
BWLOCK: A Dynamic Memory Access Control
Framework for Soft Real-Time Applications on

Multicore Platforms
Heechul Yun†, Waqar Ali†, Santosh Gondi‡, Siddhartha Biswas?

† University of Kansas, USA. {heechul.yun, wali}@ku.edu
‡ Bose Corporation, Framingham, MA, USA. santosh gondi@bose.com

? Walmart, David Glass Technology Center, Bentonville, AR, USA. siddhartha.biswas@walmart.com

F

Abstract—Soft real-time applications often show bursty memory access
patterns—requiring high memory bandwidth for a short duration of
time—that are often critical for timely data processing and performance.
We call the code sections that exhibit such characteristics as Memory-
Performance Critical Sections (MPCSs). Unfortunately, in multicore
architectures, non-real-time applications on different cores may also
demand high memory bandwidth at the same time. Resulting bandwidth
contention can substantially increase the time spent on MPCSs of soft
real-time applications, which in turn could result in missed deadlines.

In this paper, we present a memory access control framework
called BWLOCK, which is designed to protect MPCSs of soft real-time
applications. BWLOCK consists of a user-level libarary and a kernel-
level memory bandwidth control mechanism. The user-level library
provides a lock-like API to declare MPCSs for real-time applications.
When a real-time application enters a MPCS, the kernel-level bandwidth
control mechanism dynamically throttles memory bandwidth of the rest
of the cores to protect the MPCS, until it is completed. We evalu-
ate BWLOCK using CortexSuite benchmarks. By selectively applying
BWLOCK, based on the memory intensity of the code blocks in each
benchmark, we achieve significant performance improvements, up to
150% reduction in slowdown, at a controllable throughput impact to non
real-time applications.

1 INTRODUCTION

In a multicore system, an application’s performance can be
significantly affected by co-running applications on different
cores, due to contention in shared hardware resources such as
shared Last-Level Cache (LLC) and DRAM. When the shared
resources become bottlenecks, traditional CPU scheduling
based techniques such as raising priorities [20] are no longer
sufficient to ensure the necessary performance of real-time
applications.

In hard real-time systems, one solution adopted in the
avionics industry has been disabling all but one core in
the system [17] to completely eliminate the shared resource
contention problem. Another approach, adopted in PikeOS, is
a time partitioning technique in which only one core is allowed
to execute during a set of pre-defined time windows [9]. These
approaches allow the system to be certified [5] based on the
traditional unicore-based certification process [1]. Obviously,

however, they do not fully leverage the benefit of using
multicore.

In the context of soft real-time systems, on the other hand, a
certain degree of timing variations and deadline violations is
often tolerable. Furthermore, modern multicore architectures
provide a significant amount of parallelism (e.g., out-of-order
cores, non-blocking caches, multi-bank DRAM, and etc.) This
allows, to a certain degree, multiple operations to be processed
simultaneously without much performance impact [14]. There-
fore, it is desirable to develop a solution that can achieve
better real-time performance while still exploiting the available
parallelism of multicore architectures.

In this paper, we present BWLOCK, a user-assisted and
kernel-enforced memory bandwidth control mechanism. It is
designed to protect the performance of soft real-time applica-
tions from the interference of the other non real-time applica-
tions running on different cores. This is accomplished through
a close collaboration between the real-time applications and
the OS. Our key observation is that interference is most visible
when multiple cores have high memory bandwidth demands
at the same time. In such a case, all participating cores,
including the cores that run real-time tasks, will be delayed in
accessing memory due to queueing and other issues that cannot
be hidden by the underlying hardware. Therefore, BWLOCK
seeks to avoid overload situations especially when real-time
applications are executing memory intensive code sections. We
call such a code section as a Memory-Performance Critical
Section (MPCS). Fortunately, MPCSs are often easy to iden-
tify in many soft real-time applications through application
level profiling. Motivated by these observations, BWLOCK
provides a lock like API with which programmers can describe
certain code sections as MPCSs. When these code sections are
executed, BWLOCK limits (throttles) the amount of allowed
memory traffic from the rest of the cores, which execute non-
real-time tasks, to avoid overloading the memory subsystem.
If source-code modification and fine-grained profiling of an
application are not desired (or impossible), then the entire
execution of the application can be declared as memory
performance critical. In that case, whenever the application is

scheduled, the kernel part of BWLOCK will be automatically
activated to protect memory performance of the cores that
execute the application.

