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Intelligent Cyber-Physical Systems

• Cyber Physical Systems (CPS)

– Cyber (Computer) + Physical (Plant) 

• Real-time

– Control physical process in real-time

• Safety-critical

– Can harm people/things

• Intelligent

– Can function autonomously
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Cost, Size, Weight, and Power 
Constraints

• Maximum performance with minimal resources

– Cannot afford too many or too power hungry systems

3Figure source: Robert Leibinger, “Software Architectures for Advanced Driver Assistance Systems (ADAS),” OSPERT, 2015 



Trends in Automotive E/E Systems
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A. Hamann. “Industrial Challenge: Moving from Classical to High-Performance Real-Time Systems.” WATER, 2018.
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Centralization & High-Performance HW

https://www.ecrts.org/forum/download/file.php?id=93&sid=0cfd6ee35ca15ad0311b601483411ceb


Modern System-on-Chip (SoC)
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Core1 Core2 GPU Accel.

Memory Controller (MC)

Shared Cache

• Integrate multiple cores, GPU, accelerators

• Good performance, cost, size, weight, power

• But…

DRAM



Challenge: Time Predictability
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• Many important hardware resources are shared

• Each is locally optimized for average performance

• Software has limited ability to reason and control

• Unpredictable software execution timing

Core1 Core2 GPU Accel.

Memory Controller (MC)

Shared Cache

DRAM



• Computing time matters for temporal correctness

– Logically correct output at wrong time is a fault

Why Predictable Timing?
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Cyber System

Physical System

A cyber-physical system



Effect of Co-Scheduling
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https://youtu.be/Jm6KSDqlqiU

DRAM
LLC

Core1 Core2 Core3 Core4

DNN Attack

https://youtu.be/Jm6KSDqlqiU


Automotive Industry Challenges

• “Automotive industry is transitioning from µC 
toward μP based platforms”

• “Interference effects (on μPs) are more severe by 
orders of magnitude compared to µC platforms”

• “Goal for automotive systems engineering: 
predictable real-time behavior on high-
performance platforms”

9
(*) Arne Hamann (Bosch), “Industrial Challenges: moving from classical to high-performance real-time systems." In Waters 2019



Certification Challenges in Aviation

10

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32A.pdf

https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32A.pdf


CAST-32A: Multicore-Processors

• A position paper by FAA and other 
certification agencies on multicore

• Discuss interference channels of multi-core 
that affect software timing

• Suggestion 1: disable all but one core

• Suggestion 2: provide evidence that all 
interference channels are taken care of 
(“robust partitioning”) → nobody can (yet)
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Timing Matters for Security

• Measurable timing differences in accessing 
shared hardware resources can leak secret

12

https://meltdownattack.com/

https://meltdownattack.com/


Fundamental Challenge: Isolation

• Traditionally about memory isolation

– Prevent unauthorized access to memory

– Hardware support: MPU, MMU

• What we need

– Prevent timing influence between domains

– Not only for real-time systems 

– But also for security1

13
1 Q Ge, Y Yarom, T Chothia, G Heiser. "Time Protection: the Missing OS Abstraction". In EuroSys, 2019



My Research

• Build predictable and secure computing 
infrastructure for the next generation of 
intelligent Cyber Physical Systems (CPS).
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Research Sponsors Equipment Sponsors

https://www.intel.com/
https://www.nvidia.com/
https://aws.amazon.com/
https://www.xilinx.com/


Agenda

• Part 1. Time predictable software on COTS 
hardware

• Part 2. Hardware/software collaboration for 
time predictability and security
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What are the (hidden) sources of 
interference of COTS hardware?
[RTAS’16] Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. Taming Non-blocking Caches 
to Improve Isolation in Multicore Real-Time Systems. In IEEE Intl. Conference on Real-Time 
and Embedded Technology and Applications Symposium, 2016.
[RTAS’19-1] Michael Garrett Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared 
Cache in Multicore: Analysis and Prevention. IEEE Intl. Conference on Real-Time and 
Embedded Technology and Applications Symposium, 2019
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Shared Hardware Resources
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• Lots of important hardware resources are shared

• Hardware makes allocation/scheduling decisions 
without knowing what software wants/does

• Existing partitioning techniques are not sufficient

Core1 Core2 GPU Accel.

