jones 1995a] library. Elaboration and explicit quantification yield

lift :: (MonadTrans t, Monad m) ⇒ m a → t m a

Compiling yields this monster:

lift : forall (ct1 : (cm:* → o) → ((a:* → cm a ⇒ *)) → o) (ct2 : (cm:* → o) → ((a:* → cm a ⇒ *)) → * → o) (t : (cm:* → o) → (b1:(a:* → cm a → *)) → ct1 cm b1 ⇒ (b2:*→) → ct2 cm b1 b2 ⇒ * (mt : * → o) (m : (a:* → mt a ⇒ *)) (a : *). MonadTrans ct1 ct2 t ⇒ Monad mt m ⇒ m a ⇒ t mt m a ⇒ m a ⇒ t mt m a a a

Because there is no way to know what the definedness constraints are on t and m, we must quantify over them. Call sites will instantiate these appropriately, using the trivial predicate ⊤ if instantiating with a total type constructor.
5.3 Compiling Types

The fragment of the compilation algorithm concerning types appears in Figure 6. The rest is included in the appendix; the details of this algorithm are not important for understanding our main theorem (that deterministic compilation to a total language is possible) or partial type constructors more generally.

For each compilation judgment, there is a corresponding judgment in the source language with the same structure. Accordingly, these judgments can be viewed as a function on source typing derivations. Values to the left of \sim (and any decorations on a \sim) are considered inputs, while values to the right are considered outputs. This function is syntax-directed and deterministic (as proved by a straightforward induction).

The judgments presented here, along with most others, are parameterized by a compilation context μ. This contains auxiliary information needed by compilation. Relevant to entailment compilation are mappings from predicates π to evidence variables δ: a mapping $\pi \mapsto \delta \in \mu$ means that δ is evidence for π.

Type applications. The type compilation judgment has two outputs: the compiled type τ and a list of other types τ'. This list of types should be passed to any type function that will then be passed the main output type. The intuition here is that the list of types includes the instantiations for any quantified constraints in the type being compiled. For example, note the extra c argument in $\text{Functor } c \ f$ in the fmap example: this would be the second return value when compiling f.

Compiling a type application $\tau_1 \tau_2$ naturally begins by compiling τ_1 and τ_2 separately, yielding τ'_1 (with τ) and τ'_2 (with τ'). Since a precondition of compilation is that the source type is well-formed, we know $P \vdash \tau_1 \Rightarrow \tau_2$ must hold. We thus compile the derivation of that judgment into evidence ν.

We must now assemble the outputs. We cannot simply compile the application $\tau_1 \tau_2$ into $\tau'_1 \tau'_2$: if τ_2 is higher-kinded (i.e., has a function kind), then its compiled kind will depend on a definedness predicate, like the f in the type of fmap. The choice of this definedness predicate must be passed to τ'_1 before passing τ'_2. In the general case, there may be many such definedness predicates: see how t in the type of $\text{if } t$ depends on both ct1 and ct2. The choices for these predicates are τ^\prime, the second return value from compiling τ_2. There is still one more wrinkle in assembling the primary result: since τ_1 might be partial, we need to pass evidence that $\tau_1 \tau_2$ is well-defined. This evidence is the output of compiling the entailment of $P \vdash \tau_1 \Rightarrow \tau_2$, which is called ν in the rule. We thus see that the correct primary result from compiling $\tau_1 \tau_2$ is $\tau'_1 \tau^\prime \tau'_2 \nu$.

Lastly, we must determine what predicates the kind of $\tau'_1 \tau^\prime \tau'_2 \nu$ depends on. These types, the τ^\prime, are built by a list comprehension. The τ are the predicates free in the kind of τ'_1. The first of these predicates is evidenced by ν; it is no longer free in the kind of $\tau'_1 \tau^\prime \tau'_2 \nu$. Each of the rest—the
Entailment. Compiling an entailment is straightforward in our presentation, as we can invoke a solver process to produce evidence. The idea here is that our compiler is equipped with a solver than can produce evidence for all entailed predicates. The two rules can be tried in order: if we have a predicate assumption (witnessed by the variable δ) in our compilation context μ, use that. Otherwise, the solver must be able to produce the evidence. The compilation context is extended with evidence when assuming a constraint in the form $\pi \Rightarrow \rho$ (this corresponds to a λ over evidence in the internal language), which then can be retrieved here.

Other judgments. Compiling type applications is one of the two tricky points in compilation; the other is in compiling kinds. This should be unsurprising, because the compilation of a function kind must be intricate enough to support compiling type applications as we have done above. In the end, we prove that a well-kinded source type compiles into a well-kinded internal language type, but even a full statement of the lemma would take us too far afield from our primary goal of discussing partial type constructors.

5.4 Correctness
We have proved compilation correct, stated here for top-level (closed) expressions:

Theorem 8 (Compilation). If $\epsilon | \epsilon; e \vdash E : \sigma \sim_{\epsilon} E'$, then $\epsilon | \epsilon; \sigma : \star \sim_{\epsilon} \tau ; \epsilon$ and $\epsilon; e \vdash E' : \tau$.

The proof generalizes this considerably, allowing compilation of open terms and non-empty contexts; stating that more general theorem would require introducing more technical judgments.

A consequence of this theorem is that we have grounded the theory behind our surface language: it is merely a decoration over a language with fairly standard static and dynamic semantics. Notably, this language has total type constructors; the special treatment of partiality is compiled away.

6 EVALUATION: HOW WILL IT WORK IN PRACTICE?
We began this project with a healthy skepticism about its ultimate feasibility. We were concerned in particular that, while a constraint system seemed reasonable in theory, it might not be usable in practice if it required large numbers of constraints. In the context of extending an existing language to support partial type constructors, there will also be concerns about backward compatibility and about the possibility that substantial portions of existing code will need to be modified or rewritten to account for the new features.

In an attempt to preempt such problems, we have already described how we can allow constraints to be omitted from a program when they are implied directly by other parts of the code. However, as Hughes [1999] noted in his proposal for restricted datatypes, it is not always possible to derive the full list of required constraints for a given function just by looking at its type. For example, a function that sorts an input list by building and then flattening a binary search tree will require a type $(\text{BST} @ a) \Rightarrow \text{List} a \rightarrow \text{List} a$, or, equivalently in our system, $(\text{Ord} a) \Rightarrow \text{List} a \rightarrow \text{List} a$. Clearly, there is nothing in the type of $\text{List} a \rightarrow \text{List} a$ to hint at a need for either the $\text{BST} @ a$ or the $\text{Ord} a$ constraints suggested here.

The observations described above raise an important question about the practical feasibility of the system that we propose in this paper: How often will programmers be required to use extra annotations, either in new code, or when updating existing code? Ideally, we would hope for a zero-cost abstraction, meaning, as Stroustrup [1994] put it: "What you don’t use, you don’t pay for."
In our specific case, this means that we would hope not to incur any annotation overhead in code that does not make use of partial type constructors.

To address this question, we built a simple, proof-of-concept implementation of our design, based on the Hugs interpreter. We used it to process a collection of 169 Haskell source files that were taken from the Hugs distribution. This includes the full Hugs Prelude as well as standard libraries from the System, Data, Text, Control, Test, and Language packages, and combines code from multiple, independent developers who have contributed to the development of Hugs and its libraries. We focus primarily on library code, because it is highly polymorphic. Because we cannot discharge a constraint \(f @ a \) until we know \(f \), we expect polymorphic code to incur a higher annotation overhead than monomorphic code. For exactly the same reason, we did not seek out more application-level code. In total, our sample comprises more than 38,000 lines of code.

Though it supports the partial \(\text{BST} a \) as a built-in type, our prototype does not include the ability to define user-defined partial type constructors. Given that our goal is around backward compatibility of polymorphic code, adding more partial datatypes would not shed more light on this goal: it is partial type variables we are after, not partial type constants.

Our primary goal was to determine what changes we would need to make in order for this code to be accepted by our prototype. Naturally, some infelicities in our implementation required that we made small edits to these files to allow compilation; these changes are not indicative of our approach and are simply an artifact of the fact that implementation is only a proof-of-concept. We include details of these changes—and further description of our prototype—in the appendix.

6.1 Implementation Details

As described previously, our prototype implementation was developed as an extension of the Hugs interpreter, which already includes a type checker for an extended language based on qualified types. The key changes that we made to add support for well-formedness constraints, as described in this paper, were as follows.

Definedness predicates. We defined a new, three parameter built-in type class \(f @ a = r \), with a functional dependency \(f a \rightarrow r \) [Jones 1995b, 2000], corresponding to the definedness constraint \(f @ a \). The constraint \(f @ a = r \) requires that the application \(f a \) is well-defined, just as the two-parameter version \(f @ a \). Additionally, it names the type \(f a \) as \(r \). Using this version of the constraint avoided the need to worry about predicate order, as we can simply use the result \(r \) instead of the type application \(f a \), but does not fundamentally change the meaning of definedness constraints. As for the two-parameter version, we have instances of \(@ \) for any parameters of kinds \(\kappa_1 \rightarrow \kappa_2, \kappa_1, \) and \(\kappa_2 \), respectively, for any kinds \(\kappa_1 \) and \(\kappa_2 \).

Elaborating type signatures. We modified the type checker to rewrite every type signature in the input program to include extra constraints, as necessary, to ensure that the type is well-formed. No constraints are generated for applications of known, total type constructors such as List, Maybe, and \((\rightarrow)\), but applications of type variables result in a new constraint.

Entailment. The implementation of type classes in Hugs also relies on a definition of entailment, as described in Section 4.4. We extended this mechanism in several ways:

- Any predicate of the form \(f @ a = f a \), where \(f \) is an application of a known, total type constructor, can be discharged immediately with no further work. In practice, this often occurs as the second step of a process where a constraint \(f @ a = r \) has previously been improved by unifying \(r \) with \(f a \). In general, however, it is important to treat this process as two separate steps, either of which may be used independently of the other.
The corresponding rule for a partial type constructor like BST is to allow a constraint $\text{BST} \circ_\alpha \alpha = \text{BST} \alpha$ to be discharged if the constraint $\text{Ord} \circ \alpha \alpha$ can be established from the assumed constraints. Because these constraints are equivalent, we also have the reverse entailment, allowing an $\text{Ord} \circ \alpha \alpha$ constraint to be discharged if a constraint of the form $\text{BST} \circ_\alpha \alpha = r$ can be established from the assumed constraints. (There is no need to check that r has been improved to $\text{BST} \alpha$ here; that is already the only possible option.)

6.2 Annotation Overhead

Our first finding was that almost all of the Haskell source files in our test set—164 files, to be precise—are accepted as is by our prototype without the need for any annotations. This provides good initial evidence that the annotation burden for our system is likely to be low. Annotations were required, however, in the five remaining files. Unsurprisingly, these all have to do with abstractions involving higher-kinded type variables: applicative functors, arrows, and monads. For example, the original version of the Control.Monad library included the following definition:

\[
\text{mapAndUnzipM} :: (\text{Monad} m) \Rightarrow (a \rightarrow m (b,c)) \rightarrow [a] \rightarrow m ([b], [c])
\]

\[
\text{mapAndUnzipM} f \ xs = \text{sequence} (\text{map} f \ xs) >>= \text{return} \circ \text{unzip}
\]

A detail that can be seen in the function body, but not in its type, is that $\text{sequence} (\text{map} f \ xs)$ constructs a value of type $m ([b, c])$ that is then used as the left argument of the $\text{>>=} \text{operator}$. To document this fact, the type signature for mapAndUnzipM must be modified to include an additional constraint, as follows:

\[
\text{mapAndUnzipM} :: (\text{Monad} m, m @ [(b, c)]) \Rightarrow (a \rightarrow m (b,c)) \rightarrow [a] \rightarrow m ([b], [c])
\]

With this edit, the entire Control.Monad library—which includes numerous definitions of (much more widely used) general monad operators, such as sequence and mapM—type checks without any further annotations. Finding and making this edit was also easy: the extra constraint was identified in the type error message that was generated in response to the original definition of mapAndUnzipM; after that, it was also easy to understand why an extra constraint was needed.