We evaluate BWLOCK using CortexSuite [29], a collection
of benchmarks representing various capabilities of human
brains (vision, language, learning, and etc.). Our experiments
are designed to protect real-time performance of the evaluated
applications in the presence of co-running memory intensive
non-real-time applications. With CortexSuite, we observe that
the memory intensive co-runners can significantly degrade the
performance, as we observe up to 150% slowdown. Using
BWLOCK, we show that the execution time delays can
be considerably decreased; we observe up to 5X slowdown
reduction.

Our contributions are as follows:
• We propose a user-assisted and kernel-enforced memory-

performance control mechanism to protect performance
of soft real-time applications on commodity multicore
systems.

• We present extensive evaluation results using realistic
benchmarks, demonstrating the viability of the proposed
approach. Also, we provide the source code and test
scripts used in our evaluation as open-source 1.

The remaining sections are organized as follows: Section 2
provides background and motivation. Section 3 presents the
design and implementation of BWLOCK. Section 4 describes
the evaluation platform and the implementation overhead anal-
ysis. Section 5 presents evaluation results. Section 6 discusses
limitations and possible improvements. We discuss related
work in Section 7 and conclude in Section 8.

2 BACKGROUND AND MOTIVATION

Soft real-time applications often show bursty memory access
patterns, requiring high memory bandwidth for a short dura-
tion of time—for example, certain phases of video decoding
process. At other times, however, their memory bandwidth
demand may be low, for example, when they execute compute-
intensive instructions or waiting for next periods. When a soft
real-time application competes for memory bandwidth with
other applications running on different cores, the short code
sections that demand high memory bandwidth can suffer a dis-
proportionally high degree of performance degradation. Al-
though memory access latency of a single application often can
be hidden due to a variety of latency hiding techniques and the
abundant parallelism in modern multicore architectures [14],
if the overall memory bandwidth demand reaches beyond a
certain threshold, even the most advanced architecture would
no longer be capable of hiding the latency. Thus, requests pile
up in various queues in the system and all tasks that access
the memory would be delayed.

Figure 1 illustrates this phenomenon. In this experiment, we
measure the average memory access latency (normalized to
run-alone latency) of a synthetic benchmark in the presence
of memory intensive co-runners on the other three cores in
a quad-core Intel Xeon system (detailed hardware setup is

1. https://github.com/CSL-KU/bwlock

 0

 1

 2

 3

 4

 5

 6

 7

 8

 100 200 300 400 500 600 700 800 900 1000

N
o
rm

al
iz

ed
 a

v
g
.
m

em
o
ry

 l
at

en
cy

Co-runners’ memory bandwidth (MB/s)

Fig. 1: Normalized average memory access latency of a
Latency benchmark as a function of each co-runner’s memory
bandwidth demand (on three different cores.)

described in Section 4). All benchmarks are configured so
that each memory access generates a DRAM transaction (an
LLC miss). The Y-axis shows the normalized average memory
access latency of the subject benchmark and the X-axis shows
each co-runner’s controlled memory bandwidth usage. Note
that when the co-runner’s bandwidth is low (100MB/s), the
performance impact to the measured subject benchmark is
negligible. However, as the co-runner’s memory bandwidth
demand increases (from 100 to 1000 MB/s), the observed
memory access latency of the benchmark increases exponen-
tially and then saturates. This shows that memory bandwidth
contention can cause disproportionate memory access delay to
applications.

Such bandwidth contention is especially problematic for
a soft real-time application executing memory-performance
critical code sections (MPCSs). In the following, we describe
a simple and explicit bandwidth control mechanism, called
BWLOCK, to eliminate the memory bandwidth contention
problem for soft real-time applications.

3 BWLOCK
The goal of BWLOCK is to selectively eliminate (reduce)
memory bandwidth contention of soft real-time applications. It
is application driven in the sense that the application explicitly
specifies which parts of the program are memory performance
critical sections (MPCSs), using a lock-like API, which we call
a memory bandwidth lock. Bandwidth contention is eliminated
by regulating (throttling) memory bandwidth of the rest of
the cores that execute memory intensive non real-time (NRT)
applications. At run-time, BWLOCK always satisfies the fol-
lowing two simple rules:

• Rule 1: All (soft) RT tasks2 will not be throttled in any
cases.

• Rule 2: All NRT tasks’ maximum memory bandwidth
will be limited to a certain threshold, if there is at least
one RT task that holds the bandwidth lock.

In other words, NRT tasks will be throttled if they exceed
a given bandwidth threshold while RT tasks execute MPCSs,

2. In this paper, we use the terms “core” and “task” interchangeably, unless
noted otherwise, as only one task is executed on a certain core at a time.