Memory Controller (MC)

Shared Cache

DRAM



Cache Partitioning

• Eliminate unwanted cache-line evictions

• Can be done in either SW or HW
– Software: page coloring
– Hardware: way partitioning

• Common assumption
– Cache partitioning → performance isolation

• Not necessarily true for non-blocking caches

18

DRAM

LLC

Core1 Core2 Core3 Core4



Non-Blocking Cache

• Can serve cache hits under multiple cache misses

– Essential for multicore performance

19

cpu cpu

miss hit miss

Miss penalty

Miss penalty

stall only when 
result is needed

(*) D. Kroft. “Lockup-free instruction fetch/prefetch cache organization,” ISCA’81
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Non-Blocking Cache

• Cache internal structures (MSHRs, writeback buffer) 
can have huge timing impacts if they are exhausted
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Writeback Buffer.

● Holds evicted dirty 

lines (writebacks).

● Prevents cache refills 

from waiting.

Miss Status Holding 

Registers

● Track outstanding 

cache misses.

[RTAS’16] Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time S
ystems. In IEEE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium, 2016.
[RTAS’19-1] Michael Garrett Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention. IE
EE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium, 2019



Cache Blocking

• Happens if MSHRs/WBBuffer become full

– The cache is locked up

– Subsequent accesses---including cache hits---to 
the cache stall and have to wait until the pending 
misses are completed

– A pending miss costs 100’s of CPU cycles to 
complete (access to DRAM is slow)

– We will see the impact of this in later experiments
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Threat Model

• Attacker’s goal: increase the 

victim’s task execution time

• The attacker is on different 

core/memory/cache partition 

• The attacker can only execute 

non-privileged code.
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Cache DoS Attacks

• Denial-of-Service (DoS) attacks targeting internal 

hardware structures of a shared cache.

– Block the cache → delay the victim’s execution time

23

Read Attacker
(target MSHRs)

Write Attacker
(target WBBuffer)



Effects of Cache DoS Attacks

LLC

Core1 Core2 Core3 Core4

victim attackers

• Observed worst-case: >300X (times) slowdown

– On popular in-order multicore processors

– Due to contention in cache internal buffers

>300X
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Effects on EEMBC and SD-VBS

• Cache DoS attacks are effective on real-world benchmarks
• LLC sensitive SD-VBS benchmarks are more susceptible
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LLC

Core1 Core2 Core3 Core4

victim attackers

Raspberry Pi 3 (A53)



Summary

• Cache internal hardware structures (MSHRs, 
WriteBack buffer) are viable DoS attack 
vectors in multicore platforms.

• Traditional cache partitioning may not be 
effective to defend against cache DoS attacks 
targeting these internal hardware structures.

26



How to improve time predictability 
of software on COTS hardware?

[RTAS’19-2] Waqar Ali and Heechul Yun. RT-Gang: Real-Time Gang 
Scheduling Framework for Safety-Critical Systems. IEEE Intl. Conference on 
Real-Time and Embedded Technology and Applications Symposium, 2019
Waqar Ali, Rodolfo Pellizzoni, Heechul Yun. RT-Gang: Real-Time Gang 
Scheduling Framework for Safety-Critical Systems. 2020 (under submission)
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Parallel Real-Time Tasks

• Many emerging workloads in AI, vision, 
robotics are parallel real-time tasks

28

Effect of parallelization on DNN control taskDNN based real-time control+

+ M. Bojarski, "End to End Learning for Self-Driving Cars."  arXiv:1604.07316, 2016



Observations

• Constructive sharing (Good)

– Between threads of a single parallel task

• Destructive sharing (Bad)

– Between threads of different tasks

• Goal: analyzable and efficient parallel real-
time task scheduling framework for multicore

• By avoiding destructive sharing

29



Gang Scheduling

• Schedule all threads of a parallel task only if
enough cores are available

• Gang-FTP (fixed task priority)

– Highest priority task τi on the first hi available 
cores (if exist) among the active (ready) tasks.

30

τi = < hi , Ci , Ti >



RT-Gang

• Restricted from of Gang-FTP: One gang at a time
– Eliminate inter-task interference by construction
– Allow best-effort co-scheduling with bandwidth limit
– Cons: limited real-time task utilization

31
[RTAS’19-2] Waqar Ali and Heechul Yun. RT-Gang: Real-Time Gang Scheduling Framework for Safety-Critical Systems. 
IEEE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium, 2019.



