Predictable and Secure Computing
Infrastructure for Intelligent
Cyber-Physical Systems




Intelligent Cyber-Physical Systems

e Cyber Physical Systems (CPS)

— Cyber (Computer) + Physical (Plant)
* Real-time

— Control physical process in real-time
* Safety-critical " .

— Can harm people/things =
* Intelligent

— Can function autonomously

EEEEEEEEEEE



Cost, Size, Weight, and Power

Constraints
 Maximum performance with minimal resources

— Cannot afford too many or too power hungry systems
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? Rising electrical power consumption

is not acceptable within future cars.

Figure source: Robert Leibinger, “Software Architectures for Advanced Driver Assistance Systems (ADAS),” OSPERT, 2015 3



Trends in Automotive E/E Systems
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Vehicle functions

Vehicle Cloud Computing

L . : B HE
o Vehicle centralized E/E B HEHE inthe cloud
= architecture =
E Vehicle Computer & [ q ] Zone Oriented Architecture
\ Zone ECUs = Eg and Vehicle Computer
<N ) ‘ .
& centralized E/E
% architecture Centralization % Central Domain ECUs =
|'_ N g g
o
Integration - —! Functional Int ti Q@
o = 4 — ¥ unctional Integration st
= Distributed E/E ; §
s ;
e}  architecture S 3
—i— é & Each function has his ECU “’
o D‘ increasing No of SW S
A. Hamann. “Industrial Challenge: Moving from Classical to High-Performance Real-Time Systems.” WATER, 2018.
KU Centralization & High-Performance HW
KANSAS



https://www.ecrts.org/forum/download/file.php?id=93&sid=0cfd6ee35ca15ad0311b601483411ceb

Modern System-on-Chip (SoC)

¥ ¥

Shared Cache

Memory Controller (MC)

DRAM

* Integrate multiple cores, GPU, accelerators
 Good performance, cost, size, weight, power

* But...
KU
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Challenge: Time Predictability
h h h

Shared Cache

Memory Controller (MC)

DRAM

 Many important hardware resources are shared
e Each is locally optimized for average performance
e Software has limited ability to reason and control
* Unpredictable software execution timing

TTTTTTTTTTT
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Why Predictable Timing?

A cyber-physical system

Physical System

 Computing time matters for temporal correctness

— Logically correct output at wrong time is a fault
— KU
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Effect of Co-Scheduling

pi@raspberrypi:~/Documents/DeepPicar-v2 $ ./drive.sh
SIDNN is on
B Initilize camera.
start camera thread
SNcamera init completed.

lpi@raspberrypi:~/Documents/DeepPicar-v2 $ ./attack.shl]

https://youtu.be/Jm6KSDalqiU



https://youtu.be/Jm6KSDqlqiU

Automotive Industry Challenges

e “Automotive industry is transitioning from pC
toward pP based platforms”

* “Interference effects (on pPs) are more severe by
orders of magnitude compared to uC platforms”

* “Goal for automotive systems engineering:
predictable real-time behavior on high-

performance platforms” &) BOSCH

— K

KANSAS (*) Arne Hamann (Bosch), “Industrial Challenges: moving from classical to high-performance real-time systems." In Waters 2019



Certification Challenges in Aviation

Certification Authorities Software Team
(CAST)

Position Paper
CAST-32A

Multi-core Processors

COMPLETED November 2016 (Rev 0)

https://www.faa.gov/aircraft/air cert/design approvals/air software/cast/cast papers/media/cast-32A.pdf

KANSAS
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https://www.faa.gov/aircraft/air_cert/design_approvals/air_software/cast/cast_papers/media/cast-32A.pdf

CAST-32A: Multicore-Processors

Certification Authorities Software Team
111111

* A position paper by FAA and other
certification agencies on multicore

 Discuss interference channels of multi-core
that affect software timing

e Suggestion 1: disable all but one core

e Suggestion 2: provide evidence that all
interference channels are taken care of
(“robust partitioning”) =2 nobody can (yet)