Library

OS

Core1 Core2 Core3 Core4

PMC PMC PMC PMC

DRAM

Multicore Processor
Memory Controller

BW
Regulator

BW
Regulator

BW
Regulator

BW
Regulator

SRT SRT NonRT NonRT

Applications

bw_lock()/bw_unlock()

BWLOCK API

Shared memory

CPU Scheduler

Fig. 2: Overall system architecture of BWLOCK.

to minimize memory bandwidth contention. But if no RT task
executes a MPCS, both RT and NRT tasks will be executed
without any bandwidth throttling.

3.1 Assumptions and Semantics
We assume that the taskset is composed of two tiers of
tasks: real-time (RT) tasks and non real-time (NRT) tasks. We
assume partitioned fixed-priority real-time scheduling for RT
tasks. RT tasks are strictly prioritized over NRT tasks and
we do not assume any particular scheduling model for NRT
tasks. It is important to note that, in our model, RT tasks do
not migrate while NRT tasks can.

The locking semantic of BWLOCK can be viewed as a k-
exclusion lock where k is equal to the number of cores, as it
allows up to k active lock holders at a time—one lock holding
RT task per core. Unlike other k-exclusion lock designs [11],
[4], [30], [8], however, in BWLOCK, when a lock holder task
is preempted by another task on the same CPU core, the lock is
automatically released so that the newly scheduled task on the
core can subsequently acquire the lock to execute its MPCSs;
when the preempted task is re-scheduled, it automatically re-
acquires the lock again. This implicit lock acquisition/release
by CPU scheduling is possible because memory bandwidth,
which BWLOCK tries to protect, is a performance property
and not a logical one.

3.2 System Architecture
Figure 2 shows the overall architecture of BWLOCK, which
is composed of a user-level library and a kernel module. The
user-level library provides an API for memory bandwidth
control. Real-time tasks use the API to explicitly declare
memory-performance critical sections (MPCSs). Additionally,
any real-time task’s entire execution can be declared as a single
big MPCS via an external helper utility without needing to
modify the application program code, although it would affect
throughput of NRT tasks. The library shares memory pages
(one per core) with the kernel for sharing information. A task’s

use of MPCS is updated directly in the shared memory pages
to eliminate the need of system calls for communicating the
information with the kernel. This makes it possible to use
BWLOCK even in small sections of code which get invoked
repeatedly without paying excessive system call overhead.

Inside the kernel, per-core bandwidth regulators check
whether there are RT tasks executing MPCSs by looking at
the shared memory pages of the cores. In our current imple-
mentation, the check is periodically (every 1ms) performed
by a timer interrupt handler. If such RT tasks exist, the
the regulators are automatically activated to protect memory
performance of the RT tasks by throttling memory bandwidth
usage of the rest of the cores that execute NRT tasks.

3.3 Design and Implementation

Algorithm 1: BWLOCK kernel implementation

1 struct task struct {
2 ...
3 int bwlock val;
4 ...
5 }
6 procedure nr_bwlocked_cores()
7 int locked cores := 0 ;
8 for each core (c)
9 if cpu rq(c)→bwlock val then

10 locked cores++;
11 end
12 return (locked cores)

13 procedure per_core_period_handler()
14 int new budget := max perf budget;
15 // current ← this core’s running task pointer
16 if (current == kthrottle) then
17 deschedule(kthrottle);
18 end
19 if is bwlock requested by(current) then
20 current→bwlock val = 1
21 else
22 current→bwlock val = 0
23 end
24 if nr bwlocked cores() > 0 then
25 if !rt task(current) then
26 new budget = min perf budget;
27 end
28 end
29 program pmc(new budget);
30 return

31 procedure pmc_overflow_interrupt()
32 // kthrottle ← per-core high priority RT idle thread

schedule(kthrottle);
33 return

Algorithm 1 shows part of implementation of the BWLOCK
kernel module. Up on initialization, the kernel module creates
a shared memory page for each processing core. These pages

serve as tables for allocating entries to user-space tasks which
need to use bandwidth lock. When a (RT) task initializes the
user-level library, it maps the shared memory page of the
core on which the task is executing to the task’s memory
space. As noted earlier, each RT task is pinned to a particular
core on initialization (i.e., no run-time migration.) Once the
initialization is completed, the task can request or release the
bandwidth lock using the following API: bw_lock() and
bw_unlock(), for lock acquisition and release, respectively.