RTG-Sync

• Statically group RT tasks as a “virtual gang”
– All members are synchronously released and scheduled
– Improve real-time task schedulability

32

(a) prio (tg) > prio (t4) (b) prio (tg) < prio (t4)

Waqar Ali, Rodolfo Pellizzoni, Heechul Yun. RT-Gang: Real-Time Gang Scheduling Framework for Safety-Critical Syste
ms. 2020 (under submission)



RTG-Sync

• Gang scheduler + bandwidth limiter + cache 
partitioning, implemented in Linux kernel

• Middleware for virtual gang management

33



Schedulability Analysis

• RTG-Sync achieves better analytic schedulability
– Compared to Gang-FTP, Threaded (Linux baseline)
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Case Study: DeepPicar*

• A low cost, small scale replication of NVIDIA’s DAVE-2

• Uses the exact same DNN

• Runs on a quad-core SoC in real-time

35
(*) Michael Garrett Bechtel, Elise McEllhiney, Minje Kim, Heechul Yun. “DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car.” 
In RTCSA, IEEE, 2018  



Experiment Setup
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• NVIDIA Jetson TX2 (4 ARM cores)

• Parallel taskset

– DeepPicar DNN control tasks, Parboil, IsolBench



Execution Time Distribution
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Execution Trace

38Annotated outputs of KernelShark tool



Effect of RT-Gang/RTG-Sync

39
https://youtu.be/pk0j063cUAs

https://youtu.be/pk0j063cUAs


Summary

• Parallel real-time task scheduling
– Hard to analyze on COTS multicore

– Due to interference in shared memory hierarchy

• RT-Gang and RTG-Sync
– Analyzable and efficient parallel real-time gang 

scheduling framework, implemented in Linux

– Avoid and bound interference by design

– Simple and achieves better analytic schedulability
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Agenda

• Part 1. Time predictable software on COTS 
hardware

• Part 2. Hardware/software collaboration for 
time predictability and security

41



How to improve time predictability 
of high-performance processors?

[EMC2’19] Farzad Farshchi, Qijing Huang, and Heechul Yun. Integrating NVIDIA Deep 
Learning Accelerator (NVDLA) with RISC-V SoC on FireSim. Workshop on Energy Efficient 
Machine Learning and Cognitive Computing for Embedded Applications, 2019.
[RTAS’20] Farzad Farshchi, Qijing Huang, and Heechul Yun. BRU: Bandwidth Regulation 
Unit for Real-Time Multicore Processors. IEEE Intl. Conference on Real-Time and 
Embedded Technology and Applications Symposium, 2020. (to appear)
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RISC-V SoC Testbed

• Full-featured RISC-V cores (in-order/out-of-order) 
+ hardware DNN accelerator on Amazon FPGA

– Run Linux, YOLO v3 object detection

43

Source: NVIDIA, “The Nvidia Deep Learning Accelerator”

[EMC2’19] Farzad Farshchi, Qijing Huang, and Heechul Yun. Integrating NVIDIA Deep Learning Accelerator (NVDLA) with RISC-V 
SoC on FireSim. Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications, 2019.

https://goo.gl/Znyba5


YOLOv3 Object Detection

44



YOLOv3 Performance
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407x

• Rocket: 4 Rocket cores (baseline)

• NVDLA+Rocket: baseline + NVDLA

• Xeon: E5-2658 v3 (24 cores/48 threads)

• Titan Xp: Pascal arch, 3840 CUDA cores
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“
One of the best ways to get started is to dive right in 
with object detection using YOLOv3 on NVDLA with 
RISC-V and FireSim in the cloud.
…
git clone https://github.com/CSL-KU/firesim-nvdla
”

https://devblogs.nvidia.com/nvdla/

https://github.com/CSL-KU/firesim-nvdla
https://devblogs.nvidia.com/nvdla/


Bandwidth Regulation Unit (BRU)

• Regulate per-core/group memory bandwidth

• Drop-in addition to existing processor design

47
[RTAS’20] Farzad Farshchi, Qijing Huang, and Heechul Yun. BRU: Bandwidth Regulation Unit for Real-Time Multicore Processors. 
IEEE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium, 2020. (to appear)



Bandwidth Regulation Unit (BRU)

• Access regulation

– Regulate cache misses 

• Writeback regulation

– Regulate cache write-
back

• Group regulation

– Multiple cores can be 
regulated as a group

48



Dual-core BOOM with BRU

• BOOM: high-performance out-of-
order RISC-V core

• Cadence synthesis result at 7nm 
node

• Less than 2% impact on max. 
frequency

• Less than 0.2% space overhead

49

BRU



Effects of BRU

• BRU = MemGuard in hardware + alpha

50

w/ BRU regulation (@320MB/s budget, 100ns period)

w/o BRU



Summary

• BRU

– A synthesizable hardware IP that regulates 
memory traffic at the source (cores)

– Demonstrates the feasibility of fast AND 
predictable processors 

• Future work

– Accelerator regulation support

– More software/hardware co-design
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How to improve security of high-
performance processors?

