A Reduced Complexity Design Pattern For Distributed
Hierarchical Command and Control System

Heechul Yun
University of lllinois at
Urbana-Champaign
201 N. Goodwin
Champaign, IL 60801

heechul@illinois.edu
Cheolgi Kim

University of lllinois at
Urbana-Champaign
201 N. Goodwin
Champaign, IL 60801
cheolgi@illinois.edu

ABSTRACT

Cyber Physical Systems (CPS) get a lot of attention due to the
strong demand for the integration of physical devices and comput-
ing systems. There are many design aspects involved in CPS, such
as efficiency, real-time, reliability and security. One of the major
issues is system integration and verification. In many safety critical
systems verification plays an essential role in system design. How-
ever, the high complexity for the composition of diverse systems is
a major challenge for system verification. In this paper, we focus
on command and control systems for search and rescue missions
and propose a systematic design pattern called Interruptible RPC
to compose complex systems while keeping the verification costs
low. This has been made possible due to the reduced state space
of the systems designed using our pattern. Therefore, the system
models can be efficiently verified using available verification tools.
In our experiments, the search and rescue system based on Inter-
ruptible RPC pattern had fewer states than the asynchronous one
by several orders of magnitude.

Categories and Subject Descriptors

D.2.8 [Software Engineering]: Metrics—complexity measures, per-

formance measures; D.2.11 [Software Engineering]: Software Ar-
chitecture—Patterns

General Terms
Verification

Keywords

Complexity, Command and Control System, Remote Procedure Call

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

ICCPS’10 April 13-15, 2010, Stockholm, Sweden

Copyright 2010 ACM 978-1-4503-0066-7/04/10 ...$10.00.

Po-Liang Wu
University of lllinois at
Urbana-Champaign
201 N. Goodwin
Champaign, IL 60801
wu87@illinois.edu

Maryam Rahmaniheris
University of lllinois at
Urbana-Champaign
201 N. Goodwin
Champaign, IL 60801
rahmanii@illinois.edu

Lui Sha
University of lllinois at
Urbana-Champaign
201 N. Goodwin
Champaign, IL 60801

[rs@illinois.edu

1. INTRODUCTION

As computing devices deeply and pervasively affect our daily lives,
new requirements arise for the seamless integration of physical ob-
jects and computing systems. Cyber-physical systems (CPSs) are
systems that tightly combine physical elements and computation
resources through communication technologies. Some applications
for cyber-physical systems include health care, advanced automo-
tive systems, and avionics [1]. Since CPSs interact with various
physical components and systems overall system design becomes a
critical issue with respect to robustness, reliability, efficiency, and
real-time properties. Moreover, integrating these diverse systems
will inevitably add significantly to the verification cost. Therefore,
new system-level composition techniques are required to provide
systematic design patterns with low complexity [2].

In many command and control systems such as the Search and Res-
cue system [3]', robustness and reliability are the major concerns.
Therefore, there is a strong demand to formally verify the correct-
ness of systems with some program verification tools such as UP-
PAAL and Maude [4, 5]. However, in many systems, the compo-
nents are physically distributed and interact asynchronously, due
to the lack of a common clock. Verifying such asynchronous sys-
tems is very difficult, or even impossible, because the state space
grows exponentially due to message interleaving resulting from
asynchronous communication. This kind of problem is known as
state explosion [6, 7].

The problem of state space explosion due to distributed system de-
signs can be seen in different systems. In database systems, one
of the most successful approaches to address this problem is the
use of atomic transactions [8]. Atomicity translates all the possible
results generated by the distributed database system into an equiv-
alent serialized one. Since atomicity solves the operation interleav-
ing problem, the complexity of the distributed database systems is
significantly reduced. However, the all or nothing atomicity prop-
erty decreases flexibility. Moreover, the roll-back mechanism is
sometimes extremely difficult or even impossible in systems with
physical constraints, such as command and control systems.

!The detail discussion is provided in the next section.