Each core’s bandwidth regulator periodically checks the
core’s bandwidth lock memory page to determine the tasks
that request/release the bandwidth lock. The regulator updates
the tasks’ task control blocks (TCBs) to indicate whether the
memory bandwidth lock is requested or not (Line 19-23).
We added an integer variable bwlock_val in Linux’s TCB
(task_struct) for storing the information (Line 3).

Then, the regulator determines how many cores are exe-
cuting MPCSs. If one or more cores are executing MPCSs,
then memory bandwidth of the cores that currently execute
NRT tasks will be throttled—limited by minperf_budget,
which denotes the minimum bandwidth budget (Line 24-28).
Note that, in our current implementation, minperf_budget
is a system parameter, which indicates the maximum amount
of per-core memory traffic that can co-exist without significant
memory bandwidth contention. Because an appropriate value
may vary depending on the platform’s architectural character-
istics (out-of-order pipeline, number of DRAM banks, etc.) as
well as applications’ memory access characteristics, it should
be carefully determined. In our test platform, we set the value
as 100MB/s, based on our empirical observations in Section 2
(see Figure 1). This is a conservative (safe) estimation as we
used a memory bandwidth sensitive synthetic benchmark in the
experiments. On the other hand, maxperf_budget denotes
the maximum budget of the core, which is, in our current
implementation, effectively an infinite number so that the core
will not be throttled.

If a core exhausts its bandwidth budget within a regulation
period, the core’s Performance Monitoring Counter (PMC)
generates an overflow interrupt (Line 31-33). Then the core
will be immediately throttled by scheduling a high priority
idle thread (kthrottle) 3. The throttled core is re-activated
at the beginning of the next period (Line 9-11).

As noted earlier, unlike traditional locks, in which only one
task can acquire a lock at a given time, the bandwidth lock can
be acquired by multiple tasks on different cores—at most one
task per core at a time. In other words, if there are multiple soft
real-time tasks requesting the bandwidth lock, all of them can
be granted access to the bandwidth lock. This design is due to
the fact that the primary goal of BWLOCK is to protect soft
real-time tasks from memory intensive non-real-time tasks.

4 EVALUATION SETUP
In this section, we present details of the hardware platform
and the software implementation. We also provide detailed

3. It is currently a simple busy-waiting loop that is designed to prevent any
further memory accesses. Precise sleep using a high-resolution timer can be
used instead to reduce energy consumption, although energy saving is not our
primary concern in this paper.

overhead analysis and discuss performance trade-offs.

4.1 Hardware Platform
We use a quad-core Intel Xeon W3530 (Nehalem architecture)
based desktop computer as our test-bed. Each core has private
32K-I/D L1 caches and a private 256 KiB L2 cache and all
four cores share a 8MiB L3 cache. The memory controller
(MC) is integrated in the processor and connected to a 4GiB
1066 MHz DDR3 memory module. We disabled turbo-boost,
dynamic power management, and hardware prefetchers for
better performance predictability and repeatability.

4.2 Software Implementation
We use a standard Linux 4.0 kernel for evaluation. The kernel
part of BWLOCK is implemented as a separate kernel module
and loaded (and unloaded) dynamically to conduct experi-
ments. Once the kernel module is loaded, it exposes a device
driver interface. The user-level library uses the device interface
to directly share memory pages with the kernel module, which
eliminates the need of system calls for acquiring and releasing
the bandwidth lock.

4.3 Implementation Overhead Analysis
A major source of overhead of BWLOCK is the periodic timer
interrupt handler, shown in Algorithm 1. The execution time of
the periodic timer interrupt is pure overhead which is directly
added to the task’s execution time, just like the OS tick timer
handler. We quantified the period interrupt handling overhead
by measuring the execution time increase of a benchmark,
compared to its execution time without using BWLOCK; we
found the overhead is less than 1% execution time increase
with the regulation period of 1 ms (longer periods result in
even less overheads). In addition, the performance counter
overflow interrupt handler, which actually performs access
control, is not in the critical path of normal program execution
and does not occur at all if the memory budget of the core,
which executes a given task, is sufficient. Therefore, we
believe the overhead of BWLOCK is acceptable for soft real-
time systems.