And this constraint really is needed, with this implementation. Imagine a monad that cannot store lists, but can store tuples. The implementation of mapAndUnzipM would indeed run into trouble. Of course, no such monad can exist today, because the Monad class will not allow it. However, with our approach, we can define a Monad instance over a partial type, and we need to make sure that (in our hypothetical) our monad is not instantiated with a list type. We thus see the need for the $m @ [(b, c)]$ constraint as a natural and welcome consequence of our approach: previously unstated assumptions are now made manifest.

We found similar examples in four other library files: Control.Monad.Reader (1 example); Data.Foldable (3 examples); Control.Applicative (8 examples); and Control.Arrow (4 examples). As before, it was easy to identify and understand the need for additional constraints in each case.

The examples in Data.Foldable (for the functions traverse_, for_, and sequenceA_) were notable because they each require a constraint of the form $f \circ_\alpha (\alpha \rightarrow \beta)$ for some applicative functor, f. This is interesting because the type $(\alpha \rightarrow \beta)$ is not generally useful in practical work. As such, the presence of this constraint may provide useful feedback, perhaps leading to a new implementation with less plumbing overhead, or to a review of whether these functions are useful enough in practice to be included in the library.

These experiences were encouraging because they suggest that the need for annotations will be relatively low, even in code that abstracts over parameterized type constructors, and must therefore allow for partiality.
We did, however, find one additional example of a function in the Control.Arrow library that requires additional constraints. The original definition of this function is as follows:

\[
\text{leftApp} :: \text{ArrowApply} \Rightarrow a \ b \ c \rightarrow a \ (\text{Either} \ b \ d) \ (\text{Either} \ c \ d)
\]

\[
\text{leftApp} \ f = \text{arr} \ ((\lambda b \rightarrow (\text{arr} \ (\lambda () \rightarrow b) >> f >> \text{arr} \ \text{Left}, ())) ||| (∖ d \rightarrow (\text{arr} \ (\lambda () \rightarrow d) >> \text{arr} \ \text{Right}, ()))) >> \text{app}
\]

Although the body of this function is quite compact, it makes heavy use of arrow combinators, including five uses of arr (which constructs an arrow from a pure function), and three uses of the arrow composition operator, \(\text{Arr} \). As we dig deeper into the details of how it works, we also start to see that it involves quite a few different arrow types. For example, \(\text{arr} \ (\lambda () \rightarrow b) \) creates an arrow of type \(a () \ b \); \(\text{arr} \ (\lambda () \rightarrow d) \) creates an arrow of type \(a () \ d \); and so on, with each of these different arrow types requiring a pair of definedness constraints. When we put all of these together, the resulting type for \(\text{leftApp} \) is as follows:

\[
\text{leftApp} :: \text{ArrowApply} \ a, a () \ @ b, a () \ @ c, a () \ @ d, a c @ \text{Either} \ c \ d, a d @ \text{Either} \ c \ d, a b @ \text{Either} \ c \ d, a (\text{Either} \ b \ d) @ a () (\text{Either} \ c \ d), a (a () (\text{Either} \ c \ d)) @ \text{Either} \ c \ d \Rightarrow a b c \rightarrow a (\text{Either} \ b \ d) (\text{Either} \ c \ d)
\]

The list of constraints shown here is intimidatingly long. Considered individually, however, each of the constraints is reasonable: in each case, it is easy to find a subexpression in the definition of \(\text{leftApp} \) that produces an arrow of the corresponding type and, hence, to explain the need for each constraint.

Overall, while the \(\text{leftApp} \) example demonstrates that it is possible for a function definition to require large numbers of constraints, it is also an outlier, and, we believe, not representative of what can be expected in practical code. In this case, a comment in the Control.Arrow library explains that \(\text{leftApp} \) can be used to make an instance of the ArrowChoice type class for any arrow that is already included in the ArrowApply type class. But \(\text{leftApp} \) is not actually used anywhere in the code: there are only two instances of ArrowApply in our code sample, both of which already have more direct implementations of ArrowChoice. In short, \(\text{leftApp} \) corresponds to a formal proof that every instance of one class can be made an instance of another—with some additional hypotheses reflected by our @ constraints—but inspection of the code shows that it achieves this in a roundabout way that does not appear to be useful in practice.

Summary. By instrumenting our prototype, we were able to count a total of 1,934 type signatures, across our full collection of 169 test files. Each of these signatures was checked automatically by the implementation and 142 of them required additional constraints to ensure well-formedness (with a total of 345 additional constraints). As described above, there were only 20 type signatures (i.e., approximately 1% of the total) that required an additional, programmer-supplied annotation, and all of these occurred in a small number of library files, all dealing with abstractions over higher-kindred parameters. Moreover, in each of these examples, the need for extra constraints was identified automatically and was easy to understand in the context of the associated function definition. From our perspective, these results provide strong evidence that our proposed type system will not create an undue burden on programmers. Indeed, two of the language features that are most likely to stress our type system are polymorphism and parameterization. While these are still useful in the construction of practical applications, we suspect that they will often not be used as heavily as in library code—which has been the focus of our evaluation—that is specifically written to encourage
reuse. As such, we conjecture that an extension of our evaluation to include code from practical applications will likely show an even smaller annotation overhead than we have reported here.

7 RELATED WORK

Restricted data types. Hughes [1999] observed that many collection types in Haskell were naturally partial; he focused on sets represented as lists rather than binary search trees, but the issues are the same. He proposed two approaches to this problem. The first required explicitly capturing partiality, reifying constraints as dictionaries in class methods. For example, he proposes a class of collections defined by:

```haskell
class Collection c ctxt where
    empty :: Sat (ctxt a) ⇒ c a
    singleton :: Sat (ctxt a) ⇒ a → c a
    union :: Sat (ctxt a) ⇒ c a → c a → c a
    member :: Sat (ctxt a) ⇒ a → c a → Bool
```

Here, `ctxt` would be instantiated by a variable reifying the constraint on type `c`, capturing an `Eq` dictionary for sets or an `Ord` dictionary for search trees. However, he suggested that these extra constraints would soon become overwhelming, and that the need for parameterizing classes (such as `Collection`) over `ctxt` would limit their applicability. As an alternative, he introduced `wft t` constraints, expressing that type `t` was well-formed. Following his approach, the `Functor` class, for example, would be defined as:

```haskell
class Functor f where
    fmap :: (wft (f a), wft (f b)) ⇒ (a → b) → f a → f b
```

Hughes argued that `wft` constraints like those in the definition of `fmap` above should be written explicitly, so as to avoid surprising programmers with unexpected restrictions or behavior. However, Hughes also observed that, in many (but not all) cases, the `wft` constraints that a given example requires may be fully determined by the shape of the type to which they are attached. The type for `fmap` given above is a good example of this: the need for the two `wft` constraints to the left of the `⇒` symbol follows immediately from the use of the type applications `f a` and `f b` on the right.

The choice between requiring `wft` constraints to be stated explicitly, or allowing them to be omitted when they are already implied by context is a language design decision. Twenty years on, Hughes’ arguments for avoiding programmer surprise—a vote for requiring explicit constraints—may be tempered by concerns about the burden on programmers for dealing with `wft` constraints and about the impact on backward compatibility.

To the best of our knowledge, the approach that Hughes proposed has not been implemented and experimented with in any practical system. In addition, there are some missing details in the implementation sketch that he provided—having to do, for example, with partial applications of type constructors. Nevertheless, we know of no fundamental reason that Hughes’ approach could not also be made workable.

E-logic. Hughes’ approach has a surprising antecedent: Scott’s [1979] work on undefined terms in intuitionistic logic. Scott was concerned about the meaning of logical propositions such as \(\forall a. (1/a) \times a = 1 \). While this may seem intuitively correct, and is derivable in many presentations of intuitionistic logic, it is unclear what it means if \(a \) is instantiated to 0. It would seem to suggest that the equality \(1/0 \times 0 = 1 \) should be derivable, but \(1/0 \) is not defined (and the corresponding derivation is not included in models of intuitionistic logic). Scott’s solution is to introduce an existence predicate \(E(−) \), and require its use at instantiation of quantifiers. Concretely, in his approach, the above formula is not derivable, but \(\forall a. E(1/a) ⇒ (1/a \times a = 1) \) is. The instantiation...
of \(a\) with 0 is no longer a problem because the term \(1/0\) does not satisfy the existence predicate. A crucial difference between Scott’s setting and ours is that he considers arbitrary terms, and so cannot give a more refined characterization of existence. We are working in the more constrained domain of type applications, and so can further refine the conditions under which type expressions denote types.

There has been significant further interest in characterizing partial functions in the type theory and theorem proving communities; for a summary, see Bove et al. [2016]. This work has generally focused on partiality arising from recursive definitions, however, whereas we focus on functions undefined on parts of their domain. Our discussion of compilation (Section 5) demonstrates that, while encoding partial functions in terms of total functions may be intuitively direct, managing complexity in the resulting types and terms is still challenging.

Datatype contexts in Haskell. This particular feature has an interesting history. In the original Haskell 1.0 report [Hudak and Wadler 1990, Section 4.1.3], contexts were allowed in both datatype and type synonym definitions and the intended semantics, explained only informally, was very much in line with what we propose in this paper: a declaration of the form \(\text{type } c \Rightarrow T u_1 \ldots u_n = \ldots\), for example, “declares that a type \((T t_1 \ldots t_n)\) is only valid where \(c[t_1/u_1, \ldots, t_n/u_n]\) holds.” The report also includes a concrete example, \(\text{type } (\text{Num } a) \Rightarrow \text{Point } a = (a, a)\), and explains that types like \(\text{Point } a\) are only valid when they appear in the scope of a context asserting \(\text{Num } a\). This text, however, was removed in the Haskell 1.1 report [Hudak et al. 1991], completely disallowing the use of contexts for type synonyms, and introducing the interpretation for contexts in data definitions that remains in the current report (i.e., the only effect is to add constraints to constructor function types). This change appears to have been made in response to a proposal by Peyton Jones [1991] after an online discussion in which “nobody [was] able to give a satisfactory account of what contexts in data and type declarations actually mean” (the latter presumably referring to the lack of either a formal system or a concrete implementation). In 2010, this feature was deprecated as part of the GHC 7.0.1 release: any programs that use it now require an additional command line flag to compile. The associated documentation [GHC Team 2017, Section 10.4.2], explains that “this is widely considered a misfeature, and is going to be removed from the language.” Rather than eliminate it, however, the approach that we describe in this paper would allow us to reinstate the feature and at last, with the benefit of nearly three decades of subsequent experimentation and development, provide a semantics and an implementation for it that matches the vision of the original Haskell committee.

Encoding partial type constructors in Haskell. Hughes was far from the last author to propose an encoding of partial type constructors in Haskell. Orchard and Schrijvers [2010] suggest extending Haskell with constraint kinds, giving a built-in realization of Hughes’ reification of constraints. They give an encoding of their approach in terms of Kiselyov’s [2007] reduction of Haskell to one master type class. Sculthorpe et al. [2013] tackle Monad instances for types such as BST. Their approach is to represent computations in a free monad, realized using a GADT, and validate the constraints on the underlying type when interpreting the resulting free monad term.