On the other hand, imprecise computing [9] (or anytime comput-
ing) discusses the tradeoff between the responsiveness and robust-
ness of the systems. Imprecise computing provides the flexibility
of receiving a usable, approximate result. However, there is no
formal and verified model that exploits the potential usage of im-
precise computing in other system designs. The technical problem
is to provide sufficient flexibility/efficiency while maintaining the
simplicity [10].

In this paper, we focus on the design methodology of providing
formal description of the basic structure for composing complex
systems, called building block, which is flexible, easy to extend,
and only introduces low complexity and verification cost. In order
to achieve the design goal, we present an architectural design pat-
tern — interruptible RPC — for verifiable command and control sys-
tems. The interruptible RPC provides bounded asynchrony, which
limits the possible message interleaving due to asynchronous com-
munication, and prevents state explosion. Based on the proposed
building blocks, we propose a composition method for designing
complex hierarchical command and control systems while main-
taining low complexity. The experiment results show that the pro-
posed design pattern achieves significant state space reduction. In
the system configuration with two sensors, the number of states of
the system based on the proposed design pattern is at least ten times
smaller than that of the asynchronous one. Moreover, the reduction
efficiency increases as the number of nodes and the size of queue
increase.

The contributions of this paper can be summarized as follows:

e An architectural design pattern called interruptible RPC, which

is flexible and only introduces bounded asynchrony.

e A composition methodology to compose complex hierarchi-
cal command and control systems while maintaining low com-
plexity.

e The quantative evaluation of the system complexity.

The rest of the paper is organized as follows. In Section 2 we
present our motivating example. Section 4 presents the interrupt-
ible RPC pattern. Section 5 describes the composition method. We
present evaluation results in Section 6. We review related work in
Section 7 and we conclude in Section 8.

2. COMMAND AND CONTROL SYSTEM EX-

AMPLE: SEARCH AND RESCUE SYS-
TEM

In this section, we present a simplified search and rescue system as
a motivating example. The example system is a computerized heli-
copter that searches for, and rescues people lost in ocean. The sys-
tem is a distributed system consisting of a manager node and mul-
tiple sensor nodes. A sensor node is a physical system that includes
(a) an infrared sensor, (b) a microprocessor to analyze sensor data,
and (c) a communication device to send and receive data to/from
the manager. The manager is a cyber system which is a part of the
main flight control system (FCS). The manager chooses the search
area and sends corresponding commands to sensors. The sensors
notify the manager upon detecting human targets in the designated
area.

Fig.1 shows the synchronous version of the rescue system design
with a manager and a sensor. This system is synchronous since

found?

(a) Manager FSM

(b) Sensor FSM

Figure 1: Fully synchronous network of automata modeling
search and rescue system

message send (denoted as msg!) and receive (denoted as msg?)
happens in a lockstep fashion — the formal definition of synchronous
system is described in Section 3.1.

The mission is divided into a scanning phase and a tracking phase.
In the first phase, the manager sends the scan command to the sen-
sor. If the sensor finds a target, it reports back to the manager by
sending a found message and the manager moves to the tracking
phase by sending the command track. On receiving the track com-
mand, the sensor follows the identified target until the rescue mis-
sion completes. The important factor in this model is that the man-
ager can stop the mission during scanning or tracking phase (b or d
state in Fig. 1(a)).

Verification of synchronous systems is relatively easy. In this ex-
ample, the total number of states of the system is only five since
all transitions are synchronized between the manager and the sen-
sor. However, in real distributed systems it is difficult to use syn-
chronous design because of physical limitation such as commu-
nication delay or performance issues. On the other hand, asyn-
chronous systems are notoriously complex since they have to deal
with potential message interleaving which does not exist in syn-
chronous systems. Fig.2 shows message interleaving when all com-
mands and responses are asynchronously sent. We use A and B to
denote different search areas. In this figure, the manager first sends
scan A command. If nothing is found within a certain timeout inter-
val, it sends a sfop A command to cancel the current execution and
immediately sends scan B command to start a new search. How-
ever, there is a possible scenario in which the sensor finds an object
in area A before receiving the scan B command and sends back the

Manager Sensor
scan A

k

Figure 2: Message interleaving. stopA, scanB and foundA
are interleaved and must be considered in both the manager
and the sensor (E1, E2 and E3).

report to the manager. In this case, both the manager and the sen-
sor must handle the interleaving of messages: the manager should
make a decision — i.e. whether not to process found A response at
location E/, and the sensor should make a decision — whether to
handle stop A and scan B commands at location E2 and E3. There-
fore, message interleaving adds complexity to system design.