5 EVALUTION RESULTS

In this section, we present our evaluation results of BWLOCK
using the CortexSuite [29], a synthetic brain benchmark suite
that includes popular vision and machine-learning algorithms.
We choose six benchmarks from the CortexSuite that require

Configuration Description
Lock-1 Apply BWLOCK to one most memory intensive

function of the subject benchmark.
Lock-2 Apply BWLOCK to two most memory intensive

functions of the subject benchmark.
Lock-3 Apply BWLOCK to three most memory intensive

functions of the subject benchmark
Lock-C Apply BWLOCK to the entire program execution

of the subject benchmark

TABLE 1: BWLOCK configurations used in evaluation.

sift disparity tracking mser clustering liblinear

0
50

10
0

15
0

sift disparity tracking mser clustering liblinear

0
50

10
0

15
0

Corun Lock−1 Lock−2 Lock−3 Lock−CCorun Lock−1 Lock−2 Lock−3 Lock−C

(a) Execution time slowdown

sift disparity tracking mser clustering liblinear

0
20

40
60

80
10

0
12

0
14

0

sift disparity tracking mser clustering liblinear

0
20

40
60

80
10

0
12

0
14

0 Lock−1 Lock−2 Lock−3 Lock−CLock−1 Lock−2 Lock−3 Lock−C

(b) BWLOCK duration

sift disparity tracking mser clustering liblinear

−6
0

−4
0

−2
0

0
20

40

sift disparity tracking mser clustering liblinear

−6
0

−4
0

−2
0

0
20

40

Corun Lock−1 Lock−2 Lock−3 Lock−CCorun Lock−1 Lock−2 Lock−3 Lock−C

(c) Memory bandwidth reduction

sift disparity tracking mser clustering liblinear

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

sift disparity tracking mser clustering liblinear

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4 Corun Lock−1 Lock−2 Lock−3 Lock−CCorun Lock−1 Lock−2 Lock−3 Lock−C

(d) Cache (LLC) miss-rate

Fig. 3: Effect of using BWLOCK on CortexSuite. All sub-figures are normalized to the baseline solo execution.

high memory bandwidth. Using the benchmarks, we conduct a
set of experiments to evaluate the effectiveness of BWLOCK
in the presence of memory intensive co-runners.

To isolate the effects of cache-space contention from mem-
ory bandwidth contention, in this experiment, we partition
the last level cache (LLC) into four equal sets using PAL-
LOC [32] 4. We assign three cache-sets (3/4 of the LLC) to
the core that runs the subject benchmark and assign one cache-
set (1/4 of the LLC) to the remaining three cores. We profile
the solo execution of the subject benchmarks, using the perf
tool in Linux, to identify their memory performance critical
sections (MPCSs) at the granularity of functions. We rank all
functions of each benchmark according to their memory band-
width usage (i.e., the percentage of LLC misses of the function

4. PALLOC is a kernel level memory allocator which can be used to
partition the last level cache and DRAM banks. In our evaluation, we use
PALLOC for partitioning the LLC.

over all LLC misses). We then choose top three functions
from each benchmark as MPCSs. For each benchmark, we
apply the memory bandwidth lock to an increasing number of
the MPCSs, from one to three functions, denoted as Lock-1,
Lock-2, and Lock-3, respectively, in Table 1. In addition, we
also evaluate the course-grained memory bandwidth locking,
denoted as Lock-C in Table 1, which protects the entire
duration of the benchmark execution without any application
code changes. In each BWLOCK configuration, we run the
subject benchmark with three instances of a memory intensive
benchmark, Bandwidth(wr) to evaluate the effectiveness of
BWLOCK.

Figure 3(a) shows the percentage of performance slow-
down. Note first that when BWLOCK is not used—Corun—
performance of each benchmark is substantially delayed, up
to 150% in clustering, due to memory bandwidth contention
from the memory intensive co-runners. However, as we apply

more memory bandwidth locks—from Lock-1 (1 function
is protected using BWLOCK) to Lock-C (entire program is
protected using BWLOCK)—performance improves accord-
ingly. The performance improvement is most pronounced in
memory intensive benchmarks like clustering and liblinear,
which suffer 150% and 90% slowdown, respectively, in Corun
but suffer virtually no slowdown in Lock-C. Furthermore,
incrementally increasing the aggressiveness (i.e. number of
locked functions) results in incremental performance improve-
ments. For example, in the clustering benchmark, locking only
two functions reduces the slowdown from 150% to 32%.

Of course, the improvement of the subject benchmark
comes at the cost of co-runners. The more an application
uses BWLOCK, the more the co-runners, if they are memory
intensive, will suffer as their memory bandwidth will be
throttled. Figure 3(b) shows the percentage of time during
which each co-runner’s memory bandwidth is throttled. As can
be seen in the figure, as the lock level increases, the throttled
time also increases, which would result in lower performance
of the co-runners.

