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Abstract—Soft real-time applications (e.g., multimedia processing) of-
ten show bursty memory access patterns, regularly requiring high
memory bandwidth for a short duration of time. These memory bursts
are often originated from a small number of memory-intensive code
sections of the applications, which we call memory-performance critical
sections. In multicore architectures, however, non-real-time applications
executing in parallel may also demand high memory bandwidth at the
same time, which can substantially degrade the performance of the soft
real-time applications—i.e., missing the deadlines.

In this paper, we present a memory access control framework,
BWLOCK, which is designed to protect the performance of soft real-
time applications on multicore platforms. The framework consists of
a user-level API and a kernel-level scheduling and bandwidth control
mechanism. With the API, users can describe memory-performance
critical sections of their applications. If an application enters a memory-
performance critical section, the kernel-level control mechanism dynam-
ically throttles memory access rates of the contending cores, which may
execute non-real-time applications, to protect the performance of the
soft real-time application until the memory-performance critical section
is completed.

From case studies with two real-world soft real-time applications, we
found that (1) memory-performance critical sections are often easy to
identify; and (2) applying BWLOCK significantly improves the perfor-
mance of the soft real-time applications with small or no throughput
penalty of non-real-time applications.

1 INTRODUCTION

In a multicore system, an application’s performance, running
on a core, can be significantly affected by other applications on
different cores, due to contention in shared hardware resources
such as shared Last-Level Cache (LLC) and DRAM. When
the shared resources become bottlenecks, traditional CPU
scheduling based techniques such as raising priorities [18] or
using CPU reservation based techniques [7], [13], [1] are no
longer sufficient to ensure the necessary performance of real-
time applications.

In hard real-time systems, one solution adopted in the
avionics industry has been disabling all but one core in
the system [17] to completely eliminate the shared resource
contention problem. This allows the system to be certified [4]
based on the traditional unicore-based certification process [2].
Another approach, adopted in PikeOS, is a time partitioning
technique in which only one core is allowed to execute during
a set of pre-defined time windows [8].

In the context of soft real-time systems, on the other hand, a
certain degree of timing variations and deadline violations is
often tolerable. Furthermore, modern multicore architectures
provide a significant amount of parallelism—via out-of-order
cores, non-blocking caches, multi-bank DRAM, and etc.—
that can process a considerable degree of concurrent accesses
without any noticeable performance impacts [10]. Therefore,
it is highly desirable to develop a solution that can provide
better real-time performance while still allowing concurrent
execution to leverage the full potential of multicore architec-
tures.

In this paper, we present BWLOCK, a user-assisted and
kernel-enforced memory-performance control mechanism. It
is designed to protect the performance of soft real-time
applications from the interference of the other applications
running on different cores. This is accomplished through a
close collaboration between the applications and the OS. Our
key observation is that interference is most visible when
multiple cores have high memory demands at the same time.
In such a case, all participating cores will be delayed due
to queueing and other issues that cannot be hidden by the
underlying hardware. Therefore, BWLOCK seeks to avoid
overload situations especially when real-time applications are
executing memory intensive regions of the code. We call such
a region a memory-performance critical section. Fortunately,
such memory-performance critical sections are often easy
to identify in many soft real-time applications—particularly
multimedia applications—through application level profiling.
For example, using the perf tool in Linux 1, one can identify
functions that demand high memory bandwidth.

Motivated by these observations, BWLOCK provides a lock
like API with which programmers can describe certain code
sections that are memory-performance critical. When these
code sections execute, BWLOCK limits the amount of allowed
memory traffic from the other cores to avoid overloading
the memory bus. If source-code modification and profiling
of an application is not desired (or impossible), BWLOCK
can declare the entire execution of the application as mem-

1. A performance monitoring tool, included in the Linux kernel source tree.



ory performance critical. Then, whenever the application is
scheduled, BWLOCK will be activated to protect its memory
performance. We call the former as fine-grained bandwidth
locking and the latter as coarse-grained bandwidth locking.

We applied BWLOCK in two real-world soft real-time
applications—MPlayer (video player) and WebRTC (real-time
multimedia communication framework [9])—to protect their
real-time performance in the presence of memory intensive
non-real-time applications. In the case of MPlayer, we achieve
near perfect isolation for the MPlayer at a cost of 17%
throughput reduction of the non-real-time applications with
the coarse-grained bandwidth locking; we achieve a 17%
real-time performance improvement for the MPlayer at the
cost of only a 7% throughput reduction of the non-real-time
applications with the fine-grained bandwidth locking. Similar
improvements are observed for the WebRTC as well.

Our contributions are as follows:
• We propose a user-assisted and kernel-enforced memory-

performance control mechanism that can substantially
improve performance of soft real-time applications on
commodity multicore systems.