[DAC’19] Jacob Michael Fustos, Farzad Farshchi, and Heechul Yun. 
SpectreGuard: An Efficient Data-centric Defense Mechanism against Spectre 
Attacks. Design Automation Conference, 2019
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Speculative Execution Attacks

• Attacks exploiting microarchitectural side-effects of 
executing speculative (transient) instructions 

• Recover secrets by measuring timing differences 
caused by the side-effects  

53
Known (subset of) speculative execution attacks



Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Assume x is under the attacker’s control

• Attacker trains the branch predictor to 
predict the branch is in-bound

54



Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Speculative execution of the first line 
accesses the secret (val)

1. [ACCESS]

55



Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Speculative execution of the second, secret 
dependent load transmits the secret to a 
microarchitectural state (e.g., cache)

2. [TRANSMIT]

56



Spectre Attack (Variant 1)

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

• Attacker receives the secret by measuring 
access timing differences (cache hit vs. miss) 
among the elements in the probe array 

– Various timing channels exist (e.g., cache)

3. [RECEIVE]

57



Existing Software Mitigation

• Manually stop speculation
– By inserting ‘lfence’ instructions [Intel, 2018]
– Or by introducing additional data dependencies 

[Carruth, 2018] 
– Error prone, high programming complexity, performance 

overhead

if(x < array1_length){

_mm_lfence();

val = array1[x];

tmp = array2[val*512];

}

58



Existing Hardware Mitigation

• Hide speculative execution
– By buffering speculative results into additional “shadow” 

hardware structures

– High complexity, high overhead (performance, space)

InvisiSpec [Yan et al., MICRO’18] SafeSpec [Khasawneh et al., DAC’19]
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SpectreGuard

• Data-centric software/hardware co-design
– Software tells hardware what data (not code) 

needs protection

– Hardware selectively protects the identified data
from Spectre attacks

• Key observations
– Not all data is secret

– Not all speculative loads leak secret

60
[DAC’19] Jacob Michael Fustos, Farzad Farshchi, and Heechul Yun. SpectreGuard: An Efficient D
ata-centric Defense Mechanism against Spectre Attacks. Design Automation Conference, 2019



Obs. 1: Not All Data Is Secret

• Non-sensitive data

– Most program code, data

– Optimize for performance

• Sensitive (secret) data

– Cryptographic keys, 
passwords, …

– Optimize for security

Memory

Attacker’s controlled data

AES encryption table

Other public information

RSA private key

Bank account information

Other secret data

61



Obs. 2: Not All Speculative Loads 
Leak Secret

• The first load does NOT leak secret

• The second, secret dependent load leaks the 
secret

• Delay the secret dependent load until after the 
branch is resolved 

if(x < array1_length){

val = array1[x];

tmp = array2[val*512];

}

........

1. [ACCESS]
2. [TRANSMIT]

62



SpectreGuard Approach

• Step 1: Software tells 
OS what data is secret

• Step 2: OS updates the 
page table entries

• Step 3: Load of the 
secret data is identified 
by MMU

• Step 4: secret data 
forwarding is delayed
until safe

Hardware

MMU

Memory 
System

Optimized 
Forwarding

Instructions

Load

Dependent

Operating System

Binary Loader Virtual 
Memory
System

Dependent

Software
Interface

Binary File

System Call

Spectre Secure
Forwarding
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Results of SPEC2006 Benchmarks

• Good protection at low controllable overhead

• SpectreGuard enables targeted security and 
performance trade-offs
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Summary

• Speculative execution attacks
– Affect all high-performance out-of-order processors
– Existing software mitigation suffers high programming 

complexity/overhead
– Hardware only mitigation is costly

• SpectreGuard
– A data-centric software/hardware collaborative defense mechanism
– Low programming effort (identifying secret data, not vulnerable code)
– Low hardware cost (no additional "shadow" structure)
– Effective, targeted defense against Spectre attacks

https://github.com/CSL-KU/SpectreGuard
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Conclusion

• Smart scheduling and OS support can provide 
time predictability on COTS hardware

• Small changes in COTS hardware can provide 
both time predictability and high performance

• Our research develops fundamental computing 
infrastructure technologies to enable predictable 
and secure computing for intelligent CPS
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Our Vision

67

Heterogeneous SoC

Operating System

Middleware/Language

• Holistic, cross-layer: from chips to applications

Intelligent CPS Applications
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