— K
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Timing Matters for Security

https://meltdownattack.com/

=

Meltdown Spectre

Meltdown breaks the most fundamental isolation Spectre breaks the isolation between different

between user applications and the operating system. applications. It allows an attacker to trick error-free
This attack allows a program to access the memory, programs, which follow best practices, into leaking
and thus also the secrets, of other programs and the their secrets. In fact, the safety checks of said best
operating system. practices actually increase the attack surface and
may make applications more susceptible to Spectre

* Measurable timing differences in accessing

shared hardware resources can leak secret
_xU

THE UNIVERSITY OF
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https://meltdownattack.com/

Fundamental Challenge: Isolation

* Traditionally about memory isolation
— Prevent unauthorized access to memory
— Hardware support: MPU, MMU
* What we need
— Prevent timing influence between domains
— Not only for real-time systems
— But also for security?

— K

KANSAS 1 QGe, Y Yarom, T Chothia, G Heiser. "Time Protection: the Missing OS Abstraction". In EuroSys, 2019



My Research

* Build predictable and secure computing
infrastructure for the next generation of
intelligent Cyber Physical Systems (CPS).

Research Sponsors Equipment Sponsors

@ <N dWS §

NVIDIA

14


https://www.intel.com/
https://www.nvidia.com/
https://aws.amazon.com/
https://www.xilinx.com/

Agenda

* Part 1. Time predictable software on COTS
hardware

e Part 2. Hardware/software collaboration for
time predictability and security

THE UNIVERSITY OF



What are the (hidden) sources of

KANSAS

interference of COTS hardware?

[RTAS’16] Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. Taming Non-blocking Caches
to Improve Isolation in Multicore Real-Time Systems. In IEEE Intl. Conference on Real-Time
and Embedded Technology and Applications Symposium, 2016.

[RTAS’19-1] Michael Garrett Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared
Cache in Multicore: Analysis and Prevention. IEEE Intl. Conference on Real-Time and
Embedded Technology and Applications Symposium, 2019

16



Shared Hardware Resources

GPU

h o h o
Shared Cache

8-

Memory Controller (MC)

DRAM

* Lots of important hardware resources are shared

* Hardware makes allocation/scheduling decisions
without knowing what software wants/does

* Existing partitioning techniques are not sufficient

TTTTTTTTTTT



Cache Partitioning

 Eliminate unwanted cache-line evictions

e Can be done in either SW or HW

— Software: page coloring

LLC

— Hardware: way partitioning

DRAM

* Common assumption

— Cache partitioning = performance isolation

* Not necessarily true for non-blocking caches

— KU

THE UNIVERSITY OF
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Non-Blocking Cache

miss hit
cpu cpu
| Miss penalty |

Blocking cache

stall only when
result is needed

mlss h|t miss l

| Miss penalty |

cpu

| Miss penalty |

Non-blocking cache

Can serve cache hits under multiple cache misses

— Essential for multicore performance

— K

KANSAS (*) D. Kroft. “Lockup-free instruction fetch/prefetch cache organization,” ISCA’81
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Non-Blocking Cache

Core Core Core Core
EI| [o]|[ [1][p] III|IEI E|IEI
Miss Status Holding L2 cache _- Writeback Buffer.
Registers \ Tag array Data array / e Holds evicted dirty
e Track outstanding [~ ] lines (writebacks).
MSHR Il WB Buffer il .
cache misses. e Prevents cache refills
from waiting.
address/respond bus data bus

e Cache internal structures (MSHRs, writeback buffer)
can have huge timing impacts if they are exhausted

,ngmj{m [RTAS’16] Prathap Kumar Valsan, Heechul Yun, Farzad Farshchi. Taming Non-blocking Caches to Improve Isolation in Multicore Real-Time S
KANSAS ystems. In IEEE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium, 2016.
[RTAS’19-1] Michael Garrett Bechtel and Heechul Yun. Denial-of-Service Attacks on Shared Cache in Multicore: Analysis and Prevention. /E
EE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium, 2019

20



Cache Blocking

* Happens if MSHRs/WBBuffer become full

— The cache is locked up

— Subsequent accesses---including cache hits---to
the cache stall and have to wait until the pending
misses are completed

— A pending miss costs 100’s of CPU cycles to
complete (access to DRAM is slow)

— We will see the impact of this in later experiments

THE UNIVERSITY OF



Threat Model

Trusted Untrusted ’ Ny
Partition g Partition Attacker’s goal: increase the
§ ‘ \ victim’s task execution time
> i
Victim Attacker
OS/hypervisor * The attacker is on different
Core i Core core/memory/cache partition
| | D 5 | | D  The attacker can only execute
Shared. Cache non-privileged code.