• We present extensive evaluation results using real-world
soft real-time applications demonstrating the viability and
the practicality of the proposed approach.

The remaining sections are organized as follows: Section 2
provides background and motivation. Section 3 presents the
design and implementation of BWLOCK. Section 4 describes
the evaluation platform and the implementation overhead anal-
ysis. Section 5 presents case study results using two real-world
soft real-time applications. Section 6 discusses limitations and
possible improvements. We discuss related work in Section 7
and conclude in Section 8.

2 BACKGROUND AND MOTIVATION

In [28], we proposed a software based memory bandwidth
management system called MemGuard for the Linux kernel.
The key idea is to periodically monitor and regulate the
memory access rate of each core, using per-core hardware
performance counters. If, for example, a group of tasks
generates too much memory traffic and delays the critical
real-time tasks, MemGuard can regulate the memory access
rates of the cores executing the offending tasks. MemGuard
provides a bandwidth reservation service that partitions a
fraction of the reservable memory bandwidth, which is much
lower than the peak bandwidth, in order to guarantee each
reserved bandwidth can be delivered even in the worst-case.
The bandwidth reservation parameters of the cores are chosen
statically. Static partitioning, however, can be inefficient when
demands of the cores change over time, because the unused
bandwidth will be wasted. To minimize bandwidth waste,
MemGuard employs a prediction-based bandwidth reclaiming
mechanism that dynamically re-distributes unused bandwidth
at runtime.

There are, however, two major problems when we apply
MemGuard to improve the performance of soft real-time
applications. First, MemGuard reserves memory bandwidth on
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Fig. 1: Memory bandwidth demand changes over time of
MPlayer and WebRTC.

a per-core basis. Therefore, when a core hosts different types
of applications (with different memory bandwidth demands),
it is difficult to choose an appropriate bandwidth reservation
parameter for the core. Second, while this restriction can be
mitigated—to a certain degree—by the runtime bandwidth re-
distribution mechanism, the effectiveness of the mechanism
depends on its prediction accuracy, which, in general, varies
depending on the characteristics of the applications. In partic-
ular, multimedia soft-real-time applications, which we focus
on in this paper, often show bursty memory access patterns.
These patterns are difficult to predict without application level
information or using sophisticated learning algorithms, which
are difficult to implement efficiently in the kernel.

Figure 1 shows memory access patterns of two multime-
dia applications—MPlayer and WebRTC—collected over the
duration of one second (sampled at every 1ms.) As both
programs process video/audio frames at a regular interval,
when processing a new frame, they require high memory
bandwidth for a short period of time. At other times, their
memory bandwidth demands are low as they are executing
compute-intensive instructions or waiting for the next period.

When these soft real-time applications compete for memory
bandwidth with the other applications running on different
cores, the short code sections that demand high memory
bandwidth could suffer a disproportionally high degree of
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Fig. 2: Average memory access latency of a Latency bench-
mark as a function of the memory bandwidth of each co-runner
on three different cores.

performance degradation. When the overall memory demand
is low, memory access latencies often can be hidden due
to a variety of latency hiding techniques and the abundant
parallelism in modern multicore architectures [10]. However,
because memory is much slower than the CPU, when the
overall demand is beyond a certain threshold, even the most
advanced architecture would no longer be capable of hiding
the latencies. Thus, requests pile up in various queues in the
system, which substantially slowdowns all the competing tasks
that access the memory.

Figure 2 illustrates this phenomenon. In this experiment,
we measure the average memory access latency (normalized to
run-alone latency) using the Latency [28] benchmark (a pointer
chasing micro-benchmark) while varying memory bandwidth
of the co-runners on the other three cores in a quad-core Intel
Xeon system (detailed hardware setup is described in Sec-
tion 4). When each co-runner’s bandwidth is low (100MB/s),
the performance impact to the measured Latency benchmark
is negligible. However, as the co-runner’s memory bandwidth
demand increases (from 100 to 900 MB/s), the observed
latency of the Latency benchmark increases exponentially.

In summary, our observations are as follows: (1) Soft
real-time applications such as multimedia applications often
show bursty memory access patterns—regularly requiring high
memory bandwidth for a short duration of time. (2) Such a
period, which we call a memory-performance critical section,
is often critical for timely data processing but it can be
disproportionally delayed by bandwidth demanding co-runners
on different cores.

These observations have motivated us to design BWLOCK,
which is described in the next section.

3 BWLOCK
BWLOCK is composed of a user-level API and a kernel-level
memory bandwidth control mechanism and it is designed to
improve performance of soft real-time time applications (e.g.,
multimedia applications) on a multicore system. It provides a
simple lock like API that can be called by the application pro-
grammers to express the importance of memory performance
for a given section of code. Once an application acquires the

Fig. 3: Overall system architecture of BWLOCK.