The complexity of message interleaving can be shown as the num-
ber of states explored when we perform model checking of the sys-
tem. We can model asynchronous communication between any
two finite state machines (FSMs) using two directional queues —
the formal definition of asynchronous system is described in Sec-
tion 3.2. Model checking of such systems can easily suffer from a
state space explosion problem because the number of states grows
exponentially as the queue size grows. Let S(Qk,») be the total
number of states of a queue where k is the size of the queue and

z is the number of distinct messages in the queue (kK > 1,2 >
P

1). Then, S(Qkz) = 1+az+2”+ .. +2" = 2——FLin
worst case. If there are ¢ distinct commands and r distinct re-
sponses, then the maximum number of states of the two queues
can be (Ck:; Ly. (Tk:j; L) assuming there is no order enforce-
ment between the commands and responses. Exponential number
of states of the queues represent the maximum possible number of
message interleaving which is a major source of state explosion in
distributed systems. Our evaluation shows that the asynchronous
system with a queue size of four has more than four orders of mag-

nitude of states compared to a fully synchronous system.

Moreover, the asynchronous model easily results in deadlocks, that
is un-acceptable in most system designs. For example, if the man-
ager in Fig.2 expects found B message and does not have a transi-
tion function of found A message then the manager FSM can’t make
any further progress. However, due to the state explosion problem,
it is difficult to check if there can be a deadlock by most program
verification tools. Even if we find a deadlock, fixing it correctly is
still a big challenge for system designers. Moreover, after fixing
the deadlock, the designers have to re-verify the correctness of the
system. Therefore, we need a systematic way to reduce the num-
ber of states in the system to make model checking feasible and to
minimize the risk of undesirable situations such as deadlock.

We realized that a command and control system resembles the re-
mote procedure call(RPC) pattern. In Fig.1, scan-found and track-

(a) Asynchronous

(b) Synchronous (c) Interruptible

Figure 3: Comparison of RPC patterns.

drop pair can be regarded as two separate RPCs. The synchronous
RPC pattern reduces complexity and verification costs significantly
since it does not allow interleaving of commands and responses.
The only exception is the sfop command. The stop command al-
lows the system to cancel the current command and issue a new
command that is a typical requirement in many command and con-
trol systems for adapting to environment changes or emergency
alerts.

This motivates us to introduce interruptible RPC pattern as a build-
ing block for command and control systems. The interruptible RPC
pattern is synchronous RPC allowing bounded asynchrony — the
ability to stop the current executing command. It can be thought
of as a tradeoff between strict synchronous RPC and fully asyn-
chronous RPC [11, 12, 13].

The Fig.3 shows the conceptual difference between asynchronous
RPC, synchronous RPC, and interruptible RPC. In Fig.3(a), re-
sponse R1 can be interleaved with multiple commands: C2 and
C3. We call this inter-command interleaving and it causes expo-
nential state space growth since previous command executions af-
fect the current command. In Fig.3(b), responses never interleave
with any commands. Therefore, there’s no additional state space
growth caused by unexpected interleaving. In Fig.3(c), only the
stop command can be interleaved with the responses. Therefore,
while there is interleaving, which must be verified for correct oper-
ation of the system, the added complexity is bounded. We call this
intra-command interleaving.

The goal of the proposed interruptible RPC model is to provide a
low complexity design pattern for command and control systems
with the consideration of the physical nature and the tradeoff be-
tween flexibility and simplicity. We describe the details of inter-
ruptible RPC in the next section.

3. SYSTEM MODEL

To quantify the system complexity in terms of the number of states,
we first define a formal model of computation and communication
for distributed command and control systems.

3.1 Synchronous system

The computation and communication model of the synchronous
system is similar to the hand-shake synchronization model of UP-
PAAL [4].