KANSAS
22



Cache DoS Attacks

for (1 = 0; 1 < mem_size; 1 += LINE_SIZE)

{
}

sum 4= ptr[i];

Read Attacker
(target MSHRs)

for (i = 0; 1 < mem_size; 1 += LINE_SIZE)

{
}

ptr[1] = Oxff;

Write Attacker
(target WBBuffer)

* Denial-of-Service (DoS) attacks targeting internal

hardware structures of a shared cache.

— Block the cache = delay the victim’s execution time

— K
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Effects of Cache DoS Attacks
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* Observed worst-case: >300X (times) slowdown

— On popular in-order multicore processors

— Due to contention in cache internal buffers

— K
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Effects on EEMBC and SD-VBS

25 I I I I I I I
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e Cache DoS attacks are effective on real-world benchmarks
* LLC sensitive SD-VBS benchmarks are more susceptible

— KU
AR
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Summary

e Cache internal hardware structures (MSHRs,
WriteBack buffer) are viable DoS attack
vectors in multicore platforms.

* Traditional cache partitioning may not be
effective to defend against cache DoS attacks
targeting these internal hardware structures.

THE UNIVERSITY OF
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How to improve time predictability
of software on COTS hardware?

[RTAS’19-2] Wagar Ali and Heechul Yun. RT-Gang: Real-Time Gang
Scheduling Framework for Safety-Critical Systems. IEEE Intl. Conference on
Real-Time and Embedded Technology and Applications Symposium, 2019

Waqar Ali, Rodolfo Pellizzoni, Heechul Yun. RT-Gang: Real-Time Gang
Scheduling Framework for Safety-Critical Systems. 2020 (under submission)

27



Parallel Real-Time Tasks

* Many emerging workloads in Al, vision,
robotics are parallel real-time tasks

o
o
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Avg. processing time (ms) _,

! fca: fully-connected layer
| 10neurons I 40 —
‘ o fe3: fully-connected layer 30 95
neuren ! fe2: full ted | )
uuuuuuuuuu ] ceituly-connectec ayer 25_66 e em e eeena
| PP — ) fcl: fully-connected layer . 22 86
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3 convolutional layer 2 0 - _|
— conva: 64@3x20
convolutional layer
e conv3: 48@5x22
convolutional layer
2 conv2: 36@14x47 0

-~/ convo lutiona | layer
~_ 5x5 kernel 1 2 3 a4
e convl: 24@31x98

convolutional layer

5x5 kernel
— input: 200x66 RGB pixels # Of cores

— KU

Effect of parallelization on DNN control task

20
Hz

30
Hz

KANSAS  +m. Bojarski, "End to End Learning for Self-Driving Cars." arXiv:1604.07316, 2016
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Observations

* Constructive sharing (Good)

— Between threads of a single parallel task

e Destructive sharing (Bad)
— Between threads of different tasks

* Goal: analyzable and efficient parallel real-
time task scheduling framework for multicore

* By avoiding destructive sharing

— K
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Gang Scheduling

e Schedule all threads of a parallel task only if
enough cores are available

* Gang-FTP (fixed task priority)

— Highest priority task t; on the first h; available
cores (if exist) among the active (ready) tasks.

,=<h,C,T,>

THE UNIVERSITY OF



RT-Gang

Core 1

1 release

Core 2 T completion

= ldle or best-effort

Core 3 )
real-time

54
priority: t;<t, <t

Core 4

4 t t, 4 4 b

e Restricted from of Gang-FTP: One gang at a time
— Eliminate inter-task interference by construction
— Allow best-effort co-scheduling with bandwidth limit
— Cons: limited real-time task utilization

KANSAS [RTAS’19-2] Waqar Ali and Heechul Yun. RT-Gang: Real-Time Gang Scheduling Framework for Safety-Critical Systems.
IEEE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium, 2019.



