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1. INTRODUCTION 
Context switching is the series of procedures to switch 

the control of CPU from current process to a certain 
process. While the context switching, the operating system 
saves the context of current process and restores the 
context of the next process which is decided by some 
certain scheduling policy. 

The context switching time of an operating system 
which supports the virtual address space, vary to the 
algorithms of cache of the architecture. Cache architecture 
can be split by the addressing scheme as virtual cache and 
physical cache.[1] The virtual cache stores the location of a 
certain context with virtual address and the physical cache 
stores with physical address. The access time for the 
virtual cache could be better for the simplicity of 
comparison with the context of cache which needs no 
address conversion. However, for context switching, the 
whole context of the virtual cache must be flushed and 
invalidated because of the meaningless after the switching. 
For example, ARM9 architecture has virtual address based 
cache and after the context switching the whole memory 
access makes cache miss at every each first access time 
which makes heavy load. 

The uClinux [2] is designed for MMU-less architectures 
at first. On uClinux, one singular address space is shared 
by the whole processes which had its own virtual address 
space while on Linux. It makes difficult to support 
memory protection and vast address space but the load for 
context switching and communication can be much 
smaller while supporting the whole compatibility with 
Linux API except for fork() which is replaced by vfork() in 
uClinux. 

In this paper, we analyzed the virtual addressing cache 
architecture of the ARM9 which is mostly used platform 
for embedded systems, and compared the expense of time 

of context switching for uClinux and Linux on the same 
platform. 

The cache and TLB architecture is described at the 
chapter 2 and the implementation issues for uClinux and 
Linux is described at the chapter 3. The benchmark 
environment and the program are described at the chapter 
4 and the benchmark result is described at the chapter 5. 
The previous works summarized at the chapter 6. 

2. STRUCTURAL ANALYSIS 
The structure of the cache and TLB (Translation 

Look-aside Buffer) of the MMU based ARM processor is 
as Fig.1. [8] 

ARM architecture is designed as the harvard 
architecture. CPU outputs the virtual address(VA) and if 
the matching data is in the I(instruction) or D(data) cache 
return the context by cache-hit. If it is not in the cache, the 
TLB is used for matching the VA with the physical 
address(PA) and the cache-line is filled from the memory. 
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 Fig. 1.  The Cache and TLB architecture diagram of ARM processor.  
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Fig.2 shows the detailed cache structure of ARM9 
processor [6][7]. The “Index” part from the 32bits virtual 
address which is made by CPU used for indexing of the 
“Tag” table and if the indexed entry’s tag information 
matches the tag information from the virtual address, the 
data from cache-line is accessed. In the Fig.2, the cache 
index and the tag itself are based on the virtual address. 
Thus, while process context switching time, the whole 
current cache context and TLB is invalidated if it is set by 
the WT(Write-Through) cache policy, even need to be 
flushed into the real memory if WB(Write-Back) cache 
policy is used. 

For flushing the cache, about 1k ~ 18k CPU cycle is 
needed depend on the cache size and the side operations 
which is needed to fill-up the cache-line and TLB takes up 
to about 54k CPU cycle. For 200MHz ARM9 processor, it 
is about 270µs time, [3] and is a heavy burden for many 
real-time applications which needs under several tens of µs 
response delay. 
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 Fig. 2.  The detailed cache architecture diagram based on virtual address. 
(ARM926EJ-S) 

3. IMPLEMENTATION 
 

uClinux is the modified Linux kernel for architectures 
which has a MPU(Memory Protection Unit) only or even 
no hardware memory management unit. From 2.0.x to 
2.4.x, it is independently designed and developed from 
Linux kernel. However, from Linux 2.6.0 beta test 
versions, from the m68knommu architecture, it is merged 
into the mainstream Linux kernel and separation from 
conventional Linux kernel and uClinux is not valid. 
Although uClinux supports the singular addressing space 
for kernel and application processes, except for fork() and 
memory remapping only, the whole Linux API is fully 
compatible and used for many of real-world embedded 
system development for architectures which has no MMU 
or even it has, if the single space addressing has 
advantages. 

uClinux is available for architecture which has MPU or 
even MMU. The ARM MMU supports both page-mapping 
for 1KB, 4KB, 64KB size and section-mapping for 1MB 
size. Linux uses 4KB paging-mapping for memory 

management. For uClinux, 1MB section-mapping can be 
used for simple virtual to physical mapped single address 
space. To say again, D and I-cache operation and mapping 
core of MMU still work but paging mapping for uClinux. 