Note that, because the shared LLC is partitioned between
the subject and the co-runners, performance of the subject
benchmarks is mainly affected by memory bandwidth. Fig-
ure 3(c) shows the achieved memory bandwidth differences,
compared to solo execution, in each BWLOCK configura-
tion that closely track the performance slowdowns shown in
Figure 3(a). In addition, Figure 3(d) shows the measured
LLC miss-rates of the subject benchmarks, normalized to
solo execution, showing no significant variations due to cache
partitioning. In other words, bandwidth reductions are the
chief cause of performance slowdowns in our experiments.
Therefore, reducing bandwidth contention by using BWLOCK
improves application performance.

6 DISCUSSION

In this section, we discuss limitations of our approach and
future improvements.

A significant limitation of our current approach is our
software-based periodic monitoring and bandwidth controlling
mechanism in which the control granularity is limited to a
millisecond range due to the interrupt handling overhead. This
means that the detection and application of bandwidth lock can
be delayed up to a period or even ignored completely if the
lock duration is too short. While this may not be a serious issue
in many soft real-time applications as we have shown in this
paper, there may be other applications in which such delays are
not tolerated. We believe this limitation can be addressed by
adopting hardware-based bandwidth regulation mechanisms,
which can be found in [7], [2], [21], [13].

BWLOCK can be abused if granted to any task. For
example, one might always want to hold the bandwidth lock
regardless of its necessity to get the best possible performance
at the cost of the others who do not use the bandwidth lock.
Hence, this ability to access the bandwidth lock must be
limited to the users with root privileges; much like utilizing
the real-time CPU schedulers requires a root privilege. Even
so, if all simultaneously running tasks are real-time ones, then

BWLOCK does not currently offer any protection between
them. We argue, however, that the fact that real-time tasks
can only be interfered by fellow real-time tasks—but not
by unknown non real-time tasks—makes it much easier to
analyze the system because the real-time tasks can be known in
advance. Similar arguments were made in [12] in the context
of mixed-criticality scheduling.

7 RELATED WORK

OS level memory bandwidth control was first discussed in
literature by Bellosa [3]. The basic idea is to control memory
bandwidth usage of the cores by means of software mecha-
nisms. For example, in Bellosa’s original work, TLB miss han-
dler was used for (approximate) memory bandwidth control.
More recently, MemGuard [33], [34] and several works [15],
[10], [25] re-introduced OS-level memory bandwidth control
for real-time systems, providing stronger bandwidth guaran-
tees (bandwidth reservation) by using hardware performance
counters on modern COTS multicore processors. Some works
have investigated dynamic budget adjustment techniques for
soft real-time systems [34], [24]. In [10], Fldoin et al. also
present a bandwidth reservation scheme but at the granularity
of tasks instead of cores. The scheme is primarily focused
on hard real-time tasks but also allows dynamic bandwidth
adjustments if the hard real-time tasks finish early. In con-
trast, BWLOCK enables more fine-grained and direct memory
bandwidth control—albeit requiring programmers’ efforts and
best only for soft real-time tasks—that can take advantage
of memory-level parallelism available in modern multicore
architectures, while limiting excessive concurrent memory
accesses when necessary. We show that this application driven,
explicit, fine-grained memory access control approach can be
more efficient, especially for soft real-time applications.

Another OS-based technique is page coloring, which has
been extensively studied, especially in the context of parti-
tioning shared caches [23], [31], [32]. The basic idea is to
allocate memory pages of certain physical addresses such that
each core accesses a different part of the cache-sets. This
way, a cache can be effectively partitioned without any special
hardware support. However, the downside of this approach is
that it is very costly to change the size of partitions at runtime.
More recently, page coloring has been applied to partition
DRAM banks [22], [28], [32] and TLB [26]. These space-
partitioning techniques can reduce the degree of interference
experienced by concurrent tasks and are orthogonal to our
approach that focuses on bandwidth control.

There have been several hardware proposals that allow
collaborations between the system software (OS) and the hard-
ware to make better resource scheduling/allocation decisions.
For example, several DRAM controller proposals utilize task-
level priority information in scheduling memory requests [18],
[27], [16]. Also, hardware based predictable memory system
designs have been actively studied in the real-time systems
community. Some researchers investigated LR server [6] based
memory controller and interconnection network designs that
provide latency and bandwidth guarantees [7], [2]. Others

investigated TDMA based memory controllers that can pro-
vide fine-grained bandwidth reservation capability in hard-
ware [21], [13]. These hardware designs can be integrated
with BWLOCK, replacing the current OS based regulators,
to provide finer protections to real-time applications.