A single FSM M; is a tuple (S;,19, %, E;) where

S; is a set of locations of M,

19 € S; is the initial locations,

e Y is the alphabet, whose elements are input (a?), output (a!),
and/or local (a) actions, and

o [, C 5; x X xS, is the set of edges.

In the above definition and the later description, a stands for an
event passing between machines encapsulating the source and the

destination. We write [; = [} for a state transition such that (i, 0,15) €

E.,l;€ S;andl € S; where o € X.

A synchronous system is a set of finite state machines My, ..., M,,.
A state in the system is defined as a vector of current locations of
the machines and denoted [. There are two transition rules in the
system: local transition rule where one FSM make its own move,
and synchronized transition rule where two FSMs make simultane-
ous move. In the latter case, the two FSMs are synchronized using
input actions, and output actions. Let /; is ith element of vector I
and f[l{/ 1;] represents [; is replaced by I;. The transition rules are
as follows:

-

e Local: I % 11} /1, if I; % 1

—

o Sync: IS 1/ /1) it 1 5 1 and 1; 23 1)

3.2 Asynchronous system

In asynchronous model, a system is composed of a set of FSMs
communicating through queues. we introduce queues to model
the communication delay in the distributed system. Let (; ; de-
notes a queue connecting from M; to M;. The queue is served
as an unidirectional communication channel. g; ; represents an in-
stance of ();,j, having a sequence of events. If a queue is a con-
catenation of two event sequences g, ¢’, it is represented by q - ¢’.
Then, the distributed system can be defined as a parallel composi-
tion M1|...|Mn|Qi, i1 |--|Qi,n m Of @ set of finite state machines
My, ..., My, and queues Qi jy, ...y Qim,jm- A queue represents
the sequence of messages sent by the originator, M, but has not
been processed yet by the destination, M}, where 1 < k& < m.
The state of a distributed system is a pair (l_: q) where I’ denotes a
vector of current locations of machines, and ¢'is a vector of assign-
ments of the queues in the network. ¢;; stands for an element of ¢
connecting M; and M;. Let I; is ith element of vector [and I[l/ /1]
represents ; is replaced by ;. Also, let ¢; and g[q;/q;] are defined
in the same way. Then, the transition rules are local transition, send
transition, and receive transition as defined in the following:

e Local: (I, D) % ([I/L], @) if l; = 1
s a! 73 . a!l 4/
e Send: (l,q) — <l[l;-/li],£7[q£j/q1'j]> ifl; = 15, q{-j =qj-a

o Receive: (I, q) &5 (lL/L],dldl,;/ais)) it i S5 U, qiy =
/
a - gq;;

query? or stop?

call!

stop! or query!
Q_Result?

stop??/

F_Result!
P_Result!

all?

9.

query?fQ_Result!

(b) Callee FSM

F_Result? or
P_Result?

(a) Caller FSM

Figure 4: FSM of interruptible RPC pattern

4. INTERRUPTIBLE RPC PATTERN

Fig. 4 shows our proposed interruptible RPC pattern for command
and control systems. The syntax of the model is described in Ta-
ble 1. To simplify the explanation, we show the model for a single
command and present the composition procedure in the next sec-
tion. The basic scenario follows the synchronous RPC pattern and
provides bounded asynchrony. The caller actively sends a com-
mand to the callee and waits for the result. If the callee finishes ex-
ecution without receiving the stop command, callee will send full
result and go back to the ready state. at the caller side, on receiving
the full result, the caller will go to the next state and invokes the
next command. On the other hand, the caller may need to stop the
current execution due to environment changes or emergency alerts.
Therefore, we provide bounded asynchrony, which allows the caller
to send the stop command while in blocking state BI. After send-
ing the stop command, the caller waits for the partial result in state
B2. When the callee receives the sfop command, it will stop the
execution and send the partial result back. Due to the transmis-
sion delay, the stop command may arrive at callee side after the
callee has already finished the execution (the message interleaving
between stop and full result). In that case, the caller will accept
the full result after sending the stop command. Take the search
and rescue system in Section 2 as an example, the caller plays the
role of a manager and the callees play the role of sensors. How-
ever, the callee may fail and do not receive and send messages. We
can introduce timeout mechanism to handle this problem. Never-
theless, completely modeling all the possible failure between caller
and callee is a challenging problem. We will put fault-tolerance
mechanism in the future work. Another worthwhile point to men-
tion is that this pattern also provides a query command to let the
caller actively keep track of the execution status in the callee.