API Description
bw lock() begin a memory-performance critical section

bw unlock() end a memory-performance critical section

TABLE 1: BWLOCK user-level API

lock, which we call a memory bandwidth lock, the bandwidth
control mechanism regulates the maximum allowed memory
bandwidth of the other cores, while granting unlimited mem-
ory accesses to the requesting task. In this way, the program
can avoid excess memory bandwidth contention, which could
delay the execution of memory-performance critical sections.

3.1 System Architecture

Figure 3 shows the overall architecture of the proposed system.
At the user-level, it provides two functions—bw_lock()
and bw_unlock()—to protect memory-performance critical
sections. When bw_(un)lock() is called, the kernel up-
dates the calling process’s internal state so that whenever the
CPU scheduler schedules the task, the kernel can determine
whether the task is executing a memory critical section or
not. Instead of calling the bwlock functions internally, by
modifying the code, a process’s bandwidth can be requested
externally by another process (e.g., a utility program) via a sys-
tem call. Inside the kernel, per-core bandwidth regulators are
activated when there are cores executing memory-performance
critical sections. In our current implementation, the check is
periodically (e.g., every 1ms) performed by a timer interrupt
handler. Ideally, hardware assisted mechanisms could support
more fine-grained memory access control (see Section 6 for
discussions on potential hardware support.)

3.2 Design and Implementation

BWLOCK supports fine-grained and coarse-grained band-
width locking. In fine-grained locking, programmers are



required to use the API in Table 1 to declare memory-
performance critical sections. It allows fine-grain control over
memory performance but requires detailed profiling informa-
tion to be effective. Often, such profiling information can
easily be obtained using publicly available tools such as perf
in Linux, as we will show in our case studies in Section 5. The
coarse-grained locking is an equivalent of calling bw_lock
once, by the program itself or by an external utility, and
never releasing it. Then, whenever the process is scheduled,
it automatically holds the bandwidth lock. We provide an
external utility to set the bandwidth lock of any existing
process in the system. Therefore, BWLOCK can be applied
to any unmodified program, albeit the granularity of control
is the entire duration the program’s execution. It is important
to note that unlike traditional locks, in which only one task
can acquire a lock at a given time, a bandwidth lock can be
acquired by multiple tasks on different cores. In other words,
if there are multiple soft real-time applications requesting a
bandwidth lock, all of them will be granted to access to the
bandwidth lock. This design is due to the fact that the primary
goal of BWLOCK is to protect soft real-time applications from
memory intensive non-real-time applications.

In a sense, our design is similar to a two-level priority
system in which the lock is used to determine which priority
value should be given in accessing the memory. If a task holds
a lock, it indicates that the task has a high memory access
priority; otherwise, the task has a low memory access priority.
If a task’s memory access priority is low, the task’s maximum
memory bandwidth will be limited as long as there is at least
one high-memory priority task. The design can be further
extended to support multiple levels of memory priorities where
each task’s maximum memory bandwidth is regulated based
on the priority value associated with the bandwidth lock.

Figure 4 shows the kernel-level implementation of
BWLOCK. We added an integer value bwlock_val to
indicate the status (i.e., memory priority) of BWLOCK in the
process control block of Linux (task_struct). The value
can be updated via a system call (see syscall_bwlock()).
Because it simply updates an integer value (Line 10-17), its
calling overhead is very small (overhead analysis is given in
Section 4.2).

Each core’s bandwidth regulator (see
per_core_period_handler()) periodically checks
how many cores are executing memory-performance critical
sections (Line 28). If one or more cores are executing
memory-performance critical sections, only the cores that
hold the bandwidth lock can access memory freely (Line
30-31, maxperf_budget is an infinite value) while the
others are regulated (Line 32-33) with the memory bandwidth
budget determined by minperf_budget. Note that the
minperf_budget is a system parameter that indicates the
maximum amount of memory traffic that can co-exist without
significant memory performance interference. Because an
appropriate value may vary depending on the platform’s
architectural characteristics (core architecture, number of
DRAM banks, etc.), it should be determined experimentally
on each platform. In our test platform, we set the value as

1 / / t a s k s t r u c t u r e
2 s t r u c t t a s k s t r u c t {
3 . . .
4 i n t bwlock va l ; / / 1 − l ocked , 0 − u n l o c k e d
5 . . .
6 } ;
7
8 / / bwlock sys tem c a l l
9 s y s c a l l b w l o c k ( p i d t pid , i n t v a l )