8 CONCLUSION

We have presented BWLOCK, a user-assisted and kernel-
enforced memory-performance control mechanism, designed
to protect performance of soft real-time applications. It pro-
vides a lock-like API to declare memory-performance critical
sections (MPCSs) in the application code. When a real-time
task’s MPCS is executed on a core, BWLOCK automatically
regulates memory traffic of the rest of the cores, executing non
real-time tasks, to avoid memory bandwidth contention.

We evaluated BWLOCK using CortexSuite benchmarks.
By selectively applying BWLOCK on MPCSs, we achieved
significant performance improvements, up to 150%, of real-
time tasks at controllable throughput impact to non-real-time
tasks. Our future work includes integrating hardware assisted
bandwidth control mechanisms (e.g.,[2], [21]) and developing
automated MPCSs identification tools at the granularities of
functions and superblocks [19].

REFERENCES

[1] Aeronautical Radio Inc. Avionics Application Standard Software Inter-
face (ARINC) 653, 2013.

[2] B. Akesson, L. Steffens, E. Strooisma, and K. Goossens. Real-time
scheduling using credit-controlled static-priority arbitration. In Embed-
ded and Real-Time Computing Systems and Applications (RTCSA), pages
3–14. IEEE, 2008.

[3] F. Bellosa. Process cruise control: Throttling memory access in a soft
real-time environment. Technical Report TR-I4-97-02, University of
Erlangen, Germany, July 1997.

[4] B. B. Brandenburg. Scheduling and locking in multiprocessor real-time
operating systems. PhD thesis, University of North Carolina at Chapel
Hill, 2011.

[5] C. A. S. T. (CAST). Position Paper CAST-32: Multi-core Processors
(Rev 0). Technical report, Federal Aviation Administration (FAA), May
2014.

[6] R. L. Cruz. A calculus for network delay. i. network elements in
isolation. IEEE Transactions on information theory, 37(1):114–131,
1991.

[7] B. D. de Dinechin, Y. Durand, D. van Amstel, and A. Ghiti. Guaranteed
services of the noc of a manycore processor. In Proceedings of the 2014
International Workshop on Network on Chip Architectures, pages 11–16.
ACM, 2014.

[8] G. Elliott, B. Ward, and J. Anderson. Gpusync: A framework for real-
time gpu management. In Real-Time Systems Symposium (RTSS), pages
33–44. IEEE, 2013.

[9] S. Fisher. Certifying Applications in a Multi-Core Environment: a New
Approach Gains Success. Technical report, SYSGO AG., 2012.

[10] J. Flodin, K. Lampka, and W. Yi. Dynamic budgeting for settling dram
contention of co-running hard and soft real-time tasks. In Industrial
Embedded Systems (SIES), pages 151–159. IEEE, 2014.

[11] P. Gai, L. Abeni, and G. Buttazzo. Multiprocessor DSP scheduling in
system-on-a-chip architectures. In Euromicro Conference on Real-Time
Systems (ECRTS), pages 231–238. IEEE, 2002.

[12] G. Giannopoulou, N. Stoimenov, P. Huang, and L. Thiele. Scheduling
of mixed-criticality applications on resource-sharing multicore systems.
In Embedded Software (EMSOFT), pages 1–15. IEEE, 2013.

[13] M. D. Gomony, B. Akesson, and K. Goossens. A real-time multichannel
memory controller and optimal mapping of memory clients to memory
channels. ACM Transactions on Embedded Computing Systems (TECS),
14(2):25, 2015.

[14] J. Hennessy and D. Patterson. Computer architecture: a quantitative
approach. Morgan Kaufmann, 2011.

[15] R. Inam, N. Mahmud, M. Behnam, T. Nolte, and M. Sjödin. The Multi-
Resource Server for Predictable Execution on Multi-core Platforms.
In Real-Time and Embedded Technology and Applications Symposium
(RTAS). IEEE, April 2014.

[16] R. Iyer, L. Zhao, F. Guo, R. Illikkal, S. Makineni, D. Newell, Y. Solihin,
L. Hsu, and S. Reinhardt. Qos policies and architecture for cache/mem-
ory in cmp platforms. ACM SIGMETRICS Performance Evaluation
Review, 35(1):25–36, 2007.

[17] N. Kim, B. C. Ward, M. Chisholm, C.-Y. Fu, J. H. Anderson, and F. D.
Smith. Attacking the one-out-of-m multicore problem by combining
hardware management with mixed-criticality provisioning. In Real-Time
and Embedded Technology and Applications Symposium (RTAS), pages
149–160. IEEE, 2016.