‘We modeled the proposed interruptible RPC in Maude and verified
the properties. According to Maude, the proposed model only in-
troduces 17 states, so it can be exhaustedly verified by most model
checking methods. The proposed model contains three verified
properties.

e There is no inter-command interleaving, and the only intra-
command interleaving is between stop command and full re-

msg! Send msg to communication queue

msg? Receive msg from communication queue

A?B! If receive A then send B

F_Result | Full result, generated after finishing the exe-
cution

P_Result | Partial result, generated after receiving stop
@Q_Result | Query result, generated after receiving
query

Table 1: FSM operation syntax

stop?

[

Ready

/ call? stop?/

F_Result! P_Result!

F_Result? or
P_Result?

(a) Caller FSM (b) Callee FSM

Figure 5: FSM of interruptible RPC pattern for first response

sult. The caller will receive full result instead of partial result
if the callee has already finished the execution.

o If the callee finishes the execution or the caller sends stop
commands, then the caller goes to the next state and the
callee goes to ready state without leaving pending messages
in the queue. Consequently, there is no deadlock in this
building block.

e The size of the queue is bounded by two since the callee
can only receive two consecutive commands: call!-stop! and
call!-query!.

4.1 Distributed Interruptible RPC Pattern

To extend the current model to support distributed command and
control systems, a caller serves as a manager to control multiple
distributed callees. We consider the system structure in two ways.
First, the callees are independent, which means that the execution
of one callee does not depend on the executions of other callees.
Therefore, the caller creates a thread or a process to control each
independent callee. Since there is no message passing between the
callees, the complexity of the caller is the sum of the complexity
of the callee models. Second, the callees coordinate on the same
job, and the caller controls the callees according to the responses it
receives from them. In order to easily extend the proposed model to
support this scenario while maintaining low complexity, all callees
have to stay in the same state when there are no pending messages
left in the queue. All the callees can only accept execute the same
command at the same time. After all the callees finish the execution

call(n)!
ith_Result?

ith_Result?

call(n)?
F_Result! stop?/

P_Result!

~_Result? or
P_Result?

l
it

(b) Callee FSM

(a) Caller FSM

Figure 6: FSM of interruptible RPC pattern with sub-results

of the command and send the full results back, the caller can go to
the next state and issue the next command.

In this manner, this pattern prevents extra interleaving between
callees and keeps the system complexity low. By providing inter-
ruption in the form of bounded asynchrony, we meet the primary
goal of concurrency and flexibility. The limitation of concurrency
is a worthwhile tradeoff since otherwise we will have a unverifiable
system due to state explosion. As we show in Section 6, when com-
paring an unbounded asynchronous system, the complexity differ-
ence can be several orders of magnitude.

4.2 Variations of Interruptible RPC Pattern

Our proposed model is flexible to support different design scenarios
with slight modification. Now we present some useful variations.
We will show how to use these variations to compose a search and
rescue system in the next section.

Interruptible RPC for first response Consider a set of callees co-
ordinated for the same work. After receiving the first re-
sponse from one of the callees, the caller can stop current
execution and issue a new command. As shown in Fig.5, the
caller waits for the first full result from one of the callees
and sends the stop command. On receiving the results from
the other callees, caller goes to the next state and issues new
commands.

Interruptible RPC with sub-results Fig.6 shows the modified in-
terruptible RPC pattern in which a callee is asked to provide
n sub-results specified by the call(n) command. Therefore,
the caller can keep track of the execution status of the callee
without introducing more unnecessary commands. Once the
caller is satisfied with the quality of the sub-result, it can
send stop command and invoke the next command. In this
scenario, the caller has the flexibility to determine the flow
of execution according to the quality of the sub-results.

S. COMPOSITION OF INTERRUPTIBLE RPC

In this section, we describe how our interruptible RPC pattern can
be used in designing more complicated systems with multiple com-
mands. Also we describe the complexity of composed system.