Core 1

Core 2

Core 3

Core 4

RTG-Sync

Virtual gang Virtual gang
Core 1
Core 2
Core 3
Core 4
’[g t4
(a) prio (tg) > prio (t4) (b) prio (tg) < prio (t4)

 Statically group RT tasks as a “virtual gang”

All members are synchronously released and scheduled
Improve real-time task schedulability

TTTTTTTTTTT

KANSAS  Wa
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RTG-Sync

Best Effort | ]

| RTG-Sync Middleware (Daemon, Client, User-Library) ‘

System Call | System Call
A

0S8 (RT-Gang, Page-Coloring, Bandwidth Throttling Framwork)

PMC PMC PMG -
T 1 F

Main Memory

* Gang scheduler + bandwidth limiter + cache
partitioning, implemented in Linux kernel

 Middleware for virtual gang management
— KU

THE UNIVERSITY OF
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Schedulability Analysis

Lightly Parallel Mixed Heavily Parallel

s Gang-FTP $=——=¢ Threaded b RTG-Sync(GPC) Mt RTG-Sync(BFC) e——8 RT-Gang
o == @ Gang-FTP (Ideal} ¢ == ¢ Threaded (Ideal) & === RTG-Sync{GPC-ldeal) = ==& RTG-Sync(BFC-ldeal)

=
(=)

' ' ' : : :
. "\ . .

Schedulability
=] = =]
> o )

o
N

o
(=)

l1 2 3 4 5 6 7 81 2 3 4 5 e 7 81 2 3 4 5 e 7
Utilization

 RTG-Sync achieves better analytic schedulability
— Compared to Gang-FTP, Threaded (Linux baseline)

— K

KANSAS
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Case Study: DeepPicar’

« Uses the exact same DNN
« Runs on a quad-core SoC in real-time

fam) output: steering angle
10 :c; :u::y-connecteg :ayer
. f: : fu"y-connected Iayer
7 e —_— . f: fu"y-connected Iayer
G o —_——— y c1: fully-connected layer
: conv5: 64@1x18
N 313 kernel convolutional layer
s :

: convad: 64@3x20
. B convolutional layer

S 3x3 kernel _
S - conv3: 48@5x22
e luti I
A i convolutional layer
S ~~ conv2:36@14x47
~= ; convolutional layer
\ _ 5x5 kernel
N - g convl: 24@31x98
: lutional |
\‘\}:? 5i5 kemel convolutional layer
N SS2 .

input: 200x66 RGB pixels

THE UNIVERSITY OF

KANSAS (*) Michael Garrett Bechtel, Elise McEllhiney, Minje Kim, Heechul Yun. “DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car.”

In RTCSA, IEEE, 2018 35



Experiment Setup

 NVIDIA Jetson TX2 (4 ARM cores)
e Parallel taskset

— DeepPicar DNN control tasks, Parboil, IsolBench

Task WCET (ms) Period (ms) # of Threads Priority

TBWT 50.0 100.0 A -

T N1 8.2 50.0 2 10

TONN_2 8.2 50.0 2 10

T,ffcp o0 N/A 2 N/A

Tibm o N/A 2 N/A
KU
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Execution Time Distribution

- RT-Gang - RTG-Sync m— L inux

N """7"

CDF

02f e E— _

0.0 | J \ i
6 8 10 12 14 16

DNN Job Duration (msec)
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Execution Trace
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Annotated outputs of KernelShark tool
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Effect of RT-Gang/RTG-Sync

fipi@raspberrypi:~/Documents/DeepPicar-v2 $ ./drive.sh
DNN is on
M Initilize camera.
Sistart camera thread
= camera init completed.
amLoad TF

pi@raspberrypi:~/Documents/DeepPicar-v2 $ ./attack.sh

B

KAIS;JAS https://youtu.be/pk0j063cUAs



https://youtu.be/pk0j063cUAs

Summary

* Parallel real-time task scheduling
— Hard to analyze on COTS multicore
— Due to interference in shared memory hierarchy

* RT-Gang and RTG-Sync

— Analyzable and efficient parallel real-time gang
scheduling framework, implemented in Linux

— Avoid and bound interference by design
— Simple and achieves better analytic schedulability

THE UNIVERSITY OF



Agenda

* Part 1. Time predictable software on COTS
hardware

* Part 2. Hardware/software collaboration for
time predictability and security

THE UNIVERSITY OF
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How to improve time predictability
of high-performance processors?