In this paper, ARM926EJ-S core based Samsung 
S3C24A0 processor reference platform is used for Linux 
and uClinux 2.6.7. [4] 

4. EXPERIMENTAL SETUP 

4.1 The benchmark programs 
lmbench[5] is the well-known benchmark program for 

performance testing over UNIX related operating systems. 
In this paper, “lat_ctx,” “lat_fifo” and “bw_fifo” is used 
with some modifications. 

The “lat_ctx” is for measuring the requirement time for 
context switching. Creating “N” processes and series of 
“N” pipes, it constructs “pipe-ring” which links all the 
processes. Each process accesses its own “k” KB 
independent memory and “token” is passed through the 
next pipe to the neighbor processes, which makes  a series 
of synchronized context switching and measure the cycle 
delay time. 

The “lat_fifo” is for measuring the requirement time for 
send and receive a token between 2 processes. 

The “bw_pipe” is for measuring the bandwidth of 
“pipe” to send and receive through it. 

To be the exactly same code, while the benchmark, we 
made modifications on fork and pipe to be vfork and 
name-pipe (FIFO). 
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 Fig. 3.  The FIFO structure of the modified “lat_ctx” 

 
Fig. 3 shows the modified FIFO structure for the 

“lat_ctx.” The parent processes creates FIFO which is 
sorted with the process numbers(PID). When the child 
processes are created by the vfork, the child processes 
open the neighbor FIFOs to be ready for the 
communication. Each of the all the child processes are 
blocked when it try to read the “n-1” FIFO and to be 
“sleep” state waiting for the write of the FIFO.  If all the 
child processes are ready for read the FIFOs, the parent 
process writes a token to the first FIFO. It makes “wake” 
the first child process and the context switching is occurred, 
and the process writes the token to the next child process, 
and so on. This procedure makes the chain reaction to be 
context switched in series. If the last child process get the 
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CPU control and write to the last FIFO, the blocked parent 
process who was waiting for the input of the last FIFO is 
awaken and completes one cycle of the “pipe-ring.” 

5. EVALUATION 

5.1 The benchmark system 
The S3C24A0 process which is used for the benchmark 

test is based on the ARM926EJ-S core and has 16KB 
D-Cache and 16KB I-Cache separately. The TLB has the 
capacity to store 64 entries simultaneously, and the I and D 
entries are not separated and the all of the caches and TLB 
is based on the virtual address. 

The benchmark test is done on the same S3C24A0 
platform and the same release version of kernel (2.6.7) for 
uClinux and Linux. And the benchmark program which is 
described at the Chapter 4 is used. 

5.2 The benchmark result 
The results of “lat_fifo” and “bw_pipe” are shown in the 

Table 1, which reflects the delayed time and the 
bandwidths of the FIFO. 

The result shows that uClinux has 5 times and 2 times 
better performance than Linux on the delayed time and the 
bandwidths. This is from the cache operation of the Linux 
kernel which invalidates and flushes the whole caches for 
the context switching. In other hand, uClinux shares the 
one address space for all the processes include the kernel 
itself, and get the benefit of cache efficiency. 

In other words, the difference of the IPC (Inter-Process 
Communication) performance can make a big performance 
improvement on the uClinux system applications which 
needs frequent processes communication. 

 
TABLE  1 
THE RESULTS OF THE IPC PERFORMANCE OF LINUX AND UCLINUX 
 

  Linux uClinux Ratio

lat_fifo(µs) 160.64  31.74  5.06 

bw_pipe(MB/s) 12.58  25.55  2.03 
lat_fifo measures the delayed time of FIFO, smaller number is better. 

bw_pipe measures the bandwidth of FIFO, bigger number is better. 
 