Partial type signatures. A Haskell type signature is meant to stand alone: when we see \(\text{flurb} :: C f \Rightarrow a \rightarrow f a \rightarrow b \rightarrow f b\), we expect we know everything about the types needed at \(\text{flurb}\)’s usage sites. This means that, as observed in Section 6.2, the implementation of \(\text{flurb}\) is restricted to only use values of type \(f a\) or \(f b\); if the implementation uses a transient value of \(f (a, b)\), that would be rejected, as we do not know that \(f\) is defined on tuples.

However, partial type signatures [Winant et al. 2014] change this understanding of a type signature. (Beware: the “partial” in “partial type signature” refers to missing pieces in the signature, not
missing parts of the domain of the type. Their use and our use of “partial” are completely orthogonal.) With a partial type signature, such as \(f \text{ur}b :: (C f, _ \ldots) \Rightarrow a \rightarrow f a \rightarrow b \rightarrow f b \), a compiler would infer any constraints necessary from \(f \text{ur}b \)'s implementation and add these to its type. These constraints naturally would have to be satisfied at usage sites. Inferring them is easy, as definedness constraints are just like all others, and existing constraint propagation, solving, and quantification techniques work without modification. One might imagine a compiler setting that would make all signatures partial in this way, allowing any function’s implementation to extend its set of constraints. With such a setting, the annotation burden of Section 6.2 would disappear. In our view, however, the annotations are useful documentation for both the implementor and client, and we would not advocate for such a compiler option.

Constrained type families. Our approach to supporting partial type constructors is similar to the approach used by Morris and Eisenberg [2017] to support partiality in type families, called constrained type families. As with our use of @ constraints to identify the domains of datatypes, they require each type family \(F \) to come with a unique type class, \(C_F \), identifying its domain; uses of type family \(F \text{ ti} \) are then only allowed in contexts where \(C_F \text{ ti} \) is provable. This work intersects theirs in several ways.

Most immediately, adding constraints to type families makes explicit an implicit partiality in datatype declarations. Suppose that \(F \) is a type family; how should the following datatype declaration be interpreted?

```haskell
data T a = MkT a (F a)
```

Clearly, there are only instances of this datatype for parameters \(a \) for which family \(F \) is defined. Partial type constructors give the natural realization of this constraint. (Indeed, the same observation was made during discussion of implementing constrained type families in GHC.\(^{10}\))

We could also view constrained type families themselves as instances of partial type constructors, in which the constraint \(C_F \) on a type family \(F \) is required by the corresponding axioms for @. One interesting aspect of this direction is that, unlike type constructors, current formulations of type families do not allow them to be partially applied. (This restriction may soon be lifted [Kiss et al. 2019].) Thus, using @ with type families may require a special case, allowing for the appearance of an unsaturated type family.

Subtyping and partial types in object-oriented languages. Bounded polymorphism [Cardelli and Wegner 1985] allows for the instantiation of a type variable only by types that are subtypes of some other type \(\tau \). Modern object-oriented programming languages adopt this feature to good effect. Notably, Java, C#, and Scala all support datatypes with bounded type parameters. For example, we can define a Java class

```java
public class BST<\ A \ extends \ Comparable<? super \ A \>> \{ \ldots \}
```

such that an instantiating type of BST must be a subtype of the Comparable interface—that is, it must have an ordering. This example also demonstrates Java’s support for a limited amount of contravariance in setting type parameter bounds. The type BST<\ T \> is malformed if \(T \) is not a subtype of Comparable, just like we model in this paper. Though not based on bounded polymorphism, C++’s concepts [Dos Reis and Stroustrup 2006] similarly restrict the choice of an instantiating type.

There is a key difference, however, between the systems in Java and C# and what we propose here: our type system allows quantification over partial type constructors. By contrast, the languages mentioned here are first-order in types: it is impossible to quantify over a parameterized type.

\(^{10}\) https://github.com/ghc-proposals/ghc-proposals/pull/177#issuecomment-431507862, and following
Naturally, it is in dealing with higher-kinded type variables (such as when dealing with functors, arrows, and monad transformers) that our system’s power becomes clear.

Scala’s implementation of bounded polymorphism does allow quantification over partial type constructors [Moors et al. 2008] and is a suitable alternative to what we propose here. Naturally, Scala’s approach fits its object-oriented setting and its reliance on subtyping requires more type annotations. As usual, subtyping and qualified polymorphism achieve similar goals in different ways. Recent work on a formal foundation for Scala [Stucki 2017] is based on System $F_{\omega}^<$: bears resemblance to our evidence-carrying internal language, but a detailed comparison of the two approaches is beyond the scope of this work.

8 FUTURE WORK

The most immediate direction for future work is to implement partial type constructors and explore their practical utility. To that end, we are adding support for partial type constructors to an experimental functional language focused on low-level programming; our motivations here concern expressive abstractions for representing low-level and hardware-defined formats.

Another interesting future direction is to investigate opportunities for defining and working with overloaded partial type constructors that might be implemented in different ways for different argument types. In the examples we have written so far, we have assumed that type constructors were parametric even when not total. As a tantalizing glimpse of an alternative, let us revisit the function type example from Section 2.1 that suggested mixing pointed and unpointed types, and using distinct kinds of function arrows to distinguish between continuous functions (of type $a \rightarrow b$) on pointed types and total functions (of type $a \mapsto b$) on unpointed types. But how then should we interpret a lambda expression like $(\lambda x \rightarrow x)$? Of course, this would make sense as a continuous function of type $P \rightarrow P$, for any pointed type P. But it could just as easily be interpreted as a total function of type $U \rightarrow U$ for any unpointed type U. One way to keep both options available would be to add new rules for describing when an application of the standard function space arrow, (\rightarrow), is well defined, following the 3-place version of the definedness constraint introduced in Section 6.1. Specifically, we can support different interpretations of the function type by arranging for the following:

\[
\text{If } a \text{ is an unpointed type, then } (\rightarrow) @ a = (\mapsto) a,
\]
\[
\text{If } a \text{ is an unpointed type, then } (\rightarrow) @ a = (\mapsto) a.
\]

With this approach, the type of the identity function could still be written and presented to programmers as polymorphic type $a \rightarrow a$. Internally, however, it could be interpreted by the type checker as $(\rightarrow @ a = f, f @ a = t) \Rightarrow t$; the first constraint shown here gives us the ability to choose between different function types, while the second allows for the possibility of additional constraints on the range type: for example, both parameters of (\rightarrow) should be unpointed types. In essence, we have recovered a total type constructor, built out of non-overlapping partial type constructors. Of course, there are still many details that need to be worked out here, and we might also begin to worry about a potential explosion in the number of constraints that such a system will require. Then again, we had much the same concern when we began the project reported in this paper, but have since found that the system works well in practice.

9 CONCLUSION

We started with a seemingly paradoxical question: when is a type not a type? Surprisingly often, it turns out: whether it is an unboxed array of boxed values, a binary search tree of incomparable values, or type family application unmatched by its defining equations. In this paper, we set out to explore the possibility of using a constraint-based type system as a framework for describing and
working with partial type constructors. We have developed such a language design, characterized its formal properties and semantics, and experimentally evaluated its consequences for existing functional programs. Our approach rules out ill-defined types (such as UArray Integer), allows abstraction over partial type constructors (such as Functor UArray), and does so with minimal disruption to programmers.

REFERENCES

Partial Type Constructors (extended version) 27

A FORMAL PROPERTIES OF THE SURFACE LANGUAGE

See Figure 1, Figure 4.

Assumptions:

(1) There exists a relation $C : \kappa$ assigning kinds to type constants C.
(2) We have $(\rightarrow : \star \rightarrow \star : \star)$.
(3) There exists a relation $L : \overline{\alpha_1} \rightarrow \text{pred}$ assigning lists of argument kinds to class constants L.
(4) We have $\epsilon \vdash (\rightarrow) @ \tau$ and $\epsilon \vdash (\rightarrow_1 @ \tau_2)$.

Definition 9 ($\text{dom}(\Delta)$). The domain is the set of all the type variables present in the kinding environment.

$$\text{dom}(\Delta) = \{\alpha \mid (\alpha, \kappa) \in \Delta\}$$

Lemma 10 (Weakening). If $P \mid \Delta \vdash \sigma : \kappa$, then $P \mid \Delta, \Delta' \vdash \sigma : \kappa$.

Proof. By induction on the structure of $P \mid \Delta \vdash \sigma : \kappa$. As we require that environments not repeat variables, the bindings in Δ' cannot interfere with the remainder of the derivation. □

Lemma 11 (Strengthening). If $P \mid \Delta, \Delta' \vdash \sigma : \kappa$ such that $\text{dom}(\Delta') \cap (\text{fv}(\sigma) \cup \text{fv}(P)) = \emptyset$, then $P \mid \Delta \vdash \sigma : \kappa$.

Proof. By induction on the structure of $P \mid \Delta, \Delta' \vdash \sigma : \kappa$. We have six cases, each of them straightforward to prove by inspecting the derivation. □

Lemma 12 (Cut). If $P, \pi \mid \Delta \vdash \sigma : \kappa$ and $P \# \pi$, then $P \mid \Delta \vdash \sigma : \kappa$.

Proof. Proof by induction on the structure of $P, \pi \mid \Delta \vdash \sigma : \kappa$, using Lemma 4 for ($\kappa \Rightarrow \pi$). □

Lemma 13 (Source kinding is deterministic). If $P \mid \Delta \vdash \sigma : \kappa$ and $P \mid \Delta \vdash \sigma : \kappa'$, then $\kappa = \kappa'$.

Proof. Straightforward induction. □

Lemma 14 (Source type substitution). Assume $\Delta, \alpha : \kappa_2, \Delta' \vdash P$ and $P \mid \Delta \vdash \tau_2 : \kappa_2$.

(1) If $P \mid \Delta, \alpha : \kappa_2, \Delta' \vdash \sigma : \kappa$, then $[\tau_2/\alpha]P \mid \Delta, \Delta' \vdash [\tau_2/\alpha]\sigma : \kappa$.
(2) If $P \mid \Delta, \alpha : \kappa_2, \Delta' \vdash \pi \text{ pred}$, then $[\tau_2/\alpha]P \mid \Delta, \Delta' \vdash [\tau_2/\alpha]\pi \text{ pred}$.

Proof. By induction on the structure of the input typing derivation.

Case $\sigma = \alpha$: Immediate by the definition of substitution and Lemma 11.

Case $\sigma = \alpha'$, $\alpha' \neq \alpha$: σ is unchanged by substitution, and so this, too, is immediate by Lemma 10.

Case $\sigma = \tau_1 \tau_2$: By the induction hypothesis and the substitution property of entailment (Lemma 4.3.)

Other cases: By the induction hypothesis or the fact that constant kinds are closed. □

Theorem 1 (Regularity). If $\Delta \vdash P$, $P \mid \Delta \vdash \Gamma$, and $P \mid \Delta ; \Gamma \vdash E : \sigma$, then $P \mid \Delta \vdash \sigma : \star$.

Proof. The proof goes by induction on the structure of $P \mid \Delta ; \Gamma \vdash E : \sigma$.

Case $x : \sigma$: We have a derivation of the form

$$(\text{VAR}) \quad \frac{(x: \sigma) \in \Gamma}{P \mid \Delta ; \Gamma \vdash x : \sigma}$$

Given $(x: \sigma) \in \Gamma$ and hypothesis $P \mid \Delta \vdash \Gamma$ immediately follows that $P \mid \Delta \vdash \sigma : \star$.