[EMC2’19] Farzad Farshchi, Qijing Huang, and Heechul Yun. Integrating NVIDIA Deep
Learning Accelerator (NVDLA) with RISC-V SoC on FireSim. Workshop on Energy Efficient
Machine Learning and Cognitive Computing for Embedded Applications, 2019.
[RTAS’20] Farzad Farshchi, Qijing Huang, and Heechul Yun. BRU: Bandwidth Regulation
Unit for Real-Time Multicore Processors. IEEE Intl. Conference on Real-Time and
Embedded Technology and Applications Symposium, 2020. (to appear)

42



RISC-V SoC Testbed

FPGA

Target Design

Tiles

NVDLA

M [ CSB
Rocket Core - »| Wrapper / NVDLA Configuration Space Bus (CSB) Interrupt

A A

<2BB| | NvDLA
L1Ds$ |

| Configuration and Control Block

Peripheral Bus

IRQ‘t\ + + +

a m a zo n e Platform-leva\ Convoluational *|  Convoluation Post-processin
web Services o= i = ] Interrupt Controller N Buffer . Core P g
1AL 3 t A ! r

| Memory Interface |

Front Bus

| System Bus |
| Coherence Manager | $
; Data Backbone (DBB)
| LLC + Memory Model |
v Source: NVIDIA, “The Nvidia Deep Learning Accelerator”
DRAM

* Full-featured RISC-V cores (in-order/out-of-order)
+ hardware DNN accelerator on Amazon FPGA

— Run Linux, YOLO v3 object detection

KANSAS [EMC2’19] Farzad Farshchi, Qijing Huang, and Heechul Yun. Integrating NVIDIA Deep Learning Accelerator (NVDLA) with RISC-V
SoC on FireSim. Workshop on Energy Efficient Machine Learning and Cognitive Computing for Embedded Applications, 2019.


https://goo.gl/Znyba5

YOLOvV3 Object Detection

‘ NVDLA
‘ Wrapper

Platform-level
Interrupt Controller

‘ System Bus |

Coherence Manager

@
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Sl o
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2l 1a

S| =

= [

s| |
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YOLOv3 Performance

* Rocket: 4 Rocket cores (baseline) Oo/r@z
* NVDLA+Rocket: baseline + NVDLA

e Xeon: E5-2658 v3 (24 cores/48 threads)
Titan Xp: Pascal arch, 3840 CUDA cores

— K
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https://devblogs.nvidia.com/nvdla/

NVIDIA. DEVELOPER Login

NVIDIA Developer Blog v

Al / DEEP LEARNING AUTONOMOUS MACHINES AUTONOMOUSVEHICLES DATASCIENCE FEATURES
GRAPHICS / SIMULATION HPC SMART CITIES

Al / DEEP LEARNING

NVDLA Deep Learning Inference Compiler is Now Open Source

By Rekha Mukund, Prashant Gaikwad and Mitch Harwell | September 11, 2019
W Tags: compilers, Inference, Jetson, Machine Learning and Al, Object Detection

Designing new custom hardware aq “

performance and efficiency with a n

Two years ago, NVIDIA opened the 5 One Of the bESt Ways tO gEt Started iS tO dive right in

help advance the adoption of efficie

o eeon e eee neeood, With Object detection using YOLOv3 on NVDLA with

o e;—.;oduhr-c_e; re.LaleJ;s.e‘::J-f T\NEJ’:II_.S;OU_: . . .
pzint with the complete source forpt RISC'V and FIFESIm |n the CIOUd.

In this blog we'll explain the role thi

purpose-built hardware accelerator

NVoLA zoftware an nariware des) gt clone hittps://github.com/CSL-KU/firesim-nvdla

Configuration and Control Block

L

Convolutional " Convolutional
Buffer - Core

Post-Processing

THE UNIVERSITY OF
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https://github.com/CSL-KU/firesim-nvdla
https://devblogs.nvidia.com/nvdla/

Bandwidth Regulation Unit (BRU)

TLC - Core 0 Core 1

TL-UH == DS I$ D$ I$

TL-UL
AX| é_"_; TLI_\IJ7
Arbiter Arbiter
To other ]' I

peripherals BRU
System
Periphery L L !