10 {
11 s t r u c t t a s k s t r u c t ∗p ;
12 i f ( p i d == 0)
13 p = c u r r e n t ; / / ’ c u r r e n t ’ <− c a l l i n g t a s k
14 e l s e
15 p = f i n d p r o c e s s b y p i d ( p i d ) ;
16 p−>bwlock va l = v a l ;
17 r e t u r n 0 ;
18 }
19
20 / / p e r i o d i c h a n d l e r c a l l e d by t h e
21 / / bandwid th r e g u l a t o r s
22 vo id p e r c o r e p e r i o d h a n d l e r ( )
23 {
24 / / re−a c t i v a t e t h e suspended c o r e
25 i f ( c u r r e n t == k t h r o t t l e )
26 d e s c h e d u l e ( k t h r o t t l e ) ;
27
28 i f ( n r b w l o c k e d c o r e s ( ) > 0) {
29 / / one o r more c o r e s r e q u e s t e d bwlock
30 i f ( c u r r e n t−>bwlock va l > 0)
31 bud ge t = maxpe r f budge t ;
32 e l s e
33 bud ge t = m i n p e r f b u d g e t ;
34 } e l s e {
35 / / no c o r e s r e q u e s t e d bwlock
36 bud ge t = maxpe r f budge t ;
37 }
38
39 / / program t h e core ’ s p e r f o r m a n c e c o u n t e r
40 / / t o o v e r f l o w a t ’ budget ’ memory a c c e s s e s
41 }
42
43 / / PMC o v e r f l o w h a n d l e r
44 vo id p e r c o r e o v e r f l o w h a n d l e r ( )
45 {
46 / / s t a l l t h e c o r e t i l l t h e n e x t p e r i o d
47 / / k t h r o t t l e <− h igh p r i o r i t y i d l e t h r e a d
48 s c h e d u l e ( k t h r o t t l e ) ;
49 }

Fig. 4: BWLOCK kernel implementation

100MB/s, based on the experimental results described in
Section 2 (see Figure 2).

If a core exhausts its bandwidth budget within a regulation
period, the core’s Performance Monitoring Counter (PMC)
generates an overflow interrupt (Line 44-49). Then the core
will be immediately throttled by scheduling a high priority
idle thread (kthrottle) 2. The throttled core will be re-
activated at the beginning of the next period interrupt handler
(Line 25-26).

4 EVALUATION SETUP

In this section, we present details on the hardware platform
and the BWLOCK software implementation. We also provide
detailed overhead analysis and discuss performance trade-offs.

2. It is a simple busy-waiting loop designed to prevent any further memory
accesses.



Period (us) Overhead (%)
100 3.5
250 1.5
500 0.9

1000 0.7
2500 0.5

TABLE 2: Period interrupts handling overhead

4.1 Hardware Platform
We use a quad-core Intel Xeon W3530 based desktop com-
puter as our testbed. The processor has private 32K-I/32K-
D L1 caches and a private 256 KiB L2 cache for each
core and a shared 8MiB L3 cache. The memory controller
(MC) is integrated in the processor and connected to a 4GiB
1066 MHz DDR3 memory module. We disabled turbo-boost,
dynamic power management, and hardware prefetchers for
better performance predictability and repeatability.

4.2 Implementation Overhead Analysis
We implemented BWLOCK in Linux version 3.6.0. There are
two major sources of overhead in BWLOCK: system call and
interrupt handling. First, in the fine-grained setting, two sys-
tem calls are required for each memory-performance critical
section. In our current implementation, a single system call
is used to implement both bw_lock() and bw_unlock().
The system-call overhead is small—the average value out of
10,000 iterations is 125.24ns—as it simply changes a single
integer value in the task’s task_struct.

Second, as shown in Figure 4, a timer interrupt handler
is used to periodically reset each core’s budget. The actual
access control is performed by a performance counter overflow
interrupt handler. Unlike the overflow handler, which is not in
the critical path of normal program execution, the execution
time of the periodic timer interrupt is pure overhead which
is directly added to the task’s execution time, just like the
OS tick timer handler in the OS. We quantified the period
interrupt handling overhead by measuring the execution time
increase of the Latency benchmark, compared to its execution
time without using BWLOCK. Table 2 shows the measured
overhead (percentage of the increased execution time) under
different period lengths. Based on this result, we use 1ms
period, unless noted otherwise.

5 EVALUATION RESULTS

In this section, we present case-study results using two real-
world soft real-time applications—MPlayer (a video player)
and WebRTC [9] (a multimedia real-time communication
framework for browser based web applications)—to evaluate
the effectiveness of BWLOCK.