Case let $x = E_1$ in $E_2 : \tau$: We have a derivation of the form

$$(\text{LET}) \quad \frac{P \mid \Delta ; \Gamma \vdash E_1 : \sigma \quad P \mid \Delta ; \Gamma, x: \sigma \vdash E_2 : \tau}{P \mid \Delta ; \Gamma \vdash \text{let } x = E_1 \text{ in } E_2 : \tau}$$
By induction on the first hypothesis we have \(P \vdash \Delta \vdash \sigma : \ast \); combining this with the assumption \(P \vdash \Delta \vdash \Gamma \) it follows that \(P \vdash \Delta \vdash \Gamma, x : \sigma \). Now, using induction on the second hypothesis we obtain the required result \(P \vdash \Delta \vdash \tau : \ast \).

Case \(E_1, E_2 : \tau \): We have a derivation of the form

\[
(\rightarrow E) \quad \frac{P \vdash \Delta ; \Gamma \vdash E_1 : \tau_1 \rightarrow \tau_2 \quad P \vdash \Delta ; \Gamma \vdash E_2 : \tau_1}{P \vdash \Delta ; \Gamma \vdash E_1 E_2 : \tau_2}
\]

By induction on the first hypothesis we have \(P \vdash \Delta \vdash \tau_1 \rightarrow \tau_2 : \ast \). Also by the kinding relation we have:

\[
\frac{P \vdash \Delta \vdash (\rightarrow) @ \tau_1 : \ast \rightarrow \ast \quad P \vdash \Delta \vdash \tau_2 : \ast \quad P \vdash \tau_1 @ \tau'}{P \vdash \Delta \vdash \tau_1 \rightarrow \tau_2 : \ast}
\]

This also includes the derivation of \(P \vdash \Delta \vdash \tau_2 : \ast \) hence giving us the required conclusion.

Case \(\lambda x. E : \tau_1 \rightarrow \tau_2 \): We have a derivation of the form

\[
(\rightarrow I) \quad \frac{P \vdash \Delta ; \Gamma, x : \tau_1 \vdash E : \tau_2 \quad P \vdash \Delta \vdash \tau_1 \rightarrow \tau_2 : \ast}{P \vdash \Delta ; \Gamma \vdash \lambda x. E : \tau_1 \rightarrow \tau_2}
\]

The required conclusion \(P \vdash \Delta \vdash \tau_1 \rightarrow \tau_2 : \ast \) appears in the hypothesis of the derivation, thus giving us the needed result.

Case \(E : \rho \): We have a derivation of the form

\[
(\Rightarrow E) \quad \frac{P \vdash \Delta ; \Gamma \vdash E : \pi \Rightarrow \rho \quad P \vdash \pi}{P \vdash \Delta ; \Gamma \vdash E : \rho}
\]

By induction on the first hypothesis we have \(P \vdash \Delta \vdash \pi \Rightarrow \rho : \ast \) and hence, by kinding relation we have \(P, \pi \vdash \Delta \vdash \rho : \ast \). Now by Lemma 12, and the second hypothesis we have the required conclusion \(P \vdash \Delta \vdash \rho : \ast \).

Case \(E : \pi \Rightarrow \rho \): We have a derivation of the form

\[
(\Rightarrow I) \quad \frac{P, \pi \vdash \Delta ; \Gamma \vdash E : \rho \quad P \vdash \Delta \vdash \pi \text{ pred}}{P \vdash \Delta ; \Gamma \vdash E : \pi \Rightarrow \rho}
\]

By induction on the first hypothesis we have \(P, \pi \vdash \Delta \vdash \rho : \ast \). By the second hypothesis we have \(P \vdash \Delta \vdash \pi \text{ pred} \). Now by the kinding relation we can build a derivation of the required conclusion

\[
\frac{P \vdash \Delta \vdash \pi \text{ pred} \quad P, \pi \vdash \Delta \vdash \rho : \ast}{P \vdash \Delta \vdash \pi \Rightarrow \rho : \ast}
\]

Case \(E : [\tau / \alpha] \sigma \): We have a derivation of the form

\[
(\forall E) \quad \frac{P \vdash \Delta ; \Gamma \vdash E : \forall \alpha : \kappa. \sigma \quad P \vdash \Delta \vdash \tau : \kappa}{P \vdash \Delta ; \Gamma \vdash E : [\tau / \alpha] \sigma}
\]

By induction on the first hypothesis we have \(P \vdash \Delta \vdash \forall \alpha : \kappa. \sigma : \ast \). Now due to the substitution lemma (Lemma 14) and the second hypothesis we can build the required conclusion.

Case \(E : \forall \alpha : \kappa. \sigma \): We have a derivation of the form

\[
(\forall I) \quad \frac{P \vdash \Delta, \alpha : \kappa ; \Gamma \vdash E : \sigma}{P \vdash \Delta ; \Gamma \vdash E : \forall \alpha : \kappa. \sigma}
\]
By induction on the hypothesis we know that \(P \vdash \sigma : \star \). By virtue of \(\alpha \notin TV(P) \) and the kinding relation, the required conclusion can be derived.

Lemma 15 (Elaborating Mono Types, Predicates and Qualified Types).

1. If \(\Delta \vdash u : \tau \vdash P \) then \(\Delta \vdash \tau : \kappa \).
2. If \(\Delta \vdash \pi : \kappa \) and \(\pi \vdash P \) then \(\Delta \vdash \pi : \kappa \).
3. If \(\Delta \vdash \pi \imply \rho : \kappa \) and \(\pi \vdash P_1 \) and \(\rho \vdash P_2 \) then \(\Delta \vdash \pi \imply \rho : \kappa \).

Proof.

1. By induction on the structure of \(\tau \) we get three cases:
 - **Case \(\alpha \):** We have a derivation
 \[
 \frac{\alpha : \kappa \in \Delta}{\Delta \vdash \alpha : \kappa}
 \]
 Using the hypothesis we can build the required conclusion \(\epsilon \vdash \Delta \vdash \alpha : \kappa \).
 - **Case \(C \):** This case is similar to previous case.
 - **Case \(\tau_1 \tau_2 \):** We have the following derivation
 \[
 \frac{\Delta \vdash \tau_1 : \kappa' \vdash \kappa \quad \Delta \vdash \tau_2 : \kappa'}{\Delta \vdash \tau_1 \tau_2 : \kappa}
 \]
 We also have the following elaboration hypothesis \(\tau_1 \vdash P_1, \tau_2 \vdash P_2 \) from \(\tau_1 \tau_2 \vdash P_1, \tau_1 \tau_2 \vdash P_2 \).
 By induction on the first hypothesis we get \(P_1 \vdash \Delta \vdash \tau_1 : \kappa' \vdash \kappa \) and induction on second hypothesis we have \(P_2 \vdash \Delta \vdash \tau_2 : \kappa' \).
 Thus we can build a derivation for the required conclusion \(P_1, P_2, \tau_1 @ \tau_2 \vdash \Delta \vdash \tau_1 \tau_2 : \kappa \).
2. By examining the structure of \(\pi \) we get:
 - **Case \(L \):** We have a derivation
 \[
 \frac{L : \kappa_l \quad \Delta \vdash \tau_1 : \kappa_l}{\Delta \vdash L \tau_1 \vdash \kappa_l \ \text{pred}}
 \]
 By elaboration we have the hypothesis \(\tau_1 \vdash P_1 \). By applying Lemma 15.1 to the \(i \)th hypothesis we get \(P_1 \vdash \Delta \vdash \tau_1 : \kappa_l \).
 Now using the first hypothesis we can build a derivation of required conclusion \(P_1 \vdash \Delta \vdash L \tau_1 \vdash \kappa_l \) pred
3. By induction on the structure of \(\rho \):
 - **Case \(\pi \imply \rho \):** We have the following derivation:
 \[
 \frac{\Delta \vdash \pi \vdash \rho : \star}{\Delta \vdash \pi \Implies \rho : \star}
 \]
 By elaboration we have two hypothesis \(\pi \vdash P_1 \) and \(\rho \vdash P_2 \).
 Applying Lemma 15.2 to the first hypothesis, gives \(P_1 \vdash \Delta \vdash \rho \vdash \star \) pred and by induction to the second hypothesis we get \(P_2 \vdash \Delta \vdash \rho : \star \), so we can build the derivation of the required conclusion \(P_1, P_2 \vdash \Delta \vdash \rho \vdash \star \).

Lemma 16. If \(\Delta \vdash \rho : \star \) and \(\rho \vdash P \) then \(\Delta \vdash P \).

Proof. By induction.

Theorem 2 (Elaborating Type Schemes). If \(\Delta \vdash \sigma : \kappa \) and \(\sigma \vdash \sigma' : \kappa \) then \(\epsilon \vdash \Delta \vdash \sigma' : \kappa \).
We also have the following elaboration derivation and so by a simple induction on \(P \) we have \(e \models \Delta, \alpha : \kappa \vdash P \models \rho : \star \). Finally, we can construct \(e \models \Delta \vdash \forall \alpha : \kappa. P \models \rho : \star \), as we wanted.

Case \(\forall \alpha : \kappa. \sigma \): By elaboration assumption \(\sigma \models \sigma' \). \(\forall \alpha : \kappa. \sigma \models \forall \alpha : \kappa. \sigma' \). The rest follows by induction. \(\Box \)

Theorem 3 (Elaborating User-defined Datatypes).

If \(e \vdash \text{data} \vdash C \alpha : \kappa = K \tau \) and \(\text{data} \vdash C \alpha : \kappa = K \tau \vdash P' \), then \(e \vdash \text{data} P' \), \(P \models C \alpha : \kappa = K \tau \).

Proof. We have the following derivation

\[
\Pi_1 = \frac{\alpha : \kappa \vdash \text{data} \vdash P \vdash C \alpha : \kappa \vdash K \tau_j}{\epsilon \vdash \text{data} \vdash C \alpha : \kappa = K \tau_j}
\]

We also have the following elaboration derivation

\[
\Pi_2 = \frac{P \vdash P'' \vdash P_j \vdash P' \vdash \{ \pi \mid \pi \in P'', P_j \land \pi \notin \text{wft}(C \alpha) \} \vdash \text{data} \vdash C \alpha : \kappa \vdash K \tau_j}{P \models C \alpha : \kappa = K \tau_j}
\]

We have \(\tau_j \vdash P_j \) and \(P_j \subseteq (P, P', \text{wft}(C \alpha)) \)

Now using them and applying Lemma 15 on the second hypothesis of \(\Pi_1 \) we get \(\text{wft}(C \alpha), P, P' \models C \alpha : \kappa \vdash \tau_j : \star \).

From Lemma 16 we have that \(C \alpha : \kappa \vdash \text{data} \models \text{wft}(C \alpha) \), \(P, P' \)

We can now build the required conclusion. \(\Box \)

Lemma 4 (Properties of entailment).

1. **Monotonicity:** If \(P \models \pi \) then \(P, P' \models \pi \).
2. **Cut:** If \(P \vdash \pi_1 \) and \(P, \pi_1 \vdash \pi_2 \) then \(P \vdash \pi_2 \).
3. **Closure under substitution:** If \(S \) is some well-kinded substitution, and \(P \vdash \pi \), then \(SP \vdash S \pi \).

Proof.