C1

Interface |

' 7 X

Q
A

Interface

Interface

Cn c1 c2 [e]o] Cn

(a) Caller (b) Callee

Figure 7: Composition of multiple commands (Cl1,...,Cn).

5.1 Composition Methodology

Fig. 7 shows the multi-command model on the caller side can be
modeled as a sequential composition of state machines of com-
mands that are built based on the interruptible RPC pattern. On
the other hand, the composition on the callee side is in a paral-
lel style and can also be easily composed with the interruptible
RPC pattern. However, in reality the commands are executed in
a sequential manner and there is no interleaving between the ex-
ecution steps of different commands. The order of execution of
commands on the callee side is enforced by the caller. Moreover,
the only dependency between the commands of the proposed pat-
tern is in the interface between the commands. This interface is
the output of one command used as the input of the next command.
The order of commands is the run-time order in which they are ex-
ecuted. Each command can start only when the previous command
has completed its execution.

Fig. 8 shows a search and rescue system with two commands, scan
and track. The system is composed using the interruptible RPC
pattern and the composition methodology illustrated in Fig. 7. In
the first phase, the mission manager sends out the scan command to
both of the sensors. When a target is detected by any of the sensors,
the mission manager moves to the tracking phase. In this phase the
sensors will follow the target and depending on the application can
report back the location, direction and speed of the target. In this
model each sensor remains in the tracking mode until it receives a
stop message from the mission manager or it loses the target. The
sensor model is shown on the right side of Fig. 8. Similar to the
original interruptible RPC model, on receiving a stop command,
the sensors report back their partial result or full result if they have
already finished the execution.

For the scan command, we use the building block that accepts the
first response from the sensors, as shown in Fig. 5 and for the track
command, we use the original building block. The provided build-
ing blocks are flexible and useful for composing complex systems.

5.2 System Complexity

The verification cost of the system consists of two phases: verifi-
cation of the commands, C.ommand, and verification of the com-
position, Ccomposition. These costs are added together instead of
being multiplied due to the bounded asynchrony property provided
by our proposed design pattern.

scan!

B e L L E T
'

(b) Sensor FSM

Figure 8: Interruptible RPC pattern based search and rescue
system model

For the first part, Ccommand, When composing the system using
the building blocks, the proposed composition methodology pre-
vents inter-command interleaving. Therefore, there is no need to
verify the different possible interleaving of execution steps of the
commands in our system (Fig. 7). The verification cost is the sum
of the verification cost of the commands.

In contrast, the asynchronous model may result in significant inter-
command interleaving. Therefore, the complexity of verifying all
possible interleaving is the product of verification cost of the com-
mands that is much larger than the proposed pattern and can easily
cause the state space of the system to explode.

The second part, Ccomposition, 1S the verification cost that is paid
by the designer to find the correct wiring of the building blocks.
This cost depends on the approach that the designer takes to ob-
tain the correct composition for the system. It should be men-
tioned that the focus of our proposed methodology is Ccommand-
Ceomposition 1s beyond the scope of this paper, but we intend to
address it in future work.

Table 2: State space and execution time comparison of search and rescue system. async(n) denote asynchronous system of queue size

n. NF means it didn’t finish within 12 hours.

(a) State space comparison (number of states)

synchronous | interruptible | async(2) | async(3) | async(4) | async(5)
1 sensor 5 29 70 121 195 275
2 sensors 11 133 1410 4424 11816 23732
3 sensors 22 701 28691 184418 782417 NF

(b) Execution time comparison (msec)

synchronous | interruptible | async(2) | async(3) | async(4) | async(5)
1 sensor 0 1 4 7 12 16
2 sensors 1 13 160 549 1571 3276
3 sensors 1 120 6586 49307 1096480 NF

Based on the proposed design pattern, after verifying each com-
mand separately (Ccommand), the designers only need to verify the
correct wiring of the building blocks (Ccomposition), that is inde-
pendent of the individual commands. In this manner, the correct-
ness of the composed system is guaranteed and there is no need to
verify the whole system. The proposed design pattern not only pro-
vides the designers with a library that consists of building blocks
and multiple options for each of the blocks but also greatly reduces
the design and verification costs. The next section contains more
details on the system design and verification cost.