5.1 MPlayer
MPlayer is a widely used open-source video player. In the
following set of experiments, our goal is to protect real-time
performance of the MPlayer(s) in the presence of memory in-
tensive co-running applications while still maximizing overall
throughput of the co-runners.

In the first set of experiments, one MPlayer instance plays
a H264 movie clip with a frame resolution of 1920×816
and a frame rate of 24fps. We modified the source code of
MPlayer slightly to get the per-frame processing time and
other statistics. Decoded video frames are displayed on screen
via a standard X11 server process. Therefore, the MPlayer and
the X11 processes have soft real-time characteristics.

LLC misses Cycles Function
51.6% 27.8% yuv420 rgb32 MMX
18.8% 9.3% prefetch mmx2

4.5% 7.3% hl decode mb simple 8

TABLE 3: Profiled information of MPlayer

LLC misses Cycles Function
53.29% 32.85% sse2 blt
24.13% 24.19% fbBlt
14.10% 19.61% sse2 composite over 8888 88888

TABLE 4: Profiled information of X11

Average 99 pct. Function Applicationduration duration
2.9ms 4.2ms yuv420 rgb32 MMX MPlayer
1.1ms 2.9ms sse2 blt X11

TABLE 5: Timing statistics of memory intensive functions

5.1.1 Profiling
To understand their memory-performance characteristics, we
collect function level profiling information—cache-misses and
cycles of each function—with the perf tool, which uses
hardware performance counters. The profiled information of
MPlayer and X11 is shown in Table 3 and 4, respectively.
In both cases, the functions that generate most of the mem-
ory traffic are clearly identified: yuv420_rgb32_MMX in
MPlayer and sse2_blt in X11. Note that both functions
are responsible for more than 50% of total LLC-misses, while
using relatively small CPU cycles (27.8% and 32.85% re-
spectively). Therefore, they are prime candidates for applying
BWLOCK. Due to the restrictions of our current software
based implementation, it is also important to know the duration
of each function: if it is too short, BWLOCK may not be able
to regulate co-runners’ memory accesses when needed. Table 5
shows the average and 99 percentile execution times of the
functions. Fortunately, both functions are long enough to be
regulated by the bandwidth control mechanism of BWLOCK.

5.1.2 Performance comparison
To investigate the effectiveness of BWLOCK, we conducted
a set of experiments. We first ran the MPlayer alone (with
the X-server) to get the baseline performance. In order to
generate memory interference, we used two instances of a
memory intensive synthetic benchmark [28], referred as Band-
width(wr) 3. We also measured their baseline performance in
isolation. We then co-scheduled all four processes—MPlayer,

3. The benchmark modifies a huge one-dimensional array in a loop.



1 s t a t i c i n l i n e i n t yuv420 rgb32 MMX
2 ( SwsContext ∗c , c o n s t u i n t 8 t ∗ s r c [ ] ,
3 . .
4 {
5 bw lock ( ) ; / / added
6
7 YUV2RGB LOOP( 4 )
8 . . .
9 bw unlock ( ) ; / / added

10 }

Fig. 5: Code modification example for fine-grained application
of BWLOCK.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

D
efault

M
em

G
uard

BW
LO

CK
(fine)

BW
LO

CK
(coarse)

N
o
rm

al
iz

ed
 P

er
fo

rm
an

ce

Mplayer Co-runners

Fig. 6: Normalized performance of MPlayer (average frame
time) and co-running Bandwidth(wr) benchmarks (MB/s):
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X11, and two Bandwidth(wr) instances—at the same time in
four different configurations. For convenience of monitoring
and measurement, each process was assigned to a dedicated
core using the CPU affinity facility in Linux. Note that all four
processes are single-threaded. In Default, we used a standard
vanilla Linux kernel. In MemGuard, we used MemGuard [28];
the memory bandwidth budgets were statically configured as
500, 500, 100, and 100MB/s for Core 0 to 3, respectively4, and
predictive bandwidth re-distribution was enabled to minimize
unused bandwidth 5. In BWLOCK(fine), we manually inserted
bw_lock and bw_unlock in the previously identified mem-
ory intensive functions of MPlayer and X11 (Table 5), as
shown in Figure 5. Lastly, in BWLOCK(coarse), both MPlayer
and X11 were not modified but configured to automatically
hold the bandwidth lock whenever they were scheduled.

For MPlayer, performance is measured by the recipro-
cal of the average frame processing time. For co-running
Bandwidth(wr) benchmarks, performance is measured by their
aggregated throughput (MB/s).

Figure 6 shows the results. In the figure, performance

4. Out of the reservable bandwidth of 1200MB/s [28], we allocate 100MB/s
to each co-runner to minimize interference (see Figure 2), and evenly split
the remaining bandwidth of 1000MB/s to the MPlayer and the Xserver.