The context switching delayed time is showed in the Fig. 

4. The context switching time of uClinux and Linux varies 
from its own data access size (0KB, 1KB, 16KB) and the 
number of processes. When the access data size is 0KB, 
uClinux switches 4.5 times faster for 16 processes and 9.7 
times for 2 processes. 

For all cases of Linux settings, the context switching 
time is almost flat independently with the increase of 
number of processes. It shows the almost fixed cache miss 
burden which comes from the invalidation of the whole 
caches while the context switching. uClinux shows much 
smaller delayed time for context switching while the 
number of processes are small and increase depend on the 
number of processes. This comes from the decrease of the 
cache hit ratio of I-cache and D-cache, when the number of 
processes is increased. Especially when the process own 
data access size grows up to 16KB, the context switching 
time for both of uClinux and Linux almost same which 

comes from the hardware cache size of S3C24A0 which 
has 16KB I and D caches and the benefit from cache set 
off. 
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Fig. 4.  The context switching time measured by “lat_ctx.” is shown. Each 

process has its own 0KB, 1KB or 16KB data access contents and the 
number of processes varies. The dot over the line “x” represents the value 

of Linux and “o” for the value of uClinux. 
 
The magnified graph for own access data size 0KB is 

shown at Fig. 5. For Linux, all the caches are invalidated 
and flushed whenever switching the context and the 
cache-line is filled from the beginning. Thus, almost fixed 
cache-miss time load is needed irrelative to the number of 
processes. 

In uClinux case, the possibility of cache hit occurrence 
is much stronger. However the delayed time increase while 
the number of process increase which makes increase the 
possibility of cache-miss because of the limited hardware 
cache capacity. 
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Fig. 5.  The context switching time measured by “lat_ctx.” Each process 

has no its own data access storages. (size = 0KB) 
The total gage R&R study on the benchmark system 

shows 0.25% contribution of VarComp and 5.03%SV. 
 



 
 
 
 

6. RELATED WORK 
Although we are not aware of any previous systematic 

study of the uClinux and Linux performance, many of 
extensions to operating systems performance improvement 
was introduced include real-time, sharing domain and 
overall performance. 

In particular, many different real-time scheduling 
algorithms introduced and have been implemented in the 
FreeBSD, Linux, or Solaris kernels and so on.[11]  And 
some of different approaches for reducing the OS latency 
is used by systems, such as RTLinux, RTAI, and KURT 
and so on. 

Another focus on the kernel performance has been on 
the overall performance optimization issues on general 
purpose or overall throughput which could be an issue on 
enterprise servers. [9][10] 

The FASS(Fast Address-Space Switching for ARM 
Linux Kernels) is one of the a few studies on embedded 
systems.[3] The project aims to utilize some of the features 
of the Memory Management Unit in the StrongARM 
architecture to improve the performance of context 
switches under ARM Linux Kernel, although it is known 
to be unstable as it should be: TLB sharing does not always 
work. It is based on using domain tags as address-space 
identifiers and delaying cache flushes until a clash of 
mappings is detected. And they implemented TLB entries 
for shared pages even though the TLBs of the ARM are 
quite small and a potential bottleneck. 

7. CONCLUSION 
In this paper, we compared the context switching time 

and IPC performance of uClinux and Linux on the same 
hardware platform with ARM9 core, which is the mostly 
used Linux embedded system platform. 

With the series of benchmark programs, uClinux 
showed much improved performance of context switching 
delay and IPC than Linux. This comes from the virtual 
address usage for cache architecture and the virtual address 
space support of Linux kernel which needs invalidation of 
the whole caches which makes a fixed amount of 
cache-miss load whenever switching the contexts of 
processes. uClinux which supports singular address space 
boosts the efficiency of cache even if context switching 
occurs and dramatically reduced the required delay. 
uClinux showed much better performance on the IPC 
performance also. 

The uClinux will show significant benefits on a sort of 
applications which needs high context switching rates and 
significant sharing like IPC as the time critical embedded 
systems does. 
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