1. By induction.
2. By monotonicity and transitivity.
3. By induction. \(\Box \)

B INTERNAL LANGUAGE

\[
\begin{align*}
C, L & ::= (\to) \mid \top \kappa \mid \ldots & \text{type constants} \\
x & ::= \ldots & \text{term-level variables} \\
\alpha, \ell & ::= \ldots & \text{type-level variables} \\
\delta & ::= \ldots & \text{evidence variables} \\
s & ::= \star \mid \sigma \kappa \mid \ell \kappa \mid (\delta : \pi) \Rightarrow \kappa \\
k & ::= s \mid (\alpha : \kappa_1) \Rightarrow \kappa_2 \mid (\delta : \pi) \Rightarrow \kappa \kappa \\
\tau, \pi & ::= C \mid \alpha \mid \tau_1 \tau_2 \mid \tau \nu \mid \forall \alpha : \kappa. \tau \mid (\delta : \pi) \Rightarrow \tau v & \text{evidence terms} \\
u & ::= \delta \mid \nu \mid \ldots \kappa \nu \kappa \kappa \\
E & ::= x \mid \lambda x : \tau. E \mid E_1 E_2 \mid \nu \delta : \pi. E \mid E \nu \mid \Delta \alpha : \kappa. E \mid E \tau E \tau \Delta \kappa \kappa \kappa \kappa \kappa \\
\delta & ::= \epsilon \mid \Delta, \alpha : \kappa \mid \Delta, \delta : \pi \kappa \kappa \kappa \kappa \kappa \\
\Gamma & ::= \epsilon \mid \Gamma, x : \tau
\end{align*}
\]
Assumptions:

(1) There exists a relation $C : \kappa$ assigning kinds to type constants C. These kinds κ are closed—that is, they have no free variables.

(2) We write $\kappa_1 \rightarrow \kappa_2$ as an abbreviation for $(\alpha; \kappa_1) \rightarrow \kappa_2$ when α is not free in κ_2.

(3) We have $(\rightarrow) : (\alpha; \star) \rightarrow [\star \rightarrow \alpha \rightarrow \star] \rightarrow (\star; \star) \rightarrow (\star; \star)$ and $\star : \kappa$. We write $\tau_1 \rightarrow \tau_2$ for $(\rightarrow) \tau_1 \vdash \tau_2$.

(4) The typing judgment for evidence $\Delta \vdash \nu : \pi$ (defined below) contains rules for the unspecified evidence forms. These rules have the substitution property. That is, for any judgment \mathcal{J} in the rules’ premises, if we assume that $\Delta, \alpha; \kappa_2, \Delta', \mathcal{J}$ and $\Delta \vdash \nu_2 : \kappa_2$ implies $\Delta, [\nu_2 / \alpha] \Delta' \vdash \mathcal{J}$, then the conclusion $\Delta, [\nu_2 / \alpha] \Delta' \vdash \mathcal{J}$ also holds.
$$E_1 \rightarrow E_2$$

$$\frac{E_1 \rightarrow E_1'}{(\@=)} \quad \frac{(\lambda x:\tau.E_1) E_2 \rightarrow [E_2/x]E_1}{(\beta)}$$

$$\frac{E \rightarrow E'}{(\tau@=)} \quad \frac{(\Lambda \alpha: \kappa.E) \tau \rightarrow [\tau/\alpha]E}{(\tau\beta)}$$

$$\frac{E \tau \rightarrow E' \tau}{(\@=)} \quad \frac{E \rightarrow E'}{(v@=)} \quad \frac{(\lambda \delta: \pi.E\upsilon) \rightarrow [\upsilon/\delta]E}{(v\beta)}$$

Lemma 17 (Weakening in types). Assume $\Delta \subseteq \Delta'$ and, as usual, there are no repeated bindings in Δ'.

1. If $\Delta \vdash \kappa \triangleright \text{kind}$, then $\Delta' \vdash \kappa \triangleright \text{kind}$.
2. If $\Delta \vdash \tau \triangleright \kappa$, then $\Delta' \vdash \tau \triangleright \kappa$.
3. If $\Delta \vdash \upsilon \triangleright \pi$, then $\Delta' \vdash \upsilon \triangleright \pi$.

Proof. Straightforward mutual induction. □

Lemma 18 (Strengthening in types). Assume $\text{dom}(\Delta) \cap \text{dom}(\Delta') = \emptyset$

1. If $\Delta, \Delta' \vdash \kappa \triangleright \text{kind}$, then $\Delta \vdash \kappa \triangleright \text{kind}$.
2. If $\Delta, \Delta' \vdash \tau \triangleright \kappa$, then $\Delta \vdash \tau \triangleright \kappa$.
3. If $\Delta, \Delta' \vdash \upsilon \triangleright \pi$, then $\Delta \vdash \upsilon \triangleright \pi$.

Proof. Straightforward mutual induction. □

Lemma 19 (Weakening). If $\Delta; \Gamma \vdash E : \tau$, then $\Delta; \Gamma, \Gamma' \vdash E : \tau$. As usual, we assume $\text{dom}(\Gamma) \cap \text{dom}(\Gamma') = \emptyset$.

Proof. Straightforward induction on $\Delta; \Gamma \vdash E : \tau$. □

Lemma 20 (Strengthening). If $\Delta; \Gamma, x : \tau_2, \Gamma' \vdash E : \tau_1$ and x is not free in E, then $\Delta; \Gamma, \Gamma' \vdash E : \tau_1$.

Proof. Straightforward induction on $\Delta; \Gamma, x : \tau_2, \Gamma' \vdash E : \tau_1$. □

Lemma 21 (Substitution). If $\Delta; \Gamma, x : \tau_2, \Gamma' \vdash E_1 : \tau_1$ and $\Delta; \Gamma \vdash [E_2/x]E_1 : \tau_2$, then $\Delta; \Gamma, \Gamma' \vdash [E_2/x]E_1 : \tau_1$.

Proof. By induction on $\Delta; \Gamma, x : \tau_2, \Gamma' \vdash E_1 : \tau_1$.

Case VAR: We know $E = x'$. We have three cases:

- **Case $x' \in \Gamma$**: Then $[E_2/x]E_1 = E_1$ and we are done by strengthening (Lemma 20).
- **Case $x' = x$**: We are done by assumption and weakening (Lemma 19).
- **Case $x' \notin \Gamma$**: Similar to first sub-case.

Other cases: By the induction hypothesis. □

Lemma 22 (Type substitution in types). If $\Delta \vdash \tau_2 : \kappa_2$:

1. If $\Delta, \alpha: \kappa_2, \Delta' \vdash \kappa_1$ kind, then $\Delta, [\tau_2/\alpha] \Delta' \vdash [\tau_2/\alpha] \kappa_1$ kind.
2. If $\Delta, \alpha: \kappa_2, \Delta' \vdash \tau_1 : \kappa_1$, then $\Delta, [\tau_2/\alpha] \Delta' \vdash [\tau_2/\alpha] \tau_1 : [\tau_2/\alpha] \kappa_1$.
3. If $\Delta, \alpha: \kappa_2, \Delta' \vdash \upsilon : \pi$, then $\Delta, [\tau_2/\alpha] \Delta' \vdash [\tau_2/\alpha] \upsilon : [\tau_2/\alpha] \pi$.

Proof. Proof is by mutual induction and structural analysis on each sub parts.
(1) We have three cases:

- **Case s**: This case is trivial as \(s \) can be \(\star \) or \(0 \). Both cases are idempotent to substitution.
- **Case \((\alpha;\kappa_1) \rightarrow \kappa_2 \)**: By induction on hypothesis of the derivation and Lemma 17.
- **Case \(\pi \Rightarrow \kappa \)**: By induction on hypothesis of the derivation and Lemma 17

(2) We have six cases:

- **Case C**: by induction on the hypothesis of derivation and weakening.
- **Case \(\alpha' \)**: This has three sub-cases:
 - **Case \(\alpha' \in \Delta \)**: The substitution is idempotent and Lemma 18
 - **Case \(\alpha' = \alpha \)**: This the proved by assumption and Lemma 17
 - **Case \(\alpha' \in \Delta' \)**: this is similar to sub-case 1
- **Case \(\tau_1 \tau_2 \)**: by induction hypothesis of derivation and Lemma 17.
- **Case \(\tau \vdash \rho \)**: by induction hypothesis of derivation and Lemma 17.
- **Case \((\delta;\pi) \Rightarrow \tau \)**: by induction hypothesis of derivation and Lemma 17.

(3) we have two cases:

- **Case \(\delta \)**: similar to case \(\alpha' \)
- **Case \(\Diamond \)**: by induction hypothesis and Lemma 17

Lemma 23 (Type Substitution). If \(\Delta, \alpha;\kappa, \Delta'; \Gamma \vdash_1 E : \tau \) and \(\Delta \vdash_\tau \tau' : \kappa \), then \(\Delta, [\tau'/\alpha]\Delta'; [\tau'/\alpha]\Gamma \vdash_1 [\tau'/\alpha]E : [\tau'/\alpha]\tau \).

Proof. By induction and appeal to Lemma 22.

Lemma 24 (Evidence Substitution in Types). If \(\Delta \vdash_1 \pi_2 : \pi_1 \):

1. If \(\Delta, \delta;\pi_2, \Delta', \alpha; \Gamma \vdash_1 \tau \), then \(\Delta, [\pi_2/\delta]\Delta', \alpha; \Gamma \vdash_1 [\pi_2/\delta]\tau \).
2. If \(\Delta, \delta;\pi_2, \Delta', \alpha; \Gamma \vdash_1 \tau_1 \), then \(\Delta, [\pi_2/\delta]\Delta', \alpha; \Gamma \vdash_1 [\pi_2/\delta]|\tau_1 : [\pi_2/\delta]|\kappa_1 \).
3. If \(\Delta, \delta;\pi_2, \Delta', \alpha; \Gamma \vdash_1 \tau_1 \), then \(\Delta, [\pi_2/\delta]\Delta', \alpha; \Gamma \vdash_1 [\pi_2/\delta]|\tau_1 : [\pi_2/\delta]|\kappa_1 \).

Proof. The proof is a standard proof of a substitution property, relying on our assumption that the \(\Delta \vdash_1 \tau : \pi \) relation supports substitution.

Lemma 25 (Evidence Substitution). If \(\Delta, \delta;\pi, \Delta'; \Gamma \vdash_1 E : \tau \) and \(\Delta \vdash_\tau \pi : \pi \), then \(\Delta, [\pi/\delta]\Delta'; [\pi/\delta]|\Gamma \vdash_1 [\pi/\delta]|E : [\pi/\delta]|\tau \).

Proof. By induction and appeal to Lemma 24.

Theorem 6 (Preservation). If \(\Delta; \Gamma \vdash_1 E : \tau \) and \(E \rightarrow E' \), then \(\Delta; \Gamma \vdash_1 E' : \tau \).

Proof. By induction on \(E \rightarrow E' \).

Congruence rules \((\approx) \): By the induction hypothesis.

- **Case \((\beta) \)**: By the substitution lemma (21).

- **Case \((\tau \beta) \)**: By the type substitution lemma (23).

- **Case \((\upsilon \beta) \)**: By the evidence substitution lemma (25).

Definition 26 (Values). The three abstraction forms of expressions \(E \) are considered values. Other expression forms are not values.

Lemma 27 (Canonical Forms). Assume \(E \) is a value.

1. If \(\Delta; \Gamma \vdash_1 E : \tau_1 \rightarrow \tau_2 \), then \(E = \lambda x: \tau_1 . E' \) for some \(E' \).
2. If \(\Delta; \Gamma \vdash_1 E : \forall \alpha;\kappa. \tau \), then \(E = \Lambda \alpha;\kappa. E' \) for some \(E' \).
3. If \(\Delta; \Gamma \vdash_1 E : (\delta;\pi) \Rightarrow \tau \), then \(E = \Lambda \delta;\pi . E' \) for some \(E' \).
Proof. Straightforward case analysis.