5. The re-distribution algorithm leverages a history-based bandwidth usage
prediction; for more details, please refer [28].
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Fig. 7: MPlayer’s frame processing time distribution.

is normalized to each application’s baseline performance
measured in isolation. In Default, MPlayer’s performance is
significantly degraded—dropped by 51%—due to memory
contention, while the co-running Bandwidth(wr) instances
are not affected as much—dropping by 22%. This kind of
disproportional performance impact is common in COTS mul-
ticore systems and is caused by a combination of application
memory characteristics and the DRAM controller’s scheduling
policy [22], [16]. In MemGuard, MPlayer’s performance is
better protected—dropped by 36%—as a fraction of memory
bandwidth is reserved for it. However, this comes at a cost
of considerable performance reduction of the co-runners. In
BWLOCK(fine), on the other hand, MPlayer’s performance is
similarly protected with much less performance degradation
to the co-runners. This is because co-runners are regulated
only when MPlayer executes its memory-performance critical
sections, which are short and bursty, and are explicitly in-
formed to the kernel by calling the bandwidth lock. Lastly,
in BWLOCK(coarse), MPlayer achieves near perfect perfor-
mance isolation. This is because whenever it is scheduled,
the kernel scheduler automatically calls the bandwidth lock.
However, because the entire duration of MPlayer’s processing
is protected by the bandwidth lock, the performance of co-
runners is further degraded.

Figure 7 shows the distribution of frame processing times
in each configuration. First, note that each frame in the
video inherently takes a different amount of decoding time,
which is reflected in the variation shown in Solo. Second, as
expected, the variation and the average of decoding times are
significantly increased in Default—due to the memory inter-
ference caused by co-running Bandwidth(wr) benchmarks—
while they are generally much smaller in MemGuard,
BWLOCK(fine), and BWLOCK(coarse). In particular, the
results of BWLOCK(coarse) are very similar to the ideal
performance observed in Solo.

Figure 8 shows the memory access pattern of each core,
each of which executes a different task. The y-axis shows
the number of memory accesses of each core for every one
millisecond period. Note that Core2 and Core3, which execute
the memory intensive Bandwidth(wr) benchmarks, have a very
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Fig. 8: Per-core memory access patterns.

high constant memory demand when they run in isolation.
In Default, whenever MPlayer (red line) and/or X11 (green
line) demand more memory bandwidth (increase in the LLC
misses), they suffer considerable delays due to the bandwidth
contention (compare, for example, the height and the duration
of the red and green lines at around 5050 ms with that of
BWLOCK(coarse)). In MemGuard, we can observe that both
MPlayer and X11 are getting more bandwidth (both red and
green lines are taller than those of Default), although they still
suffer significant memory interference (pink and blue lines are
still quite high). In BWLOCK(fine) and BWLOCK(coarse),
on the other hand, we can observe that the co-runners are
immediately regulated (again observe the pink and blue lines)
upon arrivals of memory bandwidth demand spikes of MPlayer
and X11. This results in improved performance.

5.1.3 Overloaded System

So far, we have assigned one task per core and both MPlayer
and X11 do not consume 100% of CPU cycles on the
assigned core. In other words, the system is under-utilized.
In order to investigate how BWLOCK performs in an over-
loaded situation, we performed another set of experiments
in which each core executes one MPlayer instance and one

Bandwidth(wr) instance to fully load the system. Performance
metrics are the same: the average frame processing time of
all MPlayer instances and the aggregate bandwidth of the
Bandwidth(wr) instances. Figure 9 shows the results. Notice
that, in this experiment setup, all cores run both real-time
and non-real-time tasks. Therefore, MemGuard’s core-based
bandwidth partitioning, which prioritizes certain cores over the
others, is not appropriate. Hence, we only compare the results
of Default and the two BWLOCK settings (fine and coarse).
As shown in the figure, both BWLOCK settings provide good
performance isolation for the MPlayer instances at the cost
of degraded performance for the Bandwidth(wr) co-runners,
which do not request bandwidth locks. Note that our current
BWLOCK implementation does not limit the number of tasks
that can hold bandwidth locks at a given time. Therefore,
memory contention among the MPlayer instances, which
hold bandwidth locks on different cores, could potentially
delay with each other. The performance reduction of MPlayer
in BWLOCK(coarse) is not from the contention from the
Bandwidth(wr) instances, but is entirely from the co-running
MPlayer instances; we verified this by comparing it with
the result obtained by running only four MPlayer instances
without any co-runners.
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Fig. 9: Normalized performance of MPlayer (average
frame time) and co-running Bandwidth benchmarks (MB/s):
4×MPlayer and 4×Bandwidth instances.