6. EVALUATION

Table 2 shows experimental results of modeling the search and
rescue system described in Section 2 with different patterns: syn-
chronous, asynchronous RPC, and the proposed interruptible RPC.

For each pattern we varied the number of sensors from 1 to 3 sen-
sors in the model. Synchronous RPC pattern is based on syn-
chronous model described in Section 3.1. Interruptible RPC and
asynchronous RPC patterns are both based on asynchronous model
described in Section 3.2. For asynchronous RPC pattern, we varied
the queue size from 2 to 5. Note that interruptible RPC uses queues
of size two since the pattern do not need more than two messages
in the queue. We used Maude [5] to model the systems and all mea-
sured in a Core2Duo 2.7 GHz workstation with 4GB RAM. In the
asynchronous RPC based system, we added additional transitions
to discard non acceptable messages to prevent deadlock — for ex-
ample, when the sfop and found are interleaved, we discarded the
found.

From Table 2(a), we see that the state space growth rate of the three
patterns as the number of sensors increase. It is evident that asyn-
chronous RPC patterns grow much faster than the other two. The
growth rate of “interruptible’ pattern is about an order of magnitude
slower, for each sensor addition, than ’async(4)’ — asynchronous
with queue size of four. Also, the asynchronous RPC pattern suf-
fers severely from state space explosion as the queue size grows.
Therefore, model checking of even reasonably sized asynchronous
RPC systems will be infeasible. On the other hand, the interruptible
RPC pattern shows reasonable state space growth rate. Moreover,
it is not affected by the queue size since the maximum interleaving
is bounded by the design.

Table 2(b) shows a comparison of the execution times. It also shows
a trend similar to Table 2(a). However, the growth rate is even

faster. For async(4) configuration, the growth rate is two orders of
magnitude for each sensor addition; For async(9), it failed to finish
within 12 hours for three sensors.

7. RELATED WORK

After the introduction of software patterns [14], the use of pat-
terns is well accepted in many software areas from designing small
component to designing system architecture [15, 16, 17]. While
these patterns are useful for reducing design and development cost,
they are informally described in general. Thus, they do not for-
mally guarantee the correctness for wide-range of similar problems.
Since CPS demand rigorous verification of designed systems, for-
mally describable design pattern have been an active research area
recently.

Physically Asynchronous Logically Synchronous (PALS) system
is a formal architectural pattern which provides architectural ab-
straction of time triggered synchronous systems over physically
asynchronous systems [18]. The pattern is formally specified and
simplifies the formal verification of real-time distributed system
by providing a correctness preserving transformation of the syn-
chronous design into the equivalent asynchronous system. While
PALS share similar objective with us, our approach is different in
two key aspects. First, our model is event (message) triggered sys-
tem while PALS is time triggered system. Second, we narrowly
focus on RPC style communication of hierarchical command and
control systems.

RPC is widely used as a client/server model to request service
through network. The synchronous RPC has the advantage of low
complexity and verification cost. However, the synchronous model
lacks flexibility, because the system can be blocked during execu-
tion. In contrast, asynchronous RPC model provides high flexibil-
ity and concurrency and is widely adopted in client-sever systems
designs [11]. However, asynchronous RPC model suffers from se-
rious state explosion problem due to message interleavings. Al-
though some programming templates support abort or cancel mech-
anism in asynchronous RPC, they lack formal description of the
behavior for aborting RPC [12].

Interruptible RPC is a formally described pattern which allow bounded

asynchrony and can be fully analyzed without causing state space
explosion.

8. CONCLUSION

This research is motivated by the state space explosion problem due
to message interleaving in distributed system designs. We focus
on the command and control systems for search and rescue and
propose a design pattern, Interruptible RPC, as a building block of
system designs. We show the proposed pattern has low complexity
and verification costs in terms of number of states explored by the
program verification tool. In addition, we propose a composition
methodology to compose complex command and control systems
without introducing state space explosion. In our experiments, we
model a search and rescue system and we show that the proposed
design pattern can reduce verification space and time by several
orders of magnitude. The reduction is more significant when the
size of the model (number of sensors, queue size) increases.