Bus (_T : Bus

Coherence Manager

LLC o]

DRAM Controller

!

A
b

DDR3 DRAM

* Regulate per-core/group memory bandwidth
* Drop-in addition to existing processor design

KANCAS [RTAS’20] Farzad Farshchi, Qijing Huang, and Heechul Yun. BRU: Bandwidth Regulation Unit for Real-Time Multicore Processors.
IEEE Intl. Conference on Real-Time and Embedded Technology and Applications Symposium, 2020. (to appear)



Bandwidth Regulation Unit (BRU)

* Access regulation

— Regulate cache misses

* Writeback regulation

— Regulate cache write-
back

* Group regulation

THE UNIVERSITY OF

— Multiple cores can be
regulated as a group

PCAR

-

Core 0

~

[BR Enable] =1
[Domain ID] =0

Core 1

[BR Enable] =1
[Domain ID] =0

Core 2

[BR Enable] =0
[Domain ID] =0

Core 3

[BR Enable] =1
[Domain I1D] =1

re

N

[Period Length]
Period Counter

RDR
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~

Access Counter
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Domain 1

Access Counter

P
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[Maximum Access]
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)

Bandwidth Regulation Unit (BRU)




Dual-core BOOM with BRU

 BOOM: high-performance out-of-
order RISC-V core

* Cadence synthesis result at 7nm
node .

* Less than 2% impact on max.
frequency

* Less than 0.2% space overhead

DUAL-CORE BOOM CHIP AREA BREAKDOWN

Modules Area (um?) | Ratio
BRU 4,669 0.19% B R U
Boom Core x 2 2,309,681 92.41%
Others (System Bus, Manager, etc.) | 184,950 7.40%
Total 2,499,300 100%
KANSAS
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Effects of BRU
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w/ BRU regulation (@320MB/s budget, 100ns period)

* BRU = MemGuard in hardware + alpha

THE UNIVERSITY OF
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Summary

* BRU

— A synthesizable hardware IP that regulates
memory traffic at the source (cores)

— Demonstrates the feasibility of fast AND
predictable processors

 Future work
— Accelerator regulation support
— More software/hardware co-design

THE UNIVERSITY OF



How to improve security of high-
performance processors?

[DAC’19] Jacob Michael Fustos, Farzad Farshchi, and Heechul Yun.
SpectreGuard: An Efficient Data-centric Defense Mechanism against Spectre
Attacks. Design Automation Conference, 2019

KANSAS
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Speculative Execution Attacks

e Attacks exploiting microarchitectural side-effects of
executing speculative (transient) instructions

 Recover secrets by measuring timing differences
caused by the side-effects

THE UNIVERSITY OF

Attack Description

Variant 1 (Spectre) [16]

Bounds Check Bypass

Variant 1.1 [10]

Variant 1.2 [15]

Variant 2 (Spectre) [16]
Variant 3 (Meltdown) [18]
Variant 3a [12]

Lazy FP [24]

Variant 4 [9]

ret2spec [20]

L1 Terminal Fault [11, 26]

Bounds Check Bypass Store

Read-only Protection Bypass

Branch Target Injection

Supervisor Protection Bypass

System Register Bypass

FPU Register Bypass O
Speculative Store Bypass

Return Stack Buffer

Virtual Translation Bypass

Known (subset of) speculative execution attacks
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Spectre Attack (Variant 1)

1f(x < arrayl length) {
val arravyl [x];
tmp array2[val*512];

e Assume x is under the attacker’s control

e Attacker trains the branch predictor to
predict the branch is in-bound
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Spectre Attack (Variant 1)

if(x < arravl lenoth

L fAccess

tmp = array?| val*512

e Speculative execution of the first line
accesses the secret (val)

KANSAS
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Spectre Attack (Variant 1)

1f (x < arrayl length) {
val = arravl[x];

2. [TRANSMIT]