Theorem 7 (Progress). If $\Delta; \epsilon \vdash E : \tau$, then either E is a value or there exists E' such that $E \rightarrow E'$.

Proof. By induction on the typing derivation.

Case `Var`: Impossible.

Case `→ E`: We use the induction hypothesis on the first premise, learning that E_1 is either a value or steps. If it steps, we are done by \approx. If it is a value, we invoke Lemma 27 and step by β.

Case `→ I`: E is a value.

Other cases: Similar to the cases above.

C COMPILATION

We define compilation by the set of judgments below. Compilation relies on two auxiliary structures and one auxiliary judgment:

$$
\psi ::= \epsilon \mid \psi, \alpha : \kappa \quad \mu ::= \epsilon \mid \mu, \alpha \mapsto \psi \mid \mu, \pi \mapsto \delta
$$

$$
\begin{align*}
\Delta \vdash \psi & \quad \text{telescopes} \\
\Delta \vdash \kappa & \quad \Delta, \alpha : \kappa \vdash \psi & \quad \text{compilation contexts} \\
\end{align*}
$$

$$
\begin{align*}
\Delta \vdash \psi & \quad \text{tele} \\
\end{align*}
$$

Lemma 28 (Weakening in telescopes). If $\Delta \subseteq \Delta'$ and $\Delta \vdash \psi$ tele, then $\Delta' \vdash \psi$ tele.

Proof. Straightforward induction.

The judgments defining compilation follow:

$$
\begin{align*}
\kappa; \psi & \rightarrow \kappa'; \psi' \\
\kappa_1; \epsilon & \rightarrow \kappa_1'; \psi_1 \quad \psi' = \psi, \psi_1, \alpha \kappa'_1 \\
\kappa_2; \psi' & \rightarrow \kappa_2'; \psi_2 \quad \psi'_2 = \ell((\forall \psi_1. \forall \psi_1. \kappa_1' \rightarrow \alpha)), \psi_2 \\
\star; \psi & \rightarrow \star; \epsilon \\
\kappa_1 & \rightarrow \kappa_2; \psi \rightarrow \forall \psi_1. (\alpha \kappa'_1) \rightarrow \ell \text{dom}(\psi) \text{dom}(\psi_1) \alpha \Rightarrow \kappa_2'; \psi'_2 \\
\Delta & \rightarrow \Delta'; \mu \\
\epsilon & \rightarrow \epsilon; \epsilon \\
\Delta, \alpha : \kappa & \rightarrow \Delta', \psi_{\alpha : \kappa'}; \mu, \alpha & \rightarrow \psi \\
\Delta & \vdash P \rightarrow \Delta'; \mu \\
\Delta & \vdash \epsilon \rightarrow \Delta'; \mu \\
\Delta & \vdash P \rightarrow \Delta', \mu \\
\Delta & \vdash P \vdash \pi \text{ pred} \rightarrow_{\mu} \pi' \\
\Delta & \vdash P, \pi \rightarrow \Delta', \delta : \pi'; \mu, \pi & \rightarrow \delta
\end{align*}
$$
\[
P | \Delta \vdash \sigma : \kappa \leadsto_{\mu} \tau; \overline{\tau}
\]
\[
\alpha; \kappa \in \Delta \quad \alpha \mapsto \psi \in \mu \\
P | \Delta \vdash \alpha : \kappa \leadsto_{\mu} \alpha; \text{dom}(\psi) \\
P | \Delta \vdash \sigma : \kappa \leadsto_{\mu} \text{dom}(\psi) \\
P | \Delta \vdash C : \kappa \leadsto_{\mu} C; \text{lookup}(C)
\]
\[
\kappa; \epsilon \leadsto \kappa' ; \psi \\
P | \Delta, \alpha; \kappa \vdash \sigma : \star \leadsto_{\mu, \alpha \mapsto \psi} \tau; \overline{\tau}
\]
\[
P | \Delta \vdash \forall \alpha; \kappa. \sigma : \star \leadsto_{\mu} \forall \psi. \forall \alpha; \kappa'. \tau; \epsilon
\]
\[
P | \Delta \vdash \tau_1 : \kappa_1 \rightarrow \kappa_2 \leadsto_{\mu} \tau_1'; \overline{\tau} \\
P | \Delta \vdash \tau_2 : \kappa_1 \leadsto_{\mu} \tau_2'; \overline{\tau'}
\]
\[
P[\tau_1 @ \tau_2 \leadsto_{\mu} \tau ; \overline{\tau'} = [\tau_0 ; \tau_1 ' ; \tau_2 ' | \tau_0 \leftarrow \text{tail}(\overline{\tau})]
\]
\[
P | \Delta \vdash \tau_1 \tau_2 : \kappa_2 \leadsto_{\mu} \tau_1' \tau_2' \tau_2 ' \tau_1' ; \overline{\tau''}
\]
\[
P | \Delta \vdash \pi \leadsto_{\mu} \pi' \\
P, \pi | \Delta \vdash \rho : \star \leadsto_{\mu, \pi \mapsto \delta} \tau; \overline{\tau}
\]
\[
P | \Delta \vdash \rho : \star \leadsto_{\mu} (\delta : \pi') \Rightarrow \tau; \epsilon
\]
\[
P | \Delta \vdash \pi \leadsto_{\mu} \star
\]
\[
P | \Delta \vdash \tau_1 : \kappa_1 \rightarrow \kappa_2 \leadsto_{\mu} \tau_1 ; \pi; \overline{\tau} \\
P | \Delta \vdash \tau_2 : \kappa_1 \leadsto_{\mu} \tau_2'; \overline{\tau'}
\]
\[
P | \Delta \vdash \tau_1 @ \tau_2 \leadsto_{\mu} \pi ; \overline{\tau'} \tau_2'
\]
\[
L : \kappa_i \rightarrow \text{pred} \\
P | \Delta \vdash \tau_1 : \kappa_i \leadsto_{\mu} \tau_1'; \overline{\tau'}
\]
\[
P | \Delta \vdash L \tau_i \leadsto_{\mu} \tau_i \overline{\tau'} \tau_i'
\]
\[
P[\pi \mapsto \delta \in \mu \\
\text{solve}(\pi) \leadsto v \\
P[\pi \mapsto \mu \delta \\
P[\pi \mapsto \mu \tau]
\]
\[
\begin{array}{c}
P | \Delta; \Gamma \vdash E : \sigma \leadsto_{\mu} E' \\
\end{array}
\]

\[
\begin{array}{c}
x : \sigma \in \Gamma \\
\end{array}
\]

\[
\begin{array}{c}
P | \Delta; \Gamma \vdash x : \sigma \leadsto_{\mu} x \\
\end{array}
\]

\[
\begin{array}{c}
P | \Delta; \Gamma \vdash E_1 : \sigma \leadsto_{\mu} E'_1 \\
P | \Delta \vdash \sigma : \star \leadsto_{\tau'} ; \tau'' \\
P | \Delta, \Gamma, x : \sigma \vdash E_2 : \tau \leadsto_{\mu} E'_2 \\
P | \Delta; \Gamma \vdash \text{let } x = E_1 \text{ in } E_2 : \tau \leadsto_{\mu} (\lambda x : \tau' ; E'_2) E'_1 \\
P | \Delta; \Gamma \vdash E_1 : \tau_1 \leadsto_{\mu} E'_1 \\
P | \Delta; \Gamma \vdash E_2 : \tau_2 \leadsto_{\mu} E'_2 \\
P | \Delta; \Gamma, x : \tau_1 \vdash E : \tau_2 \leadsto_{\mu} E' \\
P | \Delta \vdash \tau_1 \rightarrow \tau_2 : \star \leadsto_{\mu} \tau'_1 \rightarrow \tau'_2 ; \tau'' \\
P | \Delta; \Gamma \vdash E : \pi \Rightarrow \rho \leadsto_{\mu} E' \\
P | \Delta \vdash \pi \Rightarrow \rho \leadsto_{\mu} \lambda \delta : \pi'. E' \\
P | \Delta; \Gamma \vdash E : \forall \alpha : \kappa. \sigma \leadsto_{\mu} E' \\
P | \Delta \vdash \tau : \kappa \leadsto_{\mu} \tau'' ; \tau \\
\end{array}
\]

Assumptions regarding compilation:

1. For every \(C \), \(\text{lookup}(C) \) is a list of types \(\pi_i \) such that \(\pi_i \) is the constraint induced when \(C \) is applied to its \(i \)th argument.

2. For every \(C : \kappa \) in the source program, we have \(C : \lbrack \text{lookup}(C) / \text{dom}(\psi) \rbrack \kappa' \) in the internal language, where \(\kappa ; e \leadsto \kappa' ; \psi \).

3. For every \(L : \overline{\psi}_i \rightarrow \text{pred} \) in the source program, we have \(L : \forall \overline{\psi}_i, \kappa'_i \rightarrow o \) in the internal language, where \(\kappa_i ; e \leadsto \kappa'_i ; \psi_i \).

4. When \(C : \overline{\psi} \rightarrow s \) in the source language and \(\text{lookup}(C) = \overline{\pi}_i \), we have \(\pi_i : \forall \overline{\psi}_1 < j \leq i, \kappa'_i \) where \(\kappa_i ; e \leadsto \kappa'_i ; \psi_i \).

5. Classes \(L \) are treated identically to type constants \(C \) for the previous assumption.

6. For every \(L, \text{lookup}(L) \) is a list of types \(\overline{\kappa}'_i \), where the length of the list equals the length of the list in \(L : \overline{\kappa}_i \rightarrow o \) and the \(\kappa_i \) are chosen to uphold the previous assumption.

7. There is a solver for predicates \(\pi \) such that \(\text{solve}(\pi) \leadsto v \) implies that, when \(e \mid e \vdash \pi \rightarrow_{\epsilon} \pi' \), then \(e \vdash_{\tau} u : \pi' \).

The kind compilation judgment takes two inputs and produces two outputs. This is necessary because compiling a kind produces a kind that quantifies over fresh variables, and so we have to communicate these variables out to the caller. In addition, a compound kind, such as \(\star \rightarrow \star \rightarrow \star \), will quantify over more variables at each arrow. (See the \(\texttt{lift} \) example in the main text.) Thus, the
input ψ are all the bindings that we have created so far, scanning left to right; the output ψ are those that will have to be quantified over when quantifying over a variable of the output kind.

Definition 29 (Vector typing). We write $\Delta \vdash \tau : \psi$ to mean that the types τ have the right kinds to be used as arguments to a type of kind $\forall \psi. \kappa$.

Lemma 30 (Kind compilation). For all source-language kinds κ and telescopes ψ, if $\Delta \vdash \psi$ tele and $\kappa ; \psi \leadsto \kappa' ; \psi'$, then $\Delta \vdash \psi' \tau \text{ and } \Delta, \psi' \vdash \kappa'$ kind.

Proof. By induction on the structure of κ.

Case $\kappa = \ast$: The result is trivial.