In future work, we will exploit the fault-tolerance mechanism. More-
over, we shall further explore the hierarchical structure of command
and control systems and provide the formal description and proof
of the complexity.

9. ACKNOWLEDGEMENTS

We thank the anonymous reviewers for useful feedback, Abdullah
Al-Nayeem, Mu Sun, and Sibin Mohanm for their comments and
help that improved the quality of this paper. We also thank Lock-
heed Corporation Martin for providing valuable opinions. This ef-
fort is funded in part by Lockheed Martin 2009-00524 and by ONR
NO00014-08-1-0896 (ONR).

10. REFERENCES

[1] E. A. Lee, “Cyber physical systems: Design challenges,”
EECS Department, University of California, Berkeley, Tech.
Rep. UCB/EECS-2008-8, Jan 2008. [Online]. Available:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2008/
EECS-2008-8.html

[2] Stankovic, J. A., Lee, Insup, Mok, Aloysius, Rajkumar, and
Raj, “Opportunities and obligations for physical computing
systems,” Computer, vol. 38, no. 11, pp. 23-31, 2005.

[3] “COSPAS-SARSAT Search and Rescue System.” [Online].
Available: http://www.nasa.gov/centers/goddard/pdf/
105930main_cospas.pdf

[4] J. Bengtsson and W. Yi, “Timed automata: Semantics,
algorithms and tools,” Lecture Notes in Computer Science,
vol. 3098, pp. 87-124, 2004.

[5] M. Clavel, F. Duran, S. Eker, P. Lincoln, N. Marti-Oliet,

J. Meseguer, and C. Talcott, All About Maude — A
High-Performance Logical Framework, ser. Lecture Notes in
Computer Science. Springer, 2007, vol. 4350.

[6] E. Clarke, O. Grumberg, and D. Peled, Model checking.
Springer, 1999.

[7] N. Lynch, Distributed algorithms. Morgan Kaufmann,
1996.

[8] J. E. Moss, Nested transactions: an approach to reliable
distributed computing. Cambridge, MA, USA:
Massachusetts Institute of Technology, 1985.

[9] J. W.S.Liu, W.-K. Shih, K.-J. Lin, B. R., and J.-Y. Chung,
“Imprecise computations,” Proceedings of the IEEE, vol. 82,
pp. 83-94, 1994.

[10] S. Lui, “Using simplicity to control complexity,” IEEE
Software, vol. 18, no. 4, pp. 20-28, 2001.

[11] A.L. Ananda, B. H. Tay, and E. K. Koh, “A survey of
asynchronous remote procedure calls,” SIGOPS Oper. Syst.
Rev., vol. 26, no. 2, pp. 92-109, 1992.

[12] Microsoft, Asynchronous RPC (Windows). [Online].
Available: http://msdn.microsoft.com/en-us/library/
2a373550%28VS.85%29.aspx

[13] E. B. Johnsen and O. Owe, “An asynchronous
communication model for distributed concurrent objects,” in
SEFM ’04: Proceedings of the Software Engineering and
Formal Methods, Second International Conference.
Washington, DC, USA: IEEE Computer Society, 2004, pp.
188-197.

[14] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design
patterns: Elements of reusable object-oriented design.
Addison-Wesley Reading, MA, 1995.

[15] F. Buschmann, Pattern-oriented software architecture: a
system of patterns. Wiley, 2002.

[16] P. Avgeriou and U. Zdun, “Architectural patterns revisited—a
pattern language,” in 10th European Conference on Pattern
Languages of Programs (EuroPlop 2005). Citeseer, 2005,
pp. 1-39.

[17] B. Douglass, Real-Time Design Patterns: Robust Scalable
Architecture for Real-Time Systems. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 2002.

[18] A. Al-Nayeem, M. Sun, X. Qiu, L. Sha, S. Miller, and
D. Cofer, “A formal architecture pattern for real-time
distributed systems,” in Proceedings of the 2009 30th IEEE
Real-Time Systems Symposium. 1EEE Computer Society,
2009, pp. 161-170.