* Speculative execution of the second, secret
dependent load transmits the secret to a
microarchitectural state (e.g., cache)

THE UNIVERSITY OF
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Spectre Attack (Variant 1)

1f (x < arrayl length) {
val arrayl[x];
tmp array?2[val*512];

}

3. [RECEIVE]

* Attacker receives the secret by measuring
access timing differences (cache hit vs. miss)
among the elements in the probe array

— Various timing channels exist (e.g., cache)

THE UNIVERSITY OF
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Existing Software Mitigation

1f (x < arrayl length) {
_mm lfence();
val = arrayl[x];

tmp = array2([val*b12];
}

 Manually stop speculation

— By inserting ‘1 fence’ instructions [Intel, 2018]
— Or by introducing additional data dependencies
[Carruth, 2018]

— Error prone, high programming complexity, performance
overhead

THE UNIVERSITY OF
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Existing Hardware Mitigation

Valid
Load Queue Par} a
(LQ) ertorme Status
State: Bits
E/VICIN
Prefetch
Speculative Buffer Data Line
(SB)
|| | Address Mask

InvisiSpec [Yan et al., MICRO’18] SafeSpec [Khasawneh et al., DAC’19]

dTLB
he I
‘Shadow dTLB

* Hide speculative execution

— By buffering speculative results into additional “shadow”
hardware structures

— High complexity, high overhead (performance, space)
— KU

THE UNIVERSITY OF
KANSAS
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SpectreGuard

* Data-centric software/hardware co-design

— Software tells hardware what data (not code)
needs protection

— Hardware selectively protects the identified data
from Spectre attacks

e Key observations
— Not all data is secret
— Not all speculative loads leak secret

— K

KANSAS [DAC’19] Jacob Michael Fustos, Farzad Farshchi, and Heechul Yun. SpectreGuard: An Efficient D
ata-centric Defense Mechanism against Spectre Attacks. Design Automation Conference, 2019



Obs. 1: Not All Data Is Secret

* Non-sensitive data
—_ Most program Code’ data Attacker’s controlled data

imi AES tion tabl
— Optimize for performance encryption table

Other public information

* Sensitive (secret) data

— Cryptographic keys, RSA private key
paSSWOrdS’ Bank account information

Other secret data

— Optimize for security

KANSAS
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Obs. 2: Not All Speculative Loads
Leak Secret

1f(x < arravyl length) {
val = arrayl[x]; 1. [ACCESS]
tmp array?2[val*512]; 2. [TRANSMIT]

The first load does NOT leak secret

The second, secret dependent load leaks the
secret

Delay the secret dependent load until after the
branch is resolved
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SpectreGuard Approach
e Step 1: Software tells

OS what data is secret -
System Call

e Step 2: OS updates the Po—
page table entries -

° Step 3: Load Of the Instructions Hardware

. . . o Load
secret data is identified .
oy .
* Step 4: secret data Iﬂ T
forwarding is delayed Pependent [
g is delaye
until safe

Operating System

Memory
System

|||||||||||||
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Results of SPEC2006 Benchmarks

3.5

Normalized Execution Time

5G(Heap) EX

InvisiSpec I
Fence &I

... S S

e

* Good protection at low controllable overhead

e SpectreGuard enables targeted security and
performance trade-offs

THE UNIVERSITY OF
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Summary

Speculative execution attacks

— Affect all high-performance out-of-order processors

— Existing software mitigation suffers high programming
complexity/overhead

— Hardware only mitigation is costly

SpectreGuard

— A data-centric software/hardware collaborative defense mechanism
— Low programming effort (identifying secret data, not vulnerable code)
— Low hardware cost (no additional "shadow" structure)

— Effective, targeted defense against Spectre attacks

https://github.com/CSL-KU/SpectreGuard

F
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Conclusion

* Smart scheduling and OS support can provide
time predictability on COTS hardware

* Small changes in COTS hardware can provide
both time predictability and high performance

* Our research develops fundamental computing
infrastructure technologies to enable predictable
and secure computing for intelligent CPS

— K
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* Holistic, cross-layer: from chips to applications

Our Vision

Intelligent CPS Applications

Middleware/Language

Operating System

Heterogeneous SoC
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