5.2 WebRTC

In this subsection, we further evaluate BWLOCK using the
WebRTC framework[9], which is an open source, plug-in
free, RTC (real-time communication) platform for enabling
audiovisual applications in a web browser.

The goal of this experiment is to provide real-time per-
formance isolation to WebRTC sessions, in the presence of
memory intensive co-running applications. We also investigate
the side effects of different isolation mechanisms on the
performance of co-runners. The basic setup is as follows: Two
hosts, each of which executes a chrome browser and initiates
a peer-to-peer WebRTC session, are directly connected to
a dedicated Gigabit Ethernet switch to minimize network
jitters. A separate host on the local LAN acts as WebRTC
server to facilitate the initial handshake between the two
hosts. Hence, the performance variability observed is almost
entirely due to resource contention in the host itself. One host
executes a WebRTC instance (chrome browser), and two LBM
benchmark (part of SPEC2006) instances, which generates
high memory traffic. And we measure the performance of
WebRTC and the LBM instances.

WebRTC utilizes a GCC (Google Congestion Control) al-
gorithm to derive target bit-rate of audiovisual streams based
on the resource contention in the network, and the end hosts
[5]. The frame rate and sending bandwidth are adjusted to
match the available resources at any given time. The default
video resolution of 640×480, and the frame rate of 30 FPS
are used for experimentation, while the threshold bandwidth
is increased to 4 Mb/s from default 2 Mb/s. All other system
parameters in the experiment setup are identical to the previous
section, unless noted otherwise.

5.2.1 Profiling

Similar to MPlayer, we collected function level
profiling information for WebRTC using the perf
tool to understand its memory access pattern.
The result shows that sk_memset32_SSE2 and
S32A_Opaque_BlitRow32_SSE2 from the Skia library
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Fig. 10: Normalized performance of WebRTC (average band-
width) and co-running LBM benchmarks (MB/s)

(a graphic library) causes more than 50% (29.29% and
22.95% respectively) of cache misses of WebRTC. The mean
execution length of each of the functions is around 7 us and
more than 99% of the sample values are less than 100 us.
Note that this is much smaller than the memory intensive
functions we observed in MPlayer and Xserver. Because the
period length of BWLOCK is 1 ms, we initially thought that
using bw_lock/unlock()—in BWLOCK(fine) setting—
to those functions may not provide performance benefits,
especially considering the overhead of frequent system calls.

5.2.2 Performance
Figure 10 shows the normalized performance of WebRTC and
co-running LBM(s) in four different configurations. Similar to
the previous experiment, WebRTC experiences disproportion-
ally high performance degradation due to the co-runners. In
MemGuard, WebRTC achieves much improved performance
but at the cost of significantly reduced throughput of the co-
runners. In BWLOCK(fine), despite our initial concerns, the
performance of WebRTC improves considerably without much
penalty to the co-running tasks. Initially, this was surprising
because the lengths of the memory-performance critical sec-
tions are much smaller than the period length of BWLOCK.
Further investigation reveals that it is due to the fact that
the short memory-intensive functions we instrumented are
called in a batch, effectively coalescing a single large memory-
intensive function. Hence, we get similar performance bene-
fits as in the previous section. Lastly, in BWLOCK(coarse),
WebRTC achieves near perfect performance isolation, but at
the cost of heavy performance reduction of the co-runners.
The WebRTC process consists of ∼20 threads, out of which
a couple of threads are involved in decoding and encoding
of video. These threads consume a significant percentage of
CPU cycles. Therefore, in BWLOCK(coarse), co-runners are
regulated most of the time.

Table 6 shows round-trip delay (RTT) and frame rate
(FPS) of WebRTC, which are collected using its own built-
in performance monitoring tool. Compared to Default, which

~


shows substantially worse performance in both RTT and FPS,
all isolation configurations show markedly better performance
in both metrics.

Config. RTT (ms) FPS (frames/sec)
Solo 1.85 30.00
Default 17.20 21.34
MemGuard 2.24 29.98
BWLOCK(fine) 4.22 29.58
BWLOCK(coarse) 2.22 30.00

TABLE 6: WebRTC internal performance metrics

6 DISCUSSION

In this section, we discuss limitations of our approach and
future improvements.

6.1 Hardware Assisted Memory Bandwidth Control
A significant limitation of our current approach is our
software-based periodic monitoring and bandwidth controlling
mechanism in which the control granularity is limited to a
millisecond range due to the interrupt handling overhead. This
means that the detection and application of bandwidth lock can
be delayed up to a period or even ignored completely if the
lock duration is too short. While this may not be a serious issue
in many soft real-time applications as we have shown in this
paper, there may be other applications in which such delays
are not tolerated. We believe this limitation can be addressed
by implementing the regulation mechanism at the hardware
level, which would allow fine-grained memory access control
with little overhead. We left this as our future work.