[18] Y. Kim, M. Papamichael, O. Mutlu, and M. Harchol-Balter. Thread
cluster memory scheduling: Exploiting differences in memory access
behavior. In Microarchitecture (MICRO), 2010 43rd Annual IEEE/ACM
International Symposium on, pages 65–76. IEEE, 2010.

[19] K. Lampka, G. Giannopoulou, R. Pellizzoni, Z. Wu, and N. Stoimenov.
A formal approach to the wcrt analysis of multicore systems with
memory contention under phase-structured task sets. Real-Time Systems,
50(5-6):736–773, 2014.

[20] J. Lehoczky, L. Sha, and Y. Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. In Real
Time Systems Symposium (RTSS), pages 166–171. IEEE, 1989.

[21] Y. Li, B. Akesson, and K. Goossens. Architecture and analysis of a
dynamically-scheduled real-time memory controller. Real-Time Systems,
pages 1–55, 2015.

[22] L. Liu, Z. Cui, M. Xing, Y. Bao, M. Chen, and C. Wu. A software
memory partition approach for eliminating bank-level interference in
multicore systems. In Parallel Architecture and Compilation Techniques
(PACT), pages 367–376. ACM, 2012.

[23] R. Mancuso, R. Dudko, E. Betti, M. Cesati, M. Caccamo, and R. Pel-
lizzoni. Real-Time Cache Management Framework for Multi-core
Architectures. In Real-Time and Embedded Technology and Applications
Symposium (RTAS). IEEE, 2013.

[24] J. Nowotsch and M. Paulitsch. Quality of service capabilities for hard
real-time applications on multi-core processors. In Proceedings of the
21st International Conference on Real-Time Networks and Systems,
pages 151–160. ACM, 2013.

[25] J. Nowotsch, M. Paulitsch, D. Bühler, H. Theiling, S. Wegener, and
M. Schmidt. Multi-core interference-sensitive wcet analysis leveraging
runtime resource capacity enforcement. In 2014 26th Euromicro Con-
ference on Real-Time Systems, pages 109–118. IEEE, 2014.

[26] S. A. Panchamukhi and F. Mueller. Providing task isolation via tlb
coloring. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 3–13. IEEE, 2015.

[27] L. Subramanian, V. Seshadri, Y. Kim, B. Jaiyen, and O. Mutlu. Mise:
Providing performance predictability and improving fairness in shared
main memory systems. In High Performance Computer Architecture
(HPCA2013), pages 639–650. IEEE, 2013.

[28] N. Suzuki, H. Kim, D. d. Niz, B. Andersson, L. Wrage, M. Klein, and
R. Rajkumar. Coordinated Bank and Cache Coloring for Temporal Pro-
tection of Memory Accesses. In Computational Science and Engineering
(CSE), pages 685–692. IEEE, 2013.

[29] S. Thomas, C. Gohkale, E. Tanuwidjaja, T. Chong, D. Lau, S. Garcia,
and M. B. Taylor. Cortexsuite: A synthetic brain benchmark suite.
IISWC, Oct. 2014.

[30] B. C. Ward, J. L. Herman, C. J. Kenna, and J. H. Anderson. Making
shared caches more predictable on multicore platforms. In 2013 25th
Euromicro Conference on Real-Time Systems, pages 157–167. IEEE,
2013.

[31] Y. Ye, R. West, Z. Cheng, and Y. Li. COLORIS: a dynamic cache
partitioning system using page coloring. In Parallel Architectures and
Compilation Techniques (PACT), pages 381–392. ACM, 2014.

[32] H. Yun, R. Mancuso, Z. Wu, and R. Pellizzoni. PALLOC: DRAM
Bank-Aware Memory Allocator for Performance Isolation on Multicore
Platforms. In Real-Time and Embedded Technology and Applications
Symposium (RTAS), pages 155–166. IEEE, 2014.

[33] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. MemGuard:
Memory Bandwidth Reservation System for Efficient Performance Iso-
lation in Multi-core Platforms. In Real-Time and Embedded Technology
and Applications Symposium (RTAS), pages 55–64. IEEE, 2013.

[34] H. Yun, G. Yao, R. Pellizzoni, M. Caccamo, and L. Sha. Memory
Bandwidth Management for Efficient Performance Isolation in Multi-
core Platforms. Transactions on Computers (TC), 2015.

	Introduction
	Background and Motivation
	BWLOCK
	Assumptions and Semantics
	System Architecture
	Design and Implementation

	Evaluation Setup
	Hardware Platform
	Software Implementation
	Implementation Overhead Analysis

	Evalution Results
	Discussion
	Related Work
	Conclusion
	References