Case $\kappa = \kappa_1 \rightarrow \kappa_2$: We use the metavariabes as they occur in the rule:

$$
\begin{align*}
\kappa_1; e & \leadsto \kappa'_1; \psi_1 \\
\kappa_2; \psi' & \leadsto \kappa'_2; \psi_2 \\
\psi_2' &= \ell(\forall \psi. \nu \psi. \kappa_1 \rightarrow o), \psi_2
\end{align*}
$$

We consider the resulting kind one piece at a time:

- We know $\Delta, \psi_2', \psi_1 \vdash \kappa_1$ tele by the induction hypothesis. We thus must show that $\Delta, \psi_2', \psi_1 \vdash (\alpha; \kappa_1') \rightarrow \ell \, \text{dom}(\psi) \, \text{dom}(\psi_1) \alpha \Rightarrow \kappa_2'$ kind.
- We know $\Delta, \psi_2', \psi_1 \vdash \kappa_1'$ kind by the induction hypothesis. We thus must show that $\Delta, \psi_2', \psi_1, \alpha; \kappa_1' \vdash \ell \, \text{dom}(\psi) \, \text{dom}(\psi_1) \alpha \Rightarrow \kappa_2'$ kind.
- We must show $\Delta, \psi_2', \psi_1, \alpha; \kappa_1' \vdash \ell \, \text{dom}(\psi) \, \text{dom}(\psi_1) \alpha : o$. Let the kind environment be denoted by Δ'. By construction of ψ_2', we see that $\Delta' \vdash \ell : \forall \psi. \nu \psi. \kappa_1' \rightarrow o$. By repeated use of the application rule for types and using the weakening lemma (Lemma 17), we have our desired outcome. (Note that the substitution in the kind of the application rule has no effect, because we end up substituting variables for themselves.)
- It remains only to show that $\Delta', \delta : \ell \, \text{dom}(\psi) \, \text{dom}(\psi_1) \alpha \Rightarrow \kappa_2'$ kind. In order to use the induction hypothesis on $\kappa_2; \psi' \leadsto \kappa_2' ; \psi_2'$, we must show that $\Delta, \psi' \rightarrow \kappa_1$ tele. We get this result from a fresh use of the induction hypothesis on $\kappa_1; e \leadsto \kappa_1' ; \psi_1$ and weakening (Lemma 28). We know use the induction hypothesis to get $\Delta, \psi_2 \vdash \kappa_2'$ kind, and weakening (Lemma 17) gives us our desired result.

\[\square\]

Lemma 31 (Kind compilation yields fresh bindings). If $\kappa; \psi \leadsto \kappa' ; \psi'$, all variables bounds in ψ' are fresh. In particular, $\text{dom}(\psi) \cap \text{dom}(\psi') = \emptyset$.

Proof. Straightforward induction.

\[\square\]

Lemma 32 (Bindings during kind compilation). If $\kappa; \psi_0 \leadsto \kappa'; \psi_1$, then $\kappa; \psi_2, \psi_0 \leadsto \kappa''; \psi_3$, where $\kappa'' = [\overline{\tau}/\text{dom}(\psi_1)]\kappa'$ and $\overline{\tau} = [\tau_0 \text{dom}(\psi_2) \mid \tau_0 \leftarrow \text{dom}(\text{binds}_3)]$. Furthermore, for every i, if $\psi_i = \ell_i : \kappa_i$, then $\psi_{3i} = \ell_2 : \forall \psi_2. \kappa_i$.

Proof. By induction on the structure of κ.

Case $\kappa = \ast$: Trivially true.

Case $\kappa = \kappa_1 \rightarrow \kappa_2$: From the rule, we see that $\kappa' = \forall \psi_1'. (\alpha; \kappa'_1) \rightarrow \ell_1 \, \text{dom}(\psi_0) \, \text{dom}(\psi'_1) \alpha \Rightarrow \kappa'_2$, where $\kappa_2; \psi_0, \psi_1', \alpha; \kappa'_1 \leadsto \kappa'_2 ; \psi_2'$. We also see that $\kappa'' = \forall \psi_1'. (\alpha; \kappa'_1) \rightarrow \ell_2 \, \text{dom}(\psi_2) \, \text{dom}(\psi'_1) \alpha \Rightarrow \kappa''_2$, where $\kappa_2; \psi_0; \psi_1', \alpha; \kappa'_1 \leadsto \kappa''_2 ; \psi''_2'$. We must show that $\kappa'' = [\overline{\tau}/(\ell_1 \, \text{dom}(\psi'_1))]\kappa'$, where $\overline{\tau} = [\tau_0 \text{dom}(\psi_2) \mid \tau_0 \leftarrow \text{dom}(\psi''_2)]$. In other words, $\overline{\tau} = (\ell_2 \, \text{dom}(\psi_2), [\tau_0 \text{dom}(\psi_2) \mid \tau_0 \leftarrow \text{dom}(\psi''_2)]$. Propagating the substitution into κ' (and using Lemmas 31 and 30 to discard identity substitutions), we get that we want to show $\kappa'' = \forall \psi_1'. (\alpha; \kappa'_1) \rightarrow \ell_2 \, \text{dom}(\psi_2) \, \text{dom}(\psi_0) \, \text{dom}(\psi'_1) \alpha \Rightarrow \kappa''_2$.}

, Vol. 1, No. 1, Article . Publication date: September 2019.
\([\text{tail}(\tau)/\text{dom}(\psi'_2)]k'_2\). It remains only to show that \(k'_2 = [\text{tail}(\tau)/\text{dom}(\psi'_2)]k'_2\). This comes directly from the induction hypothesis, and so we are done.

The relationship between the \(\psi_3\) and the \(\psi_1\) is by straightforward use of the inductive hypothesis.

\[\square\]

Lemma 33 (Kind compilation bindings are independent). If \(\kappa; \psi_0 \rightsquigarrow \kappa'; \psi_1\), then no variable bound in \(\psi_1\) is used in a kind in \(\psi_1\).

Proof. Straightforward induction. \[\square\]

Lemma 34 (Type compilation). Assume \(\Delta \vdash P \rightsquigarrow \Delta' ; \mu\).

1. If \(\kappa; e \rightsquigarrow k'; \psi\) and \(P \vdash \sigma : k' \rightsquigarrow _\mu \tau; \tau\), then \(\Delta' \vdash \tau' : [\tau'/\text{dom}(\psi)]k'\) and \(\Delta' \vdash \tau' : \psi\).
2. If \(P \rightarrow \Delta \vdash \tau\) and \(\tau \rightsquigarrow _\mu \pi'\), then \(\Delta' \vdash \pi' : \alpha\).
3. If \(P \vdash \Delta + \pi \rightarrow _\mu \tau\) and \(P \vdash \pi \rightarrow _\mu \mu\), then \(\Delta' \vdash \mu : \pi'\).

Proof. By mutual induction on the provided type derivation.

Case \(\sigma = \alpha\): We must show \(\Delta' \vdash \tau\). Let \(\Delta \vdash \alpha \rightsquigarrow _\mu \tau; \tau\). This follows from the definition of \(\Delta'\) and the compilation of \(\kappa\). Note that \(\psi\) is a sub-context of \(\Delta'\).

Case \(\sigma = C\): We must show \(\Delta' \vdash C\). This comes directly from the kind-compilation lemma (Lemma 30).

Thus, we now must show \(\Delta', \psi_2 \vdash \forall \alpha : k' \vdash \tau\). Our next step is to show \(\Delta', \psi_2 \vdash k'_2\) kind. This also comes directly from Lemma 30. We now must show \(\Delta', \psi_2, \alpha : k' \vdash \tau\).

By the definition of compilation, we see that \(\Delta, \psi_2, \alpha : k_2 \vdash P \rightarrow \Delta', \psi_2, \alpha : k'_2; \mu, \alpha \vdash \psi_2\). We can thus use the induction hypothesis to get our desired result.

Case \(\sigma = \tau_1 \tau_2\): We adopt the metavariable names from the rule:

\[
\begin{align*}
P \vdash \tau_1 : k_1 & \vdash \tau_2 : k_2 \rightsquigarrow _\mu \tau'_1; \tau'_2; \tau' & \quad P \vdash \tau_2 : k_1 \rightsquigarrow _\mu \tau'_1; \tau'_2; \tau' \\
P \vdash \tau_1 \@ \tau_2 & \rightsquigarrow _\mu \mu & \quad \tau'' = [\tau_0 \tau'_1 \tau'_2 ; \tau_0 \leftarrow \text{tail}(\tau)]
\end{align*}
\]

We must show \(\Delta' \vdash \tau_1 \tau'_1 \tau'_2 \psi : [\tau''/\text{dom}(\psi_2)]k'_2\) where \(k'_2 ; \epsilon \rightsquigarrow k'_2 ; \psi_2\).

- Let \(\kappa'_1\) and \(\psi_1\) be defined by \(\kappa_1 ; \epsilon \rightsquigarrow \kappa'_1 ; \psi_1\).
- Let \(k_1 \rightarrow k_2 ; \epsilon \rightsquigarrow \forall \psi_1, (\alpha : \kappa'_1) \rightarrow \ell \text{ dom}(\psi_1) \alpha \Rightarrow k'_2 ; \ell ; (\forall \psi_1, \kappa'_1 \rightarrow o) , \psi'_2 \) where \(k_2 ; \psi_1, \alpha : \kappa'_1 \rightarrow k'_2 ; \psi'_2\).
- Let \(k_0\) denote the output kind of compiling \(k_1 \rightarrow k_2\).

- Thus, the induction hypothesis tells us that \(\Delta' \vdash \tau_1 : [\ell/\text{dom}(\psi'_2)]k_0\).
- Lemmas 31 and 30, taken together, tell us that this substitution does not affect \(\psi_1\) nor \(\kappa'_1\).
- Propagating the substitution gives us \(\Delta' \vdash \tau_1 : \forall \psi_1, (\alpha : \kappa'_1) \rightarrow \text{head}(\tau) \text{ tail}(\tau) \alpha \Rightarrow [\ell/\text{dom}(\psi'_2)]k'_2\).
- We now must show that \(\Delta' \vdash \tau'' : \psi_2\). This comes directly from the induction hypothesis.
- Using the application typing rule, we see that \(\Delta' \vdash \tau_1 \rightarrow \tau'' : (\alpha ; [\tau''/\psi_1]k'_1) \rightarrow \text{head}(\tau) \text{ tail}(\tau) \alpha \Rightarrow [\tau'/\psi_1][\tau''/\ell, \text{dom}(\psi'_2)]k''_2\), where we have omitted substitutions that are guaranteed not to have an effect.
- We now must show \(\Delta' \vdash \tau'_1 \psi'_1 : [\tau''/\psi_1]k'_{2}'\). This comes directly from the induction hypothesis.
- We now know \(\Delta' \vdash \tau'_1 \tau'_2 : \text{head}(\tau) \text{ tail}(\tau) \tau'_2 \Rightarrow [\tau'_2/\alpha][\tau''/\psi_1][\tau''/\ell, \text{dom}(\psi'_2)]k''_2\).
We now must show \(\Delta' \vdash v : \text{head}(\tau)\text{tail}(\tau)' \). The induction hypothesis tells us that, if \(P \mid \Delta \vdash t_1 @ t_2 \vdash \sim_\mu \pi', \) then \(\Delta' \vdash v : \pi' \). Examining the rule in the compilation of predicates, we see that \(\pi' = \text{head}(\tau)\text{tail}(\tau)' \), as desired.

We now know \(\Delta' \vdash t_1' \overrightarrow{\gamma} t_2' : \pi' \). By Lemma 32, we see that \(\kappa_2' = [\pi_0 \text{dom}(\psi_2) \alpha | \pi_0 \leftarrow \text{dom}(\psi_2') \text{dom}(\psi_2)] \kappa_2'. \) To finish this part of the proof, we need only show that \(\overrightarrow{\gamma} = [\pi_0 \overrightarrow{\gamma_2'} | \pi_0 \leftarrow \text{tail}(\pi)] \), which it does by definition.