6.2 Application to Hard Real-Time Systems
Although we focus on soft real-time applications in this paper,
we believe BWLOCK can also be applied to hard real-time
systems in some cases. For example, consider a case in which
all hard-real-time tasks can be hosted in a single designated
core. We can then apply BWLOCK (coarse grain mode) to
all the hard real-time tasks to ensure that whenever any of
them executes on the core, the other cores’ maximum memory
bandwidth usage would be bounded. Then, both hard- and non-
real-time tasks can safely co-exist without needing to worry
about excessive memory contention because the non-real-time
tasks will be automatically throttled whenever any of the hard
real-time tasks is activated. Note that non-real-time tasks can
be hosted in any cores, including the designated core, as long
as their priorities are lower than the hard-real-time ones.

6.3 Protection and Security
BWLOCK can be abused if granted to any process. For
example, one might always want to hold the bandwidth lock
regardless of its necessity to get the best possible performance
at the cost of others who do not use the bandwidth lock. Hence,
this ability to access the bandwidth lock must be limited to
the users with root privileges; much like utilizing the real-
time CPU schedulers requires a root privilege. In the case

where BWLOCK is applied in a multi-tenant system, which
uses a hypervisor, the mechanism must be implemented at the
hypervisor level and only certain virtual machines, allowed
by the hypervisor, should be allowed to request the bandwidth
lock.

7 RELATED WORK

OS level memory access control was first discussed in litera-
ture by Bellosa [3]. The basic idea is to reserve a fraction of
memory bandwidth for each core [3], [27], [28] (or task [11])
by means of software mechanisms—e.g., TLB handler [3] or
hardware performance counters [28], [11]. One problem of
memory bandwidth reservation is that the reserved bandwidth
can be wasted if it is not fully utilized by the reserved core.
The work in [28] partly solves the problem by dynamically
re-distributing the reserved bandwidth of under-utilized cores
to the other more demanding cores. However, its effectiveness
depends on the accuracy of future usage predictions, which can
be challenging to achieve especially when the access pattern
is bursty. In contrast, BWLOCK allows unrestricted memory
accesses most of the time, hence, leveraging full benefits of
memory-level parallelism available in modern multicore archi-
tectures, while limiting excessive concurrent memory accesses
from non-real-time tasks only when soft-real-time tasks are
executing memory-performance critical sections. We find that
this selective, on-demand regulation approach in BWLOCK is
more efficient the static reservation approaches[28], [11].

In the context of providing performance isolation in mul-
ticore systems, page coloring based cache-partitioning tech-
niques have been extensively studied [19], [29], [6], [14],
[21], [25], [26]. The basic idea is to allocate memory pages
of certain physical addresses such that each core accesses
a different part of the cache-sets. This way, a cache can be
effectively partitioned without any special hardware support.
However, the downside of this approach is that it is very costly
to change the size of partitions at runtime. More recently,
page coloring has been applied to partition DRAM banks [20],
[24], [26]. These space-partitioning techniques can reduce the
degree of interference experienced by concurrent tasks and are
orthogonal to our approach that focuses on bandwidth control.

There have been many hardware proposals that allow
collaborations between the system software (OS) and the
hardware to make better resource scheduling/allocation deci-
sions. For example, many DRAM controller design proposals
utilize task-level priority information in scheduling memory
requests [15], [16], [23], [12]. Such hardware support can be
especially useful for BWLOCK because the software based
periodic bandwidth control mechanism can be replaced by
more efficient hardware mechanisms with lower overhead,
which we plan to explore in the future.

8 CONCLUSION

We have presented BWLOCK, a user-assisted and kernel-
enforced memory-performance control mechanism, designed
to protect performance of soft real-time applications, such
as multimedia applications. It provides simple a lock-like



API to declare memory-performance critical sections in the
application code. When an application accesses a memory
critical section, BWLOCK automatically regulates the other
cores so that they cannot cause excessive memory interference.

We applied BWLOCK in two real-world soft real-time
applications—MPlayer and WebRTC framework—to protect
their real-time performance in the presence of memory-
intensive non-real-time applications that share the same ma-
chine. In both cases, we were able to achieve near perfect real-
time performance, or to choose not perfect—but still better
than the vanilla Linux—real-time performance for minimal
throughput reductions of non-real-time applications.

Our future work includes hardware assisted bandwidth
control for better control quality and compiler-based automatic
identification of memory-performance critical sections in soft
real-time applications.

APPENDIX

The source code of BWLOCK is available at https://github.
com/heechul/bwlock
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