We must still show \(\Delta' \vdash \overrightarrow{\gamma} : \psi_2 \).

The induction hypothesis tells us that \(\Delta' \vdash \overrightarrow{\gamma} : \ell : ((\forall \psi_1. \kappa_1' \rightarrow o), \psi_2' \). Looking at only the tail of the list, we see \(\Delta' \vdash \text{tail}(\overrightarrow{\gamma}) : \psi_2' \) (using the fact that, according to the definition of kind compilation, \(\ell \) does not appear later in the bindings output from that function).

The induction hypothesis also tells us that \(\Delta' \vdash \overrightarrow{\gamma} : \psi_1 \).

By Lemma 33, we know that we can view the judgment we must show simply as a list of typing judgments—there is no dependency among the components.

Fix \(i \). We must show \(\Delta' \vdash t_{i''} : \text{range}(\psi_{2i}) \), where \(t_{i''} = t_{i+1}' \overrightarrow{\gamma} t'_{i''} \).

We see that \(\Delta' \vdash t_{i+1} : \text{range}(\psi_i) \).

Lemma 32 tells us that \(\text{range}(\psi_i) = (\forall \psi_1. \forall \alpha : \kappa_1'. \text{range}(\psi_2)) \).

Thus, \(\Delta' \vdash t_{i+1} : \forall \psi_1. \forall \alpha : \kappa_1'. \text{range}(\psi_2) \).

We can thus say that \(\Delta' \vdash t_{i+1} \overrightarrow{\gamma} : \forall \alpha : (\overrightarrow{\gamma}/\text{dom}(\psi_1)) \kappa_1'.\overrightarrow{\gamma}/\text{dom}(\psi_1)) \text{range}(\psi_2) \).

The induction hypothesis tells us that \(\Delta' \vdash t_{i'} : (\overrightarrow{\gamma}/\text{dom}(\psi_1)) \kappa_1'. \)

We thus conclude that \(\Delta' \vdash t_{i+1}' \overrightarrow{\gamma} : t_{i''} : (\overrightarrow{\gamma}/\text{dom}(\psi_1)) \text{range}(\psi_2) \).

There is no \(i \) does not appear later in the bindings output from that function).

The substitution has no effect, and we are done.

Case \(\sigma = \pi \Rightarrow \rho \): We must show \(\Delta' \vdash (\delta ; \pi') \Rightarrow \tau : \star \), where \(P \mid \Delta \vdash \pi \vdash \sim_\mu \pi' \) and \(P, \pi | \Delta' \vdash \rho : \star \sim_\mu \pi' ; \pi, \tau \).

We first show \(\Delta' \vdash \pi : o \). This comes directly from the induction hypothesis.

We then must show \(\Delta', \delta, \pi : \tau : \star \). In order to use the induction hypothesis, we first must show \(\Delta \mid P, \pi \sim \delta, \delta, \pi : \mu, \pi \Rightarrow \delta \). This fact comes from the definition of compilation of \(P \), and so we are done.

Case \(\pi = t_1 \@ t_2 \): We must show \(\Delta' \vdash \pi' \overrightarrow{\gamma} t_2' : o \), where \(P \mid \Delta \vdash t_1 : \kappa_1 \vdash \pi_2 \vdash \sim_\mu \pi_1 ; \pi', \tau \) and \(P \mid \Delta \vdash t_2 : \kappa_1 \vdash \pi_2 ; \pi' \).

The induction hypothesis (and the definition of kind compilation) tells us \(\Delta' \vdash \pi, \overrightarrow{\gamma} : \ell : ((\forall \psi_1. \kappa_1' \rightarrow o), \psi_2) \), where \(\kappa_1 : \epsilon \vdash \kappa_1', \psi_1 \) and \(\kappa_2 : \psi_2, \alpha : \kappa_1' \vdash \kappa_2', \psi_2 \).

Thus, \(\Delta' \vdash \pi : \forall \psi_1. \kappa_1' \rightarrow o \).

The application rule tells us \(\Delta' \vdash \pi : (\overrightarrow{\gamma}/\psi_1) \kappa_1' \rightarrow o \).

The induction hypothesis tells us \(\Delta' \vdash \pi : (\overrightarrow{\gamma}/\psi_1) \kappa_1' \).

One more use of the application rule gives us our desired outcome.

Case \(\pi = L \overrightarrow{\gamma} \): This case follows from the induction hypothesis and our assumption of the compilation of class kinds.

Case \(P \vdash \pi \sim_\mu \psi \) where \(\pi \vdash \delta \in \mu \): We must show \(\Delta' \vdash \delta : \pi' \), where \(P \mid \Delta \vdash \pi \vdash \sim_\mu \pi' \).

This comes directly from the definition of compilation of predicate environments.

Case \(P \vdash \pi \sim_\mu \psi \) where solve(\pi') \vdash \psi \): By assumption.

\[\square \]

Lemma 35 (Compilation of function types). If \(P \mid \Delta \vdash t_1 \rightarrow t_2 : \star \sim_\mu \tau_3 ; \epsilon, \) then \(\tau_3 = \tau_4 \rightarrow \tau_5 \), where \(P \mid \Delta \vdash t_1 : \star \sim_\mu \tau_4 ; \epsilon \) and \(P \mid \Delta \vdash t_2 : \star \sim_\mu \tau_5 ; \epsilon \).
Proof. Recall that \(\tau_1 \rightarrow \tau_2 \) means \((\rightarrow)\tau_1 \diamond \tau_2 \diamond\). We can then get the desired result recalling that compiling a type of kind \(\star \) produces no list of types as output and that compiling \((\rightarrow)\) \@ \(\tau_1 \) and \((\rightarrow)\) \@ \(\tau_2 \) both produce \(\top \) constraints. □

Lemma 36 (Expression compilation). If \(\Delta \vdash P \{ \Delta \prime \}; \mu \) and \(P \vdash E : \sigma \sim_{\mu} E' \), then \(P \vdash \Delta \vdash \sigma : \star \sim_{\mu} \tau ; \epsilon \) and \(\Delta \prime ; \Gamma \vdash E' : \tau \), where \(\Gamma \prime \) is the result of compiling each type in \(\Gamma \).

Proof. If \(E \) is well-typed, then \(P \vdash \Delta \vdash \sigma : \star \) by Theorem 1. Thus, we know \(P \vdash \Delta \vdash \sigma : \star \sim_{\mu} \tau ; \epsilon \) (noting that compiling a type of kind \(\star \) always yields an empty list of types as its second output) by the similarity in the structure of source-language typing and compilation.

For the second result, proceed by induction, frequently appealing to Lemma 34.

Case (\texttt{var}): By the definition of \(\Gamma \prime \).

Case (\texttt{let}): By induction and straightforward use of typing rules.

Case (\texttt{→E}): By induction, appeal to Lemma 35, and straightforward use of typing rules.

Case (\texttt{→I}): By induction, appeal to Lemma 35, and straightforward use of typing rules.

Case (\texttt{⇒E}): By induction and straightforward use of typing rules.

Case (\texttt{⇒I}): By induction and straightforward use of typing rules.

Case (\texttt{∀E}): By induction, appeal to Lemma 30, and straightforward use of typing rules.

Case (\texttt{∀I}): By induction, appeal to Lemma 30, and straightforward use of typing rules.

□

Theorem 8 (Compilation). If \(\epsilon \vdash \epsilon ; \epsilon \vdash E : \sigma \sim_{\epsilon} E' \), then \(\epsilon \vdash \epsilon : \star \sim_{\epsilon} \tau ; \epsilon \) and \(\epsilon ; \epsilon \vdash E' : \tau \).

Proof. Corollary of Lemma 36. □

D PROTOTYPE IMPLEMENTATION DETAILS

D.1 Polymorphic Kinds

The three-parameter constraint \(f \@ a = r \) implemented in our prototype works at any kinds \(\kappa_1 \) and \(\kappa_2 \), as long as \(f :: \kappa_1 \rightarrow \kappa_2 \), \(a :: \kappa_1 \), and \(r :: \kappa_2 \). However, Hugs does not support general polymorphism in kinds. We thus had to add custom code to check the kinds of the components of the three-part constraint. For similar reasons, Hugs’ normal functional dependencies could not fix \(r \) from \(f \) and \(a \), requiring more custom handling.

D.2 Syntactic Sugar

Our implementation supports both \(\@ \) constraints and also \(\text{wft} \) constraints, where we understand \(\text{wft} \) constraint to expand to a sequence of \(\@ \) constraints. For example, we write \(\text{wft} \ (a \ b \ c) \) to mean \((a \@ b, a \ b @ c)\) (or, in the 3-parameter version, \(a \@ b = ab, ab @ c = abc \) for fresh type variables \(ab, abc \)).

D.3 Limitations

Our implementation is just an experimental prototype and it is not ready or intended for use in general program development. In particular, the prototype does not implement general support for user definitions of partial type constructors (i.e., for definitions of datatypes that require a context to specify constraints on their parameters). Even so, our test scenario is not trivial because the implementation must still generate and handle constraints for arbitrary type applications of the form \(m \ t \), where \(m \) is a variable of some higher-kindred type. Any such example leaves open the possibility that \(m \) might later be instantiated to either a partial or a total type constructor, at some other point in the program, and so each such occurrence will generate a constraint of the form \(m @ t = u \) for some type variable \(u \).

, Vol. 1, No. 1, Article . Publication date: September 2019.
This limitation in the prototype also means that we were unable to handle datatype definitions with higher-kinded parameters, like the following example from the Control.Arrow library:

```haskell
newtype Kleisli m a b = Kleisli (a \rightarrow m b)
```

For proper use in our system, this definition should be written as follows, with the Monad m constraint reflecting intended usage (something that the authors of this particular file had not already chosen to do) and the m @ b constraint ensuring that the type m b is well defined:

```haskell
newtype (Monad m, m @ b) \Rightarrow Kleisli m a b = Kleisli (a \rightarrow m b)
```

Our workaround for this particular example was to keep the original `newtype` definition in place but comment out the associated `instance` declarations, which, in any case, were not used elsewhere in our collection of files, and amounted to 19 lines of code (out of 320 lines in the full Control.Arrow source file). We encountered a handful of similar examples, particularly for definitions of monad transformers in some of the Control.Monad.* libraries, that cannot be handled by our current implementation, and so we opted not to include these in our tests (i.e., they are not counted in the collection of 169 source files listed above). Nevertheless, given our experiences with the Control.Applicative, Control.Arrow, and other parts of Control.Monad reported below, we would not anticipate any fundamental problems with including these examples if the prototype were extended to support datatype definitions like the one for Kleisli shown above.

We also found that it was necessary to comment out some of the default definitions that were included in class definitions in five of our test files. However, we attribute this to a bug in the Hugs implementation that we used as a starting point for our prototype, and believe that it has no bearing on the type system described in this paper. To illustrate this, consider the following fragment of the definition of the Foldable class in the Data.Foldable library:

```haskell
class Foldable t where
  fold :: Monoid m \Rightarrow t m \rightarrow m
  fold = foldMap id
...
```

In our system, the declared type for the `fold` member will automatically be translated to include an additional constraint of the form `t @ m = a` for some fresh type variable `a` that is functionally dependent on `t` and `m`. Unfortunately, the Hugs type checker rejects this particular definition because it tries (incorrectly) to prove that the definition is fully polymorphic in `a`, failing to account for the dependency that indicates, instead, that there is at most one valid choice of `a` for any given combination of `t` and `m`. We concluded that fixing this oversight in Hugs was beyond the scope of our experiment, and were satisfied to note that the definition does type check as expected when it is lifted outside the `class` definition in an appropriate way.